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ABSTRACT 

The Peak Stress Method (PSM) allows a rapid application of the notch stress intensity factor (NSIF) approach to the 

fatigue life assessment of welded structures, by employing the linear elastic peak stresses evaluated by FE analyses with 

coarse meshes. Because of the widespread adoption of 3D modelling of large and complex structures in the industry, the 

PSM has recently been boosted by including four-node and ten-node tetra elements of Ansys FE software, which allows 

to discretize complex geometries. In this paper, a Round Robin among eleven Italian Universities has been performed to 

calibrate the PSM with seven different commercial FE codes. Accordingly, several 3D mode I, II and III problems have 

been analysed. Finally, the PSM has been calibrated for given stress analysis conditions in terms of: (i) FE code, (ii) 

element type, (iii) mesh pattern and (iv) procedure to extrapolate stresses at FE nodes. 

 

Keywords: Notch Stress Intensity Factor (NSIF), Peak Stress Method (PSM), FE Analysis, Coarse Mesh, Tetrahedral 

element.  

 

NOMENCLATURE 

a characteristic dimension of a sharp V-notch, i.e. the minimum between the notch depth and the 

ligament size 

d element size of a coarse mesh pattern to apply the peak stress method (PSM) 

E   material Young’s modulus 

K1, K2, K3   notch stress intensity factors (NSIFs) relevant to mode I, II and III loadings 

*
FEK ,

**
FEK , ***

FEK  non-dimensional parameters to estimate K1, K2 and K3 by using the peak stress method (PSM) 

r, θ, z cylindrical coordinates  

Ur, Uθ, Uz  displacement components in the cylindrical coordinate system 

Ux, Uy, Uz  displacement components in the Cartesian coordinate system 

x, y, z Cartesian coordinates 

 

Symbols 

2α   opening angle of the considered sharp V-notch 

λ1, λ2, λ3 stress singularity degrees relevant to mode I, II and III loadings 

ν   material Poisson's ratio 
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σ11,peak singular, linear elastic, maximum principal stress computed at the sharp V-notch tip by FE 

analysis according to the PSM 

σij,c
(I) centroidal stress component, where I = finite element number 

σij,k
(I) nodal stress component, where k = node number, I = finite element number 

σij,k nodal stress component, where k = node number 

ij,peakσ  moving average of the peak stresses computed on three adjacent vertex nodes of a FE mesh 

consisting of tetra elements 

σrr, σθθ, τrθ  normal and in-plane shear stress components in a cylindrical reference system 

σθθ,θ=0,peak singular, linear elastic, opening (mode I) peak stress computed at the sharp V-notch tip by FE 

analysis according to the PSM 

τrθ,θ=0,peak singular, linear elastic, in-plane shear (mode II) peak stress computed at the sharp V-notch tip 

by FE analysis according to the PSM 

τrz, τθz out-of-plane shear stress components in a cylindrical reference system 

τθz,θ=0,peak singular, linear elastic, anti-plane shear (mode III) peak stress computed at the sharp V-notch 

tip by FE analysis according to the PSM 

[σ]k
(I) nodal stress tensor, where k = node number, I = finite element number 

[σ]k
 stress tensor, where k = node number 

 

Abbreviations 

FEM   Finite element method 

LEFM   Linear Elastic Fracture Mechanics 

NSIF   Notch stress intensity factor 

PSM   Peak stress method 

SED   Strain energy density 

SIF   Stress intensity factor 

TCD   Theory of Critical Distances 

 

1. INTRODUCTION 

 

In the context of the fatigue design of welded components, design codes and recommendations1,2 suggest several methods, 

namely the nominal stress3,4, the structural hot-spot stress3–7, the notch stress3,4,8–17 and the Linear Elastic Fracture 

Mechanics (LEFM)3,9,15,17–20 approaches. Additionally, criteria based on local parameters, such as stress, strain or strain 

energy, proved to be reliable for fatigue design of welded components, especially when complex welded details or load 

conditions are considered12,21–23. Among these, the most widely adopted are based on Notch Stress Intensity Factors 

(NSIFs)24–27, averaged strain energy density (SED)15,26–29, critical plane concepts21,22,30 and the Theory of Critical 

Distances (TCD)11,22,31,32. The NSIF-based approach assumes the worst-case geometry both at the weld toe and at the 

weld root of the joint, which are idealised as sharp V-notches having null tip radius (ρ = 0) and opening angles of 135° 

and 0°, respectively, as highlighted in Fig. 1a. The NSIFs permit to quantify the intensity of the singular, linear elastic 

stress fields close to a sharp V-notch tip. As an example, Fig. 1b shows the mode I, II and III local stress components 

acting at the weld toe of a partial-penetration tube-to-flange welded joint subjected to a combined bending and torsion 

loading. Williams33 first derived analytically the singular, linear elastic stress field ahead of a sharp V-notch tip under 

mode I and II loadings. Afterwards, Qian and Hasebe34 determined the singular stress distributions due to sharp V-notches 

subjected to mode III loading. Later on, Gross and Mendelson35 defined the mode I, II and III NSIF-terms by means of 

Eqs. (1), (2) and (3), respectively: 
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In previous expressions the terms λ1, λ2 and λ3 represent the stress singularity degrees33,34, which depend on the V-notch 

opening angle 2α. Values of λ1, λ2 and λ3 referring to some notch opening angles, i.e. 2α = 0°, 90°, 120° and 135°, are 

listed in Table 1. It is worth mentioning that the mode II stresses are not singular for notch opening angles 2α > 102° as 

demonstrated in Refs.33,36, which very often simplifies the analysis at the weld toe where 2=135°. Finally, the stress 

components in Eqs. (1)-(3) are referred to a cylindrical reference system (see Fig. 1b) centred at the V-notch tip, where 

the z-direction is tangent to the notch tip line and the θ-direction is aligned with the notch bisector line, r being the radial 

coordinate. Accordingly, σθθ, τrθ and τθz are calculated ahead of the notch tip (r→0) and along the notch bisector line (θ=0). 



