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Abstract: Recent studies have shown correlations between the microbiota’s composition and various
health conditions. Machine learning (ML) techniques are essential for analyzing complex biological
data, particularly in microbiome research. ML methods help analyze large datasets to uncover micro-
biota patterns and understand how these patterns affect human health. This study introduces a novel
approach combining statistical physics with the Monte Carlo (MC) methods to characterize bacterial
species in the human microbiota. We assess the significance of bacterial species in different age
groups by using notions of statistical distances to evaluate species prevalence and abundance across
age groups and employing MC simulations based on statistical mechanics principles. Our findings
show that the microbiota composition experiences a significant transition from early childhood to
adulthood. Species such as Bifidobacterium breve and Veillonella parvula decrease with age, while others
like Agathobaculum butyriciproducens and Eubacterium rectale increase. Additionally, low-prevalence
species may hold significant importance in characterizing age groups. Finally, we propose an overall
species ranking by integrating the methods proposed here in a multicriteria classification strategy.
Our research provides a comprehensive tool for microbiota analysis using statistical notions, ML
techniques, and MC simulations.

Keywords: Monte Carlo simulation; machine learning; human microbiota; statistical physics;
microcanonical ensemble; canonical ensemble; database learning

1. Introduction

Machine learning (ML) techniques are fundamental in analyzing extensive, complex
biological data from different areas of biological science [1]. ML is a subset of artificial
intelligence that allows computers to learn from data without being explicitly programmed.
These advanced computational methods are precious in microbiome research, enabling
the integration and interpretation of vast datasets to uncover intricate patterns and rela-
tionships within the microbiota. The microbiota, the community of microorganisms that
colonizes the human body, is considered to affect a wide range of physiological processes,
from immunity to digestion, and plays a crucial role in determining human health [2–4].
An ever-increasing number of studies have highlighted the possible correlation between the
abundance, variability, and richness of bacterial species belonging to the human microbiota
and many health disorders and/or diseases [3,5–7]. In this context, investigating in depth
the human gut microbiota composition and its correlation with the different host intrinsic
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parameters, such as age, gender, health condition, and lifestyle, could be crucial for better
understanding the main factors that might impact individuals’ health status [6,7].

The study of the human microbiota was made possible by developing modern next-
generation sequencing techniques, which allow the precise and in-depth identification
of the microbial populations that inhabit the human body [8,9]. However, these modern
techniques, such as 16S rRNA gene profiling and shotgun metagenomic sequencing, re-
quire sophisticated and advanced technological approaches capable of analyzing large
and complex databases and identifying subtle patterns within them. Despite these ad-
vancements, there currently needs to be a unified statistical methodology for analyzing
metagenomic data, leading to significant variability in the approaches used. In this context,
the development of MLs has provided powerful tools to address this challenge, allowing
us to extract useful information from large microbiota databases and develop models to
predict the abundance of bacterial species in response to various factors.

In this study, we evaluate a new approach by integrating statistical physics notions
with the Monte Carlo (MC) method to characterize bacterial species in the human micro-
biota. Specifically, in addition to classic statistical classification strategies such as species
prevalence and abundance, we introduce and utilize different statistical distance notions to
assess how much the average occurrence of a species in the age group samples deviates
from the general average across groups. Then, we use MCs, which are computational algo-
rithms based on repeated random sampling, to obtain numerical results [10], widely used in
various fields of biology [11,12], ecology [13], and physics [14]. MCs are random numerical
experiments on a computer where we can observe the outcomes of these experiments,
and they are instrumental when dealing with complex systems with high uncertainty or
randomness, such as bacterial species sampling. While MC methods are not strictly ML,
they are frequently employed as tools within ML algorithms. MC can support ML for
parameter estimation in large datasets, generate synthetic data to augment a dataset, or
make a random distribution of the empirical data [15]. Our research adopts the MC to
generate synthetic data to analyze the prevalence of bacterial species in the human micro-
biota. We perform MCs whose rationale is based on the concepts of the microcanonical and
canonical ensembles in statistical mechanics [16]. MCs furnish random scenarios where the
occurrences of species are varied while keeping key parameters fixed. MCs make synthetic
data that allow us to find the statistical significance of bacterial species for age groups by
comparing their empirical prevalence with that of the numerical experiment. Last, since we
evaluate the importance of bacterial species in the age groups with different classification
strategies, we propose a further analysis to obtain an overall species ranking by evaluating
the results of the different strategies together.

In summary, this manuscript introduces an innovative methodology integrating ML,
MC simulations, and statistical physics to characterize bacterial species in the human
microbiota. This approach provides a novel statistical approach to analyzing complex
microbiota datasets, allowing for more comprehensive insights into microbial populations.
By incorporating statistical physics principles, such as microcanonical and canonical ensem-
bles, we enhance the understanding of bacterial species’ significance across different age
groups, offering a deeper dimension of analysis beyond traditional methods. Additionally,
we develop a multicriteria classification strategy to rank bacterial species based on their
importance within age groups, considering both low- and high-prevalence species. The
methods proposed in this study provide valuable insights into the relationship between
microbiota composition and human health, offering a robust framework for advancing
microbiome research.

The article is organized as follows: Section 2 describes the state of the art of the
microbiota bacterial species research; Section 3 defines the methodology used in this
manuscript; Section 4 shows and discusses the results; and finally, Section 5 summarizes
and carries out the research conclusions.
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2. State of the Art

The human microbiota has gained increasing attention in recent years due to its pro-
found impact on health and disease [6,7]. Many studies have explored the link between
microbiota composition and various health conditions, from gastrointestinal disorders to
metabolic and immune-related diseases [3,17,18]. These studies leverage next-generation
sequencing (NGS) technologies such as 16S rRNA gene sequencing and shotgun metage-
nomics to analyze the taxonomic composition and functional capacity of microbial commu-
nities [8,9].

However, the challenge of analyzing large and complex microbiome datasets has led
researchers to adopt advanced computational tools. Traditional statistical methods, though
useful, often struggle with the high dimensionality and sparsity inherent in microbiome
data. As a result, ML methods have become indispensable for uncovering patterns within
these data. ML approaches, including supervised and unsupervised learning algorithms,
have been applied to identify microbial biomarkers, classify microbial communities, and
predict disease states based on microbiome profiles [6,7].

Despite their success, these approaches often focus on species abundance and preva-
lence while overlooking the potential role of low-prevalence species in shaping microbial
community structure. Moreover, there is limited consensus on the best statistical method-
ologies for integrating complex datasets, particularly when considering multiple factors
such as age, health conditions, and geographic location [19].

Recent advancements in MC methods have provided new avenues for addressing
these challenges. MC methods are particularly well-suited for simulating random processes
in complex systems and have been applied in fields ranging from ecology to statistical
mechanics [20]. While MC methods are not traditionally considered ML, they can be
integrated within ML frameworks to support parameter estimation and synthetic data
generation. Combining ML techniques with MC simulations, this hybrid approach could
overcome some of the limitations of traditional statistical methods in microbiome research
by generating robust predictions based on synthetic datasets and exploring the importance
of low-prevalence species.

This study builds upon the existing literature by introducing a novel application
of MC simulations in microbiome research. It provides new insights into the role of
statistical distances in classifying bacterial species and offers a comprehensive approach for
integrating ML and MC methods.

3. Methods

The Methods section is organized as follows: Section 3.1 introduces the microbiota
bacterial species database and provides the related references. Section 3.2 defines and
explains the statistical indicators we propose to characterize bacterial species. Section 3.3
introduces ML techniques and then defines MC simulations. Finally, we explain how we
utilize microcanonical and canonical ensembles from statistical physics to conduct MC
simulations for a statistical analysis to identify and characterize bacterial species.

