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Abstract 8

A multiscale mathematical model for glioma cell migration and proliferation is proposed, taking into account a pos-
sible therapeutic approach. Starting with the description of processes occurring at the subcellular level, the equation
for the mesoscopic level is formulated and a macroscopic model is derived, via parabolic limit and Hilbert expansions
in the moment equations. After the model set up and the study of the well-posedness of this macroscopic setting, we
investigate the role of the fibers in the tumor dynamics. In particular, we focus on the fiber density function, with
the aim of comparing some common choices present in the literature and understanding which differences arise in
the description of the actual fiber density and orientation. Finally, some numerical simulations, based on real data,
highlight the role of each modelled process in the evolution of the solution of the macroscopic equation.

Keywords: Multiscale glioma modelling, Diffusion Tensor Imaging, Fiber distribution function, Anisotropic 9

diffusion, Tumor response to therapy 10

1. Introduction 11

Gliomas are the most frequent types of primary brain tumors, originating from mutations of glial cells of the cen- 12

tral nervous system. They can be classified by cell type and are rarely curable, in particular Glioblastoma multiforme 13

(GBM), the most aggressive subtype, characterized by poor prognosis and a median survival rate that can reach up 14

to 15-16 months with a standard treatment protocol [1]. A common treatment for glioma includes surgical resection 15

of the tumor mass followed by a combination of chemotherapy and radiation therapy. A complete resection, unfortu- 16

nately, is often impossible: the highly infiltrative nature of the tumor cells, in fact, leads to strongly anisotropic spread, 17

with heterogeneous and often disconnected finger-like patterns, and to an ’invisible’ tumor outer border, undetectable 18

with current medical imaging techniques. Hence, a deeper understanding of tumor migration and invasion phenomena 19

is of paramount importance. 20

The invasion of glioma cells in the human brain tissue is a highly complex phenomenon that involves several pro- 21

cesses at different spatial and temporal scales: from the microscopic intracellular dynamics, through the intercellular 22

level where individual cell behaviours are presented, up to the macroscopic setting for the cell population density 23

description. The exact causes of these events are still not completely well understood; this shortcoming is due to their 24

complex biology at the cellular and molecular level and in the interactions with the surrounding environment. Cell in- 25

teractions with Extra-Cellular Matrix (ECM) and adjacent cells, combined with biochemical processes, support active 26

cell movement. The latter takes place along preexisting brain structures, with a remarkable preference for myelinated 27

fibers, blood vessels and white matter tracts. In particular, the role of glioma cell surface receptors, such as some types 28

of integrins [2, 3], is of great importance in the haptotactic movement. The interaction of such receptors with ECM 29
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components supports cell adhesion, spread and migration through the extracellular environment, influencing also cell 30

growth, division and proliferation [4, 5, 6]. 31

The highly anisotropic structures of the underlying nervous tissue (that influence tumor position, shape and extent 32

in the brain) can be identified by medical imaging techniques, such as Magnetic Resonance Imaging (MRI) and Dif- 33

fusion Tensor Imaging (DTI). MRI is, in general, very effective to obtain morphological information and microscopic 34

reconstruction of the brain, providing good contrast between grey and white matter. Even though this technique is 35

unable to completely identify their infiltration in the tissue, it is typically used to detect brain tumors and to follow up 36

their evolution. DTI is a special kind of Diffusion-Weighted magnetic resonance Imaging (DWI) that allows to map 37

water molecule diffusion patterns, revealing microscopic details about tissue architecture. The detected differences in 38

molecular mobility highlight the anisotropic effects, providing a description of the local physical arrangement of the 39

medium and the eventual presence of obstacles or promoters of the movement. DTI is a highly valuable tool in glioma 40

prognosis, since it provides information about the local tissue structure [7], allowing to identify aligned structures 41

along which cell migration is more likely to occur. 42

Mathematical modelling of tumor cell migration and invasion inside the tissue and, in particular, the modelling of 43

GBM growth, evolution and treatment, has evolved significantly over the past years and several different approaches 44

have been developed [8, 9, 10, 11, 12]. Models used for the description of glioma evolution can be classified into 45

three main groups: discrete, hybrid and continuum models. Discrete models are used for the description of individ- 46

ual cells dynamics moving on a lattice (e.g., see [13, 14] and references therein), while hybrid models involve both 47

discrete and continuous equations, characterizing cell motion and the evolution of external factors, respectively (e.g., 48

see [15, 16, 17, 18, 19]). In the framework of continuum models, a significant number of studies rely on reaction- 49

diffusion equations to characterize glioma density directly at a macroscopic scale. Starting from the work of Swanson 50

et al. [20], where the idea of spatially dependent isotropic diffusion coefficients has been introduced by two different 51

constants for the description of the diffusion process in grey and white matter, a critical point has been the tuning 52

of the model parameters to match model output to clinical data. A major improvement in this direction was given 53

by linking the tensor describing tumor diffusion with the information provided by DTI (e.g., see [21, 22, 23, 24]). 54

Other macroscopic models for tumor migration rely on mass conservation (e.g., see [25, 26, 27, 28, 29]) and/or on 55

mechanical-chemical description. The latter takes into account the forces exerted inside the tumor and at the interface 56

between healthy and neoplastic tissue, and the relevant deformation effects [22, 30, 31, 32, 33]. Multiphase models 57

have been developed based on mixtures modelling, where the tumor description considers the malignant mass as a 58

saturated medium, with at least one liquid phase (e.g., water) and one solid phase (e.g., glioma cells, ECM, etc.). 59

Examples of this approach can be found in [34, 35, 36, 37] and references therein. 60

A different approach consists in deducing the macroscopic model from a mesoscopic level of description of indi- 61

vidual cell behaviour. These models use Boltzmann-type equations for the cell population density, where the usual 62

collision operator describes the cell velocity changes. The resulting kinetic transport equation for the glioma cell 63

density, in fact, does not depend only on time and space, but also on the (microscopic) velocity; a scaling argument 64

is then used to derive the macroscopic setting [38, 39, 40, 41, 42, 43]. This approach has been extended to enhance 65

the accuracy of the models, connecting the modelling of subcellular processes with the mesoscopic population-level 66

description. This has been done within a multiscale modelling framework, in which the information emerging at the 67

subcellular level introduces additional terms at the mesoscopic one and, consequently, in the macroscopic equations. 68

In particular, this approach has been used to provide a more detailed description of the migration process, involving 69

cellular receptors dynamics, as described in [44, 45, 46, 47], with a special focus on the case of glioma evolution 70

[48, 49, 50, 51]. 71

In this paper we consider this last multiscale framework, modelling the growth and spread of glioma cells inside 72

the brain tissue and highlighting the influence of the underlying nervous fibers on the tumor evolution. In particular, 73

we focus on how the information about the fiber structures, obtained from the clinical data, is translated and encoded 74

in the model to achieve a more realistic description of glioma cell spread and migration. Moreover, the role of the 75

microscopic receptors dynamics in glioma evolution is investigated, as well as the tumor response to therapy. 76

