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Abstract

Identifying a contaminant time-varying release history is an ill-posed problem but crucial for

groundwater contamination issues. A precise inversed release history offers a promising esti-

mation of contaminant movement and is of great importance for environmental monitoring

and further management. In this paper, a recent emerging data assimilation method, the

ensemble smoother with multiple data assimilation (ES-MDA) is employed to handle this co-

nundrum. The study starts with some synthetic cases in which several factors are analyzed,

such as the observation data frequency, covariance inflation schemes, iteration numbers used

in the ES-MDA for the purpose of identifying a time-varying contaminant injection event

with different precision. The results show that the ES-MDA performs well in recovering the

release history when the injection is discretized into 50 or 100-time steps but encounters

fluctuation problems in the cases with 300-time steps. Further comparison reveals that the

observation data frequency is a very influential factor, while the number of iterations or the

kind of covariance inflation used has a lesser effect.
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Sandbox

1. Introduction1

Groundwater contamination has gained extensive attention over the last several decades2

(e.g., Feyen et al., 2003b; Li et al., 2011; Feyen et al., 2003a; Gómez-Hernández et al.,3

2003) since it is becoming a huge threat to our ecosystem. Determining the responsible for4

the pollution is a forensic hydrogeology task needed to ensure the accountability of those5

responsible. This is not an easy task, since, in general, only a few observations downstream6

from the source are available when the contamination is first detected. Even with the help of7

advanced groundwater models, and with assumptions such as knowing the release location,8

identifying the release history, and, therefore, the total amount of pollutants injected into9

the aquifer, has proven to be a complicated endeavour. A challenge that faces the problem10

of ill-posedness (Skaggs & Kabala, 1994; Carrera & Neuman, 1986) common to all inverse11

problems (Franssen & Gómez-Hernández, 2002; Capilla et al., 1998; Wen et al., 1999) .12

Various methods have been devised to address this problem and several reviews have been13

published in the subject (e.g., Atmadja & Bagtzoglou, 2001; Michalak & Kitanidis, 2004;14

Bagtzoglou & Atmadja, 2005; Sun et al., 2006; Gómez-Hernández & Xu, 2021).15

Among all these methods, one branch, data assimilation methods, comes out ahead be-16

cause of its ability to deal with huge amounts of observed data simultaneously. Data assimi-17

lation methods are versatile, efficient, and simple to understand and implement (Zhou et al.,18

2014). Among the data assimilation methods, the ensemble Kalman filter (EnKF) stands19

out. It was first proposed by Evensen (2003) in order to deal with the nonlinear relationship20

between parameters and state variables in inverse problems and has gained popularity in21

multidisciplinary fields such as oceanography, meteorology, and geology (e.g., Houtekamer &22

Mitchell, 2001; Bertino et al., 2003; Chen & Zhang, 2006; Aanonsen et al., 2009). Specifically,23

in hydrogeology, the EnKF method has proven the ability to inverse identify aquifer param-24
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eters, such as hydraulic conductivity (Chen & Zhang, 2006; Huang et al., 2009; Kurtz et al.,25

2014), porosity (Li et al., 2012), recharge rates (Franssen & Kinzelbach, 2009), boundary26

conditions (Chen & Zhang, 2006) and also transport-related parameters (Lan et al., 2018).27

More recently, researchers have started to employ EnKF variants to identify the parameters28

describing a contaminant source in aquifers. Butera et al. (2013) employ a geostatistical29

approach with some weak hypotheses to identify the pollutant release history and the source30

location. Xu & Gómez-Hernández (2016) use the restart normal-score Ensemble Kalman31

filter (Ns-EnKF) for contaminant source identification in a synthetic deterministic aquifer32

and later extended this method to jointly identify hydraulic conductivity and source infor-33

mation (Xu & Gómez-Hernández, 2018). Then, Chen et al. (2018) move one step further,34

to identify contaminant source information plus the position and length of a vertical barrier35

in a sandbox experiment via the restart Ensemble Kalman filter. Chen et al. (2018) also36

discuss the influence of different inflation methods in the application of the restart Ns-EnKF37

