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A B S T R A C T

The growing penetration of non-programmable renewable energy sources and the consequent fluctuations
in energy prices and availability lead to the need to enhance energy system flexibility and synergies
between different energy vectors. This can be reached through sector integration. Among the most relevant
technologies used for this purpose, Power-to-Gas systems allow excess renewable electricity to be converted
directly into fuels that can be then stored or used. A smart energy system, however, which includes these
innovative solutions, requires intelligent management methods to optimize its operation. This work investigates
the operational strategy of energy systems integrated with Power-to-Gas solutions for seasonal storage, by
developing an optimization model for the system, formulated as Mixed-Integer Linear Programming problem.
The algorithm tackles the uncertain nature of future disturbances, such as energy needs, generation and price
using two-stage stochastic programming. The algorithm is tested on grid-connected and 100% renewable
energy supply case studies. The novel stochastic algorithm allows a more robust optimization compared to a
deterministic optimization, and system management is ensured under several future disturbances realization.
Furthermore, the integration of Power-to-Gas solutions warrants the energy security of the energy systems and
acts as a buffer to forestall unpredictable behavior of the disturbances.
1. Introduction

The imperative to decarbonize current energy systems, which arises
from the need to mitigate the negative environmental impacts of fossil
energy sources, is leading to a shift towards sustainable alternatives,
which can ensure a cleaner and more resilient future for our planet. For
this reason, the European Union set ambitious targets for the coming
decades, that foresee a drastic reduction of greenhouse gas (GHG)
emissions in order to reach a zero-carbon economy by 2050. To achieve
these goals, radical changes in the current energy sector need to be
performed [1]. This is leading to a change in the architecture of the
energy systems and networks, due to the exploitation of novel energy
sources and technologies, and the overall complexity of the systems is
increasing. In this context, the key to evolve toward a cleaner and more
sustainable energy system of the future is to develop integrated energy
systems or Multi-Energy Systems (MES), namely systems in which
multiple energy carriers (such as electricity, heat, fuels and cooling)
interact with each other in an optimal way at different levels [2].
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MES can perform better technically, economically and environmentally,
when compared to traditional energy systems, in which each energy
carrier is considered separately, and this is now recognized by many
ongoing research activities on this topic [3].

As mentioned above, an essential step toward a carbon-neutral
society is the integration of renewable energy sources (RES) into the
energy systems to replace the use of fossil fuels. Nonetheless, given the
variability of such sources, energy storage options are needed to allow
their integration: it is in this framework that hydrogen applications
may represent a promising solution [4]. Indeed, producing hydro-
gen with surplus RES means being able to store renewable electricity
in a fuel which can be stored for a long time. Many studies exist
which investigate how the integration of hydrogen production can
perform in helping to decarbonize the energy sector. For instance,
Bahlawan et al. [5] study how the production of hydrogen from elec-
tricity through electrolysis, and hydrogen seasonal storage can support
the transition toward a clean energy supply in different countries,
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providing a procedure for optimal sizing of an MES. Other interesting
results are obtained in [6], where the optimal design of an MES with hy-
drogen seasonal storage is investigated. The authors take into account
the uncertainties in the future behavior of external parameters and
they determine the system features for which the integration of Power-
to-Gas (PtG), i.e. the generation of gaseous fuels, such as hydrogen,
from electricity, becomes viable from an economic and environmental
point of view. They find that this technology is useful in districts with
a high ratio of seasonal thermal-to-electrical demand, as it helps to
compensate for the long-term mismatch between RES production and
energy demand.

When designing, planning or operating an MES, mathematical mod-
els, which reproduce the behavior of the system, are essential tools, and
depending on the purpose of the study, different approaches can be em-
ployed. Among the existing models, Mixed-Integer Linear Programming
(MILP) formulation is the most common mathematical programming
technique to optimize MES at the design and operation level. Indeed,
this method reveals to be a good optimization framework to model MES
at a district scale as it can include the features of such systems with
reasonable computational complexity [7]. Besides, during the modeling
and optimization process of an energy system over a time horizon,
the forecasts of the future external conditions in which the energy
system will operate need to be taken into account. Usually, determin-
istic methods are used, and the prediction of future disturbances are
considered as determined in advance. Indeed, due to model complexity
and computational burden, many models usually pay limited atten-
tion to uncertainty. However, it is crucial to consider the intrinsically
uncertain behavior of physical systems when predicting future distur-
bances (e.g. user needs, prices, RES generation) and performing optimal
scheduling. Thus, assessing the uncertainties has become one of the
main challenges of energy system optimization models [8].

In this work, a stochastic optimization algorithm based on MILP
is developed, to investigate how the integration of PtG and hydrogen
storage solutions in an MES can help to mitigate the impact of the
uncertainties in several parameters.

1.1. Literature review

In the literature, there are many studies that focus on the de-
velopment of planning and scheduling tools for the management of
MES, in which uncertainties in energy needs, prices or production
are considered, to obtain a more robust result. Several techniques are
used to include the uncertainty in planning and optimization of energy
systems: according to Chen et al. [9], the most popular optimization
methods are robust optimization, stochastic programming and chance
constraints programming.

