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Early Warning Systems for identifying financial

instability

Erindi Allaj∗ Simona Sanfelici†

Abstract

Financial crises prediction is an essential topic in finance. Designing an efficient

Early Warning System (EWS) can help prevent catastrophic losses resulting from

financial crises. We propose different EWSs for predicting potential market instability

conditions, where market instability refers to large asset price declines. The EWSs

are based on the logit regression and employ Early Warning Indicators (EWIs) based

on the realized variance (RV) and/or price-volatility feedback rate. The latter EWI

is supposed to describe the ease of the market in absorbing small price perturbations.

Our study reveals that, while RV is important in predicting future price losses in a

given time series, the EWI employing the price-volatility feedback rate can improve

prediction further.

Keywords: Early Warning System; Non-parametric estimation; Price-volatility feedback

rate; Realized variance.

1 Introduction

Detecting financial crises is extremely important for both policy-makers and practitioners.

This has been shown to be particular crucial during the financial crisis of 2007-2008 suggesting

that a forward-looking framework to financial risk management is more indispensable than

ever. This fact has, for example, been explicitly pointed out by [Breden, 2008] and [Jorion,

2009]. [Rochette, 2009] also argues that the organization with a strong risk culture is the one

that is forward-looking. This allows the organisation to learn from its mistakes and most

importantly to respond sufficiently quickly to emerging threats and opportunities.

∗Dept. of Economics and Management, University of Parma - E-mail: erindi.allaj@unipr.it
†Dept. of Economics and Management, University of Parma. Member of the INdAM-GNCS Research

Group, Italy - E-mail: simona.sanfelici@unipr.it
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In this context, as noted by [Kunze et. al., 2020] and [Rodriguez et al., 2021], Early

Warning Indicators (EWIs) can be extremely helpful for asset managers to ameliorate forward-

looking Early Warning Systems (EWSs). More specifically, using housing market data from

UK and time-series econometric techniques, [Kunze et. al., 2020] find that the sentiment

indicator can improve forecast accuracy of property prices in the UK. On the other side,

[Rodriguez et al., 2021] through the combination of a machine learning approach and the

concept of transfer entropy find that sentiment indicators are valid predictors of real estate

assets in the US.

The question of preventing possible future financial crises was already important before

the financial crisis of 2007-2008. [Kaminsky et. al., 1998 ] use a signalling approach to

construct EWSs capable of predicting a possible financial crisis. These systems are based on

observing the behaviour of several economic and political indicators in the periods preceding

a determinate currency crisis. Values of these indicators exceeding a given threshold are

an indication of a currency crisis within the next 24 months. The signalling approach was

also adopted later, for example, by [Borio and Drehmann, 2009] and [Drehman and Juselius,

2014].

[Berg and Pattillo, 1999] show that probit models provide better forecasts than the

[Kaminsky et. al., 1998 ] approach. The currency crisis is defined as in [Kaminsky et. al.,

1998 ] and the probit models are run using a categorical variable assuming the value of 1

if a crisis occurs within the next Tm periods and 0 otherwise. The economic regressors of

[Kaminsky et. al., 1998 ] and others are employed in running the respective regressions. The

probit model has been used, among others, by [Kauppo and Saikkonen, 2008] and [Antunes

et al., 2019].

[Schnatz, 1998], [Kumar et. al., 2003], [Bussiere and Fratzscher, 2006] and [Candelon et

al., 2014] use logit regression models to build EWSs capable of predicting currency crises.

Unlike the other authors, in order to deal with the so called ”post-crisis bias”, [Bussiere

and Fratzscher, 2006] suggest the use of the multinomial logit regression EWS as a possible

substitute of the binary logit EWS. They conclude that their proposed EWS increases the

ability to forecast financial crises. [Manasse et. al., 2003] and [Dawood et. al., 2017] also

propose logit regression EWSs for predicting sovereign debt crises. In particular, [Dawood et.

al., 2017] utilize both a binary and a multinomial logit regression while constructing their

EWS. [Caggiano et al., 2014] and [Caggiano et al., 2016], focusing on low income countries,

propose a multinomial logit regression EWS for predicting banking crises. Their model is

able to address, what they call, the ”crisis duration bias”. Also, [Barrell et al., 2010] predict

banking crises by estimating binary logit regression models for OECDs countries.

[Ghosh and Ghosh, 2003] and [Manasse et. al., 2003] propose the use of binary recursive
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trees, while [Fuertes and Kalotychou, 2007] the use of K-clustering approach to detect financial

crises. [Billio et. al, 2016] analyse the forecasting ability of the entropy measures to predict

financial crises by applying systemic risk measures such as Marginal Expected Shortfall

(MES), ∆CoVaR and network connectedness. They show that the ability of the entropy

measures is remarkable.

A common denominator of the majority of the approaches outlined is the use of macrodata

and financial variables. Good overviews on the EWSs can be found for example in [Abiad,

2003], [Babecký et. al, 2014] and [Douady and Kornprobst, 2018].

Many empirical and theoretical studies have also investigated the relationship between

market volatility and financial crisis. For instance, [Douady and Kornprobst, 2018] propose

financial crisis indicators based on the distribution of the eigenvalues and the trace of the

empirical covariance matrix, while [Li et. al., 2015] provide evidence that the VIX index can

be useful in predicting financial crises. Assessment of the degree of market uncertainty and

potential financial loss or gain may be measured using variability in prices. In statistics and

econometrics, the most common measure to determine variability is the standard deviation,

i.e., the variability of returns from the mean. In particular, realized variance (RV), also called

realized volatility, is a non-parametric measure of the return variation within a defined period

of time.

The recent literature on volatility modeling has pointed out the existence of feedback effects

of asset prices on volatilities and viceversa in financial markets. In a recent paper, [Mancino

and Sanfelici, 2020] propose an Early Warning Indicator (EWI) based on the estimation of a

second order quantity (named price-volatility feedback rate), which is supposed to describe

the ease of the market in absorbing small price perturbations. The feedback rate relies on

the computation of the decay rate for the propagation of a given market shock. The rate of

variation through time of an initial perturbation enables us to understand if such a shock

will be rapidly absorbed or, on the opposite, it will be amplified by the market. When the

feedback rate is positive, the perturbation propagates over a trajectory, whereas, when the

feedback rate is negative, the perturbation is attenuated over a trajectory. More precisely,

the authors show that large values of the feedback rate reveal conditions in the market where

perturbations in the price level may evolve in large price declines or changes in general. This

financial instability index combines in a non-linear way volatility, leverage and covariance

between leverage and price and can be non-parametrically estimated from high frequency

financial data using the Fourier method developed in [Malliavin and Mancino, 2002a] and

[Malliavin and Mancino, 2009].

Starting from their study, the volatility feedback rate can be used as an EWI that can

help predict whether large price variations of a given asset or index are likely to occur within

3



a specific time horizon. To test the efficacy of this indicator, we use a binary logit regression

model where different predictors or EWIs based on RV and the integrated feedback rate

(over a trading day) are considered. According to [Beutel et. al., 2018], the binary logit

approach provides better out-of-sample performance than other machine learning methods.

These predictors are given by the logarithm of the RV, average of the logarithms of the RVs

over a certain period of time and the average of another variable taking the value of the

sample mean of the daily integrated feedback rate derived over the whole temporal period

if the daily feedback rate exceeds the sample mean, 0 otherwise. The dependent variable,

also known as the forward-looking variable, is an indicator of financial crises. It is defined in

terms of losses on daily returns exceeding a given threshold measured by the Value-at-risk

(VaR). This is how the term ”financial crises” should be intended throughout the present

paper. The forward-looking variable is alternatively defined by comparing the average returns,

conditional on having losses exceeding the corresponding VaR measure, with the Expected

shortfall (ES).

Our definition of financial crisis includes the classical crisis indicators used in the literature,

where a crisis usually happens when the variable used to determine it is more than a multiple

of the standard deviation above its average. However, here, we are offering more general

definitions and, to the best of our knowledge, this is the first study to use these definitions.

This is also true for the EWIs.

We ran our logit regressions by assuming different estimation intervals for the EWIs

based on the RV and price-volatility feedback rate and different crises prediction intervals.

In addition, the risk measures VaR and ES are derived under different levels of significance

and distributions, namely, normal and t location-scale distribution. However, in most cases,

we focus on the latter distribution since this fits our data better. Our dataset includes

tick-by-tick prices of the S&P 500 index futures covering the period from 3 January 2000 to 31

December 2008 and a total of 2248 trading days. This index is often used by practitioners and

researchers as a proxy for the financial and real economy. Examples might include [Andersen

et al., 2007 ], [McCarthy and Orlov, 2012] and [Li et. al., 2015]. In particular, [Andersen et

al., 2007 ] find that S&P 500 index futures are related to fundamentals, while [McCarthy

and Orlov, 2012] use the movements in the S&P 500 index futures to proxy for financial

volatility and investigate the link between the latter and the oil market. Finally, [Li et. al.,

2015] conclude that information contained in the S&P 500 index futures and options improve

prediction of equity market crises. It is also worth pointing out that this study is similar to

ours in the sense that it builds its EWIs employing the information in the S&P 500 indexes.

As a result, predicting its future losses is very useful both from a practical and theoretical

point of view. We would like however to emphasize the fact that our EWSs can of course be
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easily extended by introducing other EWIs such as macroeconomic indicators.

We find statistically significant results for the different combinations of the estimation,

prediction intervals and levels of significance. Focusing on the t location-scale distribution,

the EWIs using RV have a larger effect on the odds of having financial crises when the level

of significance is equal to 0.90 or 0.95 suggesting that RV is more connected to less extreme

financial crises. As for the EWI employing the price-volatility feedback rate, we observe that

in almost all the cases the estimated regression coefficients of this EWI are greater when the

level of confidence is equal to 0.99. This property of the feedback rate remains true both in

the case when this EWI is used in the conjunction with the other EWI that uses the average

of the logarithms of the RVs or when used alone. This means that when the EWI increases

with one unit, the odds of having more extreme financial crises increases more than the odds

of less extreme crises. Further, as the estimation and the prediction interval increase, the

slope magnitude of the latter EWI increases in almost all the cases considered.

The EWIs considered are very capable in predicting notable financial crises like the

Lehman Brothers Collapse. Additionally, the EWSs run with both the EWIs using the

feedback rate and RV are preferred over the reduced EWSs ran with the single EWIs alone.

Our findings remain intact even when a cross-validation exercise is run. We can therefore

affirm the capacity of these EWIs in predicting future financial crises and in particular of the

feedback rate to improve this prediction.

The paper is organized as follows. In Section 2 we introduce the proposed EWS by

discussing the EWIs, forward-looking variables and the logit regression model. We report

the output results of the various regressions in Section 3. Section 4 contains some further

considerations on the EWSs proposed. Finally, Section 5 concludes.

2 Our model

In this section, we discuss the EWSs we use to predict financial crises. Specifically, we propose

different logit EWSs that includes different EWIs. The proposed EWSs use the VaR and

ES risk measure when constructing the forward-looking variables. The well-known RV (see,

e.g., [Andersen et. al., 2003]) and the price-volatility feedback rate λ ([Mancino and Sanfelici,

2020]) are used to predict these variables. To begin with, we first recall the definition of the

indicator of shock propagation through the market, called price-volatility feedback rate, an

indicator which was proposed by [Malliavin and Mancino, 2002b] and [Barucci et al., 2003].

Afterwards, we introduce the RV estimator.
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2.1 Definition of the market instability indicator Λn,N,M,L and RV

Assume that the asset price St satisfies the following stochastic differential equation without

drift1
dSt
St

= a1(St)dWt, (1)

where a1(·) is a smooth deterministic function of the asset price and Wt is a Brownian motion

on a filtered probability space. Then the logarithm of the price, i.e. Pt = logSt, satisfies the

following stochastic differential equation

dPt = a1(St)dWt −
1

2
a21(St)dt = a(Pt)dWt −

1

2
a2(Pt)dt, (2)

where a(P ) := a1(S) = a1(exp(P )).