and prove its ability for the joint identification of hydraulic conductivities and contaminant38

source information in a laboratory sandbox experiment. Li et al. (2019) used Kalman fil-39

tering combined with a mixed-integer nonlinear programming optimization model to deduce40

the accurate location and release history of a contaminant source. The aforementioned works41

are a strong demonstration that the EnKF and its variants are valid methods for contami-42

nant source identification. However, except for the work by Butera et al. (2013), the release43

history identified in these works only focuses on a constant pulse, the magnitude of which is44

independent of time.45

As an alternative to the EnKF, the ensemble smoother (ES), which was first introduced46

by van Leeuwen & Evensen (1996), assimilates all available data in one single step instead of47

updating the state variable sequentially. Thus, it is expected that it should be able to identify48

time-varying parameters better than the EnKF (and at a cheaper price). The EnKF and the49

ES produce the same results when they deal with linear state-transfer functions since they50
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are based on the same covariance-based formulation (Evensen, 2004). However, in studying51

process with strong nonlinearities, such as in the case of inverting the groundwater flow and52

mass transport equations, the EnKF outperformed the ES (Evensen & van Leeuwen, 2000),53

until an iterative variant of the ES was proposed, the ES with Multiple Data Assimilation54

(ES-MDA), by Emerick & Reynolds (2013). Evensen (2018) compared the ES-MDA with55

other iterative ensemble smoothers to solve history matching problems. Ranazzi & Sampaio56

(2019) investigated the influence of the ensemble size on the use of an adaptive ES-MDA for57

history matching. Todaro et al. (2019) use the ES-MDA to find a solution to the reverse flow58

routing problem. Bao et al. (2020) coupled Generative Adversarial Networks and ES-MDA59

methods, then use them to reconstruct the channel structures and reduce the uncertainty of60

hydraulic head and contaminant concentration predictions. Xu et al. (2021) employed the61

ES-MDA to identify contaminant source parameters and heterogeneous hydraulic conductiv-62

ity jointly with the comparison with restart EnKF. Todaro et al. (2021) employed ES-MDA63

for the simultaneous identification of the source location and the release history of a ground-64

water contamination event. These works are all good examples of ES-MDA dealing with65

time-varying input parameters. However, most of the aforementioned work approximated66

the time-varying parameters by a multiple step function without analyzing the impact that67

the step size had in the results.68

In this work, the ES-MDA is employed to identify a time-varying release history in both69

synthetic and real cases, the capacity of ES-MDA in identifying a release history function as70

a function of the discretization used to approximate it is analyzed first. Then, a synthetic71

case is studied where the influence of observation data frequency and number of ES-MDA72

iterations are discussed. The synthetic also served to analyze two covariance inflation proce-73

dures (e.g., Le et al., 2016; Rafiee & Reynolds, 2017) to prevent smoother collapsing. Next,74

the ES-MDA is applied to the identification of release history functions in two sandbox ex-75

periments. The paper is organized as follows: in section 2, we describe the methodology; in76
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section 3, the synthetic and the real sandbox experiment are presented, followed by the setup77

of different scenarios and evaluation criteria. Finally, in section 4, we discuss the results and78

draw some conclusions.79

2. Methodology80

2.1. Groundwater flow and solute transport equations81

In this work, the contaminant is injected with a given flow rate into a transient ground-82

water flow system. Thus, the governing equations includes both the transient groundwater83

flow equation (Bear, 1972) and the solute transport equation (Zheng & Wang, 1999):84

Ss
∂h

∂t
= ∇ · (K∇h) + w, (1)85

86

∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs, (2)87

where, Ss represents the specific storage [L−1]; h is the hydraulic head [L]; t denotes time88

[T ]; ∇· is the divergence operator, while ∇ represents the gradient operator; K denotes89

the hydraulic conductivity [LT−1] and w represents distributed sources or sinks [T−1], θ90

represents the porosity of the medium [-]; C is dissolved concentration [ML−3]; D represents91

the hydrodynamic dispersion coefficient tensor [L2T−1]; v is the flow velocity vector [LT−1]92

derived from the solution of the flow equation; qs represents volumetric flow rate per unit93

volume of aquifer associated with a fluid source or sink [T−1] and Cs is the concentration of94

the source or sink [ML−3].95

2.2. Ensemble Smoother with Multiple Data Assimilation(ES-MDA)96

As we mentioned before, the ES-MDA is an improvement of the ES made by Emerick &97