Stochastic programming is formulated as a scenario-based mathe-
matical model, in which the uncertainties are modeled through their
probability distribution function (PDF), which allows recourse actions
to hedge against infeasibility. In [10] the authors use this method to
define an optimal dispatching strategy for integrated energy systems.
On the contrary, when using robust optimization, the probability distri-
bution information about uncertainties is not needed. An example of its
utilization in the field of MES design is shown in [11]. The main feature
of this approach is to ensure the feasibility of the problem against
all possible realizations of uncertain parameters among a predefined
uncertainty set, therefore this method is usually criticized because of
its conservativeness, as it also considers the worst scenario in the set.
Finally, chance constrained programming allows constraint violation: it
does not apply a penalty on the objective function, but the probability
of meeting the constraints is guaranteed to be satisfied with at least a
specified confidence level. It is used for instance in [12] to develop a
distributed optimization method for integrated electricity-natural gas
distribution networks that takes into account the uncertainties in wind
power generation. To use this method, the PDFs of the uncertain-
ties must be known [9]. Each method has its own advantages and
2

limitations, and the main features of them are presented in Table 1. s
In this work, two-stage stochastic programming has been used to
study the integration of Power-to-Gas in an MES to perform seasonal
storage. In this type of model, the decision variables are distinguished
into two groups: first-stage and second-stage variables. While the first
have a deterministic behavior which must be the same for each of the
future scenarios, i.e. the different future realization of the uncertain
parameters, the management of the latter, on the contrary, depends
on the realization of the uncertain parameters. Some relevant works
which use this technique for the optimal operation and design of MES
are presented below.

As shown in Table 2, two-stage stochastic programming is used
in many studies to perform the optimal design of an MES, where
multiple uncertainties are taken into account, such as demand profiles,
market price, RES production. When dealing with design, the first-stage
variables usually represent the selection and size of the technologies,
while the second-stage variables are related to the operation of the
system. Two-stage stochastic programming is also used to perform
day-ahead scheduling of MES or microgrids, with the aim to find the
optimal operation under multiple uncertainties. For all the applications,
the optimization problem can be linearized, obtaining linear formula-
tions (LP, MILP), otherwise nonlinear formulations can be used (NLP,
MINLP). Nonetheless, although many nonlinear formulations exist in
the literature, it is beneficial to maintain problem linearity, as shown
in [14]. Indeed, for energy system scheduling and planning problems,
even though nonlinear formulations may be more accurate, they are a
lot more computationally demanding compared to linear formulations
and may fail to find a feasible solution. On the contrary, a linear
formulation can reach a good accuracy if properly developed and the
optimal solution is guaranteed.

1.2. Scope of the present work

In light of the papers reviewed in the previous section, many
works exist that perform day-ahead scheduling of MES or microgrids,
considering the uncertainties in one or more parameters, as well as
studies that, using a stochastic approach, aim at the design of an MES.
Nevertheless, a lack of studies was found that consider the planning
and optimization of an MES with the integration of PtG technologies
to perform seasonal storage considering uncertainties in many param-
eters. Indeed, when treating the problem of seasonal storage, yearly
prediction horizons are needed, to better understand the potential of
this technology.

In particular, as far as the authors know, there are no studies involv-
ing the possibility to use a yearly planning algorithm as support for the
implementation of a real-time controller on a system, with double time
scale. This work aims at the development of an optimization algorithm,
fast and adaptable to every MES, which takes the uncertainties in the
future disturbances into account, to perform the yearly planning of an
integrated energy system, in which the production of hydrogen and its
storage are included.

The paper aims at answering the following research question: To
hat extent can the integration of seasonal storage through PtG add flexibil-
ty and help mitigate the impact of uncertainties in energy price, generation
nd demand in the planning of an MES?

The work was carried out with the perspective of adopting the
eveloped algorithm in a supervisory controller based on Model Predic-
ive Control (MPC). It could provide additional constraints regarding
he correct long-term operation of the system to a lower level con-
roller, which performs real-time management of the system. Indeed, to
ully understand the possible role of PtG in the energy transition toward

sustainable energy framework, its potential as a long-term storage
olution must be identified. Therefore, it is of paramount importance
o investigate the smart energy management and control techniques
hich make it possible to implement such technology in real energy

ystems, fully exploiting its capabilities.
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Table 1
Main features of the three optimization methods [9,13].

Optimization
method

Stochastic programming Robust optimization Chance constraint programming

PDF Needed Not needed Needed

Advantages Sequential decision making Computationally tractable Relaxation of constraints

Limitations Computationally expensive if large number of
scenarios considered

Overconservative, cannot
provide unified strategy

Computationally challenging

Applications Long-term production planning and design Short-term scheduling Production planning, design and
operation
Table 2
Literature linked to two-stage stochastic optimization applied to MES or microgrids.