Consider the associated variation process, defined as the solution to the linearized stochas-

tic differential equation2

dζt
ζt

= a′(Pt)dWt − a′(Pt)a(Pt)dt.

This equation describes how perturbations of asset prices evolve through time. Then, it can

be proved (see [Malliavin and Mancino, 2002b]) that the rescaled variation defined by

zt :=
ζt

a(Pt)
(3)

is differentiable with respect to t and it holds that

zt = zs exp(

∫ t

s

λτdτ) s ≤ t,

where

λτ = −1

2
(a′(Pτ )a(Pτ ) + a′′(Pτ )a(Pτ )), (4)

is called the price-volatility feedback rate.

Basically, the price-volatility feedback rate can be understood as the appreciation rate

of the rescaled variation. We note that the feedback rate defined by (4) is a decay rate: its

negative sign entails a damping effect, while a positive sign implies that any perturbation

is amplified. Therefore, large positive values of λ indicate market instability and usually

anticipate a significant decrease in the price level, while negative values or around zero

correspond to stable market directions. Thus, the volatility feedback rate can reveal conditions

1The drift term can be added without any difficulty as done in [Malliavin and Thalmaier, 2006] and
[Inkaya and Ocur, 2014].

2The prime stands here for the first derivative with respect to the level Pt.
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that may facilitate the propagation of perturbations in the market. This may help discriminate

between stable market conditions and conditions where perturbations of price are more likely

to propagate, so that an increase in volatility in the presence of a large λ value may trigger a

volatility feedback effect and cause large price movements (see also the empirical analysis in

[Inkaya and Ocur, 2014]).

Finally, in order to build a daily indicator of market instability, we consider the integrated

value
∫
I
λτdτ , where I is the daily trading period.

The rescaled variation contains terms which are latent, thus they should be empirically

estimated from the data. The following theorem shows how to express the feedback rate by

means of terms which are iterated cross volatilities that can be estimated using the Fourier

estimation method developed by [Malliavin and Mancino, 2009]. The proof of the theorem is

given in [Malliavin and Mancino, 2002b].

Theorem 1. Denoting by 〈 , 〉 the quadratic (co-)variation operation, define the following

cross-volatilities:

〈dPt , dPt〉 := At dt , 〈dAt , dPt〉 := Bt dt , 〈dBt , dPt〉 := Ct dt .

Then the feedback rate function λt has the following expression

λt =
3

8

B2
t

A3
t

− 1

4

Bt

At
− 1

4

Ct
A2
t

. (5)

This theorem makes it possible to estimate the feedback rate in a model-free way. In fact,

[Mancino and Sanfelici, 2020] show how to estimate non-parametrically the functions At, Bt,

Ct by using the Fourier method. We highlight that these functions represent the instantaneous

variance, leverage and covariation between leverage and asset price, respectively, and can be

non-parametrically estimated under the more general assumption that the log-price, variance

and leverage processes are continuous semimartingales

dPt = νtdt+ σtdWt, dAt = αtdt+ γtdW
A
t , dBt = µtdt+ βtdW

B
t ,

where At = σ2
t , W

A
t and WB

t are Brownian motions possibly correlated with Wt, and the

adapted processes σt, νt, αt, γt, µt, βt are absolutely bounded. It is worth mentioning that the

choice of a continuous process for Pt is not restrictive. Indeed, working with intraday high

frequency data, the question of jumps presence is debatable. For instance, [Christensen et al.,

2014] analyze the presence of jumps in tick data and observe that jumps in financial asset

prices are often erroneously identified and are, in fact, rare events. For example, a short-lived
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burst of volatility is likely to be identified as a jump when working with data sampled at a

frequency lower than 5 minutes but it is compatible with a continuous path when working

with tick data. The estimation of these higher order moments is admittedly challenging and

requires the use of high frequency data. The use of the Fourier estimator of co-variation

allows us to deal with microstructure noise effects that contaminate high frequency data. In

fact, the Fourier estimator needs no correction in order to be statistically efficient and robust

to various types of market frictions (see [Mancino et al., 2017]).

As already remarked in [Mancino and Sanfelici, 2020], when we combine non-linearly

estimates of At, Bt and Ct to obtain λt as in equation (5), the resulting estimator is usually

biased (this fact is well recognized in the non-parametric estimation literature). Furthermore,

the potential oscillations in At, Bt, Ct are amplified and the resulting approximation of λt is

very unstable. Therefore, we prefer to combine daily mean value quantities to get a more

stable indicator of market instability. Being interested only in daily mean value quantities,

for the reader’s convenience, we only recall the Fourier estimators of 1
I

∫
I
Atdt,

1
I

∫
I
Btdt,

1
I

∫
I
Ctdt and refer the reader to [Mancino and Sanfelici, 2020] for further technical details.

Consider a discrete unevenly spaced sampling of the log-price process Pt. For notational

ease, we assume that the log-price process Pt is observed on I = [0, 2π]. Fix a set of

observation times Sn := {0 = t0,n ≤ t1,n ≤ · · · ≤ tkn,n = 2π} for any n ≥ 1 such that the

mesh size of the partition goes to 0, that is ρ(n) := max0≤h≤kn−1 |th+1,n − th,n| → 0 as

n→∞. For any j, denote ∆Pj,n := P (tj+1,n)− P (tj,n).

Define, for |k| ≤ N ,

ck(An,N) :=
2π

2N + 1

∑
|s|≤N

cs(dPn)ck−s(dPn), (6)

where for any integer k, |k| ≤ 2N , ck(dPn) is the k-th (discrete) Fourier coefficient of the

return3 process, namely

ck(dPn) =
1

2π

kn−1∑
j=0

e−iktj,n∆Pj,n,

where the symbol i denotes the imaginary unit, i =
√
−1. It is proved that (6) is a consistent

estimator of the k-th Fourier coefficient of the spot variance ck(A). Therefore, a consistent

estimator of 1
2π

∫ 2π

0
Atdt is given by

Ân,N := c0(An,N) =
2π

2N + 1

∑
|s|≤N

cs(dPn)c−s(dPn),

3In this paper return(s) refer to log-return(s) unless stated otherwise.
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and has been studied in [Mancino and Sanfelici, 2008].

The knowledge of the Fourier coefficients of the latent instantaneous volatility At allows

us to handle this process as an observable variable and we can iterate the procedure in order

to compute the covariation Bt between the stochastic variance process and the asset price

process (i.e., the leverage) ([Curato and Sanfelici, 2015] and [Curato, 2019]). The estimator

of the k-th Fourier coefficients of the leverage Bt is defined by

ck(Bn,N,M) :=
2π

2M + 1

∑
|j|≤M

cj(dPn)ck−j(dAn,N), (7)

where cj(dAn,N) is computed as

cj(dAn,N) := i j cj(An,N).

Note that the estimator (7) depends only on the Fourier coefficients of the asset return

cj(dPn) that are computed from the real data, and on the Fourier coefficients of the variance

cj(An,N), which have been estimated in the previous step. Therefore, a consistent estimator

of 1
2π

∫ 2π

0
Btdt (i.e., the integrated leverage) is given by

B̂n,N,M := c0(Bn,N,M) =
2π

2M + 1

∑
|j|≤M

cj(dPn)c−j(dAn,N).

Finally, as in the previous step, once its Fourier coefficients have been estimated, we can

handle Bt as an observable variable and exploit the multivariate version of the Fourier method

to estimate the covariance Ct between the process Bt and the price return. More precisely, a

consistent estimator of the k-th Fourier coefficient of the function Ct can be obtained by

ck(Cn,N,M,L) :=
2π

2L+ 1

∑
|j|≤L

cj(dPn,N)ck−j(dBn,N,M),

where cj(dBn,M,N) := i j cj(Bn,M,N). Therefore, a consistent estimator of 1
2π

∫ 2π

0
Ctdt is given

by

Ĉn,N,M,L := c0(Cn,N,M,L) =
2π

2L+ 1

∑
|j|≤L

cj(dPn,N)c−j(dBn,N,M).

Finally, combining the previous mentioned estimators and considering Theorem 1, we build

our estimator of the daily integrated feedback rate
∫ 2π

0
λtdt

Λn,N,M,L = 2πλ̂t,
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where

λ̂t =
3

8

B̂2
n,N,M

Â3
n,N

− 1

4

B̂n,N,M

Ân,N
− 1

4

Ĉn,N,M,L

Â2
n,N

.

When we use high frequency data to estimate the feedback rate, possible microstructure

noise contained in the data has to be filtered out. For the Fourier estimator, this can

be achieved by a suitable choice of the cutting frequencies. In particular, the first cut-off

frequency N is fixed according to the analysis developed in [Mancino and Sanfelici, 2008] by

minimizing the estimated MSE, while we set M = k0.5n and L = M/2.

We conclude this section by recalling the well-known RV estimator. Analysts make use of

high frequency intraday data to determine measures of daily volatility. RV is simply defined

as the sum of squared (intra-day) returns

kn−1∑
j=0

∆P 2
j,n

and provides an estimator of the integrated variance over the (daily) trading period [0, 2π].

This estimator is not robust to market microstructure effects that appear at high frequency

level and must be combined with sparse sampling or other devices ([Bandi and Russell, 2011]).

2.2 Crisis Indicators

Let Rt = Pt+1 − Pt denote the daily return over the time interval t to t+ 1, where Pt gives

the log-price of a specific asset at day t and t = 1, 2, ..., T − 1. The VaR of the loss Lt = −Rt

at the confidence level 1− α ([Artzner et al., 1999], [Acerbi and Tasche, 2002 ] and [McNeil

et al., 2015]) is defined by the following quantile

V aR1−α(Lt) = inf{r ∈ R : FLt(r) ≥ 1− α} = − inf{r ∈ R : FRt(r) > α}

= − inf{r ∈ R : P(Rt ≤ r) > α}, (8)

where FX(x) denotes the cumulative distribution function of X and the values of α are usually

set equal to 1%, 5% and 10%.

Fixing a level of confidence, VaR measures the maximum loss in the value of an asset over

the time interval t to t+ 1 giving thus an indication of the risk of loss for a given asset.

VaR can be computed easily if one assumes that Lt follows a normal or a t location-scale

10



distribution. Indeed, VaR takes one of the following two closed forms

V aRN
1−α(Lt) = µt+1 + Z1−ασt+1, (9)

V aRt
1−α(Lt) = µt+1 + t1−α,νt+1σt+1, (10)

where Z1−α and t1−α,νt+1 denote the 1 − α quantiles of the standard normal distribution

and the Student’s t-distribution with νt+1 degrees of freedom. In the case of the normal

distribution, the parameters µt+1 and σt+1 give the mean and the standard deviation of Lt,

while in the case of the t location-scale distribution give respectively its location and scale

parameter. It follows that Lt−µt+1

σt+1
, where Lt has a t-location scale distribution with mean

µt+1, degrees of freedom νt+1 and variance equal to σ2
t

νt+1

νt+1−2 is a Student’s t-distribution with

νt+1 degrees of freedom. Note that µt+1 and the variance are well-defined when νt+1 > 2.

Another classical risk measure used to assess the risk of an investment is the ES ([Acerbi

and Tasche, 2002 ]). The ES of Lt at confidence level 1− α over the time interval t to t+ 1

is defined (whenever this is well-defined) as

ES1−α(Lt) = − 1

α
{E[−Lt1{Lt≥−qα(−Lt)}] + qα(−Lt)α− qα(−Lt)P[Lt ≥ −qα(−Lt)]}, (11)

where qα(X) = inf{x ∈ R|P(X ≤ x) ≥ α} and 1{·} gives the indicator function.