Reynolds (2013) for handling nonlinear models. It is an iterative version of the ES where the98

number of iterations is predefined. The method is easy to understand and to implement and99
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has been referred many times in the literature (Emerick & Reynolds, 2013; Evensen, 2018;100

Xu et al., 2021). A brief recall of the three steps that conform the method are described101

next.102

1. Initialization step.103

An ensemble of Ne realizations of the n parameters to identify is generated. In this104

case, the parameters are the mass loadings in time representing the discretized injection105

curve; their initial values are drawn from predefined uniform distributions. (Each ensemble106

member is a different release history function.) At this stage, we also need to set the number107

of iterations Na (also referred to as assimilation steps), and the inflation factors αj; the108

meaning of which are described later.109

2. Assimilation.110

Once the number of iterations and the inflation coefficients are determined, it is time for111

the assimilation procedure, which consists of two steps, a forecast step, and an update step.112

These two steps are repeated for each iteration.113

a. Forecast step114

In this step, the groundwater flow and contaminant transport models, MODFLOW (Mc-115

Donald & Harbaugh, 1988) and MT3DS (e.g., Zheng, 2010; Ma et al., 2012), are run for each116

member of the ensemble; in our case, for each different release history,117

Cf
i,j = ψ[C0, Ai,j], (3)118

where ψ represents the forward numerical model, Cf
i,j are the predicted concentrations (in119

space and time) at assimilation iteration j for the last estimate of the release function i of120

the ensemble, Ai,j. The size of A depends on the number of time steps used to discretize it.121

b. Update step122
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Then, the model parameters are updated as follows,123

Ai,j+1 = Ai,j +∆Aj(∆C
f
j )

T [∆Cf
j (∆C

f
j )

T + αjR]
−1[yobs +

√
αjε− Cf

o,i,j], (4)124

where yobs is a column vector with dimensions No ·Nt containing all observed concentrations125

at all locations and all time steps (No is the number of locations, and Nt the number of126

observation steps); ε stands for the observation error, while R is the covariance matrix of the127

observation error; Cf
o,i,j is the vector of forecasted concentrations for the ensemble parameter128

set Ai,j at the same locations and times where and when observations yobs are made; ∆Aj129

and ∆Cj are matrices defined as130

∆Aj =
1√

Ne − 1
[A1,j − Aj, A2,j − Aj, . . . , ANe,j − Aj], (5)131

132

∆Cf
j =

1√
Ne − 1

[Cf
1,j − Cf

j, C
f
2,j − Cf

j, . . . , C
f
Ne,j

− Cf
j], (6)133

where Aj and Cf
j are the ensemble means of source release history parameters and forecasted134

concentrations at the jth iteration, respectively. The products ∆Cf
j (∆C

f
j )

T and ∆Aj(∆C
f
j )

T
135

are the concentration covariance and the concentration-release function parameters cross-136

covariance, respectively.137

These forecast and update steps will be repeated until the predefined iterations are com-138

pleted. One more thing needs to be pointed out: in our study, since the number of mea-139

surements is larger than the ensemble size, it is necessary to employ the truncated singular140

value decomposition (TSVD) method to compute a pseudo-inverse in Eq. (4).141

2.3. The inflation factors αj142

The iteration number (Na) and the inflation factor (αj) are two influential parameters143

in the performance of the ES-MDA, which are related to one another. Emerick & Reynolds144

(2013) have proven that the ES-MDA could sample the posterior probability distribution145
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function of the parameters precisely only in a linear model and only if the inflation factors146