3.1. Database

The data used in this study were obtained from publicly available datasets regarding
the human gut microbiota across different life stages. These comprehensive datasets in-
cluded samples from various regions worldwide, providing a diverse and representative
overview of the global human gut microbiota [21]. In detail, this study included a total of
5896 sequenced fecal samples collected from 71 public bioprojects across 34 different coun-
tries. The datasets included sequenced fecal samples collected from healthy individuals
ranging from birth to over 100 years old, with a robust statistical representation of all the dif-
ferent age groups. The collected samples, as reported in the previous manuscript [21], were
used to assess the microbiota composition at the species level through the METAnnotatorX2
software (http://probiogenomics.unipr.it/cmu/ accessed on 29 June 2021) following the
standard filtering parameters reported in the manual with Homo sapiens reads removal [22].

http://probiogenomics.unipr.it/cmu/
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Moreover, the samples included in the analysis were categorized into four age groups, that
is, G1 (0–4 years), G2 (5–17 years), G3 (18–64 years), and G4 (65 years and older), following
the guidelines provided by the World Health Organization (WHO) [23].

3.2. Statistical Analyses
3.2.1. Average Occurrences

The columns of the matrix database W represent bacterial species; the rows of the
database W are the human fecal samples. The element wij of W indicates the relative
abundance of species j in sample i. Figure 1A depicts a simple example of the database W
used here.
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Figure 1. Bacterial species database example. Rows are fecal samples (C1, C2,. . .,C3). Columns are
bacterial species (S1, S2,. . .,S6). Rows/samples are split into four groups by age (G1, G2, G3, G4).
(A) Matrix database W, in which each cell indicates the relative abundance of bacterial species (col-
umn) in the sample (row). (B) Matrix database A, in which each cell indicates the presence/absence
of a bacterial species (column) in the sample (row).

The average occurrence of the species j among all samples is:

mj =
1
N ∑N

i=1 wij (1)

where N is the total number of samples; we can call mj the average weighted occurrence.
mj estimates how much of a bacterial species is present among all samples. The average
weighted occurrence mj is commonly called the ‘relative average abundance’ of bacterial
species [21,24].
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The samples are divided by age into four groups. We compute my
j as the average

occurrence of species j within group y and call it the average weighted occurrence (AWO).
In formula:

my
j =

1
Ny

∑i∈y wij (2)

where Ny is the total number of samples of the group y. my
j estimates the amount of

a bacterial species present among the group samples. This furnishes a first and simple
estimate of the bacterial species’ presence within a given age range of the subjects examined.

Second, we convert the species abundances into simple occurrences (presence/absence).
We call this new database occurrences matrix A. For this, A is a binary matrix in which the
elements of the species/columns are 0 (no occurrence) and 1 (occurrence) (Figure 1B). The
element aij of the matrix A is 1 if species j occurs in sample i and 0 otherwise.

The average species occurrence among all samples in matrix A is:

uj =
1
N ∑N

i=1 aij (3)

We can call uj the average binary occurrence (ABO), whereas it is usually called the
‘prevalence’ of the bacterial species [21,24].

Then, we compute µ
y
j , the average binary occurrence of species j within group y. For

each column j, we divide the total number of 1s occurring within group y by the total
number of samples. µ

y
j represents the average occurrence among the sample of species j

within group y.
In formula:

µ
y
j =

1
Ny

∑i∈y aij (4)

where Ny is the total number of samples of group y, since this average is computed

considering the simple presence–absence of species occurrence in the sample. uj and µ
y
j

estimate how frequent it is to find a particular bacterial species among samples without
considering the relative abundance of the species in the sample.

3.2.2. Relative Distances

We compute the distance between the observed (Obs) and the expected (Exp) species
occurrence within each group. We define this distance as the relative deviation of the
average species occurrence within the group from the average species occurrence among
groups (among all samples). This is represented by the following ratio:

d =
Obs − Exp

Exp
(5)

where Obs indicates the average species occurrence within a group, and Exp is the average
species occurrence among all samples (among groups).

The average weighted occurrence among all samples mj represents the expected

occurrence. The average weighted occurrence of species j within group my
j represents the

observed occurrence.
The weighted distance becomes:

wdy
j =

Obs − Exp
Exp

=
my

j − mj

mj
(6)

The greater the distance dy
j , the greater the difference between the observed and the

expected species occurrence within group y. From now on, wdy
j is the relative weighted

distance (RWD). We can see this distance as the relative deviation of the relative aver-
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age abundance within the group (observed occurrence) concerning the relative average
abundance across all samples (expected occurrence).

We can translate Equation (6) using the binary occurrence. The average binary occur-
rence among samples µj represents the expected occurrence. The average binary occurrence

of species j within group µ
y
j represents the observed occurrence. We call this the relative

binary distance (RBD), and it is computed as follows:

dy
j =

Obs − Exp
Exp

=
µ

y
j − µj

µj
(7)

This statistical distance is the relative deviation of the species prevalence within the
group (observed occurrence) concerning the prevalence across all groups
(expected occurrence).

Let us consider how the RBD and RWD distances evaluate specific cases of species
occurrence.

We start with the case of a bacterial species occurring only within a group.
The average binary occurrence of species j is:

uj =
1
N ∑N

i=1 aij =
∑N

i=1 aij

N
(8)

And the average binary occurrence of species j within group y is:

µ
y
j =

1
Ny

∑i∈y aij =
∑i∈y aij

Ny
(9)

Substituting Equations (8) and (9) in Equation (7) of the relative binary distance,
we obtain:

dy
j =

∑i∈y aij
Ny

− ∑N
i=1 aij

N

∑N
i=1 aij

N

(10)

Reversing the denominator:

=

(
∑i∈y aij

Ny
−

∑N
i=1 aij

N

)
· N

∑N
i=1 aij

=
∑i∈y aij

Ny
· N

∑N
i=1 aij

−
∑N

i=1 aij

N
· N

∑N
i=1 aij

=
∑i∈y aij

Ny
· N

∑N
i=1 aij

− 1 (11)

In the case species j occurs only in group y, we have the equivalence between the
prevalence within the group and across all groups:

∑i∈y aij = ∑N
i=1 aij

And:
∑i∈y aij

For this, Equation (11) results in:

=
∑i∈y aij

Ny
· N

∑N
i=1 aij

− 1 =
N
Ny

− 1 (12)
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Equation (12) indicates that if a bacterial species occurs only within group y, the value
of the RBD is only determined by the N

Ny
ratio, that is, the ratio between the total number of

samples and the number of samples in group y. The last outcome implies that species with
different prevalences that occur only within a group will return the same RBD value. In this
case, species with different occurrences have the same distance, and the RBD is not able to
discriminate their importance in characterizing the group. This implies that Equation (12)
also provides the RBD maximum value. Figure 1 depicts an example of RBD computation
for species that occur only within a group. From Figure 1B, we calculate the RBD values for
species S1 and S6 for G1; we compute d1

1 and d1
6.

Using Equation (6) for species S1, we have:

d1
1 =

µ1
1 − µ1

µ1
=

1
3 − 1

10
1

10
= 2.3

And for species S6:

d1
6 =

µ1
6 − µ6

µ6
=

3
3 − 3

10
3

10
= 2.3

Even though the occurrences are different, and species S6 is more frequent than S1 in
group 1, the RBD value is the same.

Let us consider the case of a bacterial species that does not occur within a group. In
this case, µ

y
j = 0 and Equation (6) results in:

dy
j =

µ
y
j − µj

µj
=

0 − µj

µj
= −1 (13)

This result implies that all the species not occurring within a group will return the
RBD value dy

j = −1 and that dy
j = −1 is also the minimum value. RBD is constrained in

the interval [−1,1]. It is easy to show that the maximum and the minimum values derived
in Equations (12) and (13) for RBD are also the limits of the weighted counterpart RWD.