NSIF-parameters have been widely adopted in the literature to correlate the fatigue strength of arc-welded joints 

undergoing uniaxial24,37–39 or multiaxial25 loading conditions. Nevertheless, it should be noted that the calculation of 

NSIF-terms on the basis of the results of numerical analyses shows a major drawback in engineering applications, since 

very refined FE meshes (finite element size on the order of 10-5 mm were adopted for 2D numerical analyses in Ref. 24) 

are required in order to apply Eqs. (1)-(3). When dealing with three-dimensional, complex and large-scale notched 

structures, both the solution of the FE model and the post-processing of numerical results could be even more time-

consuming. To overcome this drawback, an engineering and rapid technique, the Peak Stress Method (PSM), has been 

proposed to speed up the calculation of the NSIF-terms by adopting coarse FE analyses, the element size being some 

orders of magnitude larger than that required to apply Eqs. (1)-(3). The PSM takes inspiration from the contribution by 

Nisitani and Teranishi40, who proposed a technique to readily estimate the mode I Stress Intensity Factor (SIF) of a crack 

propagating from an ellipsoidal cavity. The PSM has been first justified theoretically and later on extended to allow the 

rapid calculation also of the NSIF relevant to sharp and open V-notches under mode I41,42, the SIF of cracks under mode 

II43 and, finally, the NSIF of open V-notches under mode III44.  

Practically, the PSM is a numerical tool, which takes advantage of the opening, in-plane shear and out-of-plane shear 

peak stresses evaluated from a linear elastic FE analysis with coarse mesh (see an example in Fig. 2) to rapidly estimate 

the NSIF-terms K1, K2 and K3, respectively, according to the following expressions41,43,44: 

11*

1 FE , 0,peakK K d


                (4) 

21**

2 FE r , 0,peakK K d


                (5) 

31***

3 FE z, 0,peakK K d


                (6) 

where σθθ,θ=0,peak, τrθ,θ=0,peak and τθz,θ=0,peak are the peak stresses calculated with respect to a local cylindrical coordinate 

system, which must be centred at the node located at the V-notch tip and have z-direction tangent to the notch tip line and 

θ-direction aligned with the notch bisector line, r being the radial direction. The subscript ‘θ=0’ defines the direction 

along which peak stresses have to be calculated; as an example σθθ,θ=0,peak represents the opening stress acting normal to 

the notch bisector, as highlighted in Fig. 2. The parameter d is the average finite element size adopted by the free mesh 

generation algorithm available in the FE code. Finally, K*
FE, K**

FE and K***
FE are coefficients which must be calibrated 

to account for45: (i) the element type and integration scheme; (ii) the free mesh pattern and (iii) the procedure adopted by 

the FE code to extrapolate the stresses at nodes. 

The PSM according to Eqs. (4)-(6) has been calibrated in previous investigations by employing several 2D and 3D element 

types and commercial FE codes. First, the parameters K*
FE, K**

FE and K***
FE have been calibrated by using 2D, four-node 

plane quadrilateral elements of Ansys Mechanical APDL element library41,43,44. Subsequently, a Round Robin Project was 

run45 to calibrate the coefficients K*
FE and K**

FE for 2D, four-node plane quadrilateral elements available in six 

commercial FE packages other than Ansys Mechanical APDL, namely Abaqus, Straus7, MSC Patran/Nastran, LUSAS, 

HyperMesh/OptiStruct/HyperView, and HyperMesh/LS-Dyna/HyperView. A further development consisted in 

extending the PSM to 3D, eight-node brick elements42, by taking advantage of the submodeling technique of Ansys® FE 

software. More precisely, when considering a complex 3D welded structure, first a main model having a free-mesh of 

ten-node tetra elements is solved and then a submodel of the critical region is meshed with a regular pattern of eight-node 

brick elements and eventually analysed with the PSM. 

Given the ever increasing adoption of three-dimensional modelling of large-scale complex structures in the industry, the 

3D PSM has recently been improved by calibrating coefficients K*
FE, K**

FE and K***
FE for four-node and ten-node tetra 

elements46,47 of Ansys Mechanical APDL element library. These finite element types allow to easily discretize complex 

three-dimensional geometries and to apply the PSM directly to the free-meshed main model, making the submodel with 

regular mesh pattern unnecessary. Nevertheless, mesh patterns consisting of tetra elements are typically irregular, in the 

sense that each node belonging to the notch tip line can be shared by a different number of elements and have significantly 

different sizes and shapes (see for example next Fig. 10). As a consequence, the peak stress components could vary along 

the notch tip line, even in cases where the NSIF-parameters are constant. To smooth the peak stress distribution along the 

notch tip line, the average peak stress has been introduced and defined as the moving average of peak stresses evaluated 

on three adjacent vertex nodes46. For example, the average peak stress at node n=k is calculated as: 

ij,peak,n=k-1 ij,peak,n=k ij,peak,n=k+1

ij,peak,n=k

n=node

σ +σ +σ
σ =

3
          (7) 

Therefore, the PSM-coefficients K*
FE, K**

FE and K***
FE have been calibrated in46,47 by adopting four-node and ten-node 

tetra elements and by input the average peak stress components according to Eq. (7) into Eqs. (4)-(6), i.e. , 0,peak  , 

r , 0,peak   and z, 0,peak  in place of the peak stresses σθθ,θ=0,peak, τrθ,θ=0,peak and τθz,θ=0,peak, respectively. Furthermore, Fig. 2 

highlights that: (i) the PSM based on tetra elements cannot be applied at nodes laying on a free surface of the considered 

notched structure46,47, since peak stress values at those nodes are affected by the distorted mesh pattern; (ii) peak stresses 



must be calculated only at vertex nodes of ten-node tetra elements; i.e. peak stresses existing at mid-side nodes must be 

neglected.  