Assuming that the cumulative distribution function of Lt is continuous and strictly

increasing, ES1−α(Lt) can be written as

ES1−α(Lt) = E[Lt|Lt − V aR1−α(Lt) > 0]. (12)

Differently from the VaR risk measure, ES can be shown to satisfy the axioms of coherent

risk measures ([Artzner et al., 1999]). From a financial point of view, ES measures with a

certain confidence level and over a given interval t to t+ 1 the expected loss in the value of

an asset when the loss is greater than the VaR risk measure.

In the particular case where Lt follows a normal or a t location-scale distribution, ES

assumes, respectively, the following form

ESN1−α(Lt) = µt+1 +
ψ(Z1−α)

α
σt+1, (13)

ESt1−α(Lt) = µt+1 +
fνt+1(t1−α,νt+1)

α

(
νt+1 + t21−α,νt+1

νt+1 − 1

)
σt+1, (14)

where ψ(·) and f(·) give the density distribution of the normal and Student’s t-distribution.

The reader is referred to [Bertsimas et. al., 2004] and [McNeil et al., 2015] for a derivation of
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these formulas.

Therefore, VaR and ES are good candidates for detecting losses or suffering of a specific

asset. When VaR and ES are applied to a stock market index like the S&P 500 index futures,

they can also be used as indicators of a financial crisis, the latter can also affect the real

economy. Therefore, we can define the following crisis indicators

CIt =

1 if Rt < −V aR1−α

0 else,
(15)

or

CEIM =

1 if AM < −ES1−α

0 else,
(16)

where the thresholds V aR1−α and ES1−α are computed using Equations (9), (10), (13) and

(14).

These are the definitions of asset crisis that will be used in our econometric analysis. Note

that for ease of exposition, we have suppressed the dependence of V aR1−α and ES1−α on the

losses L.

The quantity AM is given by

AM =

∑M
j=M−Tk+1Rj1{−Rj>V aR1−α}

αTk
, (17)

where, for fixed Tk, M = Tk, Tk + 1, ..., T − 1.

AM can also be seen as the natural estimator of ES as defined by Equation 12. This

follows by writing ES as an unconditional expectation (see [Acerbi and Szekely, 2014]).

The first indicator in Equation (15) says that a crisis at day t+ 1 occurs when the returns

over the interval t to t+ 1 is less than the negative of the VaR risk measure. On the other

hand, the second indicator, as defined by Equation (16), defines a crisis at day M+1 whenever

in the last Tk days the average return conditional on the event that the (negative) returns

exceed V aR1−α is less than negative of ES1−α.

However, the goal of an EWS is to predict future financial crises within a certain time

horizon. In order to determine whether a financial crisis occurs within a given horizon of

time, we transform our crisis indicator CI into a forward-looking variable ([Berg and Pattillo,

1999] and [Bussiere and Fratzscher, 2006]). This new variable is given by

Ys =

1 if ∃ k = 1, 2, ..., Tm s.t. CIs+k−1 = 1

0 else,
(18)
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where s = Tw, Tw + 1, ..., T − Tm.

In the case of the second indicator, we assume henceforth throughout our paper that Tk

is equal to Tm. The forward-looking variable can then be defined as follows

Ys =

1 if CEIs+Tm−1 = 1

0 else,
, (19)

where again s = Tw, Tw + 1, ..., T − Tm.

The forward-looking variable in Equation (18) assumes the value of one at day s whenever

the indicator CI is equal to one in one of the next Tm trading days. In the same vein, the

forward-looking variable in Equation (19) is equal to one at day s whenever the indicator

CEI takes the value of one at day s+ Tm − 1. It is also important to pay attention to the

fact that by the definition of CEI, the forward-looking variable Y using this crisis indicator

already includes the fact that a crisis as defined by CI might occur in one of the Tm trading

days after day s.

2.3 Logit model

We suppose the probability of having financial crises can be modelled through a logit regression

model (see [Wooldrige, 2016])

P(Ys = 1) =
exp (β0 + xsβ)

1 + exp (β0 + xsβ)
, (20)

where xs is a vector of possible regressors and xsβ = x1,sβ1 + x2,sβ2, ..., xk,sβk.

In order to analyse the effect of the explanatory variables on the probability of financial

crises, we will run four types of logit regression models. The first two types consist of only the

EWI lnRV and the crisis indicators CI or CEI. Therefore, only values of Ys and lnRVs will

be considered, whereas RVs gives the realized variance at day s. The forward-looking variables

Ys will be computed by setting Tw = 1 and Tm = 22, 66 or 132, which correspond more or

less to 1 month, 1 quarter and 2 quarters. The log-realized variance is preferred over realized

variance because of the studies in [Barndorff-Nielsen and Shephard, 2005] and [Gonçalves

and Meddahi, 2011]. The RV estimator is estimated with sparse sampling ([Andersen et.

al., 2000] and [Bandi and Russell, 2011]). In order to compute these returns, we use the

previous-tick interpolation method by setting the price to its most recent value. On the other

side, the time series of daily returns is constructed by taking the differences between the

opening log-prices of two consecutive days.
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To run the third and fourth types of regressions, we introduce the following variable

Yλ,i =

Λn,N,M,L if Λi
n,N,M,L > Λn,N,M,L

0 else,
(21)

where Λi
n,N,M,L gives the daily feedback rate at day i and Λn,N,M,L the sample mean of the

daily Λi
n,N,M,L computed over the whole temporal period. As explained in Section 2.1, large

positive values of Λi
n,N,M,L usually anticipate a significant variation in the price level, while

negative values or around zero correspond to stable market directions. Our focus then falls

on those values of Λi
n,N,M,L that exceed Λn,N,M,L (the linear trend). Yλ,i does the same work

of the indicator variable

Iλ,i =

1 if Λi
n,N,M,L > Λn,N,M,L

0 else.
(22)

The threshold Λn,N,M,L determines whether a given Λi
n,N,M,L belongs to one regime (high)

or the other (low). The threshold is to be considered as the point forecast of the future

values of the daily feedback rate and therefore values below or above this threshold (trend)

are to be considered unusual values. It is also easy to see that Iλ,i acts as a dummy variable

([Wooldrige, 2016]) taking the value of one if Λi
n,N,M,L is sufficiently high (indicating thus a

less stable market) and zero otherwise. Before discussing our empirical findings, we anticipate

already here that the value of Λn,N,M,L calculated using our data is positive.

These regressions use the crisis indicators CI or CEI with estimation window Tw equal

to 22, 66 or 132 and regressors or EWIs given by λav,s =
∑s
i=s−Tw+1 Yλ,i

Tw
and RVav,s =∑s

i=s−Tw+1 lnRVi

Tw
, where s = Tw, Tw + 1, ..., T − Tm. Thus we believe that the average of Yλ and

RV taken over the interval s− Tw + 1 to s can predict a financial crisis in one of the next Tm

trading days after the day s. Note also that using Yλ,i instead of Iλ,i makes the interpretation

of the regression coefficient easier.

The two risk measures VaR and ES will be computed using the normal and the t location-

scale distribution. In the case of the normal distribution, V aR1−α and ES1−α are computed

by estimating the parameters µt+1 and σt+1 using the historical mean and standard deviation

of the daily losses. The same risk measures in the t location-scale distribution case are

computed by estimating the respective parameters using the maximum likelihood estimation

(MLE) method applied to the daily losses. The indicators CI and Y can then be computed

by comparing the time series of our asset returns with V aR1−α. It should be noted that our

thresholds VaR and ES are time independent, an assumption commonly used in the related
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literature. However, there is nothing in our EWSs that prevents the use of a threshold that

changes with time.

We estimate AM using the expression

ÂM =

∑M
j=M−Tm+1 r̃j1{−r̃j>V̂ aR1−α}

αTm
, (23)

where r̃j gives the realized asset return at time j and V̂ aR1−α the estimated VaR with 1− α
level of confidence. We can thus interpret ÂM as the average loss of the losses exceeding

V̂ aR1−α over the interval M − Tm + 1 to M + 1. The computation of CEI and the related

Y follows easily. As before, we let Tm = 22, 66 or 132 trading days.

3 Empirical application

In this section we apply the models discussed in the Section 2 to data from the S&P 500

index futures recorded at the Chicago Mercantile Exchange (CME).4

3.1 Data description

Table 1 describes the main features of the intraday returns of the S&P 500 index futures. The

sample covers the period from 3 January 2000 to 31 December 2008, a period of 2248 trading

days, having 5,576,759 tick-by-tick observations and characterized by the following financial

market crashes: 2000-03-10: NASDAQ Crash (dot-com Bubble); 2001-02-19: Turkish Crisis;

2001-09-11: Twin Tower Attacks; 2001-12-27: Argentine Default; 2002-10-09: Stock Market

Crash; 2005-10-08: Delphi (G.M) Bankruptcy; 2007-07-01: Subprime Crisis; 2008-09-15:

Lehman Brothers Collapse. In line with [Duchin et. al., 2010], we define the beginning of

the Subprime crisis as July 1, 2007. As is well known, the roots of the financial crisis of

2007-2008 can be found in the early 2000s, where there has been a consistent growth in

mortgage lending. Our sample period therefore includes the year in which it all began and

the climax year of the financial crisis.

Figure 1 plots the futures intraday return series, its ACF and PACF. The returns exhibit

a large negative spike at the occurrence of the Twin Tower Attacks. We remind that, to

prevent a stock market meltdown, on September 11th the opening of the New York Stock

Exchange (NYSE) was delayed after the first plane crash and trading for the day was canceled

after the second one. To avoid market chaos, the NYSE remained closed until September

17th. The first day of NYSE trading after the attacks, the market fell 684 points, a 7.1%

4We thank Fulvio Corsi for providing us the possibility of using S&P 500 index futures data.
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Table 1: Summary statistics of the intraday returns

Mean Minimum Maximum Std Kurtosis Skewness JB
-9.2642e-08 -0.0866 0.0612 2.6575e-04 4.9329e+03 -6.1356 5.6474e+12

The table reports the mean, minimum, maximum, standard deviation (Std), kurtosis, skew-
ness and the Jarque-Bera test (JB) of the intraday returns including the overnight returns of
the S&P 500 index futures from 3 January 2000 to 31 December 2008 (5,576,759 trades).

decline. That Friday, at the end of trading day, the S&P 500 index lost 11.6%. Other large

negative spikes on returns are evident after the Lehman Brothers Collapse, i.e. on 24 October

2008, corresponding also to the highest negative return. The plots of the ACF and PACF

are almost equal and show a significant positive first order autocorrelation of returns and

persistence of autocorrelation at higher lags that reveal the presence of market microstructure

effects in the high frequency time series.

Figure 1: Time series, ACF and PACF of the S&P 500 index futures
intraday returns
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Before presenting the results of our empirical application, we plot in Figure 2 the ”volatility

signature plot” of the RV estimator. This kind of graph shows the behaviour of the RV as

a function of the sampling frequency and was proposed in [Andersen et. al., 2000]. The

sampling frequency goes from a minimum of 1 minute to a maximum of 30 minutes with a

time step equal to one. The daily average volatility is computed as the average of the daily

RV throughout the entire time horizon.
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Figure 2: Volatility signature plot
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From the volatility signature plot, we note that the largest RV estimates happen at the

highest sampling frequencies, a typical behaviour of liquid assets in the presence of market

microstructure effects ([Andersen et. al., 2000]). In addition, it seems that these values

stabilize around the sampling frequency equal to 15 minutes. Consequently, to eliminate

microstructure noise, we use this sampling frequency when calculating RV.