We can introduce a second-order hierarchy to rank the ties to solve the RWD and
RBD problem of presenting ties in species ranking when species occur only within a group.
For example, in the case of ties, we can rank the species presenting the same RWD and
RBD values using measures of their average occurrence within the group; for example,
we can use the relative abundance my

j and the prevalence µ
y
j of the species in the group

as a second-order criterion to rank ties. Therefore, species are first ranked according to
their relative distance, thus assessing their statistical distance from the overall average
occurrence, and then according to their average occurrence within the group. We can
choose the ranking strategy to solve ties with the rationale we prefer for the problem. For
example, suppose we want to prioritize the number of times a species appears, i.e., its
prevalence. In this case, we can use the average binary occurrence µ

y
j as a second-order

criterion to rank ties. If we want to prioritize the abundance of a species in the sample,
i.e., the relative species abundance, we can adopt its average weighted occurrence my

j as
a second-order criterion to rank ties. The selection of the second-order ranking criterion
should be guided by the rationale that aligns most closely with the objectives of the analysis.
In this research, we rank ties using the species binary occurrence. In Figure 2, we furnish
an example of a second-order rank methodology for solving ties.
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Figure 2. Simple bacterial species database example showing ties in the relative distance ranking
strategies. Rows are fecal samples (C1, C2,. . .,C3). Columns are bacterial species (S1, S2,. . .,S6).
Rows/samples are split into four groups by age (G1, G2, G3, G4). (A) Species database in which all
three species occur only within G1. (B) RWD strategy ranking and values. (2nd column) As we can
see, the RWD value is the same for S1, S2, and S3. (3rd column) When using the weighted average
occurrence my

j as a second-order criterion, the ranking becomes S3, S2, and S1. (4th column) When

adopting the binary average occurrence µ
y
j as a second-order criterion, the ranking becomes S3, S1,

S2. We give the RWD values and the second-order ranking values within brackets.

3.2.3. Inside–Outside Distances

Then, we used a second type of distance by computing the difference between the
species occurrence inside the group and the species occurrence outside the group, that is:

w∆y
j = my

j − m∼y
j (14)

where my
j is the average weighted occurrence of species j within group y and m∼y

j is the

average weighted occurrence of species j outside group y. Since w∆y
j is the difference

between the inside and outside average species occurrence, we refer to w∆y
j as the inside–

outside weighted distance (IOWD). In other terms, IOWD is the difference between the
relative species abundance within the group and the relative species abundance outside
the group.

We can modify Equation (14) using the species binary occurrence and defining the
inside–outside binary distance (IOBD):

∆y
j = µ

y
j − µ

∼y
j (15)

here, µ
y
j is the average binary occurrence of species j within group y, and µ

∼y
j is the average

binary occurrence of species j outside group y. IOBD is the difference between the species
prevalence within the group and the species prevalence outside the group.

We can compute the range limits for the outside–inside distances. Let us take
Equation (14), giving the IOWD. The maximum value occurs, satisfying the following
three conditions: (i) species j occurs only within a group y (m∼y

j = 0, species j does not
occur outside the group y), (ii) species j occurs in all the samples of group y, and (iii)
species j abundances equal 1 (i.e., wij = 1, meaning that j is the only bacterial species in

the sample i). These three conditions lead to my
j = 1, and the maximum IOWD becomes

w∆y
j = my

j = 1.
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At the opposite end, the minimum value w∆y
j occurs when (i) species j does not occur

in the group y (my
j = 0), (ii) species j occurs in all the samples outside group y, and

(iii) species j abundances outside group y equal 1. These three conditions lead to m∼y
j = 1,

and the minimum IOWD becomes w∆y
j = −1. It is easy to show that the minimum and

the maximum values for IOBD in Equation (15) are the same as those derived above for
the IOWD. The minimum and the maximum values for Equation (14) require wij = 1 = aij,
thus demonstrating that Equations (14) and (15) return the same range limits [1,−1]. The
distances computed using Equations (14) and (15) do not present the ties problem in
ranking, as we find for RBD and RWD. The species producing IOWD and IOBD values
corresponding to the closed interval [1,−1] range limits have the same occurrences among
samples. This means that they present identical j columns in the bacterial species database,
so having the same IOWD and IOBD is a proper way to evaluate their importance.

The inside–outside distances can adequately evaluate the case of ranking ties shown
above for the relative distances RBD and RWD. As we did above for RBD and RWD, we
computed IOBD for species S1 and S6 for G1 in Figure 1; we computed ∆1

1 and ∆1
6.

Using Equation (15) for species S1, we have:

∆1
1 = µ1

1 − µ∼1
1 =

1
3
− 0

7
= 0.3

And for species S6:

∆1
6 = µ1

6 − µ∼1
6 =

3
3
− 0

7
= 1

The result ∆1
6 > ∆1

1 demonstrates that the inside–outside distance can discriminate
species that occur only within a group but with different occurrences. This property may
be necessary when a bacterial species database presents many species occurring only in
one group.

3.3. Monte Carlo Numerical Simulations
3.3.1. Machine Learning

ML allows computers to learn from data without being explicitly programmed [25].
Computers learn from huge amounts of different data, from numbers to pictures, and
create new algorithms on their own that can identify patterns in data, make predictions,
and improve their performance over time [26]. ML presents various applications, such as
image and speech recognition, predicting proteins and molecule interactions, self-driving
cars, analyzing epidemiological data for identifying risk factors, and medical diagnosis [25].
MC methods are not strictly ML, but they are frequently employed as tools within ML
algorithms. MC can support ML in generating synthetic data [15] and dropout training in
deep neural networks, support adaptive algorithms [27], or make a random distribution
of empirical data [28]. Our research adopts the MC method to generate synthetic data to
analyze the prevalence of bacterial species in the human microbiota. Microcanonical and
canonical MC simulations create random scenarios where the occurrences of species are
varied while keeping key parameters fixed. These synthetic data allow for comparisons
between empirical (observed) and expected occurrences, providing a basis for assessing
the statistical significance of bacterial species across different age groups.

3.3.2. Microcanonical Simulation

We first perform a microcanonical Monte Carlo (MM) numerical simulation. The
MM simulation keeps the total number of elements (occupied sites) fixed in every random
assignment of occurrences. The word microcanonical arises from the microcanonical ensem-
ble in statistical mechanics [16], and it was extended to non-thermodynamical problems,
such as percolation theory [14]. In percolation theory, the microcanonical approach to
percolation focuses on the behavior of individual sites within the lattice [14]. It is based
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on the idea of considering all the microstates (i.e., the possible configurations) of a system
with the same total number of occupied sites and assigning the same probability to each
of them. In other words, the microcanonical ensemble assumes that the only information
known about the system is the total number of occupied sites.

In detail, the microcanonical approach consists of randomizing the columns of matrix
A (Figure 1B) by permuting each species binary occurrence column. The microcanonical
randomization preserves the total number of 1s and 0s in the column, thus fixing the total
number of binary occurrences. We iterate the process 106 times.

3.3.3. Canonical Simulation

Then, we perform a canonical Monte Carlo (CM) numerical simulation. We fix the
probability of having a species occurrence in every random assignment of occurrences. The
word canonical, too, arises from the canonical ensemble in statistical mechanics [16], and
it was extended to percolation theory [14]. Consider a lattice with a finite number of sites
where each site can be occupied or empty. The canonical approach assigns an occupation
probability of p to each site; 1 − p is the probability of having an empty site. For these
reasons, unlike the microcanonical approach, the canonical approach preserves only the
probability of occupied sites. In the canonical approach, the total number of occupied sites
can vary between simulations [14].

In our canonical MC simulation, we compute the average occurrence among samples
for each species j. To do this, we divide the total number of 1s by the total number
of samples. This computation returns the average binary occurrence (or prevalence) in
Equation (3). µj represents the probability p of finding species i among samples. The
probability 1 − p represents the probability of not finding species i among samples. Using
probability p, we can sort the occurrences from a binomial distribution. We assign 1 with
probability p and 0 with probability 1 − p in each element aij of the randomized matrix.
The canonical-like randomization preserves the average number of occurrences µj (at least
for a higher number of iterations). We iterate the process 106 times.