αj satisfy the following equation,147

Na∑
j=1

1

αj

= 1, (7)148

There are still many options on how to choose the αj parameters satisfying the previous149

equation. Apparently, choosing a decreasing series may be the most appropriate, but some150

authors claim that using uniform values gives similar results, and that choosing these values151

arbitrarily may lead to filter collapse (Le et al., 2016). We have decided to explore two152

methods to select the inflation factors, one proposed by Rafiee & Reynolds (2017), and the153

other one proposed by Evensen (2018).154

Rafiee & Reynolds (2017) propose that the inflation factor for the first iteration is com-155

puted as156

α1 = (
1

N

N∑
i=1

λi)
2, (8)157

where N is the minimum of Ne and No ·Nt, and λi are the singular values of matrix Dj given158

by159

Dj = R− 1
2△Cf

j . (9)160

The subsequent inflation factors are chosen in a geometrical decreasing progression,161

αj = βj−1α1, (10)162

where β is the ratio that fulfills that the sum of the inverse of the inflation factors equals163

one (Eq. (7))164

1− (1/β)Na−1

1− 1/β
= α1. (11)165

Evensen (2018) define the inflation factors on the basis of two numbers, a nonzero value166

α
′
1 and a geometrical ratio αgeo; with these two numbers, a sequence is built according to167
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the following procedure168

α
′

j+1 =
α

′
j

αgeo

, (12)169

which is then normalized to provide the αj values that satisfy Eq. (7)170

αj = α
′

j(
Na∑
j=1

1

α
′
j

) (13)171

This scheme has the capacity of defining the inflation factors as uniform, in an increasing172

sequence or in a decreasing one by choosing an αgeo equal, below or above one, respectively.173

Here, we define αgeo and α
′
1 with the values of 2 and 1, respectively.174

In this work, these two different schemes of generating the inflation factors are employed,175

and their impact is discussed.176

3. Applications177

A numerical model based on real sandbox experiments is used to demonstrate the pro-178

posed method. This sandbox equipment was built up by the Engineering and Architecture179

Department at the University of Parma, and has been employed in several groundwater con-180

tamination studies (Citarella et al., 2015; Cupola et al., 2015; Zanini & Woodbury, 2016). In181

this work, first, we generated synthetic data using this numerical model to test the ES-MDA182

method for the identification of a time-varying release history curve. In the synthetic case,183

we also analyze the impact of the choice of the method to choose the inflation factors, the184

number of iterations, the size of the observation time intervals, and the degree of discretiza-185

tion with which the release curve is represented in the numerical model. Then, we tested186

the ES-MDA with real observation data and analyzed the impact of the observation error187

magnitude.188
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3.1. Sandbox Set-up189

The sandbox has an internal volume of 95 cm by 10 cm by 70 cm and is discretized190

into 95 columns, 1 row, and 70 layers. The reference hydraulic field inside the sandbox191

is shown in Figure 1. The reservoirs upstream and downstream are set up as constant192

piezometric boundaries with a water level of 62.5 cm and 60.6 cm, respectively. The bottom193

of the sandbox is regarded as a no-flow boundary while the top of the sandbox is a phreatic194

surface. An injector was installed inside the glass beads that discharges fluorescein during195

the experiment. Contaminant concentrations are observed in 25 observation points. The196

details about the acquisition of the concentration data could be found in Citarella et al.197

(2015); Cupola et al. (2015). The total experiment time is 3000 s and the injection starts at198

time zero. The main hydraulic parameters used for the simulation are listed in Table 1.199

Injector

Observation points

4 mm glass beads

1 mm glass beads

7
0

9512.5 12.5

Water table

(0, 0) (95, 0)

(0, 70) (95, 70)

D
o
w

n
st

re
a
m U

p
stre

a
m

Figure 1: Sketch of the experimental device (lateral view). Length unit is cm.
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Table 1: Parameters of the groundwater flow and transport models

1 mm glass beads 4 mm glass beads

Hydraulic conductivity (cm/s) 0.65 10.4
Longitudinal dispersivity, αT (cm) 0.106 0.2