3.2 Results

This section reports and discusses the results of the four types of the logit regressions explained

in Section 2.3.

3.2.1 The first and the second types of regressions

Tables 5 and 6 in Appendix A report the results of the first type of logit regressions ran

with the forward-looking variable Y shown in Equation (18) and lnRV . As concluded in the

previous section, the RV estimator is computed using 15-minutes returns, while Tm is set

equal to 22, 66 or 132. The VaR risk measure is estimated assuming a normal (Table 5) or a

t location-scale distribution (Table 6) and a confidence level equal to 0.90, 0.95 or 0.99. The

tables display the coefficient estimates together with the p-values of the t-statistic tests that

the coefficient is equal to zero or not, McFaddens’s pseudo ordinary R-squared ([McFadden,

1973]), hit ratio (computed with a probability threshold equal to 0.5) and the p-value of the

chi-square test (likelihood ratio test) of the intercept-only model versus the intercept and

regressor model (goodness). The hit ratio is a goodness-of-fit measure giving the proportion
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correctly predicted ([Wooldrige, 2016]).

Focusing on Table 5, we note that both the intercept and slope of the logit regressions are

highly significant. The chi-square test is also in favour of the logit regression with the lnRV

as the regressor. Taking the exponential of the slope coefficients, we can conclude that there

is a positive relationship between realized variance and financial crises. Take for example the

slope coefficient of the regression using V aR0.90 and Tm = 22. The exponential of the slope

coefficient is equal to 4.7705 which says that for one unit change in lnRV , we expect about

377% increase in the odds of having a financial crisis in the next Tm = 22 trading days. In

terms of RV this tells us that if RV increases by 10%, odds would increase by about 16%.

Note also that the odds of having a financial crisis in the next Tm = 22 trading days are also

very high when lnRV is 0. This can be easily seen by taking the exponential of the intercept

estimate.

The regressions using a VaR computed with a 0.90 level of confidence have the highest

values of the slope, intercept and R-squared compared with other regressions employing a

VaR with a different confidence level. We can therefore assert that less extreme crises are

much more likely than more extreme ones and that lnRV changes have a larger effect on

the odds when predicting less extreme events. The prediction accuracy of the model is good

as shown by the hit ratios. The logit regression computed with V aR0.99 and Tm = 22 has

the highest prediction accuracy with a hit ratio up to about 88%. Other things being equal,

the increase of Tm worsens the regressions outputs for almost every output. However, the

intercept and the slopes of the logit regression models are still heavily significant and have

similar magnitudes confirming the ability of the RV EWI to predict crises for long horizons.

Assuming a t location-scale distribution for the losses, Table 6 shows that compared to the

normal losses case, the performance of the logit regression gets worse when V aR0.90 is used.

In particular, when Tm = 132, the slope becomes statistically insignificant showing that the

assumption of a t location-scale distribution is more conservative in terms of crises prediction.

Nevertheless, the logit regression computed with Tm = 66 has a hit ratio equal to 0.9386

which, excluding the latter case, is the highest hit ratio among the regressions employing

normal and t location-scale losses. On the other side, the performance increases when the

confidence level is equal to 0.95. For example, the intercept, slope and the R-squared of the

various regressions are higher than in the normal losses case. This clearly increases the odds

of having a financial crisis in the next 22, 66 and 132 days. Taking V aR0.99, the values of

the slope, R-squared and hit ratio exceed those of the related logit regression derived with

normal losses only in the case of Tm = 22. For the other cases, the logit regression under the

normal losses performs better.

The reason why we include the t location-scale distribution in our analysis in addition to
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the normal distribution is that this fits the data particularly well. To see how, we can look at

the Q-Q plots shown in Figure 3. This figure shows that the data points lie very close to the

straight line in the t location-scale distribution case. It follows that this distribution is a more

reasonable approximation of the S&P 500 index futures daily losses than the normal one.

Autocorrelation function plot also shows small correlations and little evidence of statistical

significance between losses at different times. As a result, the calculation of VaR and ES

under the t location-scale distribution is more natural.

Figure 3: t location-scale Q-Q plot, normal Q-Q plot and the autocor-
relation function of the S&P 500 index futures daily losses
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Another way to check the performance of the VaR under the normal or the t location-scale

distribution is to implement the [Kupiec’s, 1995] test. The goal of this test is to assess if a

given VaR estimate is accurate by testing if the failure rate (proportion of time the VaR

is exceeded) is not significantly different from the given α. Table 2 shows the p-values and

failure rates of this test applied to our VaR measure. It is not difficult to note that the failure

rates of the VaR under the t location-scale distribution are closer to the values of α than

those of the normal distribution. We can also clearly see that the p-values are large enough

when α is equal to 0.01 and 0.05 in the t location-scale case so that there is not enough

statistical evidence to reject the null hypothesis. Using α = 0.10 and t location-scale losses

renders the computation of the p-value impossible even though the failure rate induces to

not reject the null hypothesis. Employing normal losses, the Kupiec’s test provides statistical

evidence when α is set equal to 0.05.
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Table 2: Results from the [Kupiec’s, 1995] test

Distribution α VaR Failure rate p-value
Normal 0.10 0.0181 0.0650 8.4157e-09
Normal 0.05 0.0232 0.0423 0.1697
Normal 0.01 0.0327 0.0165 0.0097
t location-scale 0.10 0.0136 0.1095 NaN
t location-scale 0.05 0.0198 0.0574 0.2300
t location-scale 0.01 0.0397 0.0107 0.5034

The table reports the failure rates and the p-values of the [Kupiec’s, 1995] test for the VaR measure
computed with different confidence levels while assuming daily losses of the S&P 500 index futures
follow a normal or a t location-scale distribution. When the p-value is undefined, we write NaN
(Not a Number).

We also investigate our regressions for possible outliers. The observations having a Pearson

residual in absolute value greater than 3 are treated as outliers. But since the residuals from

the logit regression are discrete, we prefer to use bin residuals as suggested by [Gelman and

Hill, 2007]. The number of bins is set equal to 30. We have found no outliers.

The performance of our proposed EWSs is also assessed on the basis of three additional

performance measures, the area under the ROC curve (AUC), quadratic probability score

(QPS) and log probability score (LPS). The first measure operates on the signals and is

computed as the area under the receiving operating characteristic (ROC) curve ([Hsieh and

Turnbull, 1996]). It takes values between 0 and 1, with 0 indicating bad classification, 0.5

inability to distinguish between the 0 and 1 classes and 1 perfect classification. The other

two measures are defined ([Brier, 1950] and [Good, 1952])5 as

QPS =
2

n

T−Tm∑
s=Tw

(ps − Ys)2, (24)

LPS = − 1

n

T−Tm∑
s=Tw

[Ys ln ps + (1− Ys) ln(1− ps)] , (25)

where ps = P(Ys = 1) and n = T − Tm − Tw + 1.

QPS assumes a minimum equal to 0 (perfect accuracy) and a maximum equal to 2,

whereas LPS might assume values between 0 (perfect accuracy) and ∞.

Table 7 presents the values assumed by these measures for the first type of logit regressions.

We also test whether AUC is equal to 0.5 or not using the Wald test statistics which, under

5See also [Diebold and Rudebusch, 1989] for an economic application.
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the large sample theory, is assumed to have a standard normal distribution ([Zhou et al.,

2009]). The standard error for this test is estimated through the bootstrapping method.

We observe that the values of AUC for normal and t location-scale losses are higher when

Tm is equal to 22 suggesting that they have a higher ability to distinguish between the two

classes. More specifically, when VaR is derived with level of confidence equal to 0.99, the logit

regression using t location-scale losses has the highest AUC among the regressions considered.

QPS and LPS values are also at satisfactory levels with values equal to 0.0028 and 0.0104 in

the V aR0.90, Tm = 132 and t location-scale losses case. However, as stated before, this model

performs poorly from a statistical point of view.

For limit space reasons, we cannot display the ROC curves of all the logit regressions

shown in Tables 5 and 6. For this reason, we focus our attention on the logit regression

model that uses V aR0.99, Tm = 22 and t location-scale losses which has the highest AUC.

The ROC curve of this model is shown in Figure 4. In our work, the value 0 denotes as

usual the negative class and the value 1 the positive class. On the same figure, we also plot

the predicted probabilities derived from the logit regression model together with the crisis

events (vertical dashed lines) outlined in the beginning of Section 3 and various probability

thresholds (horizontal dashed lines). We note that the crisis events from NASDAQ Crash

to Stock Market Crash are well signaled from our EWS. Indeed, we can find high predicted

probabilities just before these crisis events. These probabilities are lower for the Argentine

Default event. This probably might be because this event occurs outside the USA. This is

also in line to what already observed by [Mancino and Sanfelici, 2020]. The authors find that

during the Argentine default the volatility remained low and no shocks occurred in the S&P

index futures. The Delphi (G.M) Bankruptcy event is however not strongly signaled from

the EWS proposed, whereas the Lehman Brothers Collapse is very well signaled. Moreover,

the highest predicted probability is reached on 13 October 2008 being approximately equal

to 0.9779.
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Figure 4: ROC curve and predicted probabilities of the logit regression
using V aR0.99, Tw = 1, Tm = 22 and t location-scale losses
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The performance of the previous logit regression is evaluated further by looking at the

following confusion matrix.

Table 3: Confusion matrix

Actual
Positive Negative Total FNR = 0.4728 ACC = 0.8576P

red
icted

Positive TP = 126 FP = 204 330 FPR = 0.1027 PPV = 0.3818
Negative FN = 113 TN = 1783 1896 TNR = 0.8973 NSR = 0.1948

Total 239 1987 2226 TPR = 0.5272 FOR = 0.0596

The table reports the numbers of true positive (TP), false positive (FP), false negatives (FN) and
true negatives (TN) of the logit regression using Tw = 1, Tm = 22, V aR0.99 and t location-scale
losses. The right part of the table shows the metrics derived from this confusion matrix, that is,
the false negative rate (FNR) = FN/(FN+TP), false positive rate (FPR) = FP/(FP+TN), true
negative rate (TNR) = TN/(TN+FP), true positive rate (TPR) = TP/(TP+FN), accuracy (ACC)
= (TP+TN)/(TP+TN+FP+FN), positive predictive value (PPV) = TP/(TP+FP), noise-to-signal
ratio (NSR) = FPR/TPR and false omission rate (FOR) = FN/(FN+TN).

The probability threshold is set equal to 0.2 and follows [Bussiere and Fratzscher, 2006].

It is well-known that there exists a trade-off between the Type I error (false positive) and

Type II error (false negative) when fixing the probability threshold. The confusion matrix

shows that the ACC or the proportion correctly predicted is relatively high, while the TPR,
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also known as the sensitivity or the proportion of actual positive correctly identified, and

FNR, or the proportion of actual positive incorrectly identified, have more or less the same

value. Note that ACC and hit ratio are the same thing, but we prefer to use the latter term

when the threshold is equal to 0.5. The TNR, also known as specificity or the proportion of

actual negative correctly identified, is high and FPR, or the proportion of actual negative

incorrectly identified, low. Furthermore, the PPV or the conditional crisis probability says

that almost 38% of the times a positive event will be identified as such, where on the other

hand, as suggested by FOR, almost 6% of the times a negative event will be identified as

positive. Finally, a value of the NSR equal to 0.1984 is to be considered satisfactory if one

follows [Kaminsky et. al., 1998 ] which suggests that a level of the NSR equal to or higher

than unity is not helpful in predicting crises.

Inspired by the Q-Q plots in Figure 3, from now on we focus on the t location-scale losses

and use these to run the second type of regressions. This type of regression uses the same

EWI as the first type but now employs CEI rather than CI as the indicator crisis variable.