Reference Mathematical Aim of optimization Uncertainties Optimization Scenario PtG

model Design Planning Needs RES Prices horizon generation

[15] MILP ✓ ✓ ✓ ✓ Day-ahead Roulette wheel method
[16] NLP ✓ ✓ ✓ ✓ Year Frank copula function
[17] NLP ✓ ✓ ✓ ✓ Year Moment matching
[18] MILP ✓ ✓ ✓ Year 𝑘-means clustering
[19] LP ✓ ✓ More years Decision tree
[20] MILP ✓ ✓ ✓ ✓ Day-ahead Kernel density estimation
[21] MILP ✓ ✓ ✓ ✓ Day-ahead Errors from PDF
[22] MILP ✓ ✓ ✓ ✓ Day-ahead Errors from PDF ✓

[23] MILP ✓ ✓ ✓ ✓ Day-ahead Errors from PDF ✓

[24] MILP ✓ ✓ ✓ Day-ahead Monte Carlo simulation ✓

[25] NLP ✓ ✓ ✓ Day-ahead Based on quantile
[26] NLP ✓ ✓ ✓ ✓ Day-ahead Roulette wheel method
[27] NLP ✓ ✓ ✓ Day-ahead Roulette wheel method
[28] MINLP ✓ ✓ ✓ Day-ahead Monte Carlo simulation
This work MILP ✓ ✓ ✓ ✓ Year Roulette wheel method ✓
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t
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The present paper analyzes the operation of the system, without
onsidering investment for the infrastructures needed to generate and
tore hydrogen. Indeed, the aim of the study is to investigate if an
nergy system can benefit from an hydrogen seasonal storage in terms
f energy security and flexibility.

The paper is structured as follows: in Section 2 the methods used
re investigated and exposed, in Section 3 the application and case
tudies are described, while in Section 4 the results of the simulations
erformed are presented.

. Methodology

This section describes the mathematical model and the optimization
echnique used in this work, as well as the method employed to include
he uncertainties in the optimization and the procedure to generate and
educe the scenarios starting from their PDF.

.1. Mathematical model

For the present application, MILP was used to model and optimize
he energy system considered. Indeed, as mentioned above, linear
ormulations are preferred for these applications compared to nonlinear
nes [14].

The algorithm was developed for a generic MES, such as the one
chematically represented in Fig. 1, in which the different parts of the
nergy system interact with each other. The components involved are
isted below:

etworks: the electricity grid or the gas network for instance. In
he model they are described as entities with which the system can
xchange energy, and the energy purchased from or injected into the
etworks can be associated with a certain economic cost.

sers: all those who have a certain energy need in the energy system.
hey are described as energy consumers, with the energy request given
s input to the algorithm, corresponding to the user needs that must be
ulfilled.
3

e

RES: the renewable energy sources involved. They are described as
energy producers, and are associated with a certain amount of energy
generated at each time-step, which enters the MES without additional
costs.

Conversion systems: the components involved in the system, which
can transform one or more energy vectors into one or more other
energy vectors, such as combined heat and power plants, heat pumps
or absorption chillers. They are described by linear equations that
correlate the input and output energy flows of each plant, with speci-
fied performance parameters. The general equation that describes the
input–output performance curve of a generic conversion system is as
follows:

𝑃out,j(𝑡) = 𝛼j𝑃in,l(𝑡) , (1)

here 𝑗 and 𝑙 are different energy vectors, 𝑡 is the time-step, and 𝛼j is
he performance parameter associated with the output energy vector 𝑗.

In addition, the input power at each conversion system is constrained
between a maximum and minimum value

𝑃in,lMIN
𝛿(𝑡) ≤ 𝑃in,l(𝑡) ≤ 𝑃in,lMAX

𝛿(𝑡) , (2)

here 𝛿(𝑡) is the switch on/off binary variable related to the conversion
ystem. It is worth noting that one conversion system can have more
han one output energy carrier, with different performance parameters
as in the case of a cogeneration plant, which generates both electricity
nd heat and, therefore, has electrical and thermal efficiencies).

torages: all the components that can perform energy storage, such
s a battery, a thermal storage or a fuel storage. The energy stored in
he storage at each time-step is related with the energy stored at the
revious time-step through the following linear equation, which is valid
or the energy vector 𝑙:

l(𝑡) = 𝜂sd𝐸l(𝑡 − 1) +
(

𝜂c𝑃in,l(𝑡) −
𝑃out,l(𝑡)

𝜂d

)

𝛥𝑡 , (3)

where 𝐸l is the energy stored in the form 𝑙, 𝜂sd is the self-discharge

fficiency of the storage, while 𝜂c and 𝜂d are the charge and discharge
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Fig. 1. Schematic diagram of a general MES.
efficiencies, and they model the energy losses when charging and
discharging the storage, respectively, 𝛥𝑡 is the time-step length.