3.3.4. Monte Carlo Statistical Analyses

To evaluate the significance of the MC outcomes, we follow this scheme. First, we
compute ρ

y
j , which is the average occurrence among samples of finding the species j within

group y of the randomized matrix. Last, to evaluate the probability of having the observed
average occurrence by chance, we count how many times ρ

y
j > µ

y
j and divide this value by

the total number of iterations (M). We obtain a p-value indicating the probability of having,
by chance, a higher species occurrence within the group.

Therefore, we can compute py
j , which indicates the significance of observing species j

in group y by chance, as follows:

py
j =

1
M ∑M δ

(ρ
y
j ,µy

j )
(16)

where δ is the Kronecker delta function for which δ
(ρ

y
j ,µy

j )
=

1 i f ρ
y
j > µ

y
j

0 i f ρ
y
j ≤ µ

y
j

, and M is the

total number of MC simulations (106). To perform a very large set of MC simulations, it is
essential to obtain accurate predictions and produce reliable statistical results. Having a
high number of simulations allows for accurately estimating the simulated occurrence of
species with low empirical prevalence that, however, characterize a certain age group.

In the case of ties, which are species presenting the same p-value, we rank these ties
according to the prevalence of the species. We performed the numerical MC simulations and
the statistical analyses using the software R version 4.3.1, with packages MASS and openxlsx.
The MC simulations were coded in parallel using the R programming language with
doParallel and foreach modules and executions iterated 1 million times took approximately
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60 h on 64 cores and 200 GB RAM. We performed the numerical simulations using the
High Performance Computing (HPC) cluster of the University of Parma and the CINECA
supercomputer Galileo100.

Table 1 lists the bacterial species classification strategies used in this research with
formulas and meanings.

Table 1. List of the bacterial species ranking strategies.

Strategy Acronym Formula Meaning

Average weighted
occurrence AWO my

j = 1
Ny ∑i∈y wij

wij of W indicates the relative
abundance of species j in sample i; Ny
is the total number of samples of group y.

Weighted abundance of a species
in a group.

Average binary
occurrence ABO µ

y
j = 1

Ny ∑i∈y aij

aij of A indicates the presence of
species j in sample i; Ny is the total
number of samples of group y.

Binary abundance of a species in
a group, commonly called
‘species prevalence’.

Relative weighted
distance RWD

wdy
j =

my
j −mj
mj

my
j is the average weighted occurrence

within group y; mj is the average
weighted occurrence among all
samples.

Relative deviation of the average
weighted abundance of a species
in the group from the overall
mean.

Relative binary
distance RBD dy

j =
µ

y
j −µj
µj

µ
y
j is the average binary occurrence

within group y; uj is the average binary
occurrence among all samples.

Relative deviation of the average
binary abundance of a species in
the group from the overall mean.

Inside–outside
weighted distance IOWD w∆y

j = my
j − m∼y

j

my
j is the average weighted occurrence

of species j within group y; m∼y
j is the

average weighted occurrence of
species j outside group y.

Difference between the average
weighted abundance of a species
within and outside a group.

Inside–outside
binary distance IOBD ∆y

j = µ
y
j − µ

∼y
j

µ
y
j is the average occurrence of species

j within group y; µ
∼y
j is the average

occurrence of species j outside group y.

Difference between the average
binary abundance of a species
within and outside a group.

Microcanonical
Monte Carlo MM py

j = 1
M ∑

M
δ
(ρ

y
j ,µy

j )

ρ
y
j average within group y of the

randomized matrix, µ
y
j is the average

binary occurrence within group y, δ is
the Kronecker delta function for which

δ
(ρ

y
j ,µy

j )
=

1 i f ρ
y
j > µ

y
j

0 i f ρ
y
j ≤ µ

y
j

, and M the

total number of simulations.

Evaluates the probability to have
a species within a group by
permuting its binary occurrence.

Canonical Monte
Carlo CM py

j = 1
M ∑

M
δ
(ρ

y
j ,µy

j )

ρ
y
j average within group y of the

randomized matrix, µ
y
j is the average

binary occurrence within group y, δ is
the Kronecker delta function for which

δ
(ρ

y
j ,µy

j )
=

1 i f ρ
y
j > µ

y
j

0 i f ρ
y
j ≤ µ

y
j

, and M the

total number of simulations.

Evaluates the probability to have
a species within a group by
sorting the binary occurrence at
random.

4. Results and Discussion
4.1. Average Occurrence

In Figure 3, in the top row, we plot the frequency distribution of the binary occurrence
of species (prevalence). The species prevalence is highly skewed with a long right tail,
considering all samples together (Figure 3A, chart ‘All’) and the prevalence within the
groups (Figure 3B). The highly skewed distribution with a long right tail indicates that the
database presents few species occurring in most of the samples, and most of the bacterial
species show minor occurrences, i.e., most of the species are rare. Table 2 shows the ten
most common species (greater prevalence) with their relative binary occurrence values. As
we can see, for groups G2, G3, and G4, most of the species with the highest prevalence
occur in more than 80% of the sample. Only for G1 do the most common species show
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a prevalence lower than 0.75. Figure 3A depicts the scatterplots of the average weighted
occurrence (mj) vs. average binary occurrence (uj). We find a positive correlation between
them for both the average among all samples (Figure 3A, chart ‘All’) and within the groups
(Figure 3C, charts G1, G2, G3, G4). Computing the Pearson correlation coefficient r [29] to
quantify the correlation between mj and uj, we obtain the values r = 0.667 for all the samples
and r = {0.674, 0.640, 0.627, 0.674} for each group, respectively. The Pearson correlation
outcomes indicate a positive correlation between the variables; when mj increases, uj also
increases. Despite the good correlation, there are some less correlated points, showing
how the prevalence of bacterial species is not always correlated with their relative species
abundance (or weighted occurrence). This discrepancy highlights the complex nature
of microbial ecosystems, where a highly prevalent taxon within a population does not
necessarily dominate in abundance. Previous research has demonstrated that the gut
microbiota undergoes significant taxonomic and functional shifts influenced by various
factors, including age, diet, and health status [30,31].

Table 2. Ten most common species for each group with its prevalence (relative binary occurrence).