The three different scales characterizing the processes and the model formulation follow a well-established mod- 77

elling approach. At the microscale, as firstly proposed for the specific case of glioma in [49], we account for processes 78

taking place at the subcellular level, governing the dynamics of bound receptors on the cellular membrane and de- 79

scribed by an ODE for the mass action kinetics. At this scale, the novelty with respect to [49, 50] is the addition of 80

therapeutic effects on the receptors dynamics. In particular, following the idea of [52], a combination of chemotherapy 81
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and radiation treatment is considered (see also [53, 54, 55] and references therein). At the mesoscale, we analyze the 82

individual cell behaviours. They involve the interactions with the surrounding tissue, whose anisotropic characteris- 83

tics are accurately taken into account, as well as the proliferation process and a loss term, that accounts for both the 84

natural death of the cells and the radiation treatment. In particular, following the idea of [50] and according to the 85

general framework proposed in [41, 56], proliferation is included in the model, at this level, as a result of cell-tissue 86

interactions. Finally, the macroscopic setting is derived via parabolic scaling of the mesoscopic equation, as done 87

in [48, 49, 50, 52], yielding an evolution equation for the macroscopic cell density. In addition to the inclusion of 88

therapeutic treatments modelling, the key point differentiating this work from previous ones [49, 50, 52] is a novel 89

and comprehensive comparison of the functions available in the literature for the description of the fiber structure, 90

which plays an essential role in glioma dynamics. For the fiber description, we consider the Peanut distribution [40] 91

the Bimodal von Mises-Fisher Distribution (VMF) [24, 40, 57] and the Orientation Distribution Function [58]. Such 92

comparison, as well as the numerical simulations of the macroscopic model, have been done using real DTI data on a 93

slice of brain reconstructed from MRI. 94

The paper is organized as follows. In Section 2, we describe the different processes and scales involved in the 95

model, providing a formal derivation of the macroscopic setting and proving its well-posedness. Section 3 is ded- 96

icated to the analysis of the fiber distribution function that represents the connection between the diffusion tensor 97

involved in the equations and the information provided by the MRI and DTI data (enabling their integration inside 98

the model). In Section 4, different numerical simulations showing the dynamics of glioma cells in different scenarios 99

are presented: first, the different fiber distribution functions described in Section 3 are tested to observe their effect 100

on tumor evolution; then, we focus on the role of the subcellular dynamics; finally, we discuss the effect of the two 101

specific treatments on tumor density. In Section 5, we comment on the main results of the model, its performance, and 102

provide some concluding remarks. Details about the anisotropy indices and the fiber distribution functions analyzed 103

in this work are reported in the Appendices. 104

2. The model 105

Here we combine two different approaches, mainly presented in [50] for the model set up and proliferation term 106

description and in [52] for the therapy description. In particular, the main differences with respect to [50] are the 107

introduction of the therapy description at the cellular level and the definition of a loss term in the mesoscopic equation 108

for glioma cells. We define a formulation that starts from a description of cell receptor dynamics at the microscale 109

and, adding a possible therapeutic approach, leads to an advection-diffusion-reaction equation at the macroscale. 110

2.1. Cellular level 111

At this level, we focus on the microscopic dynamics of cell surface receptors, like integrins, CD44 and ICAM-1 112

[49]. In particular, integrins are transmembrane receptors that facilitate cell adhesion, spread and migration binding to 113

insoluble ligands of the underlying ECM. For simplicity, in the following we will refer to all cell surface receptors as 114

integrins. Intending to understanding the influence of integrin dynamics on the macroscopic movement at the tissue 115

scale, we denote by y(t) the concentration of bound integrins, depending on the time t; we assume that the binding 116

between integrins and tissue occurs preferentially in regions of highly aligned tissue [49]. 117

The description of the microscopic setting is taken from [49] and [52] (to which we refer for a detailed explanation) 118

and can be summarized as follows. The mass action kinetics for the concentration y(t) is governed by the following 119

ordinary differential equation: 120

dy
dt

= k+(dc)(1 − y)Q(x)S (α2, β2, dr) − k−(dc)y . (1)

In this equation, Q(x) indicates a time-invariant density field depending on the position x ∈ Rn, and it represents 121

the fraction of the insoluble component of the ECM involved in the integrin binding [48, 49]. The therapy effect is 122

modelled through the terms S (α2, β2, dr), k+(dc) and k−(dc). As in [52, 59], dc(t) denotes the dose of chemotherapeutic 123

treatment which affects cell invasion by influencing the interaction between integrins and ECM through the attachment 124

and detachment rates k+(dc) and k−(dc). In particular, dc(t) reduces the capability of the cells to bind with the ECM. 125

On the other hand, dr(t) represents the dose of radiotherapy, directly aimed at cell killing. We assume dc(t) and dr(t) 126
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to be at least piecewise continuous functions of time. In line with the well-established linear-quadratic radiobiological 127

model (L-Q) [60, 61, 62], the surviving fraction of cells after radiotherapy is given by 128

S (α, β, dr) = exp(−αdr − βd2
r ) (2)

where α and β represent the lethal lesions produced by a single radiation track or by two radiation tracks, respectively. 129

We will use different values for the parameters α and β referring to tumor cells (α1 and β1) and to normal tissue (α2 130

and β2). In particular, we will indicate with S 1(dr) = S (α1, β1, dr) and S 2(dr) = S (α2, β2, dr). 131

Since the microscopic integrin dynamics is assumed to be much faster than the macroscopic time scale (hence to 132

equilibrate rapidly [50]), we consider the unique steady state y∗ of equation (1): 133

y∗ =
k+(dc)Q(x)S 2(dr)

k+(dc)Q(x)S 2(dr) + k−(dc)
=: f

(
k+(dc), k−(dc),Q(x), S 2(dr)

)
. (3)

Introducing a new internal variable z(t) := y∗ − y, that measures the deviation of y(t) from the steady state [49], we 134

look at the path of a single cell moving from an initial position x0 with velocity v through the field Q(x). With the 135

notation x = x0 + vt, equation (1) can be rewritten for the deviation z(t) as [52]: 136

dz
dt

= −z(t)(QS 2k+ + k−) + F(t) +
∂ f
∂Q

v · ∇xQ =: G(z,Q, dc, dr) (4)

where F(t) +
∂ f
∂Q

v · ∇xQ represents the total derivative of f (k+(dc), k−(dc),Q(x), S 2(dr)) with respect to time. 137

2.2. Intercellular level 138

Using the above characterization of the microscopic dynamics, we describe the cell behaviour with the aid of 139

velocity-jump processes. At this level, we stem from the model formulation proposed in [50] (see the original work 140

for a detailed introduction), and we add an overall loss term. Specifically, letting ρ(t, x, v, z) be the glioma density 141

function at time t, position x ∈ Rn, velocity v ∈ V ⊂ Rn, and internal state z ∈ Z ⊆ [y∗ − 1, y∗] ⊂ R, the kinetic 142

transport equation for its dynamics is given by: 143

144

∂tρ + ∇x · (vρ) − ∂z
[
G(z,Q, dc, dr)ρ

]
= L[λ]ρ + P(ρ) − L(ρ̄,R1, dr)ρ . (5)

Here, L[λ]ρ denotes the turning operator, a mathematical representation of the cell velocity changes. These 145

changes are due in particular to contact guidance, which describes the oriented motility response of cells to the 146

anisotropy of the environment. In the case of glioma cells, the movement and spread are especially associated with 147

white matter tracts, acting as highways for their migration. L[λ]ρ is defined via an integral operator of Boltzmann 148

type [40] 149

L[λ]ρ = −λ(z)ρ + λ(z)
∫

V
K(x, v)ρ(v′)dv′ (6)

where λ(z) := λ0 −λ1z ≥ 0 is the turning rate, depending on the microscopic variable z(t), while λ0 and λ1 are positive 150

constants. In particular, since y∗ < 1, |z| < 1 and we assume that λ0 ≥ λ1 to ensure a positive turning rate. The term 151

λ(z)ρ represents the rate at which cells change their velocity v to any other velocity. The integral term denotes the cell 152

changing from any velocity v′ to velocity v. In order to model the turning kernel K(x, v) in (6) we assume that the 153

dominating directional cue is given by the oriented environment of the brain fibers and, consequently, cells choose 154

their new direction according to the given fiber network. We describe the oriented structure of the environment by 155

defining a directional distribution q(x, v̂), with v̂ ∈ Sn−1 (where Sn−1 denotes the unit sphere in Rn) and with symmetry 156

q(x, v̂) = q(x,−v̂). In this framework, assuming a constant cell speed (namely, V = sSn−1) the turning kernel is 157

modelled as K(x, v) =
q(x,v̂)
ω

, with scaling constant ω :=
∫

V q(v̂)dv = sn−1 [40, 49]. In addition, if we associate integrin 158

activation with cell binding to the tissue, we can see binding as the onset of proliferation and also of reorientation: 159

in fact, the turning rate of the cells depends on the integrin state on the cell membrane. If many integrins are already 160

bound, the cells will need to change their direction more often in order to escape from the too densely packed fibers 161

surrounding them [63], resulting in an increase in the rate λ(z). 162
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Following [50], for the proliferation term P(ρ) in (5) we consider the so-called proliferative interactions, modelled 163

as a product between the mesoscopic glioma density ρ and the function Q(x):modelled 164