For all the variables, lower and upper bounds are also set, according
to the design of the energy system modeled. In addition, other con-
straints of the model are represented by the energy balances at each
node of the system, indicated by dots in Fig. 1. For a general energy
vector 𝑙, the balance is described by the following equation:
𝑁in
∑

𝑛=1
𝑃in,l(𝑛, 𝑡) =

𝑁𝑜𝑢𝑡
∑

𝑚=1
𝑃out,l(𝑚, 𝑡) , (4)

where 𝑁in and 𝑁out are the number of energy flows of the energy vector
𝑙 entering and exiting the node, respectively. They also include the
energy exchanged with the networks, the energy produced by the RES
and the energy used by the end-users.

2.2. Two-stage stochastic programming

Most of the problems that simulate the future behavior of real
systems include some parameters which are to some extent uncertain.
Indeed, when considering an MES, those parameters can be related
to the end-user needs, to weather conditions, to energy prices or to
the amount of energy produced by a certain renewable energy source.
In this work, two-stage stochastic programming is used to tackle the
uncertainties.

Stochastic programming is a framework for modeling optimization
problems that involve uncertainty, by means of the creation of a
finite number of scenarios for the uncertain parameters. Each scenario
corresponds to a single realization of the random parameter throughout
the time-span and to a probability of occurrence. Two-stage stochastic
programming problems are a type of stochastic programming problem
in which the decision variables are classified into two groups: first-stage
and second-stage decision variables. While the first-stage variables are
the same for each of the considered scenarios and therefore their
behavior must fulfill the constraints for all the scenarios, the second-
stage variables are repeated for each scenario and their management
depends on the related scenario. In such problems, the cost function
is built by means of the summation of the cost associated to all the
scenarios (𝑓 (𝑥)), and those associated with each of the possible future
scenarios considered (𝑄(𝑥, 𝜉𝑠)), where each term is multiplied by the
probability of occurrence of the corresponding scenario, as described
in the following equation:

min 𝑔(𝑥) =
𝑁s
∑

𝑠=1
𝑃𝑟(𝑠)[𝑓 (𝑥) +𝑄(𝑥, 𝜉s)] = 𝑓 (𝑥) +

𝑁s
∑

𝑠=1
𝑃𝑟(𝑠)[𝑄(𝑥, 𝜉s)] , (5)

where 𝜉s are the future scenarios, 𝑃𝑟(𝑠) is the probability of occurrence
of scenario 𝜉 and 𝑁 is the total number of scenarios considered.
4

s s
In this work, since the initial deterministic problem is an MILP, the
resulting two-stage stochastic programming problem is also an MILP,
with the cost function built as described in Eq. (5), while the constraints
involved are all the constraints related to the first- and second-stage
variables.

2.3. Uncertainty modeling

As explained in the previous section, the aim of the proposed
optimization model is to determine the optimal operation of an energy
system over a future prediction horizon, with some of the parameters of
the problem being uncertain at the time of decision. To do so, the un-
certainties were described by means of scenarios over the optimization
horizon, each corresponding with a single realization of the random
parameter throughout the time-span and each associated with a certain
probability of occurrence. In this way, all the stochastic parameters
will be dependent on the considered scenario. The following sections
describe the methods used in this work to generate the scenarios and
to reduce their number.

2.3.1. Scenario generation
To generate the scenarios, a scenario generation method based on

Monte Carlo sampling and the roulette wheel mechanism was used [27,
29]. When using this method, the forecast of the uncertain parameter
over the period considered and its PDF must be known. The roulette
wheel mechanism for scenario generation is described by the following
steps and displayed in Fig. 2:

• The PDF of each uncertain parameter is discretized into a fi-
nite number of intervals, centered on the mean value, which
corresponds to the forecast of the uncertainty at the considered
time-step, as shown in Fig. 3. The length of each interval corre-
sponds to the standard deviation of the distribution 𝜎. For the
purpose of this work, to model the uncertain parameters, the
normal PDF is used [23], which is described by Eq. (6)

𝑃𝐷𝐹 (𝑥) = 1

𝜎
√

2𝜋
𝑒
(

− (𝑥−𝜇)2

2𝜎2

)

. (6)

• The probability associated with each interval 𝑘 is calculated using
the following equation:

𝑝k = ∫

𝑥end

𝑥start
𝑃𝐷𝐹 (𝑥)𝑑𝑥 . (7)

• The probabilities 𝑝k are normalized in a way that their summation
becomes equal to one, and each interval is associated with an

accumulated probability, as shown in Fig. 3.
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Fig. 2. Main steps of the roulette wheel mechanism.

Fig. 3. Discretization of the PDF for the uncertain parameters, and accumulated
normalized probabilities.

• To create the scenarios, for each time-step of the prediction
horizon and each uncertain parameter, a number in range [0, 1]
is randomly generated, and one of the intervals is consequently
picked. The probability associated with the point obtained cor-
responds to that of the interval, while the value for the random
parameter becomes equal to the mean value associated with the
interval picked at the time-step considered.