Tw still equals 1 and Tm, 22, 66 and 132. The results are reported in Table 8. We find that

the regressions computed with Tm = 22 and Tm = 66 perform better than the analogous

regressions using CI in terms of R-squared. The R-squared as well as the magnitude of the

slope coefficients decrease as α decreases. The regression computed with ES0.99 and Tm = 22

has the highest hit ratio among all regressions of second type. We also remark here that the

latter regression has the same outputs of the equivalent regression derived with the crisis

indicator CI. The second type of regressions using ES0.90 produce a higher slope coefficient

which, for example, in the case of Tm = 22, indicates that for one unit change in lnRV one

would expect about 478% increase in the odds of having a crisis after Tm = 22 days as defined

by the forward-looking variable Y using CEI. The hit ratios increase with the increase of

the confidence level. As with the first type of regressions, possible outliers were checked but

we didn’t find any of these.

Table 9 in Appendix A shows that the AUC of the logit regression derived with ES0.90,

equal to 0.0251, and Tm = 22 has an AUC equal to 0.8511, sign this of a good separability.

This is also emphasized by the ROC curve in Figure 5. The related QPS and LPS are on

the other side close to zero meaning that this model guarantees a very good accuracy. The

Wald test indicates that the null hypothesis AUC = 0.5 of all the logit regressions can be

rejected. The predicted probabilities in the second panel of Figure 5 increase considerably

when compared to those of Figure 4. The crisis events described in Section 3 are well predicted

by this EWS. The probabilities are especially high for the first three crisis events, the Stock

Market Crash and Lehman Brother Collapse crisis event. The highest predicted probability

is reached on 10 October 2008 and is equal to 0.9992.
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Figure 5: ROC curve and predicted probabilities of the logit regression
using ES0.90, Tw = 1, Tm = 22 and t location-scale losses
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3.2.2 The third and the fourth types of regressions

Let’s now turn our attention to the results obtained by running the third type of regressions.

As already mentioned in the previous section, we consider only the situation in which losses

follow a t location-scale distribution. We present these results in Table 10 shown in Appendix

A by fitting separately the full model containing the two EWIs RVav and λav and the two

reduced models employing separately RVav or λav as their independent variable. However, the

table shows only the results for which the level of confidence is equal to 0.95 and 0.99. When

the level of confidence is set equal to 0.90, the coefficient of λav is statistically significant

only when Tw = 66 and Tm = 66. Also, only in this occasion, the sign of this coefficient is

negative and the chi-square test indicates that the use of the full model is better than the

reduced models. We will try to give an explanation of this sign in the following of this section.

Additionally, the coefficient of the RVav variable is not statistically significant when Tw = 132

and Tm = 132. Full results, however, can be obtained from the corresponding author.

By focusing on the full model, we note that as α decreases, the magnitude of the intercept

and coefficient of RVav decreases. On the opposite, the coefficient of λav increases with

the decrease of α. This suggests a stronger increase in the odds of having a more extreme

financial crisis in the next Tm days as λav goes up. We also note a decrease in the values of

R-squared as we move from a high value to a low value of α. Ruling out the case Tw = 22

and Tm = 22, the result is still true for the hit ratio. The regression using V aR0.95 and
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Tw = 132, Tm = 132 has the highest R-squared among all the full and reduced regressions.

The coefficient attached to λav assumes the highest value when Tw = 132, Tm = 132 and

V aR0.99 and that to RVav when Tw = 132, Tm = 132 and V aR0.95. From the full model, it

also emerges that the coefficient of the λav variable is negative when Tw = 132, Tm = 132

and V aR0.95.

Interpreting the coefficient of the logit regressions is relatively easy. Take the first

regression shown in Table 10. The coefficient associated to λav can be interpreted as follows -

with RVav held constant, incrementing λav of one unit increases the odds of having financial

crises by about 13%. To interpret the coefficient of RVav we can use the properties of the

logarithm to write RVav,s as

RVav,s =
ln Πs

i=s−Tw+1RVi

Tw
. (26)

Suppose that λav is held constant. It is then not difficult to see that the difference between

the two log-odds computed at any two values RV a
av,s and RV b

av,s is equal to

βRVav
Tw

ln
Πs
i=s−Tw+1RV

a
i

Πs
i=s−Tw+1RV

b
i

. (27)

Taking the exponential and substituting the value of the RVav coefficient (βRVav) derived

with the first regression shown in Table 10 and Tw, we can say that if Πs
i=s−Tw+1RVi increases

by 10%, odds would increase by about 111%.

The reduced regressions obtained with the EWI λav show a positive association between

this EWI and the log-odds. However, as seen before, when Tw = 132, Tm = 132 and V aR0.95,

the sign of the coefficient of λav is negative. Here, the good news is that this coefficient

is statistically insignificant. The association becomes again stronger as α decreases with a

coefficient equal to 0.3967 when Tw = 132, Tm = 132 and V aR0.99. With RVav held constant,

this will increase the odds of having financial crises with about 49% when λav increases with

one unit. This indicates that the ability of λav in predicting future crises is better when these

are more extreme, forecasting horizon is longer and more data are used to compute it. This is

the same as saying that experiencing a turbulent period (as measured by λ) for much longer

can increase the probability of a crisis over the next 132 days more significantly. Note also

that excluding the case where λav is statistically insignificant, the sign of the intercept for

these regressions is always negative which says that a crisis event is less likely when λav = 0.

This result is in strong agreement with the theory presented in Section 2.1.

What is still worth discussing from these regressions are the low values of R-squared.

This is however not a problem since the p-values are fairly low indicating that a relationship
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exists.

The other reduced regressions using RVav have significant coefficients for all levels of

confidence and combinations of Tw and Tm. As already observed, the relative coefficients and

p-values decrease as α decreases. Moreover, the regression ran with Tw = 132, Tm = 132 and

V aR0.95 has the highest slope coefficient and R-squared, whereas the regression using Tw = 22,

Tm = 22 and V aR0.99 the highest hit ratio. Letting again Tw = 132, Tm = 132, V aR0.95 and

bringing the results of the logit regressions computed with these parameters together, we note

that λav behaves as a suppressor variable ([Conger, 1974]). This can be noticed by comparing

the full and the reduced model employing RVav. The predictive ability, as measured by the

R-squared, and the coefficient of the RVav variable increase their magnitude when λav is

introduced in the model. Besides this, we observe that the reduced regression using λav

shows no significant relationship between this EWI and the forward-looking variable, while

the correlation with RVav is positive which might also explain the negative sign of the λav

coefficient ([McNemar, 1945]).

Comparing the full with the reduced models, we observe that the values of R-squared and

goodness are always better than those of reduced models. As for the hit ratio, this is true only

when the forecasting horizon starts to increase. Note also how in the cases Tw = Tm = 66,

Tw = Tm = 132 and V aR0.99, the reduced model using λav has the highest hit ratio. We also

implement the chi-square test to determine whether the model with the EWIs RVav and λav

is better than the model with RVav or λav alone. The test suggests that there is enough

statistical evidence to reject the null hypothesis.

An interaction term was also included to our full regressions. The chi-square test shows

that a full model including this new term may be appropriate. But we found high collinearity

between λav and the interaction term as shown by the Pearson’s correlation coefficient. The

same coefficient applied to RVav and λav shows moderate correlation. Our findings are also

confirmed by the Belsley collinearity diagnostics ([Belsley et al., 1980]).

We conclude the discussion of Table 10 by reporting in Table 4 some statistics of the EWI

λav. In particular, we note that when Tw = 66 and Tm = 66 the JB test indicates that λav is

normally distributed. As previously, we checked our regressions for probable outliers and find

only one outlier in the case of the reduced regression using the EWI λav, Tw = 66, Tm = 66

and V aR0.99.

The performance measures AUC, QPS and LPS of the regressions considered in Table

10 are shown in Table 11. It can be noticed that full regressions have almost always better

performance measures than the reduced models and that the reduced models using RVav

perform much better than those using λav. Our EWS benefits greatly from the introduction of

λav especially in the cases where AUC is significantly different from the AUC of the reduced
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Table 4: Summary statistics of the EWI λav

Tw = 22, Tm = 22

Mean Minimum Maximum Std Kurtosis Skewness JB
6.2250 0.0000 14.2372 2.4379 3.0962 0.2831 28.7871

Tw = 66, Tm = 66

Mean Minimum Maximum Std Kurtosis Skewness JB
6.1831 1.5819 11.0734 1.6269 3.1007 0.0952 3.9620

Tw = 132, Tm = 132

Mean Minimum Maximum Std Kurtosis Skewness JB
6.2039 3.4802 9.9661 1.2347 3.9701 0.8808 334.5054

The table reports the mean, minimum, maximum, standard deviation (Std), kurtosis, skewness and
the Jarque-Bera test statistic (JB) of the EWI λav assuming that Tw = Tm = 22, Tw = Tm = 33
and Tw = 132 = Tm = 132.

regression using RVav as its EWI. The test statistics used to provide evidence is obtained as

follows

D =
AUC1 − AUC2

Std(AUC1 − AUC2)
, (28)

where D is compared to the standard normal distribution, AUC1 and AUC2 are the AUCs

of the full and reduced model, respectively, and the standard deviation (Std) is computed

using the bootstrapping technique.

In the special case where Tw and Tm are equal to 132 and V aR is computed with 0.95

level of confidence, the full model has the highest AUC among all the regressions. On the

other hand, when Tw = 22, Tm = 22 and V aR0.99 the full model presents the best results in

terms of QPS and LPS.

Figure 6 shows the ROC curves and the predicted probabilities of the logit regressions

mentioned above. In the same figure, we also plot the graphs for the reduced models computed

with RVav.

The predicted probabilities of the first full model with V aR0.99, Tw = 22 and Tm = 22

reveal the ability of our EWS in predicting the crisis events starting with NASDAQ Crash and

ending with Stock Market Crash. The predicted probabilities are especially higher just before

the Twin Tower Attacks and Stock Market Crash event. However, the predicted probabilities

are low during the Stock Market Crash and Subprime Crisis event. The maximum of the

predicted probability equal to 0.8818 is reached on 29 October 2008. On the other side,

the graph of the predicted probabilities of the related reduced regression shows a similar

behaviour, but now it makes a worse prediction for the first four crisis events. The maximum
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Figure 6: From left to right: The first two panels show the ROC curve
and predicted probabilities of the full logit regression using V aR0.99,
Tw = 22, Tm = 22 and t location-scale losses. The next two panels do
the same, but now consider only the EWI RVav. For the remaining
panels, we set V aR0.95 and Tw = 132, Tm = 132 and show the ROC
curve and predicted probabilities of the full and reduced model using
the RVav variable
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of these probabilities increases to 0.9163 and is reached on 31 October 2008.

The other full regression model with V aR0.95, Tw = 132 and Tm = 132 produces higher

predicted probabilities for the Turkish Crisis, Twin Tower Attacks, Argentine Default and the

Subprime Crisis event than the reduced counterpart model even though these probabilities

are very high for both models. The crisis event Stock Market Crash and Delphi (G. M)

Bankruptcy are predicted slightly better from the reduced model. The highest predicted

probabilities equal to 1.0000 and 0.9981 for the full and reduced model are achieved on 29

April 2003 and 12 December 2002. It is important to note that in these regressions the

probabilities are very high compared to the previous situation. This is probably because the

information contained in the two EWIs RVav and λav is higher given that they use more data

when computed. Moreover, the first crisis event delineated in Section 3.1 remains outside our

prediction. Indeed, in these regressions, probabilities are predicted starting from day 11 July

2000 to 24 June 2008. Look however how the Lehman Brothers Collapse is predicted very

well from both models with the full model predicting slightly better.