P(ρ) = µ(x, ρ̄, v)
∫

Z
χ(x, z, z′)ρ(t, x, v, z′)Q(x)dz′ (7)

where ρ̄ = ρ̄(t, x) is defined by ρ̄(t, x) =
∫

V

∫
Z ρ(t, x, v, z)dzdv and µ(x, ρ̄, v) denotes the growth rate. In the integral 165

operator, the kernel χ(x, z, z′) characterizes the transition from state z′ to state z during the proliferative process at 166

position x. No particular conditions are required on χ. We only assume that the nonlinear proliferative operator P(ρ) 167

is uniformly bounded in the L2-norm, a reasonable biological condition linked to the space-imposed bounds on the 168

cell division. 169

The overall loss is modelled by the last term in (5), as a combination of two parts: one term related to the natural 170

death of the cells and one related to radiotherapy: 171

L(ρ̄,R1)ρ = (l(ρ̄) + R1(dr))ρ . (8)

In the clinical practice, the total dose of the drug is given in smaller fractions, to avoid toxic effects on healthy tissue. 172

If ξ is the number of fractions, the total effect of the radiation therapy protocol can be expressed as: 173

R(α, β, dr) =

ξ∑
i=1

(1 − S (α, β, dr))ηδ(t − ti) (9)

where ηδ is a C∞0 function with unit mass and support in (−δ, δ), δ � 1, and ti denotes the time instants at which an 174

ionizing radiation is applied to the patient. In particular, following the notation introduced before, we will indicate 175

with R1(dr) = R(α1, β1, dr). 176

Global existence of a unique solution for equation (5) can be proved following the arguments in [44], under 177

suitable growth conditions for the rate µ with respect to its third argument v. 178

2.3. Scaling of the mesoscopic equation 179

Considering the above analysis for the dynamics on the cellular and intercellular level, we start from equation 180

(5) for the density ρ(t, x, v, z). We introduce proper scaling arguments in order to deduce the macroscopic density 181

equation, following the approach adopted in [49, 50, 52]. Specifically, we consider the moments 182

m(t, x, v) =

∫
Z
ρ(t, x, v, z)dz M(t, x) =

∫
V

m(t, x, v)dv (= ρ̄(t, x))

mz(t, x, v) =

∫
Z

zρ(t, x, v, z)dz Mz(t, x) =

∫
V

mz(t, x, v)dv .

(10)

We do not consider higher order moments of ρ, as the subcellular dynamics is much faster than the events on the other 183

scales so that the deviation z is close to zero. We also assume the data to be compactly supported in the phase space 184

Rn × V × Z. We first integrate equation (5) with respect to z and then multiply all terms in (5) by z and repeat the 185

integration procedure. Then, we use a parabolic scaling x̂→ εx and t̂ → ε2t for space and time variables, respectively. 186

In particular, F(t), which accounts for fast dynamics and involves time derivatives of dc, dr and of the cell survival 187

fraction S , is scaled with ε2. Similarly, we scale the growth rate µ(x,M, v) and the loss term L(M,R1). Therefore, 188

dropping the hat notation for simplicity, we obtain: 189

ε2∂tm + ε∇x · (vm) = −λ0m + λ0
q
ω

M + λ1mz − λ1
q
ω

Mz

+ ε2µ(x,M, v)
∫

Z

∫
Z
χ(x, z, z′)ρ(t, x, v, z′)Q(x)dz′dz − ε2L(M,R1)m

(11)
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and 190

ε2∂tmz + ε∇x · (vmz) = −mz(QS k+ + k−) + ε2F(t)m + ε f ′(Q)v · ∇xQ m+

− λ0mz + λ0
q
ω

Mz + ε2µ(x,M, v)
∫

Z

∫
Z

zχ(x, z, z′)ρ(t, x, v, z′)Q(x)dz′dz+

− ε2L(M,R1)mz .

(12)

By applying the asymptotic Hilbert expansions of the moments of ρ [42, 64] and by collecting the coefficients of the 191

different powers of ε in equations (11) and (12), we obtain, at leading order, Mz
0 = 0, mz

0 = 0 and m0 =
q
ω

M0. As a 192

consequence, Mz
1 = 0 and, using compactness properties, it is possible to deduce that M1 = 0 and 193

m1 =
1
λ0

[
λ1

λ0 + k+QS + k−
∂ f
∂Q
∇xQ · v

q
ω

M0 − ∇x

(
v

q
ω

M0

)]
. (13)

Finally, with these positions, we obtain by standard arguments [49, 50] the following simplified form of the evolution 194

equation for the macroscopic glioma density M0: 195

∂t M0 − ∇ · (DT (x)∇M0) + ∇ · ((g(Q(x))DT (x)∇Q − u(x))M0) = µ(x,M0)Q(x)M0 − L(M0,R1)M0 . (14)

Here, we assume that the growth rate µ does not explicitly depend on v, and we denote by 196

g(Q(x)) :=
λ1

λ0 + k+(dc)QS 2(dr) + k−(dc)
∂ f
∂Q

the function carrying the information about the influence of the subcellular dynamics. The macroscopic diffusion 197

tensor is expressed as 198

DT (x) :=
1
ωλ0

∫
V

v ⊗ v q(x, v̂)dv (15)

and the tumor drift velocity is given by 199

u(x) :=
1
ωλ0

∫
V

v ⊗ v∇xq(x, v̂) dv . (16)

It is important to stress that, even though the similarity between the macroscopic setting proposed in [50] and equation 200

(14) are evident, there are substantial differences in the modelling of the therapeutic approach, which follows the 201

approach in [52]. More precisely, therapy has been introduced at the microscale (see Section 2.1) and its effects on 202

the macroscopic equation (14) are collected in the terms L(M0,R1) and g(Q(x)). 203

2.4. Well-posedness of the macroscopic setting 204

Using the theory of monotone operators for non-linear parabolic equations and following a well-known approach 205

[65, 66], it is possible to prove the existence, uniqueness and non-negativity of the solution of the parabolic problem 206

(14) with homogeneous Neumann boundary conditions. 207

Let Ω ⊂ R3 be a Lipschitz domain and n̂ the normal vector to ∂Ω. Let T > 0 be finite and consider the following 208

non-linear parabolic initial-boundary-value problem related to equation (14): 209
∂t M − ∇ · (DT (x)∇M) + ∇ · (Y(Q,DT )M) + Γ(M) = 0 in [0,T ] ×Ω

∇M · n̂ = 0 on [0,T ] × ∂Ω

M(0, x) = M0(x) in Ω

(17)

where 210

Y(Q,DT ) = g(Q(x))DT (x)∇Q − u(x)

Γ(M) = ((l(M) + R1(dr)) − µ(x,M)Q(x))M .
(18)

Adapting the proof proposed in Appendix A.1 of [50], it is possible to prove the following theorem. 211
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Theorem 1. Assume: 212

A.1 The tensor DT (x) is uniformly positive definite, it belongs to the space W1,∞(Ω) and its smallest eigenvalue is 213

larger than a constant α > 0; 214

A.2 Γ(M) is continuous in time and M, it satisfies the growth condition |Γ(s)| ≤ c (1 + |s|r−1) for some r ≥ 1 (with a 215

constant c independent of time and space) and the coercivity condition inf
s∈R+

Γ(s)s > −∞; 216

A.3 The function Q(x) belongs to the space W1,∞(Ω); 217

A.4 The rates k+ and k− are continuous in the variable dc (which in turn has to be continuous in time) and uniformly 218

bounded; 219

A.5 The term Y(Q,DT ) is in L∞(Ω). 220

Let U = H1(Ω), H = L2(Ω) and X = L2(0,T ; U) and let define the functional space 221

W := {ω ∈ L2(0,T ; U) : ωt ∈ L2(0,T ; U∗)} ⊆ X .