The comparison between Eqs. (4)-(6) and previous Eqs. (1)-(3) shows that the PSM has a further advantage in addition 

to the coarse FE mesh: only a single linear-elastic peak stress evaluated at the singularity location is necessary to estimate 

each NSIF-term, instead of a number of stress versus distance results, which require a post-processing analysis. 

Incidentally, thanks to Eqs. (4)-(6), any NSIF-based approach for the structural strength assessment of notched structures 

can in principle be reformulated on the basis of the PSM. Recently, the PSM has been applied in combination with the 

approach based on the averaged strain energy density (SED) to assess the fatigue strength of welded joints under axial43,48, 

torsion44 and multiaxial49,50 loading conditions. For additional details, the reader is referred to the recent state-of-the-art 

reviews focused on NSIF51, averaged SED52,53 and PSM54 approaches. 

To broaden the possibility of using the 3D PSM with 3D tetrahedral finite element models, it is of paramount importance 

to calibrate the parameters K*
FE, K**

FE and K***
FE for commercial FE packages other than Ansys. Therefore, following 

the track of the previous Round Robin45 focused on the 2D PSM, the present investigation presents the results of a new 

Round Robin which has been performed to determine K*
FE, K**

FE and K***
FE for 3D tetrahedral finite element models. To 

the best of authors' knowledge, the 3D PSM based on tetra elements of FE codes other than Ansys has been adopted only 

in a recent paper55, where the NSIFs resulting from welding residual stresses have been rapidly estimated in steel butt‐

welded joints using Sysweld. 

The work plan of the present Round Robin consisted in applying the PSM to several 3D V-notch problems under pure 

mode I, pure mode II and pure mode III loadings by adopting four-node or ten-node tetra elements available in different 

FE software packages. After having evaluated the peak stresses from the FE models and the average peak stresses 

according to Eq. (7), the non-dimensional parameters K*
FE, K**

FE and K***
FE have been calculated using Eqs. (4), (5) and 

(6), but now rearranged in the following way: 

1

* 1
FE 1

, 0,peak

K
K

d


 


 

            (8) 

2

** 2
FE 1

r , 0,peak

K
K

d

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
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              (9) 

3

*** 3
FE 1

z, 0,peak

K
K

d

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
 

          (10) 

For each numerical software package, the calibration has been carried out by keeping fixed the following analysis 

conditions: (i) element type and integration scheme, (ii) free mesh pattern and (iii) procedure to extrapolate stresses at 

nodes. 

 

2. CALIBRATING THE PSM WITH 3D TETRAHEDRAL ELEMENTS OF ANSYS® MECHANICAL 

APDL FE CODE 

 

The PSM parameters K*
FE, K**

FE and K***
FE appearing in Eqs. (4), (5) and (6) have been calibrated using tetrahedral 

elements of Ansys Mechanical APDL in a previous paper47, which the reader is referred to. The obtained values are 

recalled in next Table 4, as a function of the loading mode, the element type and the notch opening angle, while the 

conditions of applicability are summarised in the following: 

 the following tetrahedral elements of Ansys Mechanical APDL element library have been calibrated: 

o three-dimensional, four-node, linear tetrahedral elements (SOLID 285); 

o three-dimensional, ten-node, quadratic tetrahedral elements (SOLID 187); 

 Eq. (4) and (6) can be adopted to analyse sharp V-notches under mode I and III, respectively, having an opening 

angle 0° ≤ 2α ≤ 135°. On the other hand, Eq. (5) can be applied to analyse the crack problem (2α = 0°) under 

mode II loading, while in a recent paper54 it has been extended to treat also the case 2α = 90°, which is the 

typical case of a weld root with a gap. 

 the average size d of the tetra elements defining the free mesh pattern can be chosen within the range of 

applicability reported in Table 4 in terms of minimum mesh density ratio a/d, adopted element type and notch 

opening angle. a represents the characteristic size of the considered sharp notch, e.g. a is the notch depth in Fig. 

3c; more precisely, a is the minimum between the V-notch depth and the ligament size (indicated as h in Fig. 

3). In the great majority of the notch problems considered in the present study, the characteristic size a 

corresponded to the notch depth since a < h; however, few exceptions exist in Table 3 for which a > h; however, 

to simplify the presentation of the results, a has been always adopted to identify the notch depth also in these 

cases. 



 To apply the 3D PSM with Ansys Mechanical APDL FE code, the ‘FULL graphics’ option must be activated 

before evaluating the peak stresses in the post-processing environment. 

 

3. FE CODES AND PARTICIPANTS INVOLVED IN THE ROUND ROBIN 

 

Table 2 summarises the seven FE software packages and the eleven participants involved in the Round Robin. It is worth 

noting that LS-Dyna and Optistruct have been employed as solvers, while Hypermesh and Hyperview have been adopted 

as pre-processor and post-processor enviroments, respectively. 

 

4. GEOMETRIES, MATERIAL AND FE MESH PATTERNS 

 

Three-dimensional mode I, II and III notch problems have been analysed by adopting different FE codes. The considered 

geometries include cracks as well as sharp V-notches and not necessarily represent welded components, due to the general 

validity of expressions (4)-(6) to be calibrated. On one hand, geometries, material parameters, element types, constraint 

and loading conditions have been obviously kept the same in all FE software. On the other hand, as far as possible, specific 

settings relevant to element formulations, mesh generation algorithms and procedures to extrapolate and to average stress 

components at FE nodes have been set to default options in each FE code. In the Discussion section, to investigate the 

reasons for the different obtained results, additional FE analyses of the following types have been performed: (i) a FE 

software has been adopted enforcing the default criterion regarding the stress extrapolation at nodes of another FE code; 

(ii) the mesh pattern generated by a given FE code has been imported into another code in order to compare the results 

keeping the same FE mesh pattern. All details relevant to the FE analyses carried out and the post-processing of the results 

are reported in the following. As a general setting for all analyses, linear elastic, static structural analyses have been 

performed and a structural steel having Young’s modulus E = 206000 MPa and Poisson’s ratio ν = 0.3 has been adopted. 