G1 G2 G3 G4

Bifidobacterium
longum 0.73 Bacteroides un-

known_species 0.98 Blautia un-
known_species 0.99 Blautia un-

known_species 0.98

Escherichia coli 0.65 Blautia un-
known_species 0.98

Ruminococcus
un-

known_species
0.98

Ruminococcus
un-

known_species
0.98

Blautia un-
known_species 0.61

Ruminococcus
un-

known_species
0.97 Clostridium un-

known_species 0.97 Eubacterium un-
known_species 0.96

Clostridium un-
known_species 0.61 Clostridium un-

known_species 0.96 Eubacterium un-
known_species 0.97 Clostridium un-

known_species 0.96

Bacteroides un-
known_species 0.61 Bacteroides

uniformis 0.94 Roseburia un-
known_species 0.96

Faecalibacterium
un-

known_species
0.95

Ruminococcus
un-

known_species
0.58 Eubacterium un-

known_species 0.94 Faecalibacterium
prausnitzii 0.96 Roseburia un-

known_species 0.94

Bacteroides
uniformis 0.57 Roseburia un-

known_species 0.93
Faecalibacterium

un-
known_species

0.96 Faecalibacterium
prausnitzii 0.94

Blautia wexlerae 0.57
Faecalibacterium

un-
known_species

0.92 Eubacterium
rectale 0.93 Enterocloster un-

known_species 0.9

Flavonifractor
plautii 0.54 Faecalibacterium

prausnitzii 0.92 Bacteroides un-
known_species 0.93 Bacteroides

uniformis 0.88

Ruminococcus
gnavus 0.51 Blautia wexlerae 0.91 Enterocloster un-

known_species 0.91 Bacteroides un-
known_species 0.88

We draw the scatterplots of the species occurrences across all samples vs. species
occurrences within groups for both binary (prevalence, Figure 3D) and weighted (relative
abundance, Figure 3D) occurrences. The scatterplots in Figure 3D allow us to visually
identify which species are prevalent in the group compared to their presence across all
groups. The points above the bisector line indicate species with an average occurrence
within a group higher than the average occurrence among groups (among all samples). On
the contrary, points below the bisector line indicate species that occur less within the group
than when considering all samples. Points on the bisector lines indicate similar average
species occurrence within and across groups.
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Figure 3. (A) Left panel: bacterial species binary occurrence frequency distributions for all samples
(All); x-axis: species binary occurrence; y-axis: frequency of the occurrence value. The x-axis is
normalized by the total number of samples for each plot; in this way, the occurrence may range from
0 (no occurrence) to 1 (the species occurs in all the samples). Right panel: scatterplots of the average
weighted occurrence (mj) vs. average binary occurrence (uj) for all samples. (B) Bacterial species
binary occurrence frequency distributions for age groups (G1, G2, G3, G4). (C) Scatterplots of the
average weighted occurrence (mj) vs. average binary occurrence (uj) for age groups (G1, G2, G3, G4).

(D) Scatterplots of the average binary occurrence within group (µy
j ) vs. the average binary occurrence

(uj) for age groups (G1, G2, G3, G4). (E) Scatterplots of the average weighted occurrence within group

(my
j ) vs. the average weighted occurrence (mj) for age groups (G1, G2, G3, G4).
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4.2. Statistical Distance Notions

Figure 4 compares the group species prevalence (µy
j ) for the 50 species with the highest

µ
y
j and the value µ

y
j for the species with the highest statistical distance values, RBD and

IOBD. We find a significant difference between the µ
y
j values for the 50 species ranked

by the average binary occurrence (ABO) (Figure 4 black line, top row) and ranked by the
relative binary distance (RBD) (Figure 4 red line, top row). The µ

y
j values for the first

50 species ranked by ABO are above 0.6 for all groups, whereas the µ
y
j values for the first

50 species ranked by RBD are very low (<0.1). This result indicates that species with
a higher RBD in the group may exhibit a low prevalence in the same group. The high
RBD exhibited by species with a very low average occurrence in the group would suggest
that species with a very low prevalence within the group may be highly characteristic of
the group.
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Figure 4. Comparison between species average binary occurrence for each group (µy
j ) and the notions

of statistical distance. Top row: first 50 species ranked by average binary occurrence (ABO) (black
line) and relative binary distance (RBD) (red line); bottom row: first 50 species ranked by average
binary occurrence (ABO) (black line) and inside–outside binary distance (IOBD) (red line).

Nevertheless, as noted in the ‘Relative Distances’ section of the Methods, when a
bacterial species is exclusively found within a group, the RBD value is calculated as the ratio
of the total number of samples to the group’s sample size (Equation (12)). Consequently,
species exclusive to a single group will exhibit identical RBD values regardless of their
varying prevalence within that group. To elucidate this issue, we determined the number of
group-exclusive species among the top 50 species ranked by both RBD and RWD, revealing
counts of 50, 5, 50, and 27 species for groups G1, G2, G3, and G4, respectively. This result
unveils that many species with the highest RWD and RBD ranking are exclusively present
within one group (for groups G1 and G3, all the first 50 species are exclusive to those
groups). The RWD and RBD return rank ties for species that occur only in one group;
therefore, RWD and RBD cannot discriminate the relative importance of these species.
Table 3 lists the twenty species of highest rank for the G1 for each classification strategy.
As we can see, the RBD and RWD rankings differ from the other strategies, confirming the
peculiar outcomes provided by these classification strategies. These latest results indicate
how the statistical distances RWD and RBD may present problems in selecting the most
characteristic species of a group in our database.
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Table 3. Twenty species of highest rank for the G1 for each ranking strategy.

ABO AWO RBD RWD IOBD IOWD MM CM

Bifidobacterium
longum

Bifidobacterium
longum

Methylobacterium
unknown_species

Microbacterium
oleivorans

Bifidobacterium
breve

Bifidobacterium
longum

Bifidobacterium
longum

Bifidobacterium
longum

Escherichia coli Escherichia coli Cutibacterium
avidum

Neisseria
meningitidis

Bifidobacterium
longum Escherichia coli Escherichia coli Escherichia coli

Blautia
unknown_species

Bifidobacterium
breve Vibrio harveyi Rhizobium

daejeonense
Erysipelatoclostridium
ramosum

Bifidobacterium
breve

Ruminococcus
gnavus

Ruminococcus
gnavus

Clostridium
unknown_species

Bifidobacterium
bifidum

Actinomyces
urogenitalis

Rubrobacter
unknown_species

Bifidobacterium
bifidum

Bifidobacterium
bifidum

Bifidobacterium
unknown_species

Bifidobacterium
unknown_species

Bacteroides
unknown_species

Bacteroides
uniformis

Staphylococcus
hominis

Scandinavium
goeteborgense Veillonella parvula Bacteroides fragilis Bifidobacterium

breve
Bifidobacterium
breve

Ruminococcus
unknown_species Bacteroides fragilis Nocardia nova Serratia

nematodiphila
Ruminococcus
gnavus Veillonella parvula Bifidobacterium

bifidum
Bifidobacterium
bifidum

Bacteroides
uniformis Phocaeicola dorei Acinetobacter

lwoffii Acidovorax oryzae Veillonella
unknown_species

Ruminococcus
gnavus

Bifidobacterium
pseudocatenula-
tum

Erysipelatoclostridium
ramosum

Blautia wexlerae Blautia wexlerae Streptococcus
peroris

Cloacibacterium
normanense

Enterococcus
faecalis

Enterococcus
faecalis

Erysipelatoclostridium
ramosum Eggerthella lenta

Flavonifractor
plautii

Ruminococcus
gnavus

Azoarcus
communis

Frigoribacterium
unknown_species

Clostridium
innocuum

Bifidobacterium
pseudocatenula-
tum

Eggerthella lenta Veillonella parvula

Ruminococcus
gnavus

Bifidobacterium
pseudocatenula-
tum

Acidovorax oryzae Gleimia
unknown_species Veillonella atypica Phocaeicola dorei Veillonella parvula Clostridium