Let M0 ∈ H and let Γ : R→ R be a continuous function that satisfies the conditions A.2 above with 1 ≤ r < 10
3 . Then 222

there exists a weak solution M ∈ W of the problem (17), i.e., there exists M ∈ W such that for all ϕ ∈ C∞0 ([0,T ] ×Ω): 223∫ T

0
〈∂Mt, ϕ〉H1(Ω) dt +

∫ T

0

∫
Ω

(DT∇M − Y(Q,DT )M)∇ϕdxdt +

∫ T

0

∫
Ω

Γ(M)ϕdxdt = 0 .

224

It is also possible to prove uniqueness and non-negativeness of the solution, using classical estimates, parabolic 225

comparison principle [67] and theorems from Section III.4.1. in [66]. 226

Proposition 1. The solution of the macroscopic problem (17) is unique if Γ(M) is strictly monotone. In addition, if 227

M0 ≥ 0, the solution of (17) is nonnegative. 228

3. Fiber Distribution Function 229

The analysis of the connection between the DTI data introduced in the model, the way in which they are processed 230

and how their features are taken into account, is fundamental to obtain reliable simulations of tumor dynamics from 231

both qualitative and quantitative point of view. 232

In this section, we investigate the way in which the fiber distribution function q(x, v̂) incorporates in the model the 233

information about the diffusivity in the brain and the anisotropic characteristics of the nervous tissue. 234

The fiber distribution density function q(x, v̂) represents the link between raw data, collected in the symmetric 3D 235

water diffusion tensor DW (x), and the tumor diffusion tensor DT (x), which describes tumor movement and diffusivity 236

in the model equation. The function q(x, v̂) is used to describe the probability of turning at point x and into a nor- 237

malized velocity v̂, and it can be derived in different ways according to possible underlying distributions. Since the 238

vector v̂ belongs to the unit sphere Sn−1, for simplicity in the notation we will indicate it with the direction θ and, 239

consequently, the fiber distribution function with q(x, θ). Three main choices of the fiber distribution q(x, θ) exist in 240

the literature: the Peanut Distribution [40], the Bimodal von Mises-Fisher Distribution (VMF) [24, 40, 57] and the 241

Orientation Distribution Function (ODF) [58]. They are defined as: 242

q(x, θ) =
3

|S2|Tr DW (x)
θT DW (x)θ (Peanut) (19)

243

q(x, θ) =
δ

4π
+ (1 − δ)

k(x)
4π sinh k(x)

(
cosh(k(x)φ1 · θ)

)
(Bimodal VMF) (20)

244

q(x, θ) =
1

4π|DW (x)|
1
2

(θT (DW (x))−1θ)−
3
2 (ODF) . (21)
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For the sake of completeness, we describe in details these distributions in Appendix B, Appendix C and Appendix D, 245

respectively. In the rest of the section, we analyze and compare these distributions. We will highlight their specific 246

capabilities to accurately reproduce the anisotropic characteristics of the underlying nervous tissue, their strengths 247

and their weaknesses. We rely on the fractional anisotropy index FA (see Appendix A for its formal definition and 248

properties), which gives a measure of the degree of anisotropy of the tissue, as an objective classifier to understand and 249

compare how the information provided by the DTI data and encoded in the water diffusion tensor DW are translated 250

and preserved into the model. 251

252

3.1. Comparison of q(x, θ) on a single data point 253

For the sake of clarity in visualization, we first consider in two dimensions a single spatial point x and through 254

equation (15) we compute DT from DW with the three different functions q(x, θ). We consider an anisotropic tensor 255

DW and assume for DW a bigger diffusion along the y−axis direction than along the x−axis one. By visualizing the 256

tensors as ellipses, it is possible to immediately grasp the difference between the way the three distributions reproduce 257

the original anisotropy, as illustrated in Figure 1. 258

Figure 1: DW (x) and DT (x) at the point x.

259

With the Peanut distribution (19), the anisotropy of DW is in large part lost in the resulting DT tensor, due to the 260

strong isotropic component of DT (see B.2 for details). On the other hand, the tumor diffusion tensor DT obtained 261

with the VMF distribution (20) shows a degree of anisotropy much more similar to that of the original DW . The 262

similarity depends on the particular choice of the two parameters, κ and δ which require a preliminary optimization 263

procedure (see Appendix C for details). Finally, with the ODF (21), the resulting DT has once again similar shape and 264

proportions to the original DW . More pronounced preservation of the anisotropic characteristics with respect to the 265

Peanut distribution case is clearly observed. Moreover, the independence from the parameter value selection gives an 266

additional benefit with respect to the VMF distribution if no real patient data are available for an accurate estimation 267

of these parameters. 268

For the Peanut distribution it has been proved analytically in [40] that FA(DT ) ≤ FA(DW ), namely, the anisotropy 269

in DT is always lower than the anisotropy of the original tensor DW . Therefore, with this particular distribution choice 270

DT may not be able to reproduce the brain structure accurately, especially in the case of crossing fiber tracts. 271
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For the VMF distribution, on the other hand, in the limit for δ→ 0 and κ → ∞, one formally obtains that FA(DT )→ 1, 272

giving in principle the possibility to accurately reproduce the anisotropic characteristics of the tissue. 273

274

3.2. Comparison on real brain data 275

Here we compare the impact of the different fiber distribution functions (19), (20) and (21) on real DTI data. The 276

dataset was acquired at the Hospital Galdakao-Usansolo (Galdakao, Spain), and approved by its Ethics Committee: 277

all the methods employed were in accordance to approved guidelines. We processed the DTI data using FSL (FMRIB 278

Software Library)1 [68], a comprehensive library of analysis tools for MRI and DTI brain imaging data. 279

For our comparison, we consider a 2D slice obtained from a horizontal section of an entire brain DTI dataset, as it 280

is sufficiently representative for the proposed analysis. In order to give an objective comparison of the different fiber 281

distribution functions, and to classify their goodness, we computed the fractional anisotropy FA(DW ) and FA(DT ), 282

for the DT obtained with the three distributions. The results are shown in Figure 2. 283

Figure 2: Top row: FA(DW ). Bottom row: from left to right, FA(DT ) with Peanut distribution, VMF distribution with δ = 0.05 and
κ = 5.7753, and ODF.

284

What clearly emerges is that the use of the Peanut distribution identifies accurately the locations where the fibers 285

are aligned or not, without significant over- or under-estimations of these areas. However, its main issue is related 286

to the degree of anisotropy: in fact, the resulting tumor diffusion tensor DT (B.2) shows a degree of anisotropy sig- 287

nificantly lower than the original DW , with values for the fractional anisotropy almost halved in the areas of greater 288

alignment. For the VMF distribution the results are highly dependent on the parameters κ and δ, whose effect can be 289

1Information available from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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observed in greater details in Figures C.13 and C.14 of Appendix C. Overall, the VMF distribution provides an over- 290

estimation of the extension of the anisotropic regions, while depending on the calibration of κ and δ, there can be an 291

over- or an under-estimation of the degree of anisotropy. Figure 2 highlights good preservation of the FA in the case of 292

the VMF distribution, provided that a suitable tuning of its parameters is performed (if biological data are available, as 293

explained in Appendix C). This tuning affects the description of the geometry features and, thus, we suppose it might 294

have some influence on the evolution of the tumor dynamics. In particular, the values of the parameters κ and δ used 295

for the analysis have been chosen through the optimization procedure described in Appendix C. Finally, although the 296

use of the ODF provides a general under-estimation of the degree of anisotropy, this distribution highly improves the 297

results compared to the Peanut distribution, and it preserves with sufficient accuracy the description of the location of 298

aligned and non-aligned fibers. 299

A closer look at the differences between the three distributions can be done by considering different coronal sec- 300

tions of this 2D slice and looking at the variation of the fractional anisotropy along them. In Figure 3 the comparison 301

between FA(DW ) and FA(DT ) is shown for a representative coronal section. 302

0

0.2

0.4

0.6

0.8

1

Figure 3: Comparison between FA(DW ) and FA(DT ) along a coronal plane of the 2D brain slice. For the VMF distribution δ = 0.05
and κ = 5.7753.