• Assuming that the uncertain parameters are independent of each
other, the probability of each scenario 𝑠 can be calculated as
follows

𝑃𝑟(𝑠) =
∏𝑁u

𝑢=1
∏𝑁t

𝑡=1 𝑝k (𝑢, 𝑡)
∑𝑁s ∏𝑁u ∏𝑁t

, (8)
5

𝑠=1 𝑢=1 𝑡=1 𝑝k(𝑢, 𝑡)
Fig. 4. Simultaneous backward scenario reduction method.

where 𝑁t is number of time-steps, 𝑁u is the number of uncertain
parameters, 𝑁s is the total number of scenarios generated and
𝑝k(𝑢,𝑡) is the probability associated with the value of the uncertain
parameter 𝑢 of the scenario at the time-step 𝑡.

2.3.2. Scenario reduction
In order for the representation of the uncertainties to be relevant

through the scenarios, and to reproduce their probabilistic behav-
ior in an appropriate way, a large number of scenarios is needed.
Nevertheless, for the sake of optimization problem tractability, the
number of scenarios needs to be reduced, and an appropriate scenario-
reduction method must be chosen. Indeed, it is important to maintain
an accurate representation of the uncertain behavior of the system. In
this work, a simultaneous backward reduction method, which takes
into account both the probability of the scenarios and their similarity
to other existing scenarios, has been used [27,30]. With this kind of
scenario reduction method, it is possible to select the scenarios which
are more relevant among the initial set. Indeed, the reduction method
allows the selection using a compromise between the similarity and
the probability of scenarios, selecting the scenarios which are different
from each other and at the same time more likely to occur.

Considering 𝑁s different scenarios 𝜉i(𝑖 = 1,… , 𝑁s), each with a
probability equal to 𝑃𝑟(𝑖), let 𝐷𝑇 (𝑖, 𝑗) indicate the distance between two
different scenarios 𝜉i and 𝜉j, calculated as follows

𝐷𝑇 (𝑖, 𝑗) =

√

√

√

√

𝑁t
∑

𝑡=1

𝑁u
∑

𝑢=1

(

𝑣it,u − 𝑣jt,u
)2 , (9)

where 𝑣𝑖t,u represents the value of scenario 𝜉i for the uncertain param-
eter 𝑢 at time 𝑡, 𝑁t is the number of time-steps and 𝑁u is the number
of uncertain parameters. The procedure for the scenario reduction is
shown in Fig. 4, and it is composed of the following steps:

Step 1: Let 𝑆 be the initial set of scenarios to be reduced, which ini-
tially contains all the scenarios. Calculate the distances 𝐷𝑇 (𝑖, 𝑗)
for all the scenario pairs.

Step 2: For each scenario 𝜉k ∈ 𝑆, find the scenario 𝜉r with the
minimum distance from it.



Energy 284 (2023) 129212E. Marzi et al.
Fig. 5. Layout of the GC case studies (PEM, HS and FC are only present in the GC_Västerås_H2 case study).
Step 3: For each scenario 𝜉k ∈ 𝑆, calculate 𝑃𝐷(𝑘, 𝑟(𝑘)) = 𝑃𝑟(𝑘) ∗
𝐷𝑇 (𝑘, 𝑟(𝑘)) and select the scenario 𝜉d with 𝑃𝐷(𝑑, 𝑟(𝑑)) =
min𝑃𝐷(𝑘, 𝑟(𝑘)). By weighting the distance with the probability,
it is possible to take into account both probability of occurrence
and distance from the other scenarios.

Step 4: Delete 𝜉d from the set of scenarios 𝑆. Update the probabilities
of the scenarios, adding the probability of the deleted scenario
𝜉d to the probability of 𝜉r : 𝑃𝑟(𝑟) = 𝑃𝑟(𝑟) + 𝑃𝑟(𝑑).

Step 5: Repeat the procedure from Step 2 to Step 4 until the desired
number of scenarios is reached.

3. Application

The optimization algorithm with the stochastic approach presented
in Section 2 was tested on different case studies: two grid-connected
and two positive energy districts. They were used as virtual test
benches, and the results were compared with the ones obtained using
the deterministic approach, with the same boundary conditions. This
section presents the case studies considered, how the optimization
algorithm was applied to them, and how the uncertain parameters were
modeled.

3.1. Grid-connected case studies

As a first case study, the city of Västerås was chosen, which is
located in the south of Sweden. The energy system of the city is grid-
connected (GC) and it is composed of three combined heat and power
plants (CHPs), which convert residential waste, biofuels and renewable
fuels into heat and electricity. In addition, there is an absorption chiller
(AC) and two heat pumps (HPs), which contribute to the district heating
network (DHN) supply together with the CHPs, and to the fulfillment
of the cooling needs together with the AC. The energy system is also
equipped with a water tank for heat storage (TES), while another bigger
underground heat storage will be built in the near future (TES-u), to
perform seasonal storage, and it is included in the optimization model.
This first case study was named GC_Västerås.