innocuum

Bifidobacterium
unknown_species Prevotella copri Mycolicibacterium

elephantis
Herbaspirillum
huttiense Eggerthella lenta Parabacteroides

distasonis
Clostridium
innocuum

Enterocloster
bolteae

Eubacterium
unknown_species Veillonella parvula Serratia

liquefaciens Afipia broomeae Klebsiella
michiganensis

Erysipelatoclostridium
ramosum

Enterocloster
bolteae

Veillonella
unknown_species

Phocaeicola
vulgatus

Parabacteroides
distasonis

Micromonospora
endophytica

Aggregatibacter
kilianii Hungatella effluvii Klebsiella

pneumoniae
Veillonella
unknown_species

Coprococcus
phoceensis

Bacteroides
thetaiotaomicron

Enterococcus
faecalis

Myxococcus
xanthus

Agreia
unknown_species

Haemophilus
unknown_species

Staphylococcus
epidermidis

Streptococcus
unknown_species

Haemophilus
parainfluenzae

Bifidobacterium
breve

Phocaeicola
vulgatus

Micrococcus
yunnanensis

Lysobacter
enzymogenes

Lactobacillus
rhamnosus

Bifidobacterium
dentium

Coprococcus
phoceensis Hungatella effluvii

Faecalibacterium
unknown_species

Faecalibacterium
unknown_species Ralstonia pickettii Mannheimia

unknown_species
Enterocloster
bolteae

Enterobacter
hormaechei

Haemophilus
parainfluenzae

Intestinibacter
bartlettii

Roseburia
unknown_species

Anaerostipes
hadrus

Metakosakonia
unknown_species

Massilia
unknown_species

Veillonella
infantium Blautia wexlerae Hungatella effluvii Enterococcus

faecalis

Faecalibacterium
prausnitzii

Collinsella
aerofaciens

Neisseria
flavescens

Achromobacter
insuavis

Haemophilus
parainfluenzae

Haemophilus
haemolyticus

Intestinibacter
bartlettii Veillonella atypica

Enterocloster
unknown_species

Bifidobacterium
adolescentis

Streptomyces
albidochromogenes

Alicycliphilus
denitrificans

Coprococcus
phoceensis

Haemophilus
parainfluenzae

Enterococcus
faecalis

Haemophilus
unknown_species

Phocaeicola dorei Eubacterium
rectale

Cutibacterium
unknown_species Micrococcus luteus Sellimonas

intestinalis Veillonella atypica Veillonella atypica Phocaeicola
sartorii

Then, we find a reduced difference between the µ
y
j values for the 50 species ranked by

prevalence (average binary occurrence (ABO), Figure 4 black line, bottom row) and ranked
by the inside–outside binary distance (IOBD) (Figure 4 red line, bottom row). However,
we observe that the µ

y
j variability for species ranked by IOBD is very high. Some bacterial

species have a high occurrence, while others close in rank show a much lower occurrence.
This result indicates that low-prevalence species within the group may instead have a
large statistical distance between the average occurrence inside and outside the group,
meaning that they are much more prevalent in the group compared to their occurrence
in the other groups. These species may be good candidates to characterize the group.
Figure 4 shows an interesting pattern for G1. G1 shows the highest difference between
the µ1

j values of the species with the highest occurrence and the µ1
j values of the species

with the largest IOBD. Differently from the other groups, G1 is characterized by a set
of bacterial species that occur preferentially in G1, that is, bacterial species that show a
higher difference between their prevalence in individuals of young age and their prevalence
in older ages. In detail, the ten species ranked by IOBD mainly belong to six different
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genera, i.e., Bifidobacterium, Clostridium, Enterococcus, Erysipelatoclostridium, Ruminococcus,
and Veillonella, which are typical of the infant microbiota and consistent with previous
results obtained from the pooled analysis of these datasets [21]. In particular, the highest-
ranked species are Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobacterium longum,
which are widely recognized as primary colonizers of the infant gut, confirming the validity
of the statistical approach used.

The IOWD and IOBD show some advantages concerning the relative distances RWD
and RBD. We compute the number of species that occur only within a group in the first
50 species ranked by IOWD and IOBD, discovering that no species occur only within a
group for both ranking strategies. Further, we outline that the IOBD and IOWD do not
create ties when species occur only in one group. If a species j occurs only in group y,
the average occurrence outside group y is µ

∼y
j = 0. Consequently, Equation (15) becomes

∆y
j = µ

y
j , indicating that the statistical distance IOBD is the average occurrence of species j

within group y. The same reasoning can be applied to IOWD computed in Equation (14),
and the IOWD value for species occurring only in one group becomes w∆y

j = my
j . These

results ensure no ties for species with different occurrence values in the IOBD and IOWD
species rank.

4.3. Monte Carlo Simulations

Figure 5 depicts the scatterplots for each group of the species binary occurrence vs.
the MC binary occurrence outcomes for both microcanonical and canonical approaches.
The x-axis (Sim) represents the MC simulation outcomes of the species occurrences, and the
y-axis represents the empirical/observed (Obs) occurrences of the species (prevalence). The
bisector line indicates the perfect agreement between the species’ empirical and simulated
occurrences. Agreement between two measurements refers to the degree of concordance
between them and can be evaluated with different statistical points of view [32,33]. Here,
agreement refers to the difference between the empirical and MC simulated occurrences,
and, therefore, the bisector indicates no difference between the empirical and simulated
occurrences. Points above the bisector line are bacterial species with empirical occurrences
higher than the simulated ones; however, species below the bisector line present simulated
occurrences higher than empirical ones. G1 presents many of the most prevalent species
below the bisector line concerning the other groups. Differently, other groups (G2, G3, and
G4) present many of the more prevalent species above the bisector line.

Figure 6A outlines the 20 bacterial species with the highest difference between the
observed occurrence (Obs) and the simulated occurrence (Sim) in G1 by green points. These
species are the most distant above the bisector line, indicating their empirical occurrence
in G1 is higher than in the simulated one. The higher observed occurrence indicates
that these bacterial species appear much more frequently in G1 than expected by chance,
indicating their high prevalence in the microbiota of individuals in G1. We call these taxa
‘the characterizing species’ of G1. On the contrary, black points are the twenty bacterial
species with the lowest difference between the observed occurrence (Obs) and the simulated
occurrence (Sim) in group 1 (G1). They are ‘rare species’, lying with the highest distance
below the bisector line, unveiling that their simulated occurrence in G1 is higher than the
empirical one.

Figure 6B shows that the rare bacterial species with low occurrence in G1 (black points)
lie distant above the bisector line in groups G2, G3, and G4, indicating that these bacterial
species present a higher observed occurrence than expected by chance in G2, G3, and G4.

Group 1 is the set of younger individuals. The age of individuals increases from
G1 to G4. The results of MCs tell us from a numerical–statistical perspective that when
age increases, there is a clear transition of the species composition in the microbiota of
individuals. In G2, the characterizing species that in the G1 plot lie above the bisector line
(Figure 6) are superimposed on the bisector line, indicating that their occurrences do not
deviate from what is expected by chance. Then, in G3 and G4, the characterizing species
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are clearly below the bisector line, showing that their empirical occurrence in the group
is lower than expected by chance. This pattern demonstrates that the transition emerges
passing from G1 to G3 and that G2 represents the transition age group.
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Figure 5. Scatterplots of the species binary occurrence (presence/absence in the sample) for each
group. Y-axis (Sim) represents the Monte Carlo (MC) simulation outcomes of the species occurrences;
x-axis (Obs) represents the empirical (observed) occurrences of the species. (A) Microcanonical MC
simulations; (B) canonical MC simulations. Columns depict the scatterplots for the four groups by
age (G1, G2, G3, G4). The bisector line indicates the complete agreement between the empirical and
the simulated occurrences, that is, the bisector indicates no difference between the empirical and
simulated occurrences. The bacterial species simulated occurrences (Sim) are the average over the
entire set of MC simulations.

Figure 7 shows the average binary occurrence in the group (µ1
j ) for the first 10 character-

izing bacterial species with the highest difference between Obs and Sim in G1. The average
binary occurrence in G1 (µ1

j ) is generally high and decreases in the other groups (Figure 7,
top row). Three characterizing bacterial species, Veillonella dispar, Enterococcus faecalis, and
Hydrogenoanaerobacterium unknown_species, present µ1

j < 0.3, outlining how the MCs
unveil that species of lower prevalence can be essential to characterize the microbiota of the
age group. Figure 7, bottom row, depicts µ1

j for the first rare species in G1, that is, species

minimizing the difference between Obs and Sim in G1. µ1
j of the rare species identified by

the MC simulations in G1 are very low, and they quickly increase in the other higher age
groups, showing that these rare species in G1 become dominant in the microbiota with age.
These results reflected the fluctuation and the adaptation of the intestinal microbiota during
the human life span. In fact, species like Bifidobacterium breve, Bifidobacterium longum, and
Veillonella parvula are predominant in the infant gut microbiota and decrease as individuals
age. Interestingly, Bifidobacterium longum, Ruminococcus gnavus, and Clostridium innocuum
decrease less significantly, indicating that these taxa remain present in adults. Conversely,
certain bacterial species, such as Agathobaculum butyriciproducens, Eubacterium rectale, and
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Coprococcus, are found to have a low prevalence in infants and increase significantly in
adults. This dynamic change aligns with findings in the literature, which indicate that
gut microbiota composition evolves with age due to varying physiological stages and
dietary habits. Species Eubacterium rectale presents a higher prevalence in G1 (µ1