303

As it can be noticed in Figure 3, Peanut distribution and ODF have an almost identical trend, but, as expected, the 304

Peanut distribution almost halves the degree of anisotropy with respect to the original data, while the ODF preserves 305

it significantly better. VMF distribution, on the other hand, often provides an under-estimation of the fractional 306

anisotropy at local maxima of FA(DW ) and an over-estimation of FA(DW ) on local minima. Changing the considered 307

coronal section, the qualitative results do not change and the highlighted differences in the fractional anisotropy remain 308

essentially the same. 309

In order to have a more global perspective, we consider the relative difference between the FA of the original data 310

DW and the one related to the tumor diffusion DT , given by: 311

R(D) =
FA(DW ) − FA(DT )

FA(DW )
. (22)

Notice that in (22) we are not considering the absolute value of the numerator in order to visualize situations of both 312
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under-estimation and over-estimation of the fractional anisotropy. The value of R(D) for the considered distributions 313

are shown in Figure 4. 314

Figure 4: From left to right, R(D) for Peanut distribution, VMF distribution with δ = 0.05 and κ = 5.7753 and ODF.

315

In line with the results of Figure 3, except for some isolated blue areas in the ODF plot (possibly related to errors in 316

the measurements and/or to oscillations in the calculations), we observe that the VMF distribution is the only one with 317

a markedly mixed trend. R(D) for this distribution indicates that FA(DT ) values pass from areas of over-estimation 318

of the original anisotropy (colours from green to blue) to areas of under-estimation of the original FA (colours from 319

green to red). An additional piece of information emerging from the comparison between the top row of Figure 2 and 320

Figure 4 is that in the highly anisotropic areas, where FA(DW ) is bigger, the relative error made with any of the three 321

distributions is generally smaller with respect to more isotropic regions. Moreover, in these highly anisotropic areas, 322

the error is reduced as we pass from Peanut distribution to ODF and, even more, when we consider the VMF distri- 323

bution. Nevertheless, the use of the VMF distribution would require a preliminary proper estimation of the involved 324

parameters from clinical data, if they are available. 325

We conclude this section by discussing the computational cost of the three distributions. This cost for the cal- 326

culation of the fiber distribution functions and the resulting tumor diffusion tensor DT is almost identical for Peanut 327

distribution and VMF distribution: the construction of DT via the Peanut distribution does not require any matrix 328

multiplication, while one matrix product is needed for the calculation of DT in each voxel with the VMF distribution. 329

The ODF, on the other hand, requires more calculations and, therefore, has a higher computational cost. In fact, for 330

each voxel it requires the numerical approximation of a spherical integral, whose cost depends on the chosen nu- 331

merical method. Nevertheless, independently from the particular approximation used, the evaluation of the integrand 332

function involves several matrix products and a matrix inversion. We choose the Gauss-Legendre quadrature formula 333

for computing the integral and, in this case, the computational cost for the calculation of DT in each voxel of the 3D 334

mesh grid is O(m2), where m indicates the number of points of the quadrature formula. 335

4. Numerical Simulations 336

We present 2D simulations of the resulting macroscopic advection-diffusion-reaction equation (14). The numerical 337

simulations are performed with a self-developed code in Matlab (MathWorks Inc., Natick, MA). The computational 338

domain is a horizontal brain slice of the left hemisphere, whose reconstruction from MRI data is detailed below. 339

The macroscopic tensor DT (x) is precalculated using the DTI data with the three distribution functions. A Galerkin 340

finite element scheme for the spatial discretization is considered, together with an implicit Euler scheme for the time 341

discretization. 342

11



4.1. Reconstruction of the computational domain 343

We process the brain geometry with the FreeSurfer Software Suite2, an open-source software for the analysis 344

and visualization of structural and functional neuroimaging data from cross-sectional or longitudinal studies. The 345

processing of MRI data with FreeSurfer provides surface and volume information about the two hemispheres of the 346

brain separately, leading to the extraction of a 2D slice that constitutes our computational domain. Examples of the 347

processed outputs are shown in Figure 5, where both the entire left hemisphere surface and the border of the considered 348

2D slice are visualized. 349

          
 

Figure 5: The left hemisphere visualized with Paraview3(left); the contour of one slice of the brain (right).

350

The registration between the voxel mesh, given by the DTI dataset, and the brain slice has been obtained with the 351

help of different visualization software programs (Paraview and FSLeyes, the FSL image viewer). The resulting 2D 352

domain has been triangulated with the free mesh generator Gmsh4 and the matrices of the finite element approximation 353

have been computed on the resulting grid. 354

4.2. Coefficient functions and parameters 355

We choose Q(x), the fraction of insoluble components of ECM interacting at point x with the tumor population and 356

introduced in Section 2.1, to be proportional to the fractional anisotropy of the tissue itself. This approach, introduced 357

in [49], is motivated by the fact that the fractional anisotropy is a measure of the alignment of the brain fibers and the 358

function Q(x) should take higher values where the tissue is strongly aligned. Hence, we set 359

Q(x) = FA(DW (x)) . (23)

Other possible choices can be considered, like the one introduced in [48] and based on the characteristic diffusion 360

length. A quantitative comparison between different choices of Q(x) is left as future work. 361

The growth rate µ(x,M0) can be also defined in different ways, especially due to the reduced availability of 362

biological data. Following the choice made in [21, 50], we use a logistic growth term and define 363

µ(x,M0) = cg

(
1 −

M0

CM

)
(24)

2Information can be found at https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki and, for further details, see [69] and
references therein.

3Open-source multiple-platform application for interactive, scientific visualization. Information available at https://www.paraview.org.
4Information available at http://gmsh.info and, for further details, see also [70].
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with growth rate cg and carrying capacity CM . 364

For the integrin binding rates and the term describing the natural death of the cells, we refer to [52] and we set 365

k+(dc) = 0.1
(
1 +

dc

1 + d2
c

)
k−(dc) = 0.1

(
1 + dc

)
l(M0) = clM0 .

(25)

Observe that the expressions for the attachment and detachment rates are in agreement with the assumption made on 366

the chemotherapeutic term in Section 2, namely, we consider the function k+ monotonically decreasing with respect 367

to the given dose dc, while the function k− is monotonically increasing with dc. 368

In Table 1 we report the range of the values for the remaining parameters involved in the macroscopic equation 369

(14), as well as the references they were drawn from. For our simulation purposes, we will use the average values of 370

the indicated intervals. 371

Parameter Value (units) Source

s 0.21 · 10−6 (ms−1) [53]

λ0 0.1 (s−1) [71]

λ1 0.01 (s−1) [49]

cg [0.32, 0.72] × 10−5 (s−1) [72]

cl [0.32, 0.72] × 10−7 (s−1) estimated, based on [48]

CM ≈ 1 normalized, based on [50]

α1 [0.018, 0.401] (Gy−1) [73]

α2 [0.373, 0.389] (Gy−1) [73]

β1 [0.023, 0.091] (Gy−2) [73]

β2 [0.016, 0.052] (Gy−2) [73]

Table 1: Model parameters

372

Finally, in Figure 6, the values of FA(DW (x)) on the domain and the underlying fiber structure are shown. In 373

particular, the latter, that highly influences tumor dynamics, is visualized on a zoomed region in the center-left, where 374

the leading eigenvector of the tensor DW (x) is plotted in each point x. 375

4.3. Results 376

Considering the parameters given in Table 1, we simulated different scenarios on the domain in Figure 5. The 377

macroscopic equation (14) we consider can be written in the following equivalent form 378

∂t M0 − ∇∇ : DT (x)M0 + ∇ · (g(Q(x))DT (x)∇Q M0) = µ(x,M0)Q(x)M0 − L(M0,R1)M0 (26)

with the coefficient functions and parameters introduced in the previous section. The operator ∇∇ : is a short form 379

of the full second derivative that, if expanded, gives rise to the Fickian diffusion term plus the additional advection 380

terms (for further details see [24, 40, 50]). A fully-anisotropic advection-diffusion model was also used in [24]: in 381

fact, this form of advection-diffusion equation is based on cell-movement and, as such, is a more biologically relevant 382

form compared to Fickian diffusion only. We consider homogenous Neumann boundary conditions and an initially 383

constant tumor mass on a small portion of the domain. 384
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Figure 6: Fractional anisotropy of DW (x) (left); visualization of the fiber tracts in a selected subdomain (right).