Starting from the reference system, a second case study was de-
veloped (GC_Västerås_H2), considering the installation of a PEM elec-
trolyzer (PEM), together with a hydrogen storage tank (HS) and a fuel
cell (FC) to convert the hydrogen into electricity and heat, with the
aim to analyze the impact of the introduction of hydrogen seasonal
storage on the existing MES. The configuration of this second case
study is displayed in Fig. 5. It was also assumed to use part of the
produced hydrogen to fulfill the needs of a steel mill in the area (the
6

Table 3
Characteristics of the technologies of the GC case study.

Technology Nominal inlet
power

Performance parameters Reference

CHP 5 200 MW 𝜂th = 63%, 𝜂el = 27% [32]
CHP 6 167 MW 𝜂th = 63%, 𝜂el = 27% [32]
CHP 7 150 MW 𝜂th = 63%, 𝜂el = 27% [32]
HP 1 5 MW 𝐶𝑂𝑃 = 3, 𝐸𝐸𝑅 = 1.4 [33]
HP 2 4 MW 𝐶𝑂𝑃 = 3, 𝐸𝐸𝑅 = 2.5 [33]
AC 9 MW 𝐸𝐸𝑅 = 0.78 [33]
PEM 200 MW 𝜂H2

= 60%, 𝜂th = 16.1% [34]
FC 200 MW 𝜂th = 25%, 𝜂el = 55% [35]
HP-el 32.2 MW 𝐶𝑂𝑃 = 4 [36]

Technology Nominal
capacity

Performance parameters Reference

TES-u 13 000 MWh 𝜂sd = 99.5%, 𝜂c = 𝜂d = 95% [37]
TES 1 200 MWh 𝜂sd = 99.9%, 𝜂c = 95%, 𝜂d = 95% [37,38]
HS 66 644 MWh 𝜂sd = 𝜂c = 𝜂d = 100% [38]

Hallstahammar steel mill [31]). The characteristics of the plants are
presented in Table 3.

In the table, PEM efficiency also includes the compressor energy, to
compress the produced hydrogen until the storage pressure (100 bar)
[39], and HP-el represents an additional heat pump which is introduced
to upgrade the heat produced at low temperature from the electrolyzer
(at around 55 ◦C), to the temperature needed for the DHN (80 ◦C).
For a clearer representation, this heat pump is not shown in Fig. 5.
It is worth mentioning that a self-discharge efficiency 𝜂sd equal to
one is considered for the hydrogen storage, as it has been done in
Refs. [5,38]. Given the state of knowledge and the purpose of the
analyzes performed, this value was assumed, although for some storage
technologies, due to the small size of the hydrogen molecule, the self-
discharge efficiency might be lower. However, this does not affect the
reliability of the developed algorithm.

The three CHPs work with different fuels: CHP 5 uses biofuel (19
EUR/MWh [40]), CHP 6 uses residential waste (−16 EUR/MWh [41]),
and CHP 7 uses renewable fuels (9.5 EUR/MWh [40]). The residential
waste is also imported from other cities in the Scandinavian countries,
and it has a negative price since the plant owners receive a revenue
for managing it. Part of the electricity needs of the city are covered
by the CHPs; nevertheless, since the CHPs are heat-driven rather than
electricity-driven, it is necessary to buy the remaining part of elec-
tricity from the national electrical grid. The prices of electricity are
regulated by Nord Pool, which manages power exchange in the Nordic
countries [42].
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Fig. 6. Forecast of the energy needs for the GC case studies (the hydrogen need is
only present in the GC_Västerås_H2).

Table 4
Characteristics of the technologies of the PE case studies [5].

Technology Nominal inlet power Performance parameters

Rome Guangzhou Rome Guangzhou

GT 7.61 MW 5.28 MW 𝜂el = 26% 𝜂el = 25%
𝜂th = 60%

ASHP 5.5 MW 7 MW 𝐶𝑂𝑃 = 3.3, 𝐸𝐸𝑅 = 2.8
AC 0.8 MW 2 MW 𝐸𝐸𝑅 = 0.75
PEM 11 MW 13 MW 𝜂H2

= 55%

Technology Nominal capacity Performance parameters

Rome Guangzhou Rome Guangzhou

HS 3314 MWh 2038 MWh 𝜂sd = 𝜂c = 𝜂d = 100%
TES 92 MWh 66 MWh 𝜂sd = 𝜂c = 𝜂d = 99.5%
BES 10 MWh 30 MWh 𝜂sd = 100, 𝜂c = 𝜂d = 95%

The boundaries of the model comprise the power exchanged with
he power grid, the heat, electricity and cooling demand of the entire
ity and the energy conversion plants previously mentioned. The elec-
rical and thermal needs are estimated from historical data, while the
istrict cooling needs are calculated in analogy with [43]. Indeed, the
isturbances given to the optimization model are the energy needs of
he entire city (displayed in Figs. 6(a) and 6(b)) and the energy prices
fixed for the fuels and variable for the electricity bought). For the
atter, the forecast is estimated based on historical price data and it
s shown in Fig. 7.