 

 

4.1 3D problems (plane strain), mode I loading, 2α = 0°, 90°, 120°, 135° 

 

A number of 3D notch problems under pure mode I loading as sketched in Figs. 3a-d have been analysed, all geometries 

being the same treated in the original calibration of the PSM based on tetra elements carried out using Ansys Mechanical 

APDL code47. More in detail, the following case studies have been considered: a crack (2α = 0°) at the tip of a U-notch 

(Fig. 3(a)); a plate with lateral cracks (2α = 0°) (Fig. 3(b)); a plate with lateral sharp V-notches (2α = 90°, 120°, 135°) 

(Fig. 3(c)) and the weld toe (2α = 135°) of a full-penetration cruciform welded joint (Fig. 3(d)). 

Three-dimensional analyses have been performed by adopting a mesh pattern of four-node or ten-node tetra elements, see 

the examples in Fig. 3a-d, which refer to Ansys Mechanical APDL code. The free mesh generation algorithm available 

in each FE code has been executed, after having set the desired FE size d. The mesh density ratio a/d has been varied in 

the range between 1 and 13, by considering several values of notch/crack size a and element size d, as summarised in 

Table 3. One eighth of each geometry has been modelled by exploiting the triple symmetry condition; plane strain 

conditions have been simulated by constraining the out-of-plane displacement Uz according to Figs. 3a-d, resulting in εz 

= 0. A pure mode I axial load has been applied to each FE model by means of a nominal gross-section tensile stress equal 

to 1 MPa. 

After solution of the FE analyses, the opening peak stress σθθ,θ=0,peak has been evaluated at vertex nodes belonging to the 

crack or V-notch tip lines (see Figs. 3a-d). In all considered FE codes, stress averaging at FE nodes has been activated, 

so that only a single value of σθθ,θ=0,peak has been obtained per node, i.e. the average of the nodal stresses from all elements 

sharing the node. To do this, the default options of each FE software have been employed, as it will be discussed in the 

next sections. After that, Eq. (7) has been applied to calculate the average peak stress 
, =0,peakσ   at each vertex node. 

The exact values of the NSIF K1, to be employed in Eq. (8), have been computed by adopting Ansys Mechanical APDL 

code and by applying Eq. (1) to the stress-distance results obtained from two-dimensional FE analyses under plane strain 

conditions. Very refined FE meshes of eight-node, quadratic quadrilateral elements (PLANE 183 of Ansys® element 

library), having size of the order of 10-5 mm close to the notch tip, have been employed. 

 

4.2 3D problems (plane strain), mode II loading, 2α = 0° 

 

A crack (2α = 0°) centred in a plate (Fig. 3e) has been analysed under pure mode II loading conditions, the geometry 

being taken from the original calibration of the PSM based on tetra elements performed with Ansys Mechanical APDL 

code47.  

Three-dimensional analyses have been carried out by using a free FE mesh of four-node or ten-node tetra elements, see 

the example of Fig. 3e, which refers to Ansys Mechanical APDL code. A mesh density ratio a/d in the range from 1 to 

25 has been adopted, as shown in Table 3. Only one eighth of the cracked plate has been modelled taking advantage of 

the double anti-symmetry condition on planes YZ and XZ and of the symmetry condition on plane XY (see Fig. 3e); plane 



strain conditions have been simulated by constraining the out-of-plane displacement Uz according to Fig. 3e. Pure mode 

II shear has been applied to each FE model by means of displacements Ux = Uy = 1.262·10-3 mm at the plate free lateral 

surfaces, which correspond to a nominal gross-section shear stress equal to 1 MPa in the corresponding crack-free 

geometry.  

After solution, the in-plane shear peak stress τrθ,θ=0,peak has been evaluated at vertex nodes belonging to the crack tip line 

(Fig. 3e), stress averaging at FE nodes being activated as explained above when dealing with mode I problems. Eventually, 

Eq. (7) has been employed to calculate the average peak stress 
r , =0,peak   at each vertex node. 

Again, the exact values of the SIF K2, to be employed in Eq. (9), have been calculated by adopting Ansys Mechanical 

APDL code and by applying Eq. (2) to the stress-distance results derived from two-dimensional FE analyses with very 

refined FE meshes of eight-node, quadratic quadrilateral elements (PLANE 183 of Ansys® element library), under plane 

strain conditions. 

 

4.3 3D problems, mode III loading, 2α = 0°, 90°, 120°, 135° 

 

Different 3D notch problems subjected to pure mode III loading as sketched in Figs. 3f-h have been analysed. All 

geometries are the same considered in the original calibration of the PSM based on tetra elements performed using Ansys 

Mechanical APDL code47. The following case studies have been treated: a circumferential crack (2α = 0°) or sharp V-

notch (2α = 90°, 120°, 135°) in a cylindrical bar (Fig. 3(f)); a sharp V-notch (2α = 90°, 120°, 135°) at a shaft shoulder 

(Fig. 3(f)) and the weld root (2α = 0°) in a geometry that recalls that of a tube-to-tube welded joint (Fig. 3(h)).  