We present three sets of numerical results: (A) we consider the model without therapy and we compare the tumor 385

evolution obtained with the three different fiber distribution functions; (B) after selecting one of the distributions, we 386

compare the model output with the results we would obtain without subcellular dynamics, that is by omitting the 387

haptotactic drift term; (C) we add the therapeutic term and simulate its effects on the tumor evolution with the same 388

distribution as in (B). 389

Figure 7 shows the comparison in case (A): the tumor evolution over time with the three different fiber distribution 390

functions, in the absence of therapeutic strategy. This model is similar to [50], but with the addition of a term of natural 391

death for the tumor cells. The columns refer to different time instants: the solution is shown after 40 days, 80 days 392

and 120 days. Some similarities can be observed between the tumor dynamics shown in the three rows, especially 393

in qualitative terms. In the three cases, cell displacement inside the tissue covers area of comparable extension and 394

similarly reflects the underlying fiber orientation. Nevertheless, we see that the ODF distribution is able to reproduce 395

anisotropic pattern and branched structures of tumor evolution arising from the underlying tissue structure, contrary to 396

the smoothed effect observed for VMF and Peanut distribution, mainly due, for the latter, to the isotropic component 397

in the tensor DT (B.2). 398

For our second set of numerical experiments we then select the ODF for the description of the fiber. In Figure 399

8 we illustrate the case (B), the numerical simulations of the tumor evolution with and without the advective term, in 400

the absence of therapy. The advective term originates from the subcellular dynamics and involves also a component 401

related to the divergence of the anisotropic tumor diffusion tensor. Significant anisotropic behaviours, that are evident 402

in the simulations of the model with advection (second row), are not reproduced by the pure diffusive model (first 403

row). In the purely diffusive case, the tumor evolution still shows the influence of the anisotropic diffusion tensor in 404

driving cell movements preferentially along the fiber tracts, but it is not able to reproduce branched patterns and more 405

heterogenous distribution of the tumor density in the domain. On the other hand, the introduction of the haptotactic 406

drift leads to more branched structures, closer to the ones observed in clinical imaging (e.g., see [74, 75]). The driven 407

motion of the cells along the tissue structure can be better appreciated in Figure 9, where the leading eigenvector of 408

the tumor diffusion tensor DT (x) is also plotted, enhancing the alignment characteristics of the brain tissue and its 409

influence on the tumor dynamics. The diffusion in both cases is anisotropic, due to the presence of tensor DT (x) in the 410

diffusion term, and along the main fiber tracts it seems to be similarly fast, although slightly faster in the pure diffusion 411

case. However, the cells in the purely diffusive model seem to be slower or less able to change direction and adapt to 412

the tissue, especially in the region with crossing fiber and at the tumor edges. In summary, Figures 8 and 9 show that 413

taking subcellular processes into account leads to a non-negligible influence on the spatial distribution of the tumor 414

cells. However, real patient data would be needed to clarify which of the modelling approaches better explains the 415

clinically observed tumor behaviours. 416

In our third and final set of simulations, we test our model with a therapeutic strategy used in the case of newly 417

diagnosed malignant glioma and based on a combination of chemotherapy and radiotherapy for a period of 6 weeks. 418

14



Figure 7: (A) Simulation of the evolution equation, without therapy, with the three different choices for the fiber distribution
function.

Radiotherapy at a dose dr = 2 Gy will be given once per day, 5 days per week from weeks 1 to 6, with a total 419

dose of 60 Gy, while chemotherapeutic agents at a normalized dose of dc = 5.0 [52] will be administered once per 420

day from weeks 1 to 6. In particular, concerning chemotherapy we concentrate on the reduction of tumor invasion 421

affecting integrin/ECM binding [76, 77]. Different types of integrin inhibitors, such as cilengitide (targeting αvβ3|αvβ6 422

integrins) or ATN 161 (targeting α5β1 integrins), have been evaluated in preclinical or clinical studies. We consider 423
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Figure 8: (B) Simulation of the pure diffusion model (first row) and of the advection-diffusion model (second row) with the ODF
for the fiber description.

the action of such chemotherapeutic agents, motivated by different reported trials ( e.g., see trials NCT00689221 and 424

NCT01165333 provided at https://clinicaltrials.gov). As initial condition for the simulation with therapy, 425

we consider the tumor density obtained from the model without therapy after 5 weeks. We first observe the effect of 426

the chemotherapy as unique applied strategy, setting the dose dr = 0. Results are shown in Figure 10 where we plot 427

the difference between the solution for the model without any therapeutic treatment and the one with chemotherapy. 428

In both cases, the tumor diffusion tensor DT is calculated using the ODF. As chemotherapy does not aim at killing 429

cells, but at reducing their mobility, no changes in the tumor mass are observed. On the other hand, the tumor cells 430

are less invasive than in the case without therapy, and at the end of the simulation show a larger concentration in the 431

neighbourhood of their initial location. In Figure 10 also the main fiber direction is shown. We observe that, when 432

chemotherapy is considered, the cells tend to remain clustered in the area of high alignment of the fibers, being less 433

able to change direction and spread inside the brain due to the effect of the therapy on the integrin/ECM binding. 434

Finally, in a similar way we also test the effect of radiotherapy, whose objective is killing cells. The results are 435

shown in Figure 11, where the difference in the cell density between the model without any therapy and the complete 436
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Figure 9: Tumor evolution after 140 days in the case of the pure diffusion model (left plot) and the advection-diffusion model (right
plot), together with the fiber direction.

Figure 10: Difference between the tumor density in the no-therapy model and the density in the case of chemotherapy. This
difference is plotted together with the fiber direction. For the construction of DT we used the ODF.

model with both chemo- and radio- therapy is considered. After 6 weeks it is possible to notice a reduction in the 437

tumor density with respect to the situation 3 weeks before (represented by large areas of positive difference). This is 438

particularly evident in those areas where, due to the chemotherapy effects observed in Figure 10, the cells are more 439

concentrated (i.e., blue areas of Figure 10). 440
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Figure 11: Difference in the tumor evolution between the no-therapy model and the case in which chemo- and radio-therapy are
considered.