Tables 12 and 13 illustrate the results of the confusion matrices for the two regressions

discussed above. The probability threshold is set again equal to 0.2. These results basically

show that the full models have better performance metrics than the reduced ones. Focusing

on some of them, it can be deduced that the full models identify better true positives and

negatives and have a lower NSR. Note how in the case of the second regression (Table 13) the

full and reduced regression have a very high sensitivity and a very low specificity. However,

the reduced model reports a specificity equal to zero suggesting that this model returns a

positive result (crises) for 100% of the non-crises events that in turn can be more costly for

the responsible authorities. This result can also be easily deduced by looking at the metrics

FOR.

Finally, let’s take a look at the results of the fourth type of regressions shown in Table

14 in Appendix A. Observe that as we have often done in this paper we are focusing our

calculations on the t location-scale losses case. As noted when we discussed the previous

types of regressions, the magnitude of the coefficient of RVav decreases with α, while the

magnitude of the λav coefficient increases for at least all regressions. This is true for both

full and reduced regressions. In every situation, the full regression models have a higher

R-squared when compared to the reduced models. More particularly, the model employing

Tw = 132, Tm = 132 and ES0.90 has the highest R-squared. The slope coefficients have higher

statistical significance in reduced regressions than in full ones. The reduced models utilizing

the EWI λav have low R-squared compared to the other models. However, in some cases, they

show the highest values of the hit ratio. The maximum value of this indicator is obtained for

the reduced model employing RVav, Tw = 22, Tm = 22 and ES0.99.
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The chi-square test suggests that a model with an additional interaction term is preferred

for six out of nine logit regressions shown in Table 14. However, the problem of collinearity

is present similarly as for the third type of regressions. The full model is, on the contrary,

preferred over the reduced models in all cases. We found no outliers in our regressions.

The results in Table 15 show that the measures AUC, QPS and LPS are always better for

the full model. This remains true for all the combinations of Tw, Tm and VaR. However, we

decide to report only the results for which there is a significant difference between the AUC

of the full model and that of the reduced model employing RVav. As stated before, results

are available upon request from the corresponding author. Here, we are excluding the case

Tw = 22, Tm = 22 and ES0.99 since this logit regression has the same outputs as the equivalent

logit regression displayed in Table 10. Consequently, it also shares the same performance

measures. Also worth noting that the difference between the two AUCs is always significant

when α = 0.01 demonstrating the benefits of using λav in these particular situations. As

a special case, we show in Figure 7 the predicted probabilities of the full logit regression

obtained with Tw = 132, Tm = 132 and ES0.90 together with the related reduced regression

using RVav. This also corresponds to the case where the full model has the highest AUC.

Excluding the Delphi (G.M) Bankruptcy and the Subprime Crisis event, both models show

high predicted probabilities for the other crisis events. On the other hand, TPR is equal to

0.8973 and 0.9109 for the full and reduced model, whereas TNR equal to 0.6542 and 0.6916

respectively.
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Figure 7: From left to right: The first two panels show the ROC curve
and predicted probabilities of the full logit regression using ES0.90,
Tw = 132, Tm = 132 and t location-scale losses. The next two panels
do the same, but now consider only the EWI RVav
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4 Further considerations

To conclude our empirical application, we report in Table 16 in Appendix A the fractions

of ones of the forward-looking variable Y for each of the four types of regressions discussed

in the previous section. The fractions are shown for t location-scale losses and for each

combination of Tw, Tm and α. What emerges from Table 16 is the fact that when α = 0.10

and Tm is equal to 66 or 132, the fractions of ones for the first and third types of regressions

are very high. This is particularly evident when Tm = 132. It is no coincidence that in this

situation Y has little variation and we did not find significant results.

As natural, moving from a higher to a lower level of α results in a decrease in the fractions

of ones making the sample more unbalanced. We also notice from Table 16 that the samples

used by many regressions are well-balanced.

Different studies report problems of the logit regression with rare events data. However,

this is particularly a problem when the sample size is large (in thousands or millions) and the

event rate (the fraction of ones in our study) very small ([King and Zeng, 2001] and [Fithian

and Hastie, 2014]).

We will evaluate the out-of-sample performance of our EWS models using 10-fold cross-

validation. This procedure randomly divides the original dataset into 10 non-overlapping
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folds having approximately equal size. While the first fold is treated as the validation set,

the various logit regressions are ran on the remaining 9 folds. We compute on these folds the

measures AUC, QPS, LPS and hit ratio. Finally, the procedure is repeated 10 times with

each of the 10 folds used precisely once as validation set. The 10-fold AUC, QPS, LPS and

hit ratio estimates are then obtained by averaging the values we found previously. The choice

of the 10-fold cross-validation follows the suggestions of [James et. al., 2013].

An excerpt from our 10-fold cross validation is presented in Table 17. Due to space reasons,

we show only the results for the third type of regressions. Those that we would conclude for

this regression however remain true for all the regressions considered in this paper. When

looking at the results in Table 17, we note that the four performance measures used to validate

our EWS are almost similar to the same measures obtained from the original regression

models. This indicates that the performance of our EWSs do not suffer in cross-validation.

5 Conclusions

We propose and analyze different logit regression Early Warning Systems (EWSs) where Early

Warning Indicators (EWIs) based on the daily realized variance and on the integrated feedback

rate are considered. The forward-looking variable is defined in terms of the Value-at-risk

(VaR) or Expected shortfall (ES). We test the proposed EWSs by using tick-by-tick prices of

the S&P 500 index futures covering the period from 3 January 2000 to 31 December 2008.

The EWSs suggest that the EWIs using realized variance (RV) can help in predicting

financial crises. Indeed, we find positive significant regression coefficients for these EWIs. We

also often find that in many regressions the magnitude of the coefficient of RV decreases as

the significance level decreases. On the opposite, in nearly all cases, the estimated regression

coefficients of the EWI employing the price-volatility feedback rate increase their magnitude

when the significance level decreases. This suggests a stronger capacity of this EWI to predict

more extreme financial crises. The logit regression models ran with this EWI and the EWI

using the average of the logarithms of RVs are preferred to the single reduced models.

The results are also robust to changes in the estimation and prediction intervals. The

prediction ability of our EWSs is also confirmed by the 10-fold cross validation analysis and

it is not affected by the class imbalance problem and the outliers presence. As a consequence,

we can assert that the EWSs proposed can be a useful tool in predicting financial instabilities.
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Appendix A

Table 5: Logit output results based on the first type of regressions

Tw = 1, Tm = 22 - V aR0.90 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
15.0413 9.8344e-103 1.5625 6.1474e-105 0.2548 0.7475 1.3191e-172

Tw = 1, Tm = 22 - V aR0.95 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
13.4594 6.4660e-88 1.4810 1.2442e-95 0.2459 0.7722 3.3509e-154

Tw = 1, Tm = 22 - V aR0.99 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
11.1373 3.2734e-50 1.4042 2.4566e-64 0.2488 0.8814 1.8812e-97

Tw = 1, Tm = 66 - V aR0.90 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
14.5245 4.8927e-92 1.3975 1.6507e-86 0.2021 0.7475 3.225e-125

Tw = 1, Tm = 66 - V aR0.95 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
12.5196 5.8323e-87 1.2718 7.9362e-87 0.1819 0.7204 1.5954e-121

Tw = 1, Tm = 66 - V aR0.99 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
9.8160 1.0361e-54 1.1448 1.6242e-65 0.1565 0.7663 1.8746e-85

Tw = 1, Tm = 132 - V aR0.90 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
14.2413 3.2438e-75 1.3050 1.3049e-66 0.1755 0.7495 2.2283e-91

Tw = 1, Tm = 132 - V aR0.95 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
9.9795 4.2902e-62 0.9512 9.3414e-57 0.1132 0.6730 4.2169e-70

Tw = 1, Tm = 132 - V aR0.99 - Normal case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
10.3626 6.2100e-66 1.1237 6.0279e-72 0.1522 0.6834 1.3383e-94

The table reports the outputs of the logit regressions applied to the forward-looking variable defined
in Equation (18) based on the daily returns of the S&P 500 index futures. Tw is set equal to 1 and
Tm equal to 22, 66 and 132. VaR is computed using the normal distribution. The sample contains
respectively 2226, 2182 and 2116 observations.
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Table 6: Logit output results based on the first type of regressions

Tw = 1, Tm = 22 - V aR0.90 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
12.3882 3.6161e-78 1.1625 1.9468e-70 0.1608 0.7192 1.0719e-96

Tw = 1, Tm = 22 - V aR0.95 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
14.7084 4.3805e-100 1.5497 9.4716e-104 0.2542 0.7597 1.4829e-170

Tw = 1, Tm = 22 - V aR0.99 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
11.0670 1.7213e-44 1.4353 1.0065e-58 0.2620 0.9066 1.7412e-88

Tw = 1, Tm = 66 - V aR0.90 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
11.1983 1.2888e-24 0.8411 1.2973e-15 0.0705 0.9386 3.5075e-17

Tw = 1, Tm = 66 - V aR0.95 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
13.8173 1.3779e-89 1.3354 1.8939e-84 0.1905 0.7360 9.1837e-120

Tw = 1, Tm = 66 - V aR0.99 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
8.9275 2.3902e-46 1.0670 7.5983e-58 0.1397 0.7782 9.6456e-73

Tw = 1, Tm = 132 - V aR0.90 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
14.2883 0.0369 0.7646 0.2426 0.0318 0.9986 0.22963

Tw = 1, Tm = 132 - V aR0.95 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
14.2413 3.2438e-75 1.3050 1.3049e-66 0.1755 0.7495 2.2283e-91

Tw = 1, Tm = 132 - V aR0.99 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
9.3204 1.5409e-57 1.0234 3.6855e-64 0.1318 0.6829 3.796e-81

The table reports the outputs of the logit regressions applied to the forward-looking variable defined
in Equation (18) based on the daily returns of the S&P 500 index futures. Tw is set equal to 1 and
Tm equal to 22, 66 and 132. VaR is computed using the t location-scale distribution. The sample
contains respectively 2226, 2182 and 2116 observations.
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Table 7: Performance measures of the first type of regressions

Tw = 1, Tm = 22 - Normal case AUC QPS LPS
V aR0.90 0.8228∗∗∗ 0.3401 0.5153

V aR0.95 0.8206∗∗∗ 0.3130 0.4821

V aR0.99 0.8380∗∗∗ 0.1808 0.2976

Tw = 1, Tm = 66 - Normal case AUC QPS LPS
V aR0.90 0.8041∗∗∗ 0.3419 0.5125

V aR0.95 0.7829∗∗∗ 0.3810 0.5665

V aR0.99 0.7714∗∗∗ 0.3142 0.4741

Tw = 1, Tm = 132 - Normal case AUC QPS LPS
V aR0.90 0.7999∗∗∗ 0.3076 0.4562

V aR0.95 0.7321∗∗∗ 0.4000 0.5800

V aR0.99 0.7623∗∗∗ 0.3828 0.5603

Tw = 1, Tm = 22 - t location-scale case AUC QPS LPS
V aR0.90 0.7727∗∗∗ 0.3451 0.5104

V aR0.95 0.8230∗∗∗ 0.3343 0.5107

V aR0.99 0.8498∗∗∗ 0.1481 0.2516

Tw = 1, Tm = 66 - t location-scale case AUC QPS LPS
V aR0.90 0.7278∗∗∗ 0.1130 0.2146

V aR0.95 0.7945∗∗∗ 0.3545 0.5273

V aR0.99 0.7628∗∗∗ 0.3018 0.4592

Tw = 1, Tm = 132 - t location-scale case AUC QPS LPS
V aR0.90 0.7306LTCF 0.0028 0.0104