Porosity 0.37 0.37
TRVT, αT/αL 0.45 0.45

3.2. Performance Assessment200

The use of an ensemble-based method allows to analyze the performance of the method201

using the root mean square error (RMSE) and the relative RMSE:202

RMSE =

√√√√ 1

n

n∑
i=1

(Aref − Ai)2, (14)203

relative RMSE =
RMSE

intial RMSE
, (15)204

where n is the number of points used to discretize the release history curve, Aref is the205

reference release history while A stands for the ensemble mean of the updated release history,206

initial RMSE refers to the RMSE of the initial ensemble of realizations.207

Based on the definition of RMSE, the smaller the value, the better. The relative RMSE208

is able to show the reduction of the uncertainty. Both parameters serve to evaluate quanti-209

tatively the outcome of ES-MDA.210

3.3. Synthetic Case211

The first set of analyses is based on the synthetic simulation of a time-varying release212

into the sandbox digital twin. The release function adopted is based on a proposal by Skaggs213
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& Kabala (1994):214

S(t) = 2.6 · exp(−
( t
10

− 20)2

50
)

+ 0.78 · exp(−
( t
10

− 50)2

200
)

+ 1.3 · exp(−
( t
10

− 90)2

98
) 0 ≤ t ≤ 3000.

(16)215

This function is shown in Figure 2. We run three sets of scenarios with different time216

discretizations while identifying the release history. More precisely, we chose to identify a217

release function over the 3000 s experiment duration using 50, 100, and 300 time steps. For218

each discretization, two sampling frequencies were considered: samples were taken every219

other time step or every ten time steps. Also, the number of assimilation iterations was220

varied between 4 and 8, and both the Rafiee and Evensen inflation schemes were tested. In221

total 24 scenarios were analyzed as reported in Table 2. And in all scenarios, the model222

error is neglected while we assume the observation errors follow Gaussian distribution with223

a mean of 0 and standard deviation of 0.1 mg/l.224

0 500 1000 1500 2000 2500 3000

Time (s)

0

10

20

30

40

50

60

M
a
s
s
 l
o
a
d
in

g
 (

1
0-3

 m
g
/s

)

Figure 2: Release curve of a synthetic contaminant source.

An ensemble of 500 realizations was used. The initial release history curve of every225

realization is generated using a uniform distribution with ranges [0, 52] 10−3 mg/l.226

Figure 3 shows the recovered release history for the set of scenarios with the coarsest227

discretization of the release function: 50 time steps. In each plot, the blue curve corresponds228
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Table 2: Definition of the synthetic scenarios

Number of discr. Number of time Number of Inflation
Scenario time steps observations iterations factor

S1 50 5 4 Rafiee’s scheme
S2 50 5 4 Evensen’s scheme
S3 50 5 8 Rafiee’s scheme
S4 50 5 8 Evensen’s scheme
S5 50 25 4 Rafiee’s scheme
S6 50 25 4 Evensen’s scheme
S7 50 25 8 Rafiee’s scheme
S8 50 25 8 Evensen’s scheme

S9 100 10 4 Rafiee’s scheme
S10 100 10 4 Evensen’s scheme
S11 100 10 8 Rafiee’s scheme
S12 100 10 8 Evensen’s scheme
S13 100 50 4 Rafiee’s scheme
S14 100 50 4 Evensen’s scheme
S15 100 50 8 Rafiee’s scheme
S16 100 50 8 Evensen’s scheme

S17 300 30 4 Rafiee’s scheme
S18 300 30 4 Evensen’s scheme
S19 300 30 8 Rafiee’s scheme
S20 300 30 8 Evensen’s scheme
S21 300 150 4 Rafiee’s scheme
S22 300 150 4 Evensen’s scheme
S23 300 150 8 Rafiee’s scheme
S24 300 150 8 Evensen’s scheme
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to the actual release history, the gray lines are the recovered release history curves for all229

500 realizations, the red dotted line is the median of the ensemble and the black dashed lines230

mark the 5 and 95 percentiles. The first column uses Rafiee’s inflation and the second column231