When employing the stochastic optimization, the behavior of the
irst-stage variable is defined a priori and cannot be changed depending
n the scenario. Instead, the management of the second-stage variables
s defined after the realization of the scenario and they represent a
ource of flexibility for the system. For this case study, the variables
ssociated with the CHPs, PEM electrolyzer and AC management are
onsidered as first-stage variables; while the ones related to the HPs,
C, storages and electricity bought from the electrical grid are taken
s second-stage variables, and therefore the undesirable effects of the
ncertain parameters can be adjusted through their management.

.2. Positive-energy case studies

Two other case studies were simulated, taken from a study from
7

ahlawan et al. [5]: they are two districts with the same architecture
Fig. 7. Forecast of the electricity prices for the GC case studies.

Table 5
Case studies simulated.

Case study Approach

GC_Västerås Deterministic
GC_Västerås Stochastic
GC_Västerås_H2 Deterministic
GC_Västerås_H2 Stochastic
PE_Rome_H2 Deterministic
PE_Rome_H2 Stochastic
PE_Guangzhou_H2 Deterministic
PE_Guangzhou_H2 Stochastic

but different ambient conditions, in particular it was assumed to locate
the MES in Italy and in China, respectively in Rome (PE_Rome_H2) and
in Guangzhou (PE_Guangzhou_H2). The layout of these case studies is
presented in Fig. 8. They comprise a photovoltaic plant (PV), a PEM
electrolyzer (PEM), a gas turbine (GT), which works with hydrogen, a
heat pump (HP), an absorption chiller (AC), and storages for hydrogen
(HS), heat (TES) and electricity (BES). The characterstics of the plants
involved are shown in Table Table 4 for the two locations. While
the HS is supposed to be used for seasonal storage, TES and BES are
meant for daily energy fluctuations. The energy system designed in [5]
was sized to be stand-alone and not connected to the electrical grid.
However, in this work, it was assumed that the system can export
the surplus electricity produced by the PV (although the electricity
cannot be bought), in this way the system become a positive-energy
(PE) district.

It needs to be highlighted that in these case studies, it is assumed
that the waste-heat from the electrolyzer is not recovered, so that the
results can be compared with those obtained in [5], and therefore the
quality of the solution of the novel algorithm can be tested.

Both case studies have an electricity demand of 10 GWh/year,
that corresponds to approximately 300 buildings, and the forecast of
the energy needs for the two locations is shown in Figs. 9 and 10.
The profiles were taken from [5], where the authors calculated the
energy needs and the renewable energy production using the TRNSYS®
software and monthly average data (see Table 4).

In these case studies, the energy stored in the BES and the manage-
ment of PEM, AC and HP are the first-stage variables in the stochastic
approach, while the energy stored in the HS and TES, the energy at the
GT and the electricity exported are chosen to be second-stage variables
and help to mitigate the effects of the uncertainties.

3.3. Optimization algorithm

The deterministic and stochastic optimization algorithms presented
in Section 2 were adapted to the four case studies, leading to the eight
case studies listed in Table 5.

The optimization algorithm was developed in the Python environ-

ment, and the problem was solved through the open-source solver
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Fig. 8. Layout of the PE case studies.
Fig. 9. Forecast of the energy needs and production for the PE_Rome_H2 case study [5].

Fig. 10. Forecast of the energy needs and production for the PE_Guangzhou_H2 case
study [5].

CBC [44]. The simulations were done over a period of one year, with a
daily time-step. It is worth pointing out the reason why such parameters
have been chosen: although this algorithm is now tested on virtual test-
benches, it was developed with the intent of being used in a supervisory
MPC module. Thus, the algorithm should have both a long-term vision
of the system to be optimized, and the aim to give additional constraints
to a short-term controller which operates the real-time control of the
system. In this way, it is possible to have a control which also considers
long-term objectives and performs better over time. In other words, this
optimization algorithm needs to be fast, since it must be run every day
and calculate the best control action to communicate to the real-time
8

controller. Therefore the model was simplified and a daily time-step
was employed. In addition, only an average efficiency was used for each
plant, as the daily average power was considered. A similar work has
been done by Saletti et al. [45].

The cost function implemented in the GC case studies is the mini-
mization of the total economic cost, which is expressed for the stochas-
tic approach by the following equations:

min 𝑓objGC , (10)

with

𝑓objGC =
𝑁t
∑

𝑡=1

[ 𝑁f
∑

𝑓=1
𝑐f ,bo𝑃f ,bo(𝑡)

+
𝑁𝑠
∑

𝑠=1
𝑃𝑟(𝑠)

(

𝑐el,bo,s(𝑡)𝑃el,bo,s(𝑡) − 𝑐el,so,s(𝑡)𝑃el,so,s(𝑡)
) ]

𝛥𝑡 , (11)

where 𝑐f ,bo is the cost of purchasing the fuel 𝑓 , while 𝑐el,bo(𝑡) and 𝑐el,so(𝑡)
are the costs of buying and selling energy, expressed in EUR/MWh. In
addition, 𝑃f ,bo(𝑡) represents the amount of fuel 𝑓 used by the CHPs,
𝑃el,bo,s(𝑡) is the amount of electricity bought from the grid, and 𝑃el,so,s(𝑡)
is the electricity sold to the grid, in MW, 𝑁t is the total number of
time-steps considered in the optimization, 𝑁f is the number of fuels,
𝑁s is the number of scenarios, 𝜉s is the scenario considered, 𝑃𝑟(𝑠) is its
probability of occurrence and 𝛥𝑡 the time-step length, in hour.