Three-dimensional analyses have been performed by employing a free mesh pattern of either four-node or ten-node tetra 

elements, see the examples in Fig. 3f-h, referred to Ansys Mechanical APDL code. The mesh density ratio a/d has been 

varied in the range between 1 and 10, as summarised in Table 3. A 90°-segment of each cylindrical geometry has been 

modelled taking advantage of the double anti-symmetry condition on planes YZ and XY. Moreover, the anti-symmetry 

on plane XZ as well has been also employed for the geometry of Fig. 3f; conversely, dealing with geometries of Figs. 

3g,h, the free face on plane XZ has been fully constrained. Finally, two tangential forces Fθ have been applied at nodes 

located at the opposite face to generate a pure mode III torsion load, translating into a nominal shear stress, referred to 

the section having diameter Φ, equal to 1 MPa. 

After solution, the out-of-plane shear peak stress τθz,θ=0,peak has been evaluated at vertex nodes belonging to the crack or 

V-notch tip lines (Figs. 3f-h), stress averaging at FE nodes being activated as described for mode I FE analyses. Then, 

Eq. (7) has been used to calculate the average peak stress 
z, =0,peak   at each vertex node. 

Again, the exact values of the NSIF K3, to input in Eq. (10), have been calculated by using Ansys Mechanical APDL code 

and by applying Eq. (3) to the stress-distance results derived from two-dimensional FE analyses with very refined FE 

meshes of eight-node, quadratic quadrilateral harmonic elements (PLANE 83 of Ansys® element library). 

 

5. DETAILS OF MESH GENERATION SETTINGS 

 

Three-dimensional free mesh patterns consisting of four-node or ten-node tetra elements have been adopted in the FE 

analyses. Table 2 shows that the four-node tetra element has been integrated using 1 Gauss point, Ansys Mechanical 

APDL being the only exception since it employs 4 Gauss points; on the other hand, the ten-node tetra element has been 

integrated using 4 Gauss points by all considered FE codes. To run the free mesh generation algorithm, first, the proper 

element type has been selected, then, the sole parameter, which the FE analyst has input, has been the average element 

size d. More details regarding the element type selection and the adopted mesh generation settings in individual FE codes 

have been summarised in Appendix A. 

 

6. RESULTS OF FE ANALYSES 

 

Figures 4, 5 and 6 report the results obtained from the participants in the Round Robin regarding the mode I, mode II and 

mode III notch problems, respectively. The results are expressed in terms of the PSM parameters K*
FE, K**

FE and K***
FE, 

defined by Eqs. (8), (9) and (10), respectively, as a function of the mesh density ratio a/d. It should be noted that, the 

variability of the average peak stress 
ij,peakσ  along the notch or crack tip lines causes a non-uniform distribution of 

coefficients K*
FE, K**

FE and K***
FE in each FE model. Therefore, Figs. 4, 5 and 6 report the mean value of the non-

dimensional parameters KFE evaluated from each FE model as well as the relevant bar, which represents the range between 

maximum and minimum KFE values evaluated along each notch or crack tip line. In the case of the same FE code adopted 

by different participants (see for example the number of users of Ansys Mechanical APDL in Table 2), the mean value 

and the bar of the ratios KFE reported in Figs. 4, 5 and 6 have been calculated collecting together the numerical results of 

all users. 



Figs. 4-6 show that, for a given element type, the majority of the adopted FE software present similar values of the non-

dimensional parameters K*
FE, K**

FE and K***
FE and of the minimum mesh density ratio a/d for the applicability of the 

PSM. More in detail, concerning 3D, four-node tetra elements, Figs. 4, 5 and 6 highlight that:  

 Under mode I loading (see Fig. 4), K*
FE is in the range between 1.68 and 1.78 for all considered values of the 

notch opening angle 2α, the deviation being between ±18% and ±30%. Convergence is obtained when a/d  1.  

 Dealing with mode II loading (see Fig. 5), K**
FE is in the range between 2.63 and 3.00, the deviation being 

between ±12% and ±18%, and convergence is obtained when the ratio a/d  3. 

 Concerning mode III loading, the obtained results are reported in Fig. 6, which shows that K***
FE is in the range 

between 2.35 and 2.60, the deviation being between ±15% and ±23%, and convergence is obtained when the 

ratio a/d  5. 

Dealing with 3D, ten-node tetra elements, Figs. 4, 5 and 6 highlight that: 

 Under mode I loading, Fig. 4 show that K*
FE is in the range between 1.05 and 1.07, with a deviation between 

±15% and ±23%, for 2α equal to 0°, 90° or 120°. K*
FE is in the range between 1.20 and 1.21, with a deviation 

between ±8% and ±12%, when 2α equals 135°. The only exceptions are FE packages Hypermesh/LS-

Dyna/Hyperview and Hypermesh/Optistruct/Hyperview which present K*
FE = 1.84±24% and 1.80±22%, 

respectively, for all considered values of the notch opening angle 2α. Convergence is obtained when a/d  1 for 

all cases. 

 Concerning mode II loading (see Fig. 5), K**
FE is in the range between 1.61 and 1.63, with a deviation between 

±13% and ±20%, while convergence is obtained for a ratio a/d  1. Again, the only exceptions are 

Hypermesh/LS-Dyna/Hyperview and Hypermesh/Optistruct/Hyperview which present a K**
FE = 2.70±18% and 

2.87±15% and convergence is obtained when a/d  3. 

 Dealing with mode III loading, Fig. 6 show that K***
FE is in the range between 1.32 and 1.40, with a deviation 

between ±10% and ±15%, for 2α equal to 0° and 90°, convergence being obtained for a ratio a/d  3, the only 

exception being Abaqus for which it must be a/d  5. On the other hand, K***
FE is in the range between 1.60 and 

1.70, with a deviation between ±10% and ±12%, when 2α equals 120° or 135°, convergence being obtained for 

a ratio a/d  1, the only exception being again Abaqus for which it must be a/d  4. Once again, Hypermesh/LS-

Dyna/Hyperview and Hypermesh/Optistruct/Hyperview present different values of the PSM parameters, namely 

K***
FE = 2.45±15% for a/d  3 and K***

FE = 2.50±18% for a/d  1, respectively, for all considered values of the 

notch opening angle 2α. 