Evensen’s inflation. The first two rows use samples every ten time steps (5 snapshots), and232

the last two rows samples every other time step (25 snapshots). The first and third rows233

use four iterations and the second and fourth rows use eight iterations. It can be observed234

that the median of the recovered release history curves is a good estimate of the actual235

release history for almost all cases (scenarios S2 and S4 being the exception), while the236

uncertainty estimate given by the spread of the curves is larger for the scenarios with the237

smallest sampling frequency (scenarios S1 to S4). Also, it can be noticed that Rafiee’s238

inflation method always yields a smaller spread than Evensen’s one. It is hard to argue239

about an improvement with the largest number of iterations since the results with four and240

eight iterations are almost the same.241

Figure 4 shows the recovered release history of the set of scenarios with intermediate242

discretization of the release function: 100 time steps. The organization of the plots in the243

figure is the same as in the previous one. The impact of the inflation scheme, the observation244

data frequency, and the number of iterations is more or less the same as for the 50-time step245

case. However, the median of the recovered release history curves cannot capture the actual246

release history as precisely as in the previous set of realizations, more notably in the set of247

scenarios with samples every 10 time steps (scenarios S9 to S12). For all scenarios, there is248

clearly an excess of fluctuations in the recovered release curves, noticeable in the individual249

curves and also in the ensemble median and percentile curves. This fluctuation is more250

noticeable when the observation sampling frequency is smaller (scenarios S9 to S12). The251

fluctuations must be due to the inherent ill-posedness of the problem since we are trying252

to estimate a large number of parameters that, initially, are assumed to be independent.253

This problem could be alleviated by introducing some smoothing factor that forces that all254
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updated curves after updating display a certain smoothness. It is also important to notice255

the poor estimation of the release curve at the end of the experiment, with a clear non-zero256

estimation for the final steps. This overestimation, which is less patent in the previous set257

of scenarios, must be due to the little or no sensitivity that observations have to release at258

the end of the simulation.259

The deterioration in the estimation of the release curves becomes exacerbated when the260

number of discretization steps is increased up to 300. Figure 5 shows the results for scenarios261

S17 to S24, and their arrangement follows the same pattern as the previous two figures. The262

original release curves are only hinted at by the final ensemble of realizations or their median263

values, the main three peaks are well identified, but several other peaks appear, the spread264

of the realizations is very wide and the fluctuations in time are also quite noticeable. As in265

the previous set of scenarios, using a different parameterization of the release curve enforcing266

some kind of regularization might have helped in removing these artifacts. The only positive267

conclusion from this set of realizations is that, as in the previous two sets, the best results268

are always obtained when using Rafiee’s inflation scheme, eight iterations, and the highest269

sampling frequency.270

For a more quantitative evaluation of the performance of the ES-MDA to recover the271

time-varying release history, Table 3 and Figure 6 illustrates the RMSE and the relative272

RMSE of all 24 scenarios. Based on the RMSE at the last iteration step, we can conclude273

that the ES-MDA with Rafiee’s scheme has a better performance in most scenarios for our274

case, especially when the observation data frequency is low. It is striking to see how the275

RMSE jumps to up to four times the RMSE of the initial ensemble on the first iteration for276

the fine discretization scenarios (last row of Figure 6), a distinct mark of ill-posedness in the277

formulation of the problem.278

Based on this analysis, we decide to apply the ES-MDA to the sandbox experiment using279

Rafiee’s inflation scheme, discretizing the release history into 50 or 100 time steps, and with280

15



Table 3: RMSE of the synthetic scenarios at the last iteration step

Scenario RMSE Scenario RMSE Scenario RMSE

S1 2.295 S9 3.621 S17 12.585
S2 2.136 S10 5.057 S18 15.181
S3 1.979 S11 4.222 S19 8.839
S4 1.818 S12 5.671 S20 12.103
S5 1.120 S13 1.711 S21 9.221
S6 1.178 S14 2.475 S22 8.963
S7 1.321 S15 1.891 S23 7.321
S8 1.182 S16 1.959 S24 6.853