5. Conclusion and Perspectives 441

In this work we proposed a DTI-based multiscale model aiming to describe the growth, spread and invasion of 442

glioma in the human brain and the effects of a combined treatment of chemo- and radio- therapy on tumor evolu- 443

tion. Starting from previous multiscale modelling approaches [50, 52], we present a novel formulation that integrates 444

within the same framework the mesoscopic description of tumor proliferation, firstly proposed by [50, 56], and a 445

specific therapeutic approach that includes more recent ideas on drugs targeting the inhibition of cell-tissue attach- 446

ment, as proposed in [52]. Another original aspect of this work is the extensive focus on the role of the fiber structure 447

description on the tumor evolution. The macroscopic equation for the tumor cell density (derived from the mesoscale 448

via a parabolic scaling argument), in fact, accounts for real data on the brain structure through the tumor diffusion 449

tensor DT that depends on a local fiber distribution function q(x, θ). The way in which the different fiber distribu- 450

tion functions q(x, θ) translate and reproduce the original DTI information into the simulated model has been largely 451

discussed. The specific capabilities of the three most used fiber distribution functions found in the literature (Peanut, 452

VMF and ODF) are investigated in detail. Their strengths and weaknesses, in terms of both output reliability, bio- 453

logical meaningfulness of the parameters involved and computational cost, have been commented upon in Section 454

3. After comparing the three distribution functions, we chose ODF (D.2) to proceed with the study of the proposed 455

model, even though the related computational cost and complexity, with respect to the Peanut distribution (19) and the 456

VMF distribution (20), is higher. This choice was motivated by the fact that, based on the shown results, ODF gives 457

an accurate representation of the brain structures in terms of degree of anisotropy of the tissue. However, a proper 458

comparison of the simulated tumor evolution with real patient data would be needed for a complete validation and this 459

will be hopefully matter of future works. 460

Our simulations show how different choices of the fiber distribution function can influence the results, in terms of 461

extension of the neoplastic area, shape, tumor infiltration and emergence of heterogenous patterns (see Figure 8). The 462

role of the fiber in guiding cell movement and glioma invasion clearly emerges, for example in Figure 9. At the same 463

time, analogously to what observed also in other multiscale modelling formulations [48, 49, 50], our numerical results 464

highlight the importance of including the microscopic dynamics. In fact, the haptotactic drift term, originating from 465

the introduction of microscopic processes, allows the emergence of more prominent anisotropic behaviour, reflecting 466

what is often clinically observed . Considering different spatio-temporal scales in the model also allows us to include, 467

at various levels in the model formulation, different treatment options, whose effect on tumor invasion and migration 468
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in the tissue are clearly shown in Figures 10 and 11. Upon validation, the availability of a reliable tool to translate the 469

input data into the simulated model, as well as the possibility of extracting from these data realistic information about 470

the computational domain, are key points towards the application of this study on a patient-specific model [24, 37]. 471

Ideally, validation of the results related to the fiber distribution choice could be performed through the comparison of 472

a simulated tumor evolution against longitudinal clinical data following the progression of a tumor in a patient. This 473

remains a future objective, since only data for healthy brain structures were available for this study. The acquisition of 474

the desired data, in fact, presents various difficulties, mainly related to the really poor prognosis of this disease (often 475

discovered already at a late stage of progression). 476

In this study, we focused on the role of the nervous fibers in facilitating and sustaining glioma invasive spread. 477

Clearly, more complex models, involving several other important factors (such as chemotactic processes, intratumor 478

heterogeneity, evolution of micro-environmental factors) could be formulated, at the probable cost of a more chal- 479

lenging mathematical description and a heavier computational load. A further improvement of the model could be to 480

consider the function Q(x) also depending on time and to include an evolutionary equation for the description of the 481

changes in the healthy tissue structure due to glioma progression. In fact, there is a mutual influence between neoplas- 482

tic and normal tissue. The ECM structure drives tumor invasion in the brain, but at the same time the tumor degrades 483

the brain ECM through particular enzymes called proteases, in order to make its way inside the tissue. Recent studies 484

[78, 79] have shown the possible actions of these enzymes as chemotactic forces, driving the cell movements together 485

with the haptotactic ones. Therefore, the inclusion of such a chemotactic term could give additional insight. Finally, 486

in the same multiscale framework, the use of another scaling (different from the parabolic one) from the mesoscale 487

to the macroscale could be also worth investigating. In this case, we expect a slightly different trend in the tumor 488

evolution with major stress on the role of the advection term, and it would be interesting to observe how the response 489

of the three considered fiber distributions and the therapy effects differ from the results presented here. 490
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Appendix A. Diffusion Anisotropy Indices 507

Considering a general 3D tensor D, with eigenvalues λ1 ≥ λ2 ≥ λ3 and mean λ̄ =
λ1+λ2+λ3

3 , several scalar indices 508

have been proposed in literature [40, 80, 81] to characterize its anisotropy. They are called diffusion anisotropy indices 509

(DAI) and, among them, we recall: 510

• RA, relative anisotropy, defined as RA =

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

√
6λ̄

, representing the ratio of the 511

anisotropic part of the diffusion tensor to its isotropic part; 512
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• FA, fractional anisotropy, defined as FA =

√
3
2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2√

λ2
1 + λ2

2 + λ2
3

, reflecting the fraction of 513

the magnitude of the diffusion tensor that can be ascribed to anisotropic diffusion; 514

• VR, volume ratio, defined as VR =
λ1 λ2 λ3

λ̄3
, representing the ratio of the ellipsoid volume to the volume of a 515

sphere of radius λ̄. 516

These three indices are characterized by rotational invariance (there is no bias due to fiber orientation in estimating 517

the anisotropy) and symmetry respect to the three principal diffusivities (sorting-independency and less sensitivity to 518

extraneous noise). Different studies [80, 81, 82] have shown that there are significant differences between these three 519

indices, especially in terms of sensitivity to anisotropy, contrast between low and high anisotropy areas and contrast- 520

to-noise ratio. However, these differences are not so strong, especially for small anisotropy variation, to justify an 521

intrinsic advantage of one index on the others. In particular, FA seems to provide the most detailed representation of 522

the anisotropy characterizing the tissue; it reveals well the various anisotropic structures, even for areas of mild and 523

low anisotropy, providing good anatomical details of the anisotropic regions, although it has an increasing noise in 524

the area of low anisotropy. 525

526

Appendix B. Peanut distribution 527

Firstly introduced by Painter and Hillen in [40], the definition of the Peanut distribution is related to the concept 528

of apparent diffusion coefficient (ADC). It is defined, generally, by taking the ratio of the mean-squared displacement 529

measured along a particular direction and the diffusion time of the experiment. 530

In the specific case of a simple model for anisotropic diffusion, described by a diffusion tensor D, the mean- 531

squared displacement along a given direction θ ∈ Sn−1 is given by σ2
θ = 2t θT D θ, where t is the diffusion time. So, 532

ADC in the direction θ is given by the following expression [83] 533

ADCθ :=
σ2
θ

2t
= θT D θ .

Since ADC is an indicator of the anisotropy of the tissue, a possible choice for the construction of the fiber distribution 534

function is to assume that the cell turning is directly correlated to it. As a consequence, the Peanut distribution function 535

for the fiber orientation description takes the following form: 536

q(x, θ) =
n

|Sn−1|Tr (DW (x))
θT DW (x)θ . (B.1)

Following Lemma 1 in [40] it is possible to get the general expression for the tumor diffusion tensor DT (x) in n 537

dimension, starting from the relation (15): 538

DT (x) =
s2

(n + 2)λ0

(
I +

2
Tr(DW )

DW

)
. (B.2)

This expression reveals the direct link between the original tensor DW and the macroscopic diffusion tensor DT , pre- 539

senting an isotropic component proportional to I and an anisotropic component proportional to DW . So, theoretically, 540

even in the case of completely anisotropic environment, DT will always present an isotropic part, leading to a partial 541

loss of data information. 542

543

Appendix C. Von Mises-Fisher Distribution 544

The Von Mises-Fisher (VMF) distribution is one of the most useful distribution for spherical data from the stand- 545

point of the statistical inference, as largely explained in [57]. The most general expression of this distribution for data 546

x̂ ∈ Sn−1 results in a probability density function of this form: 547
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f (x̂, µ, κ) =

(
κ

2

) n
2−1 1

Γ( n
2 )I n

2−1
exp{κµT x̂}

where κ ≥ 0 is the concentration parameter, µ is the mean direction, with norm one, Iν is the modified Bessel function 548

of the first kind and of order ν and Γ is the Gamma function.This distribution, for κ > 0, has a mode at the mean 549

direction and, the larger the value of the concentration parameter, the greater the clustering around this direction. 550