Table 4 summarises all results showed in Figs. 4, 5 and 6, i.e. the non-dimensional ratios K*
FE, K**

FE and K***
FE to input 

in Eqs. (4), (5) and (6) and the minimum mesh density ratio a/d for individual FE software packages. 

Importantly, the PSM parameters K*
FE, K**

FE and K***
FE reported here using Ansys Mechanical APDL are slightly 

different results as compared to the original calibration47, as it can be observed from Table 4. In fact, the mean values of 

the parameters KFE have been slightly modified and a little greater deviation has to be accepted to take into account the 

distribution of the results obtained by all users of Ansys Mechanical APDL, due to the different mesh pattern generated 

for a given geometry; on the other hand, the minimum mesh density ratio a/d to achieve convergence has been reduced. 

See for example the case of mode I notch problems treated with four-node tetra elements: according to the original 

calibration47 it resulted K*
FE = 1.75±22% for a/d  3, while the present calibration provides K*

FE = 1.70±30% for a/d  1. 

Figures 4-6 show that the calibration of the K*
FE, K**

FE and K***
FE performed using Solidworks provides different results 

as a function of the adopted mesh generation option, i.e. standard or blend. More in detail, results generated using 

standard mesh are highly scattered, especially for mode II crack problems (see Fig. 5), while results obtained using a 

blend mesh are consistent with those generated by the other FE codes. This is due to the generated mesh pattern, which 

is quasi-mapped, consisting of right triangles on the free surface of the component, for the standard mesh, while it is free, 

i.e. made of nearly equilateral triangles, when using the blend mesh, as sketched in Table 2. Accordingly, the scatter bands 

reported in Figs. 4-6 and the results summarized in Table 4 relevant to Solidworks have been referred only to the blend 

mesh, which is consistent with the mesh patterns generated by the other FE codes, which typically define a free mesh 

pattern of predominantly equilateral triangles. 

Finally, the different calibration constants obtained using Hypermesh/LS-Dyna/Hyperview and 

Hypermesh/Optistruct/Hyperview, depend on criteria for stress extrapolation at FE nodes and will be discussed in the 

following section.  

 

7. DISCUSSION  

 

In previous section, some differences have been observed among the results provided by the adopted FE software 

packages. The most significant one is highlighted by Figs. 4-6 and Table 4 and is that Hypermesh/LS-Dyna/Hyperview 

and Hypermesh/Optistruct/Hyperview deliver K*
FE, K**

FE and K***
FE values calculated with ten-node tetra elements 

completely different from those found with all other FE codes. Other minor differences of PSM coefficients provided by 

the other FE codes have also been observed. Such discrepancies have been motivated on the basis of the different criteria 



adopted to extrapolate stresses at FE nodes, of the generated mesh patterns and of the finite element formulations, as 

reported in more detail in the following sections. 

 

7.1 Stress extrapolation at FE nodes 

 

Numerical results are calculated by FE software at the Gauss (or integration) points of each finite element. Then, results 

can be evaluated at nodal or centroidal locations by employing the relevant shape functions. The stress component can be 

calculated at a node shared by different elements by adopting two criteria, as reported in Fig. 7 referred to a node shared 

by two elements56,57: 

(a) The nodal stresses in the element (σij,k
(I) and σij,k

(II) in Fig. 7a) are derived by extrapolating the stresses existing 

at the Gauss points. Then, the nodal stresses per element are averaged to compute the stress component at the 

node (σij,k in Fig. 7a): 

(I) (II)

ij,k ij,k

ij,k
2

 
       or in the general case   

N
(n)

ij,k

n 1
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N
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

 


       N= # FEs sharing node k  (11) 

(b) The centroidal stresses in the element (σij,c
(I) and σij,c

(II) in Fig. 7b) are derived by interpolating the stresses existing 

at the Gauss points and, then, they are attributed to the shared node. Afterwards, they are averaged to compute 

the stress component at the shared node (σij,k in Fig. 7b): 

(I) (II)
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       N= # FEs sharing node k  (12) 

The procedure sketched in Fig. 7a and defined in Eq. (11) is applied by the great majority of the adopted FE codes, i.e. 

Ansys, Abaqus, Lusas and Solidworks. On the other hand, the postprocessor Hyperview allows to apply either Eq. (11) 

or Eq. (12); however, both solvers LS-Dyna and Optistruct do not compute nodal stresses in the element, therefore 

Hyperview can apply only procedure of Fig. 7b and Eq. (12) for stress extrapolation at nodes. This explains why the PSM 

parameters K*
FE, K**

FE and K***
FE delivered by LS-Dyna and Optistruct are different from those derived using the other 

FE software packages, as highlighted in Figs. 4-6 and in Table 4. This conclusion has been validated by recalibrating the 

coefficients K*
FE, K**

FE and K***
FE using Ansys Mechanical APDL FE code, but enforcing the use of Eq. (12) to 

extrapolate stresses at FE nodes. The obtained results are reported in Fig. 8, which includes also the results previously 

generated by LS-Dyna and Optistruct (Figs. 4-6) and the scatter bands calibrated on LS-dyna results. Figure 8 shows that 

enforcing Eq. (12), Ansys Mechanical APDL FE software provides KFE values consistent with those obtained using 

Hypermesh/LS-Dyna/Hyperview and Hypermesh/Optistruct/Hyperview. 

 

7.2 Principal stress averaging 

 

When considering a pure opening (mode I) notch problem, the PSM can be applied through Eq. (4) by adopting the 

maximum principal stress σ11,peak, which is approximately equal to the opening peak stress σθθ,θ=0,peak but easier to evaluate, 

because it does not require a properly aligned cylindrical coordinate system. 