Table 4: Definition of the sandbox scenarios for the train of pulses

Scenario Number of discr. steps Number of observ. time steps

R1 50 5
R2 50 25
R3 100 10
R4 100 50

8 assimilation iterations.281

3.4. Laboratory Case282

We performed two sandbox experiments with two release history curves. The first curve283

displays a train of four pulses lasting the entire duration of the experiment and the second284

curve consists of two pulses at the beginning of the experiment (Figure 7). In this experiment,285

we will not attempt to identify simultaneously the release and the conductivities, but rather,286

we will use the identified distribution of conductivities and observation errors from a previous287

work (Chen et al., 2021) shown in Figure 8. The observation errors follow a Gaussian288

distribution with zero mean and a standard deviation of 1 mg/l. Several scenarios will be289

analyzed that are described in Tables 4 and 4.290

Figure 9 shows the recovered release history curves for the first sandbox experiment,291

the train of pulses. The observed performance is quite similar to the one observed for the292

synthetic experiments; the scenario with the smaller number of discretization steps and the293
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Table 5: Definition of the sandbox scenarios for the two pulses

Scenario Number of discr. steps Number of observ. time steps

R5 50 5
R6 50 25
R7 100 10
R8 100 50

highest frequency for that discretization is the one performing best. The same fluctuation294

as in the synthetic cases is observed about the four peaks of the release curve and the same295

uncertainty spread, which is smaller for scenario R2. Looking closer to this scenario, we can296

notice that the identification of the four pulses has a shift in time of a couple of time steps297

as if the injection had started a little bit later than in reality.298

Figure 10 shows the recovered release curves for the second experiment, the two pulses.299

The same behavior as before is appreciated here. Large fluctuations about the two main300

peaks of the injection, with the best estimation by the median of the scenario with the301

smallest number of discretization steps and the largest frequency of observation for that302

discretization. Yet, there is a major failure in this test case in that the method is not able303

to capture the fact that the injection stops slightly before the middle of the experiment (at304

about 1200 s). In all scenarios, most injection curves for the individual members of the305

ensemble display positive values, and their median is still a relatively large positive value306

for the second half of the experiment, clearly overestimating the total mass injected into the307

system. The increase of values towards the end of the experiment is also quite noticeable. The308

main explanation for this overall behavior is the magnitude of the concentration observation309

error variance.310

Table 6 and Figure 11 show the evolution of the RMSE and relative RMSE for the two311

sandbox scenarios. The results prove that the ES-MDA with Raffee’s inflation scheme is an312

effective method in recovering releasing history in both sandbox experiments. The RMSE for313

all 8 scenarios is reduced after assimilating the observation data. A comparison among the314
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Table 6: The RMSE of sandbox scenarios at final iteration step

Scenario RMSE Scenario RMSE

R1 24.073 R5 18.706
R2 22.419 R6 18.289
R3 24.318 R7 19.123
R4 24.878 R8 20.461

different sandbox scenarios also shows that a high observation data frequency has a lesser315

impact on the outcome than in the synthetic cases. This observation is particularly obvious316

for scenarios R3, R4, and R7, R8, which are the cases with 100 time steps; we believe it is317

mainly caused by the uncertainty about the observation data.318

For a further evaluation of the results, we use the updated release history to generate319

contaminant plume evolution to visually analyze the capacity of the ES-DMA with Raffee’s320

inflation scheme to reproduce the real plumes. Figure 12 and Figure 13 show the ensemble321

means of the contaminant plumes at time steps 600 s, 1200 s, 1800 s, and 2400 s for scenarios322

R2, R4, R6 and R8. We can observe that the simulated plume always spreads more than323

the reference, a consequence of the overestimation of the non-injection period. However,324

compared with the reference contaminant plume in the left column, the simulated plumes325

from the updated release history for the 4 scenarios are all acceptable reproductions of the326