The special cases which we are interested in are defined for n = 2 (planar case) and n = 3 (spherical case). 551

Consider the following representation of the space-dependent water diffusion tensor DW (x): 552

DW (x) =

n∑
i=1

λi(x)φi(x)φi(x)T

with λi and φi (i = 1...n) being the eigenvalues and corresponding eigenvectors of the tensor, respectively orthogonal 553

and normalized due to its symmetry; in particular, the eigenvectors denote the axis of dominating anisotropy and the 554

eigenvalues the degree of anisotropy. 555

With this notation, for the planar case, the dominant direction µ for the movement is given by the leading eigen- 556

vector of DW , because it is natural to consider that the turning is concentrated in the dominant direction of anisotropy 557

[40]. Additionally, two other requirements are considered for building the well-known and used expression intro- 558

duced in [40]. Firstly a constant parameter δ ∈ [0, 1], describing an inherent degree of randomized turning, is added 559

for partially controlling the size of the resulting isotropic component of DT . Then the concentration parameter κ is 560

substituted by a function k(x) for the concentration level that should increase along the direction of greater anisotropy. 561

For this reason, a possible choice for k(x) consists in considering it proportional to the fractional anisotropy of DW 562

through a concentration factor κ, describing the sensitivity of the cells to the directional information given by the 563

environment, i.e., k(x) = κFA(DW (x)). Thus, considering a bimodal form of the VMF distribution, the expression for 564

the fiber distribution function results: 565

q(x, θ) =
δ

2π
+ (1 − δ)

1
4πI0(k)

(
ek(x)φ1·θ + e−k(x)φ1·θ

)
. (C.1)

Considering (15) and (C.1), the expression of DT (x) for n = 2, as explicitly calculated into [38], is given by: 566

DT (x) =
s2

2λ0

((
δ + (1 − δ)

(
1 −

I2(k(x))
I0(k(x))

))
I + 2(1 − δ)

I2(k(x))
I0(k(x))

φ1(x)φ1(x)T
)
. (C.2)

In particular, we observe that the parameter δ plays the role of weight for the isotropic and the anisotropic component 567

of DT , determining the relevance of each part; analogous role is played by the function k(x). If δ = 1, DT simply 568

describes a complete isotropic environment. The same happens when k(x) = 0, since in this case the ratio I2(k(x))
I0(k(x)) = 0. 569

In particular, k(x) = 0 occurs either in the case of isotropic DTI data, i.e., FA(DW ) = 0, or in the case of cells not 570

responding to the environmental anisotropy, i.e., κ = 0. On the contrary, when the value of k(x) grows or the value of 571

δ is close to zero, the anisotropic part gains more importance. 572

Unlike in the Peanut distribution case, it is possible here to have bigger control on the fiber density trend changing 573

δ and κ. On one side, this means that DT may be calibrated in order to be as similar as possible to the tensor DW , but 574

on the other hand this makes it strongly dependent on the parameters κ and δ, whose meaning and identification are 575

not so clear. In fact, although it seems reasonable to choose them by fitting the original data, their biological inter- 576

pretation and estimation remain still uncertain: as a consequence, the reliability of the results may be compromised. 577

In particular, we compare the effect on FA(DT ) of parameters κ and δ. The results are shown in Figure C.12 for the 578

single point case and in Figures C.13 and C.14 for a brain slice. 579

Due to the difficulty to obtain clinical data for the evolution of a glioma in the brain, for the parameter δ we 580

consider, for the comparison and the simulations, the value proposed in [40], i.e., δ = 0.05. On the other hand, for 581

the estimation of the parameter κ, different tuning procedures are possible (e.g., see [24]). We consider a least square 582

optimization to fit the data related to the FA of our DW tensor with the resulting FA of the tensor DT given by (C.2). 583
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Figure C.12: DT (x) for VMF Distribution varying κ (left) and δ (right).

Figure C.13: FA(DT ) for different values of κ and δ fixed to 0.05.

Figure C.14: FA(DT ) for different values of δ and κ fixed to 7.
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In particular, the optimization procedure provides a value of κ = 5.775, which minimizes the norm of the residual 584

‖FA(DT ) − FA(DW )‖2 =

√√√ N∑
i=1

(FA(DT )i − FA(DW )i)2 . (C.3)

Note that N is the number of data points. The same optimization tool has been used in the 1D case shown in Figure 1 585

to estimate the parameter κ for the single data point chosen as example. In particular, in that case, it gives κ = 46. 586

Extending the analysis to the n = 3 case, following [40], we consider the bimodal form of the distribution com- 587

bined with a uniform distribution depending on the parameter δ ∈ [0, 1]. The fiber configuration in this case is 588

described by: 589

q(x, θ) =
δ

4π
+ (1 − δ)

k(x)
4π sinh k(x)

(
cosh(k(x)φ1 · θ)

)
. (C.4)

The direct calculation of the tumor diffusion tensor expression provides: 590

DT (x) =
s2

3λ0

[(
δ + (1 − δ)

(
coth k(x)

k(x)
−

1
k(x)2

))
I + (1 − δ)

(
1 −

3 coth k(x)
k(x)

+
3

k(x)2

)
φ1(x)φ1(x)T

]
. (C.5)

Appendix D. Orientation Distribution Function 591

A third approach is based on the concept of the Orientation Distribution Function, simply indicated as ODF. The 592

3D probability density function (PDF) of diffusion P(x, v̂)dΩ gives the displacement probability for a molecule in the 593

point x to be located inside a fiber bundle passing in the direction v̂ through the infinitesimal solid angle dΩ, providing 594

helpful information in the study of the tissue microstructure. The ODF, instead, represent the marginal probability of 595

diffusion in a given direction and it is fundamental for mapping the orientation architecture of the tissue [58, 84]. 596

Considering the standard spherical coordinates system and assuming that the PDF of diffusion is a symmetric 597

function P(~r) = P(−~r), the probability of diffusion in a direction v̂ through the solid angle dΩ is computed by 598

integrating the displacement probabilities for all magnitude r, keeping the direction constant, i.e., 599

ODF(v̂) =

∫ ∞

0
P(rv̂)r2dr . (D.1)

The application of this distribution to fiber orientation analysis comes from some experimental results that show 600

the correspondence between the peaks of the ODF and the principal directions of the underlying fibers [85]. In 601

particular a non-linear, monotonically increasing relationship between the FA of generated diffusion tensor related to 602

an underlying fiber and the mean principal curvature of the ODF at the principal direction of the fiber itself is shown 603

in [86]. 604

In the case of Diffusion Tensor Imaging [84], the probability density function of diffusion is given by the standard 605

3D Gaussian PDF: 606

P(rv̂) =
1

(2π)
3
2 |D|

1
2

e−
1
2 rv̂T D−1rv̂

with D proportional to the estimated diffusion tensor and |D| denoting the determinant of this tensor . Inserting this 607

expression in (D.1), we obtain: 608

ODF(v̂) =
1

4π|D|
1
2 (v̂T (D)−1v̂)

3
2

.

Thus, setting the fiber orientation density q(x, θ) equal to ODF, setting the direction θ equal to the direction v̂ and 609

considering the water diffusion tensor DW as original estimated tensor, we obtain: 610

q(x, θ) =
1

4π|DW (x)|
1
2 (θT (DW (x))−1θ)

3
2

. (D.2)
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In this case, we do not have an explicit expression for the tumor diffusion tensor DT , but we consider its integral 611

formulation (15) and we approximate it numerically. 612

613

614

List of Abbreviations 615

DTI Diffusion-Tensor Imaging. 616

DWI Diffusion Weighted resonance Imaging. 617

ECM Extra-Cellular Matrix. 618

FA Fractional Anisotropy. 619

GBM Glioblastoma multiforme. 620

MRI Magnetic Resonance Imaging. 621

ODF Orientation Distribution Function. 622

VMF Von Mises-Fisher. 623
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