j > 0.3)
than many characterizing species (see panels for G1, Figure 7), demonstrating how the
simple prevalence of bacterial species may not be a reliable proxy for their importance in
characterizing age groups.
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Figure 6. (Panel (A)) Scatterplots of the observed species binary occurrence (Obs) and the simulated
occurrence (Sim) in group 1 (G1) for the microcanonical Monte Carlo approach. We outline the
points in green for the 20 bacterial species with the highest difference between Obs and Sim. These
‘characterizing species’ are the more distant below the bisector line in chart G1, indicating that the
observed (empirical) occurrence in group 1 is higher than the simulated one. The points in black are
the 20 bacterial species with the lowest difference between the observed occurrence (Obs) and the
simulated occurrence (Sim) in group 1 (G1). These are the ‘rare species’ that are the more distant
above the bisector line in chart G1, indicating that the simulated occurrence in G1 is higher than the
empirical one. (Panel (B)) Scatterplots of the species binary occurrence for each group, where green
points are the 20 bacterial species with the highest difference between Obs and Sim, and black points
are the 20 bacterial species with the lowest difference between Obs and Sim.
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Figure 7. First row: Barplots of the average binary occurrence in the group (µy
j ) for the 10 bacterial

species with the highest difference between the observed occurrence (Obs) and the simulated occur-
rence (Sim) in group 1 (G1). These are characterizing species lying more distant above the bisector
line in Figure 6, indicating that the simulated occurrence in group 1 is lower than the empirical one.
Second row: Barplots of the average binary occurrence in the group (µy

j ) for the ten bacterial species
with the lowest difference between the observed occurrence (Obs) and the simulated occurrence
(Sim) in group 1 (G1). These are rare species lying more distant below the bisector line in Figure 6,
indicating that the simulated occurrence in group 1 is higher than the empirical one.

The results from the two different approaches to the MCs are similar. Figure S1 in the
Supplementary Materials file shows the scatterplots of the p-values carried out with the mi-
crocanonical approach against the p-values obtained from the canonical approach for each
age group. The p-values of the two MC approaches are correlated, demonstrating that the
two approaches yield similar significance values for the occurrence of the bacterial species.

Figure 8 illustrates the scatterplots of the group prevalence (µy
j ) vs. the MC simulated

p-value for the same group (p-val) for both microcanonical and canonical approaches. The
points lying on the x-axis indicate bacterial species with very low and significant p-values
(p-value < 0.05). These are species for which it is highly unlikely to obtain their empirical
occurrence by chance with the MCs. In other words, these species preferentially occur
within a group if comparing their occurrence in other groups. On the contrary, species with
a p-value approaching 1 are bacterial species that are likely to present an MC simulation
occurrence in the group higher than the empirical occurrence in the same group; that is,
they are species that do not preferentially occur in the group. It should be noted that many
species with p-value ≈ 1 present a very high occurrence in the group. For example, there
are many species in G1 with µ1

j > 0.5 and with p-value ≈ 1; that is, they occur in more
than half of the samples in the group, but it is very likely to obtain these occurrences by
chance. Thus, they are not significant for MC simulations. This result suggests that the
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simple species prevalence in a group is insufficient to identify the more critical bacterial
species for a particular age group.
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Figure 8. Scatterplots of the species average binary occurrence for each group (µy
j ) vs. the Monte

Carlo (MC) p-value (p-val) to obtain the occurrence by chance. (A) Microcanonical MC simulations;
(B) Canonical MC simulations. Columns depict the scatterplots for the age four groups (G1, G2, G3, G4).

4.4. Species Rank Correlations

We analyze the species rank correlations among classification strategies by computing
the number of common bacterial species in the first 50 species for each rank. The set
Si defines the first 50 bacterial species for strategy i, and Sj defines the first 50 bacterial
species for strategy j; the cardinality of the intersection between the two species set

∣∣Si ∩ Sj
∣∣

returns the number of common species between the ranks. Table 4 depicts the species rank
intersection for the first 50 species ranked by each strategy for each group. Therefore, the
element i, j in Table 4 indicates the number of species that the ranks Si and Sj share, that is,∣∣Si ∩ Sj

∣∣ = 10 indicates that the two ranks share 10 bacterial species in the first 50 ranked
species. The relative distances RBD and RWD do not share common species with the
other strategies, showing how these two strategies, which give high importance to species,
including rare ones, that occur solely within a group, return peculiar species rankings.
Most importantly, G1 differs from all other groups, unveiling the lowest overlap between
the ranks provided by the MC simulations and the ranks based on species occurrence (ABO
and AWO). In G1, the MCs present 13 (MM) and 12 (CM) common species with the highest
occurrence species rank (ABO). In G2, G3, and G4, the MCs present more than 48 common
species in common with the highest occurrence species rank (ABO). This result has two
main implications. On the one hand, it demonstrates how G1 differs from all others in
terms of bacterial species composition. Additionally, the MCs identify bacterial species as
highly important for group 1, which may not necessarily be of high binary or weighted
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occurrence within the group. Therefore, MC simulation approaches may be a valuable tool
for gathering additional information on the importance of bacterial species for age groups.

Table 4. Species rank intersection for the first 50 species ranked by each strategy for each group.
Element i, j of tables indicates the species overlapping between the rank set of strategy Si and the

rank set of strategy Sj, that is
∣∣∣Si ∩ Sj

∣∣∣. In other words, the element i, j indicates the number of species

that Si and Sj share, that is,
∣∣∣Si ∩ Sj

∣∣∣ = 10 means that the two ranks share 10 bacterial species in the
first 50 ranked species. Let us consider an example with two hypothetical ranks of 5 species. For
example, if Si = {B, E, U, A, T} and Si = {W, E, H, T, M}, then the intersection is Si ∩ Sj = {E, T},

and the cardinality
∣∣∣Si ∩ Sj

∣∣∣ = 2. This indicates that the two hypothetical ranks share 2 elements
among the top 5 positions. The higher the cardinality of the intersection, the greater the similarity
between the two ranks. Bold font indicates column and row titles.

G1 G2

Si ∩ Si ABO AWO RBD RWD IOBD IOWD MM CM Si ∩ Si ABO AWO RBD RWD IOBD IOWD MM CM

ABO 50 33 0 0 13 21 13 12 ABO 50 30 0 0 37 25 50 50

AWO 0 50 0 0 16 30 16 15 AWO 0 50 0 0 29 32 30 30

RBD 0 0 50 5 0 0 0 0 RBD 0 0 50 37 0 0 0 0

RWD 0 0 0 50 0 0 0 0 RWD 0 0 0 50 0 1 0 0

IOBD 0 0 0 0 50 27 44 45 IOBD 0 0 0 0 50 31 37 37

IOWD 0 0 0 0 0 50 27 26 IOWD 0 0 0 0 0 50 25 25

MM 0 0 0 0 0 0 50 46 MM 0 0 0 0 0 0 50 50

CM 0 0 0 0 0 0 0 50 CM 0 0 0 0 0 0 0 50

G3 G4

Si ∩ Si ABO AWO RBD RWD IOBD IOWD MM CM Si ∩ Si ABO AWO RBD RWD IOBD IOWD MM CM

ABO 50 35 0 0 38 29 49 48 ABO 50 31 0 0 31 24 48 48

AWO 0 50 0 0 27 34 34 34 AWO 0 50 0 0 21 28 29 29

RBD 0 0 50 14 0 0 0 0 RBD 0 0 50 40 0 0 0 0

RWD 0 0 0 50 0 0 0 0 RWD 0 0 0 50 0 0 0 0

IOBD 0 0 0 0 50 32 39 40 IOBD 0 0 0 0 50 27 32 32

IOWD 0 0 0 0 0 50 29 29 IOWD 0 0 0 0 0 50 25 25

MM 0 0 0 0 0 0 50 49 MM 0 0 0 0 0 0 50 50

CM 0 0 0 0 0 0 0 50 CM 0 0 0 0 0 0 0 50

4.5. Overall Ranking

In this article, we propose eight classification strategies using different rationales for
identifying and ranking the characterizing bacterial species for the different age groups.
The different strategies furnish different species ranking. Therefore, we perform a last
analysis to obtain an overall species ranking by evaluating the results of the different
strategies together. We count the frequency of each bacterial species appearing in the first
ten species in each strategy, leading to a comprehensive rank evaluation. The results of this
analysis are in Table 5. Tables S1–S4 depict the overall ranking computing for each group.