reference.327
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Figure 3: Recovered release histories for scenarios S1 to S8. The blue curve corresponds to the actual release
history. The gray lines are the recovered release history curves for all 500 realizations, the red dotted lines
is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 4: Recovered release histories for scenarios S9 to S16. The blue curve corresponds to the actual
release history. The gray lines are the recovered release history curves for all 500 realizations, the red dotted
lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 5: Recovered release histories for scenarios S9 to S16. The blue curve corresponds to the actual
release history. The gray lines are the recovered release history curves for all 500 realizations, the red dotted
lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 6: Evolution of the Relative RMSE for the synthetic scenarios as a function of the iteration step.
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Figure 7: Release history curves for the two sandbox experiment.
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Figure 8: Hydraulic conductivity field. The red square denotes the source location. Flow and transport are
from right to left.
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Figure 9: Recovered release history for first sandbox experiment, scenarios R1 to R4. The blue curve
corresponds to the actual release history. The gray lines are the recovered release history curves for all 500
realizations, the red dotted lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 10: Recovered release history for the second sandbox experiment, scenarios R5 to R8. The blue curve
corresponds to the actual release history. The gray lines are the recovered release history curves for all 500
realizations, the red dotted lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 11: Relative RMSE of sandbox scenarios(R1-R8)
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Reference: 600s R2: 600s R4: 600s

Reference: 1200s R2: 1200s R4: 1200s

Reference: 1800s R2: 1800s R4: 1800s

Reference: 2400s R2: 2400s R4: 2400s

Figure 12: First sandbox experiment: train of pulses. Ensemble mean of the contaminant plume evolution
obtained with the updated release functions for scenarios R2 and R4 at 600 s, 1200 s, 1800 s and 2400 s.
The first column corresponds to the reference contaminant plume.
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Reference: 600s R6: 600s R8: 600s

Reference: 1200s R6: 1200s R8: 1200s

Reference: 1800s R6: 1800s R8: 1800s

Reference: 2400s R6: 2400s R8: 2400s

Figure 13: Second sandbox experiment: two pulses. Ensemble mean of the contaminant plume evolution
obtained with the updated release functions for scenarios R2 and R4 at 600 s, 1200 s, 1800 s and 2400 s.
The first column corresponds to the reference contaminant plume.
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4. Summary and Conclusions328

In this paper, we employ the ES-MDA to identify a time-varying release history with329

different precision in both synthetic and laboratory cases. In the synthetic cases, we examined330

the capacity of the ES-MDA to identify the release function for (i) different levels of time331

discretizations, with a ratio of 1 to 6 between the coarsest and finest discretizations; (ii) the332

impact of the observation data frequency (every other time step versus one step every ten time333

steps); (iii) the choice of the inflation factors (between Rafiee’s and Evensen’s proposals);334

and (iv) the impact of the number of iterations in the ES-MDA formulation (between four335

and eight). In total, 24 scenarios with combinations of the aforementioned features were336

generated and compared. The results show that the ES-MDA with Rafiee’s scheme has337

a better performance in most scenarios in our case. Also, in all scenarios, increasing the338

observation data frequency always improves the identification of the recovered release history339

curve. The number of iterations, whether four or eight, does not have an important effect on340

the performance of the ES-MDA. In general, the ES-MDA performs well in recovering the341

release history, when the discretization is equal to 50 or 100 time steps but displays large342

fluctuations in the scenarios with 300 time steps. We believe this problem could be alleviated343

by choosing a different parameterization of the release curve, rather than using uncorrelated344

uniform random numbers to generate the initial ensemble of realizations.345

Then, we apply the ES-MDA (using Rafiee’s inflation scheme and eight iterations) to two346

sandbox experiments using different release history curves, a train of four pulses, and two347

pulses during the first half of the experiment. The results show that the ES-MDA works348

well for the train of pulses, but overestimates the injection concentrations for the second349

experiment after the two pulses have ended. We believe that this poor behavior could be350

explained again by the parameterization of the injection curves and the magnitude of the351

concentration observation errors.352

In conclusion, the ES-MDA is a method capable to identify a time-varying release history353

28



in both synthetic and real cases. Better results than the ones presented here could have been354

obtained with a more elaborated parameterization of the time functions to be identified.355
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Chen, Z., Gómez-Hernández, J. J., Xu, T., & Zanini, A. (2018). Joint identification of con-399

taminant source and aquifer geometry in a sandbox experiment with the restart ensemble400

Kalman filter. Journal of Hydrology , 564 , 1074–1084. doi:10.1016/j.jhydrol.2018.07.401

073.402
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