V aR0.95 0.7999∗∗∗ 0.3076 0.4562

V aR0.99 0.7482∗∗∗ 0.3884 0.5667

The table displays the performance measures AUC, QPS and LPS of the logit regressions obtained
using the forward-looking variable defined in Equation (18) and the daily returns of the S&P 500
index futures. Tw is set equal to 1 and Tm equal to 22, 66 and 132. VaR is computed using the
normal and the t location-scale distribution. The sample contains respectively 2226, 2182 and 2116
observations. ∗∗∗ indicates rejection of null hypothesis test AUC = 0.5 at 0.01% level of significance.
LTCF stands for ”less than two classes are found” and therefore the p-value cannot be defined.
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Table 8: Logit output results based on the second type of regressions

Tw = 1, Tm = 22 - ES0.90 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
16.0567 3.1889e-98 1.7546 5.3506e-105 0.2997 0.7848 7.7089e-188

Tw = 1, Tm = 22 - ES0.95 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
15.2104 2.3851e-90 1.6977 8.2251e-99 0.2921 0.7934 1.8629e-173

Tw = 1, Tm = 22 - ES0.99 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
11.0670 1.7213e-44 1.4353 1.0065e-58 0.2620 0.9066 1.7412e-88

Tw = 1, Tm = 66 - ES0.90 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
15.7642 2.4653e-98 1.6933 1.0184e-103 0.2681 0.7566 4.0465e-38

Tw = 1, Tm = 66 - ES0.95 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
14.8973 1.2699e-89 1.6386 5.3356e-97 0.2579 0.7727 6.3058e-155

Tw = 1, Tm = 66 - ES0.99 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
9.6579 3.3009e-47 1.1692 2.2691e-59 0.1600 0.8103 7.4972e-77

Tw = 1, Tm = 132 - ES0.90 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
12.3024 2.1455e-80 1.3065 6.4725e-85 0.1895 0.7108 7.0519e-120

Tw = 1, Tm = 132 - ES0.95 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
10.9148 1.1513e-69 1.1822 1.0043e-75 0.1642 0.6971 9.2605e-102

Tw = 1, Tm = 132 - ES0.99 - t location-scale case

β0 p−value lnRV p−value R-squared Hit ratio Goodness
3.9508 2.6489e-12 0.5514 1.0981e-20 0.0430 0.7949 8.6121e-22

The table reports the outputs of the logit regressions applied to the forward-looking variable defined
in Equation (19) based on the daily returns of the S&P 500 index futures. Tw is set equal to 1 and
Tm equal to 22, 66 and 132. VaR and ES are computed using the t location-scale distribution. The
sample contains respectively 2226, 2182 and 2116 observations.
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Table 9: Performance measures of the second type of regressions

Tw = 1, Tm = 22 - t location-scale case AUC QPS LPS
ES0.90 0.8511∗∗∗ 0.2930 0.4486

ES0.95 0.8463∗∗∗ 0.2776 0.4292

ES0.99 0.8498∗∗∗ 0.1481 0.2516

Tw = 1, Tm = 66 - t location-scale case AUC QPS LPS
ES0.90 0.8372∗∗∗ 0.3194 0.4827

ES0.95 0.8342∗∗∗ 0.3050 0.4636

ES0.99 0.7843∗∗∗ 0.2680 0.4142

Tw = 1, Tm = 132 - t location-scale case AUC QPS LPS
ES0.90 0.7902∗∗∗ 0.3696 0.5478

ES0.95 0.7711∗∗∗ 0.3746 0.5516

ES0.99 0.6555∗∗∗ 0.3134 0.4837

The table displays the performance measures AUC, QPS and LPS of the logit regressions obtained
using the forward-looking variable defined in Equation (19) and the daily returns of the S&P 500
index futures. Tw is set equal to 1 and Tm equal to 22, 66 and 132. VaR and ES are computed using
the t location-scale distribution. The sample contains respectively 2226, 2182 and 2116 observations.
∗∗∗ indicates rejection of null hypothesis test AUC = 0.5 at 0.01% level of significance.
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Table 10: Logit output results based on the third type of regressions

Tw = 22, Tm = 22 - V aR0.95 - t location-scale case
p−value p−value p−value

β0 18.0473 9.5475e-101 18.9383 1.5512e-115 -1.2347 3.8326e-23
RVav 1.9740 3.5979e-114 1.9859 7.6320e-119
λav 0.1242 1.1679e-08 0.1531 2.0474e-16
R-squared 0.3104 0.2993 0.0347
Hit ratio 0.7578 0.7714 0.5941
Goodness 1.4947e-198 8.2788e-193 4.1564e-17

Tw = 22, Tm = 22 - V aR0.99 - t location-scale case
p−value p−value p−value

β0 11.3467 2.8515e-33 12.7697 1.5429e-41 -3.5829 1.5942e-63
RVav 1.6024 7.8047e-54 1.5980 5.8441e-53
λav 0.2119 2.3621e-12 0.2212 3.7409e-15
R-squared 0.2679 0.2345 0.0445
Hit ratio 0.9011 0.9034 0.8916
Goodness 5.5803e-88 2.2914e-78 2.3756e-15

Tw = 66, Tm = 66 - V aR0.95 - t location-scale case
p−value p−value p−value

β0 18.8842 1.8680e-89 19.7039 8.5115e-104 -0.4254 0.0180
RVav 1.9162 1.1066e-98 1.9334 8.5008e-101
λav 0.1064 0.0033 0.1587 3.4529e-08
R-squared 0.2493 0.2463 0.0315
Hit ratio 0.8035 0.8063 0.6297
Goodness 5.8742e-142 1.4218e-141 2.2781e-08

Tw = 66, Tm = 66 - V aR0.99 - t location-scale case
p−value p−value p−value

β0 7.3775 5.9416e-18 8.4846 7.3142e-27 -2.5510 5.1846e-30
RVav 0.9825 1.8223e-31 1.0214 9.2599e-35
λav 0.1167 3.5094e-04 0.1898 1.9179e-08
R-squared 0.1561 0.1505 0.0917
Hit ratio 0.7940 0.7851 0.7950
Goodness 3.0366e-40 1.2010e-38 1.4998e-08

Tw = 132, Tm = 132 - V aR0.95 - t location-scale case
p−value p−value p−value

β0 62.6174 1.5113e-53 32.2423 1.7006e-80 1.4549 2.5311e-08
RVav 5.2447 7.1335e-56 3.0822 9.2769e-79
λav -1.2789 9.7240e-31 -0.0639 0.1186
R-squared 0.4355 0.3565 0.0332
Hit ratio 0.8484 0.8055 0.7421
Goodness 7.8809e-206 3.5723e-167 0.1202

Tw = 132, Tm = 132 - V aR0.99 - t location-scale case
p−value p−value p−value

β0 9.9899 1.2760e-29 12.3911 1.2731e-53 -3.2677 3.2265e-36
RVav 1.2924 2.0850e-51 1.3550 2.5440e-59
λav 0.2863 1.0933e-12 0.3967 4.8490e-23
R-squared 0.2348 0.2157 0.1402
Hit ratio 0.7164 0.6650 0.7421
Goodness 7.9391e-80 1.1217e-69 3.3892e-24

The table reports the outputs of the third type of logit regressions applied to the forward-looking
variable defined in Equation (18) based on the daily returns of the S&P 500 index futures. Tw
is assumed to be equal to Tm and is set equal to 22, 66 and 132. VaR is computed using the t
location-scale distribution. The sample contains respectively 2205, 2117 and 1985 observations.
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Table 11: Performance measures on the third type of regressions

Tw = 22, Tm = 22 - t location-scale case AUC QPS LPS
V aR0.95 - Full model 0.8461 0.3117 0.4767

V aR0.95 - Reduced model RVav 0.8420 0.3180 0.4844

V aR0.95 - Reduced model λav 0.6067 0.4748 0.6673

V aR0.99 - Full model 0.8576∗ 0.1521 0.2520

V aR0.99 - Reduced model RVav 0.8247 0.1561 0.2635

V aR0.99 - Reduced model λav 0.6402 0.1873 0.3289

Tw = 66, Tm = 66 - t location-scale case AUC QPS LPS
V aR0.95 - Full model 0.8094 0.3251 0.5040

V aR0.95 - Reduced model RVav 0.8055 0.3228 0.5061

V aR0.95 - Reduced model λav 0.5487 0.4592 0.6502

V aR0.99 - Full model 0.7095 0.3066 0.4643

V aR0.99 - Reduced model RVav 0.6917 0.3115 0.4673

V aR0.99 - Reduced model λav 0.5477 0.3179 0.4997

Tw = 132, Tm = 132 - t location-scale case AUC QPS LPS
V aR0.95 - Full model 0.9003∗∗∗ 0.2199 0.3330

V aR0.95 - Reduced model RVav 0.8542 0.2634 0.3796

V aR0.95 - Reduced model λav 0.6275 0.3826 0.5703

V aR0.99 - Full model 0.7751∗∗ 0.3589 0.5323

V aR0.99 - Reduced model RVav 0.7337 0.3767 0.5457

V aR0.99 - Reduced model λav 0.5569 0.4056 0.5982

The table displays the performance measures AUC, QPS and LPS of the logit regressions obtained
using the forward-looking variable defined in Equation (18) and the daily returns of the S&P 500
index futures. Tw is assumed to be equal to Tm and is set equal to 22, 66 and 132. VaR is computed
using the t location-scale distribution. The sample contains respectively 2205, 2117 and 1985 observa-
tions. ∗, ∗∗ and ∗∗∗ indicate rejection of null hypothesis test AUCFull model = AUCReduced model
at 5%, 1% and 0.01% level of significance. The reduced model is derived using the RVav variable.
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Table 12: Confusion matrix

Actual
Positive Negative Total FNR=0.4142 ACC=0.9496P

red
icted

Positive TP = 140 FP = 239 379 FPR=0.1216 PPV=0.3694
Negative FN = 99 TN = 1727 1826 TNR=0.8784 NSR=0.2076

Total 239 1966 2205 TPR=0.5858 FOR=0.0542

Actual
Positive Negative Total FNR=0.5146 ACC=0.8331P

red
icted

Positive TP = 116 FP = 245 361 FPR=0.1246 PPV=0.3213
Negative FN = 123 TN = 1721 1844 TNR=0.8754 NSR=0.2567

Total 239 1966 2205 TPR=0.4854 FOR=0.0667

The first panel reports the numbers of true positive (TP), false positive (FP), false negatives (FN) and
true negatives (TN) of the third type of full logit regressions using Tw = 22, Tm = 22, V aR0.99 and t
location-scale losses. The right part of the table shows the metrics derived from this confusion matrix,
that is, the false negative rate (FNR) = FN/(FN+TP), false positive rate (FPR) = FP/(FP+TN),
true negative rate (TNR) = TN/(TN+FP), true positive rate (TPR) = TP/(TP+FN), accuracy
(ACC) = (TP+TN)/(TP+TN+FP+FN), positive predictive value (PPV) = TP/(TP+FP), noise-
to-signal ratio (NSR) = FPR/TPR and false omission rate (FOR) = FN/(FN+TN). The second
panel repeats the same computations to the reduced model derived with the RVav variable.