Starting from the nodal stress tensors per element calculated with any criterion mentioned previously (Eq. (11) or Eq. 

(12)), the principal stresses at a node shared by different finite elements can be evaluated according to two averaging 

procedures, as sketched in Fig. 9 for a node shared by two elements: 

(a) The nodal stress tensors per element ([σ]k
(I) and [σ]k

(II) in Fig. 9a) are averaged at the share node ([σ]k
 in Fig. 

9a). Then, the nodal principal stress is evaluated (σ11,k
 in Fig. 9a).  

(b) The nodal principal stress per element (σ11,k
(I) and σ11,k

(II) in Fig. 9b) is calculated from the relevant nodal stress 

tensors per element ([σ]k
(I) and [σ]k

(II) in Fig. 9b). Afterwards, nodal principal stress (σ11,k in Fig. 9b) is obtained 

by averaging the nodal principal stresses per element at the shared node (σ11,k in Fig. 9b). 

Table 5 summarises the nomenclature, where available, used by each FE software to define procedures (a) and (b) for 

principal stress averaging, according to Fig. 9. The table reports also the default option adopted by individual FE codes 

and it is seen that option (a) is the default for Ansys, Lusas and Solidworks, while option (b) is the default for Abaqus 

and the post-processor Hyperview.  

To investigate the effects of options (a) and (b) on K*
FE value to be adopted in Eq. (4), the mode I problems of Figs. 3a-d 

have been re-analysed with Ansys Mechanical APDL FE code, but now calculating the maximum principal stress σ11,peak, 

using either option (a) or (b) of Fig. 9, instead of the opening peak stress σθθ,θ=0,peak. The obtained results are reported in 

Figs. 9c-f, which show that the mean values of K*
FE are all inside the scatter bands previously calibrated using the opening 

peak stress σθθ,θ=0,peak (Fig. 4), regardless the procedure adopted for principal stress averaging. However, Figs. 9c-f show 

that when using procedure (b), the resulting K*
FE values are on average well below the mean value of K*

FE reported in 

Fig. 4.  



 

7.3 FE mesh pattern 

 

When analysing a given geometry with the same average element size d, the FE software packages generate different FE 

mesh patterns.  

The influence of different FE meshes has been analysed by considering as case study the mode I problem of Fig. 3d, i.e. 

a full-penetration cruciform welded joint under axial loading, having thickness 2a = 13 mm, notch opening angle at the 

weld toe 2α = 135° and global element size d = 3 mm. The mesh patterns generated by all considered FE codes are 

reported in Figs. 10a-g. Discrepancies in the mesh patterns can be noted from visual inspectionf Figs. 10a-g; therefore, a 

more detailed analysis has been performed to allow a quantitative comparison. Figure 10h reports the number of finite 

elements that share each vertex node belonging to the weld toe line and show that it is highly scattered, being in the range 

between 6 (at free surface) and 24, and it has a different trend for different mesh patterns. Figure 10i reports the size of 

finite elements, i.e. the length of the tetrahedron edges, that share each vertex node belonging to the weld toe line. The 

figure reports the mean size of the elements along with the relevant bar, which represents the range between maximum 

and minimum sizes evaluated at each node. Figure 10i shows that the average element size closely matches the nominal 

one for Ansys and Abaqus, while it is always larger for Lusas, LS-dyna and Optistruct and always smaller for Solidworks. 

Moreover, the element size has a strong variability in the range between 0.55·dnom and 1.85·dnom. 

The great differences in the mesh patterns highlighted in Figs. 10h and 10i, only slightly affect the peak stress 

distributions. Indeed, Fig. 10l and Fig. 10m show that the mesh patterns of four-node and ten-node tetra elements provide 

an opening peak stress in the range 0.944–1.197 MPa and 1.417–1.763 MPa, respectively, when considering FE codes 

which apply Eq. (11) to extrapolate stresses at nodes. Despite the strong variability of both the number of finite elements 

sharing a node and the finite element size above mentioned, the effects on the peak stress distribution are reduced and are 

demonstrated by the relatively reduced deviations of the KFE parameters in the range between ±8% and ±30%.  

 

7.4 Finite element formulation  

 

All FE codes involved in the present Round Robin integrate four-node and ten-node tetra elements by using 1 and 4 Gauss 

points, respectively, Ansys Mechanical APDL being the only exception since it adopts 4 Gauss points also for the four-

node tetra element, as reported in Table 2. 

To analyse the effect of different finite element formulations, the 3D mode I problem of the full-penetration cruciform 

welded joint reported in Fig. 3d has been taken again as a case study. The effect of the FE mesh has been excluded by 

generating two mesh patterns, one using four-node tetra and the other using ten-node tetra elements, and adopting in both 

cases the free mesh generation algorithm available in Solidworks with blend option activated (see Fig. 10e). Afterwards, 

the mesh patterns have been imported into all other FE codes to keep identical FE meshes in all analyses. 

The obtained results in terms of opening peak stress σθθ,θ=0,peak, evaluated at the vertex nodes belonging to the weld toe 

line (z-direction in Fig. 10e), are reported in Fig. 11a and b for four-node and ten-node tetra elements, respectively. Figure 

11a shows that the peak stress values are perfectly matching for all FE codes, which adopt 1 Gauss point to integrate the 

four-node tetra element, even for LS-Dyna and Optistruct, since the centroid coincides with the sole Gauss point. On the 

other hand, Ansys Mechanical APDL, which adopts 4 Gauss points, delivers different results and on average slightly 

higher than those calculated by the other FE codes. Figure 11b illustrates a perfect match of the ten-node tetra elements 

available in all FE codes involved in the present Round Robin, with the only exceptions of LS-Dyna and Optistruct, as it 

was expected since all codes adopt 4 Gauss points. Moreover, Figs. 11b confirms once again that Ansys Mechanical 

APDL, when Eq. (12) is enforced to extrapolate stresses at FE nodes, provides results coincident with those generated by 

LS-Dyna and Optistruct, provided that also the mesh pattern and the element formulation are kept the same. 