Table 5 lists the ten species with the highest score according to the overall ranking
for each group, with the percentage indicating the number of times the species is ranked
within the first ten species for each ranking strategy. For example, 75% indicates that the
species is ranked in the first ten species in 75% of the cases, i.e., it figures in six of the
eight ranking strategies. For instance, Bifidobacterium longum, B. breve, and Ruminococcus
gnavus are prevalent in younger individuals (G1), while species such as Faecalibacterium
prausnitzii and Eubacterium rectale become more significant in older groups (G3 and G4).
This transition aligns with the literature, indicating that gut microbiota composition evolves
with age due to varying physiological stages and dietary habits.
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Table 5. The 10 highest ranking species according to the overall ranking. The percentage beside each
species indicates the fraction of occurrences of the species within the first ten species for each ranking
strategy. For example, 75% indicates that the species is ranked in the first ten species 75% of the time,
i.e., it figures 6 times over the 8 ranking strategies. Bold font indicates column and row titles.

Rank G1 G2 G3 G4

1 Bifidobacterium
longum 75% Bacteroides

unknown_species 62.5% Faecalibacterium
prausnitzii 75% Intestinimonas

unknown_species 63%

2 Bifidobacterium
breve 75% Faecalibacterium

prausnitzii 62.5% Faecalibacterium
unknown_species 75% Faecalibacterium

prausnitzii 63%

3 Ruminococcus
gnavus 75% Faecalibacterium

unknown_species 62.5% Eubacterium
rectale 75% Faecalibacterium

unknown_species 63%

4 Escherichia coli 62.5% Ruminococcus
unknown_species 62.5% Eubacterium

unknown_species 75% Ruminococcus
unknown_species 63%

5 Bifidobacterium
bifidum 62.5% Bacteroides

uniformis 62.5% Roseburia
unknown_species 75% Bacteroides

uniformis 63%

6 Veillonella parvula 62.5% Eubacterium
rectale 62.5% Roseburia

inulinivorans 75% Gemmiger
unknown_species 63%

7 Enterococcus
faecalis 62.5% Phocaeicola

vulgatus 62.5% Blautia
unknown_species 63% Blautia

unknown_species 50%

8 Erysipelatoclostridium
ramosum 50% Blautia

unknown_species 50% Ruminococcus
unknown_species 63% Agathobaculum

butyriciproducens 50%

9 Veillonella atypica 50% Parabacteroides
unknown_species 50% Lachnospira

unknown_species 63% Eubacterium
rectale 50%

10 Haemophilus
parainfluenzae 50% Gemmiger

unknown_species 50% Gemmiger
unknown_species 63% Eubacterium

unknown_species 50%

An overall ranking, that is, a multicriteria approach to find and classify important
bacterial species for each age group, can be helpful when each criterion to rank species
accounts for specific and important information about species occurrence in the sample
database. For example, we are interested in evaluating both the binary occurrence and
the sample abundance. In that case, we have to consider notions of statistical distance
focusing on the species’ prevalence and abundance together. On the other hand, when
the information for the classification problem we need to solve is specific and exhaustive,
using a multicriteria approach is not recommended, as it would confuse the bacterial
species classification with information derived from other classification methods based on
different rationales.

Finally, using a multicriteria approach can help discover ‘eccentric criteria’ that provide
results utterly different from the results of other criteria. Tables S1–S4 show that RBD and
RWD provide a species ranking that differs from all other strategies. This evidence suggests
that RBD and RWD may have classification issues with the database under examination.

5. Conclusions

This manuscript proposes and tests different classification strategies to characterize
important bacterial species in human microbiota for different age groups. First, in addition
to the classic statistical notions of species prevalence and abundance, we introduce different
notions of statistical distance to classify important species for each age group. Among
the approaches used, RBD and RWD appear less effective, as they return many rank
ties for species of different prevalence, and they frequently rank species of a negligible
prevalence within the group. The other statistical distance notions IOBD and IOWD return
more reliable results. On the one hand, they do not return ties for species of different
prevalence; on the other hand, IOBD and IOWD prioritize both low- and high-occurrence
species within the group, suggesting that low-prevalence species within the group may
hold greater significance to the group’s identity. These species may be good candidates to
characterize the group.
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Then, we perform machine learning Monte Carlo simulations based on the physics
concepts of the microcanonical and canonical ensembles in statistical mechanics to charac-
terize the bacterial species. MCs furnish important outcomes. First, the MCs tell us from
a numerical–statistical perspective that when age increases, there is a clear transition of
the species composition in the microbiota of individuals. The transition emerges passing
from G1 (0–4 years) to G3 (18–64 years), and G2 (5–17 years) represents the transition
age group. MCs demonstrate that the microbiota changes throughout the whole period,
from early childhood to adolescence, and stabilizes in adulthood. Some species, such as
Bifidobacterium breve and Veillonella parvula, are predominant in infants but decrease with
age, while others, like Agathobaculum butyriciproducens and Eubacterium rectale, increase.
The two MC approaches used yielded similar results, demonstrating the robustness of
the findings.

Second, MCs show that low-prevalence species may be statistically significant in
characterizing age groups, unveiling how the simple prevalence of a bacterial species in
an age group may not be a comprehensive proxy for its importance. Third, MCs are a
useful tool for identifying species for age groups by simply computing the bacterial species,
maximizing the difference between empirical prevalence and simulated one. These species
with a very high difference between empirical and simulated prevalence are very unlikely
to occur in the group by chance, and for this, they are highly significant for the age group.

Last, we perform an overall species ranking by evaluating the different classification
strategies together. The analyses consider how often the species fall within the first ten
species for each ranking strategy. For example, 75% indicates that the species is ranked
in the first ten species 75% of the time, i.e., it figures six times over the eight ranking
strategies. In this way, we obtain a species classification that considers the abundance of
bacterial species in the groups from different statistical points of view. The overall ranking
can be viewed as a multicriteria statistical classification strategy that can be helpful when
comparing multiple factors or criteria. It is advantageous when the strategies are, in some
measure, incommensurable criteria that consider different aspects of the bacterial species
occurrence in the samples.

The main limitations of this research relate to the computational complexity of the MC
methodology used and the reliance on existing data. First, integrating statistical physics
techniques and MC simulations requires significant computational resources, which may
limit the scalability of the study to larger datasets. Additionally, the results presented here
may be dependent on the representativeness of the available microbiome data, which may
change in other geographic regions. Finally, the choice of classification criteria and metrics
used could influence the identification of characterizing bacterial species, necessitating
further validation to confirm the robustness of the conclusions.

The results presented here can help guide future research in microbial ecology and
human health by providing a robust framework for identifying key bacterial species across
various contexts, such as the role of the microbiota in health and disease. This approach
simplifies and enhances the identification of key bacterial players, improving our ability to
analyze and interpret complex microbiome data.
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