Table 13: Confusion matrix

Actual
Positive Negative Total FNR=0.0014 ACC=0.7526P

red
icted

Positive TP = 1471 FP = 489 1960 FPR=0.9551 PPV=0.7505
Negative FN = 2 TN = 23 25 TNR=0.0449 NSR=0.9564

Total 1473 512 1985 TPR=0.9986 FOR=0.0800

Actual
Positive Negative Total FNR=0.0075 ACC=0.7365P

red
icted

Positive TP = 1462 FP = 512 1974 FPR=1.0000 PPV=0.7406
Negative FN = 11 TN = 0 11 TNR=0.0000 NSR=1.0076

Total 1473 512 1985 TPR=0.9925 FOR=1.0000

The first panel reports the numbers of true positive (TP), false positive (FP), false negatives (FN)
and true negatives (TN) of the third type of full logit regressions using Tw = 132, Tm = 132, V aR0.95

and t location-scale losses. The right part of the table shows the metrics derived from this confu-
sion matrix, that is, the false negative rate (FNR) = FN/(FN+TP), false positive rate (FPR) =
FP/(FP+TN), true negative rate (TNR) = TN/(TN+FP), true positive rate (TPR) = TP/(TP+FN),
accuracy (ACC) = (TP+TN)/(TP+TN+FP+FN), positive predictive value (PPV) = TP/(TP+FP),
noise-to-signal ratio (NSR) = FPR/TPR and false omission rate (FOR) = FN/(FN+TN). The
second panel repeats the same computations to the reduced model derived with the RVav variable.
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Table 14: Logit output results based on the fourth type of regressions

Tw = 22, Tm = 22 - ES0.90 - t location-scale case
p−value p−value p−value

β0 18.5659 2.3701e-94 19.3098 2.9188e-106 -1.5513 2.2623e-32
RVav 2.0799 2.3552e-108 2.0923 5.6354e-112
λav 0.0985 5.9800e-06 0.1360 1.2162e-12
R-squared 0.3199 0.3125 0.0185
Hit ratio 0.7755 0.7642 0.6694
Goodness 1.2388e-195 1.1516e-192 5.9834e-13

Tw = 22, Tm = 22 - ES0.95 - t location-scale case
p−value p−value p−value

β0 17.7429 9.8552e-81 18.9403 1.9592e-97 -2.1961 5.1838e-53
RVav 2.0841 1.4966e-98 2.0870 3.5603e-104
λav 0.1814 4.2941e-15 0.2024 4.1190e-23
R-squared 0.3362 0.3115 0.0162
Hit ratio 0.8159 0.7814 0.7134
Goodness 1.0123e-59 1.3142e-181 2.0493e-24

Tw = 22, Tm = 22 - ES0.99 - t location-scale case
p−value p−value p−value

β0 11.3467 2.8515e-33 12.7697 1.5429e-41 -3.5829 1.5942e-63
RVav 1.6024 7.8047e-54 1.5980 5.8441e-53
λav 0.2119 2.3621e-12 0.2212 3.7409e-15
R-squared 0.2655 0.2321 0.0415
Hit ratio 0.9011 0.9034 0.8916
Goodness 5.5803e-88 2.2914e-78 2.3756e-15

Tw = 66, Tm = 66 - ES0.90 - t location-scale case
p−value p−value p−value

β0 21.7576 1.4688e-99 22.4589 1.0206e-111 -1.8326 2.6035e-22
RVav 2.4047 6.0039e-112 2.3944 2.1282e-115
λav 0.1291 4.8665e-05 0.1962 1.4554e-11
R-squared 0.3207 0.3147 0.0171
Hit ratio 0.7350 0.7227 0.6821
Goodness 5.3817e-192 3.4774e-10 7.1338e-12

Tw = 66, Tm = 66 - ES0.95 - t location-scale case
p−value p−value p−value

β0 14.9751 2.6389e-61 16.3233 7.2768e-80 -2.5756 2.5228e-36
RVav 1.7707 1.2075e-80 1.7871 2.8067e-86
λav 0.1908 1.0259e-09 0.2718 1.7664e-18
R-squared 0.2230 0.2081 0.0315
Hit ratio 0.7289 0.6826 0.7303
Goodness 2.5460e-125 1.8724e-118 2.2904e-19

Tw = 66, Tm = 66 - ES0.99 - t location-scale case
p−value p−value p−value

β0 5.7183 2.1290e-09 9.0230 3.2894e-26 -4.3593 1.2574e-59
RVav 0.9822 6.6998e-26 1.1021 1.8007e-34
λav 0.3337 3.4612e-19 0.4305 3.3667e-29
R-squared 0.1322 0.0874 0.0702
Hit ratio 0.8281 0.8219 0.8299
Goodness 8.7265e-57 5.2784e-39 1.2123e-31
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Table 14: continued from previous page

Tw = 132, Tm = 132 - ES0.90 - t location-scale case
p−value p−value p−value

β0 19.7071 5.7170e-81 22.4716 3.0111e-117 -3.8114 1.5580e-44
RVav 2.3946 1.4451e-110 2.3469 1.3450e-119
λav 0.5248 1.6536e-24 0.5506 1.3942e-37
R-squared 0.3489 0.3018 0.0722
Hit ratio 0.8156 0.7914 0.6610
Goodness 5.4557e-204 4.3623e-178 5.0553e-44

Tw = 132, Tm = 132 - ES0.95 - t location-scale case
p−value p−value p−value

β0 14.4298 9.4606e-56 16.6683 1.1588e-84 -3.0903 1.3624e-33
RVav 1.7330 3.6317e-81 1.7690 7.9166e-89
λav 0.3035 4.8653e-13 0.4080 1.6400e-24
R-squared 0.2193 0.1980 0.0431
Hit ratio 0.7798 0.7290 0.7139
Goodness 3.1420e-125 1.3610e-114 2.4383e-26

Tw = 132, Tm = 132 - ES0.99 - t location-scale case
p−value p−value p−value

β0 6.8771 3.8982e-12 10.2528 1.1247e-31 -4.3769 2.9187e-51
RVav 1.0816 6.8287e-30 1.1941 8.6669e-39
λav 0.3595 3.3694e-17 0.4821 1.5668e-28
R-squared 0.1303 0.0944 0.0615
Hit ratio 0.7456 0.7557 0.8035
Goodness 3.1906e-59 2.3764e-44 1.7874e-29

The table reports the outputs of the fourth type of logit regressions applied to the forward-looking
variable defined in Equation (19) based on the daily returns of the S&P 500 index futures. Tw is
assumed to be equal to Tm and is set equal to 22, 66 and 132. VaR and ES are computed using the
t location-scale distribution. The sample contains respectively 2205, 2117 and 1985 observations.
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Table 15: Performance measures on the fourth type of regressions

Tw = 66, Tm = 66 - t location-scale case AUC QPS LPS
ES0.99 - Full model 0.7646∗∗ 0.2544 0.4002

ES0.99 - Reduced model RVav 0.7066 0.2739 0.4209

ES0.99 - Reduced model λav 0.6291 0.2607 0.4288

Tw = 132, Tm = 132 - t location-scale case AUC QPS LPS
ES0.90 - Full model 0.8671∗∗ 0.2808 0.4400

ES0.90 - Reduced model RVav 0.8297 0.3077 0.4718

ES0.90 - Reduced model λav 0.6137 0.4355 0.6270

ES0.95 - Full model 0.8160∗ 0.3374 0.5141

ES0.95 - Reduced model RVav 0.7806 0.3558 0.5282

ES0.95 - Reduced model λav 0.5677 0.4366 0.6302

ES0.99 - Full model 0.7787∗∗∗ 0.3001 0.4528

ES0.99 - Reduced model RVav 0.7117 0.3167 0.4715

ES0.99 - Reduced model λav 0.6078 0.3113 0.4886

The table displays the performance measures AUC, QPS and LPS of the logit regressions obtained us-
ing the forward-looking variable defined in Equation (19) and the daily returns of the S&P 500 index
futures. Tw is assumed to be equal to Tm and is set equal to 66 and 132. VaR and ES are computed
using the t location-scale distribution. The sample contains respectively 2117 and 1985 observations.
∗, ∗∗ and ∗∗∗ indicate rejection of null hypothesis test AUCFull model = AUCReduced model at
5%, 1% and 0.01% level of significance. The reduced model is derived using the RVav variable.
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Table 16: The fractions of ones of the forward-looking variable Y

First type of regressions - Tw = 1, Tm = 22; Tw = 1, Tm = 66; Tw = 1, Tm = 132
Distribution α Fraction Fraction Fraction
t location-scale 0.10 0.7031 0.9386 0.9986
t location-scale 0.05 0.4353 0.6434 0.7580
t location-scale 0.01 0.1074 0.2255 0.3587

Second type of regressions - Tw = 1, Tm = 22; Tw = 1, Tm = 66; Tw = 1, Tm = 132
Distribution α Fraction Fraction Fraction
t location-scale 0.10 0.3392 0.3712 0.4074
t location-scale 0.05 0.2947 0.3171 0.3719
t location-scale 0.01 0.1074 0.1948 0.2037

Third type of regressions - Tw = 22, Tm = 22; Tw = 66, Tm = 66; Tw = 132, Tm = 132
Distribution α Fraction Fraction Fraction
t location-scale 0.10 0.7002 0.9386 0.9986
t location-scale 0.05 0.4299 0.6400 0.7556
t location-scale 0.01 0.1084 0.2212 0.3523

Fourth type of regressions - Tw = 22, Tm = 22; Tw = 66, Tm = 66; Tw = 132, Tm = 132
Distribution α Fraction Fraction Fraction
t location-scale 0.10 0.3329 0.3519 0.4071
t location-scale 0.05 0.2889 0.2962 0.3693
t location-scale 0.01 0.1084 0.1734 0.2151

The table reports the fractions of ones of the forward-looking variable Y for the four types of
regressions shown in Section 2.3. From left to right: Each panel shows the distribution of the
losses, level of significance and the fractions of ones for Tw = 22, Tm = 22; Tw = 66, Tm = 66 and
Tw = 132, Tm = 132.
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Table 17: 10-fold performance measures on the third type of regressions

Tw = 22, Tm = 22 - t location-scale case AUC QPS LPS Hit ratio
V aR0.95 - Full model 0.8457 0.3126 0.4780 0.7569

V aR0.95 - Reduced model RVav 0.8412 0.3190 0.4857 0.7696

V aR0.95 - Reduced model λav 0.6055 0.4757 0.6682 0.5941

V aR0.99 - Full model 0.8569 0.1530 0.2535 0.8998

V aR0.99 - Reduced model RVav 0.8246 0.1566 0.2643 0.9038

V aR0.99 - Reduced model λav 0.6389 0.1877 0.3297 0.8916

Tw = 66, Tm = 66 - t location-scale case AUC QPS LPS Hit ratio
V aR0.95 - Full model 0.8093 0.3262 0.5058 0.8044

V aR0.95 - Reduced model RVav 0.8069 0.3237 0.5075 0.8063

V aR0.95 - Reduced model λav 0.5488 0.4602 0.6513 0.6278

V aR0.99 - Full model 0.7057 0.3076 0.4656 0.7926

V aR0.99 - Reduced model RVav 0.6924 0.3124 0.4686 0.7846

V aR0.99 - Reduced model λav 0.5507 0.3189 0.5013 0.7950

Tw = 132, Tm = 132 - t location-scale case AUC QPS LPS Hit ratio
V aR0.95 - Full model 0.8987 0.2207 0.3345 0.8463

V aR0.95 - Reduced model RVav 0.8547 0.2641 0.3804 0.8046

V aR0.95 - Reduced model λav 0.6250 0.3830 0.5707 0.7421

V aR0.99 - Full model 0.7760 0.3603 0.5344 0.7154

V aR0.99 - Reduced model RVav 0.7343 0.3776 0.5468 0.6635

V aR0.99 - Reduced model λav 0.5565 0.4065 0.5993 0.7420

The table displays the 10-fold AUC, QPS, LPS and hit ratio estimates of the logit regressions
obtained using the forward-looking variable defined in Equation (18) and the daily returns of the
S&P 500 index futures. Tw is assumed to be equal to Tm and is set equal to 22, 66 and 132. VaR is
computed using the t location-scale distribution. The sample contains respectively 2205, 2117 and
1985 observations.
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