 

8. CONCLUSIONS  

 

A Round Robin activity has been performed to calibrate the Peak Stress Method (PSM) adopting different FE software 

packages for a range of coarse three-dimensional FE meshes. The PSM is an engineering, numerical tool originally 

calibrated using Ansys Mechanical APDL FE code  to evaluate rapidly the mode I, II and III linear elastic Notch Stress 

Intensity Factors (NSIFs);to this aim, the PSM employs the linear elastic opening, in-plane shear and out-of-plane shear 

peak stresses, respectively, evaluated at the sharp V-notch tip. Three non-dimensional parameters are required to apply 

the PSM, namely K*
FE (Eq. (4)), K**

FE (Eq. (5)) and K***
FE (Eq. (6), which have been calibrated here adopting four-node 

and ten-node tetrahedral finite elements available in commercial FE codes, namely Ansys Mechanical APDL, Ansys 

Mechanical, Abaqus, Lusas, Solidworks, Hypermesh/LS-Dyna/Hyperview and Hypermesh/Optistruct/Hyperview. All in 

all, 362 3D FE analyses have been performed for each of the 16 different combinations of FE codes and participants, 

resulting in 5792 total number of analyses performed. The following conclusions can be drawn: 



 The PSM parameters K*
FE, K**

FE and K***
FE and the minimum mesh density ratios a/d to guarantee their 

convergence within a given scatter, result to be dependent on the FE code, element type, notch opening angle 

and procedure to calculate stresses at FE nodes. 

 The main sources of discrepancy among the PSM parameters calculated with the different FE codes are (i) the 

different methods adopted to extrapolate stresses at FE nodes according to Eqs (10) or (11); (ii) the different 

mesh pattern generated, in terms of number of elements sharing a node and actual finite element size for the 

same input size given by the FE analyst. 

 Additional differences among the considered FE software packages, which affects the results to some extent, 

include (i) the finite element formulation, in terms of number of Gauss points and (ii) the numerical procedure 

adopted for principal stress averaging at FE nodes, which is relevant in some particular cases illustrated in the 

paper. However, the effects of such differences are taken up by the scatter bands defined for the PSM 

parameters. 

 3D mesh patterns being coarse and post-processing the evaluated peak stresses being rather rapid and simple, 

the 3D PSM based on tetra elements seems useful for engineers involved in structural FE analyses of 

components weakened by sharp V-shaped notches, even when large-scale and geometrically complex 

structures are investigated.  

 

APPENDIX A: details of mesh generation settings 

Details relevant to element type and settings to generate a free 3D FE mesh are reported in the following for each FE 

code: 

 Ansys® Mechanical APDL 

Element type: Solid → Tet 4-node (SOLID 285) or Tet 10-node (SOLID 187) 

Element options: not applicable 

Element size: Size Cntrls → Manual Size → Global → Size = d 

Mesh generation: Mesh → Volumes → Free 

 Ansys® Mechanical 

Element type: Tet4 (SOLID 185) or Tet10 (SOLID 187) 

Element options: not applicable 

Element size: Mesh → Insert → Sizing → Type = Element Size → Element Size = d 

Mesh generation: Mesh → Insert → Method → Method = Tetrahedrons → Element Order = Linear (for Tet4) or 

Quadratic (for Tet10); Mesh → Sizing → Use Adaptive Sizing = No → Mesh Defeaturing = No; Mesh → Generate 

Mesh 

 Dassault Systèmes® Abaqus 

Element type: Tet C3D4 or C3D10 

Element options: not applicable 

Element size: Global Seeds → Sizing Cntrls → Approximate global size = d 

Mesh generation: Mesh Cntrls → Tet  Free → Use default algorithm → “Use mapped tri meshing on bounding 

faces where appropriate” MUST BE INACTIVE; Mesh Part Instance → Ok 

 Lusas® 

Element type: 3D isoparametric tetrahedra solid continuum element with higher order models capable of modelling 

curved boundaries (TH4) 

Element options: 4 (TH4) or 10 (TH10) nodes 

Element size: Mesh → Volume Mesh → Irregular mesh → Element size = d  

Mesh generation: Mesh → Volume Mesh  

 Dassault Systèmes® Solidworks 

Element type: First-order tetrahedral (Draft quality) or Second-order tetrahedral (High quality) 

Element options: not applicable 

Element Size and Mesh generation: Mesh → Create Mesh → Definition → Mesh Parameters: Blended curvature-

based mesh; Maximum element size = Minimum element size = d; Mesh Quality → Specify: Draft or High → OK 

 Altair® Hypermesh/LS-Dyna/Hyperview 

Element type: Tetra 4 nodes Elform 10, tetra 10 nodes Elform 17 (LS-Dyna) 

Element options: not applicable 

Element size: 2D → Automesh → Surfs → Size and bias → Element size = d (Hypermesh) 

Mesh generation: 2D → Automesh → Surfs → Size and bias → Mesh type → trias; mesh → 3D → Tetramesh → 

Tetra mesh → Fixed trias/quads to tetra mesh; mesh (Hypermesh) 

 Altair® Hypermesh/Optistruct/Hyperview 

Element type: Shell 4-node (Hypermesh) 

Element options: Element formulation 13 (Plane strain x-y plane) (Optistruct) 



Element size: Mesh → Surfs → Size and bias → Element size = d (Hypermesh) 

Mesh generation: Mesh → Surfs → Mesh type → quads; mesh (Hypermesh) 
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