In the PE case studies, instead, the objective is the maximization of
the total electrical energy exiting the MES, with the aim to utilize the
renewable energy produced in the most efficient way. The stochastic
cost function is as follows

max 𝑓objPE , (12)

with

𝑓objPE =
𝑁t
∑

𝑡=1

𝑁scen
∑

𝑠=1
𝑃𝑟(𝑠)𝑃el,exp,s(𝑡)𝛥𝑡 , (13)

where 𝑃el,exp,s(𝑡) is the amount of excess electrical power at time-step 𝑡,
for the scenario 𝜉s, that can be exported and possibly injected into the
grid. The cost function for the deterministic approach is easily obtained
starting from the stochastic one, by considering a single scenario with
probability equal to one.

3.4. Uncertainties

The uncertainties have been considered by means of the creation of
scenarios for the uncertain parameters. First, the PDF of the uncertain
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Fig. 11. Scenarios for electricity needs over one month, for the GC case studies.

arameters was discretized into seven intervals centered on the fore-
asted value, each interval with a width equal to the standard deviation
, as shown in Fig. 3 [26,27]. Then, a large number of scenarios was
enerated using the roulette wheel mechanism and, finally, this number
as reduced to use them in the optimization model, following the pro-

edure presented in Section 2.3. The uncertain parameters considered
re the electricity price and user needs in the GC case studies, and PV
roduction and user needs in the PE case studies. These parameters
ere considered as independent to each other, even though in real life

his is not always the case. Nonetheless, this assumption does not affect
he robustness of the approach. Similarly to what has been done in [26],
he normal PDF was considered to model the deviation in the forecasted
alue for all the uncertain parameters. Indeed, although Weibull or
eta PDFs are generally adopted for wind speed and solar irradiance,
ith the roulette wheel scenario generation method, the scenarios are
enerated based on the difference between the forecasted value and the
ctual one, not the quantity itself, and therefore the normal distribution
s adequate. The standard deviation was estimated based on historical
ata.

As an example, in Fig. 11 the scenarios for the electricity needs for
he GC case studies are displayed, over one month, together with the
eterministic forecast (represented by the black line).

. Results

The algorithm was tested by applying it to the presented case
tudies. Both deterministic and stochastic models were employed, to
ompare the results obtained with the different approaches.

This section presents the results of this analysis. In particular,
he outcomes of a sensitivity analysis are first described, which was
erformed to find the most appropriate number of scenarios to use
hen employing the stochastic approach; secondly, the results obtained

rom the simulations and the comparison between the different case
tudies are presented.

.1. Sensitivity analysis

When solving a stochastic problem, the higher is the number of
cenarios considered, the more the solution is robust. However, with
igh number of scenarios, the complexity of the problem increases, as
ell as the number of variables and this leads to greater computational
ffort. For this reason, it is important to use a number of scenarios
hat permits to obtain a reliable solution in a reasonable computational
ime. While reducing the scenarios, a sensitivity analysis was performed
or the case study of the city of Guangzhou, with the aim of determining
he number of scenarios taking account of the compromise between
he computational time needed to find an optimal solution and the
elevance of the solution. The simulations have been run with 5, 10,
5, 20 and 25 scenarios: the results obtained are shown in Fig. 12.
9

he tests were carried out using a Core i7 system with 2.80 GHz CPU
Fig. 12. Results of the sensitivity analysis for the PE_Guangzhou_H2 case study.

and 16 GB of RAM. Based on these results, it was decided to use 10
scenarios for the stochastic simulations. Indeed, with this number, an
optimal result can be obtained in around one hour of calculation time,
which is acceptable, if the algorithm is meant to be used for updating
the yearly optimal scheduling every day. In addition, with a higher
number of scenarios, the calculation time increases significantly, while
the solution obtained is not affected in a relevant way.

4.2. Results for the grid-connected case studies

In this section, the results obtained from the simulations performed
for the GC case studies are presented. Figs. 13(a) and 13(b) show the
amount of electricity bought from the electrical grid in the two cases.
The results of the stochastic approach are displayed in the form of
bands, created by combining the maximum and minimum values ob-
tained for the different scenarios. While in the GC_Västerås case study
the amount of imported electricity presents some variations, but it is
always lower than 4000 MWh/day, in the GC_Västerås_H2 case study
there are peaks of electricity purchased when the electricity price is
lower. This happens thanks to the introduction of the electrolyzer in the
system, which allows hydrogen production when the electricity price
is low enough. In this way, more flexibility is added by the integration
of hydrogen production in the energy system. In addition, looking at
the differences between deterministic and stochastic approaches, it can
be noted that the results obtained using the deterministic approach
are mainly contained in the stochastic bands, showing that with the
stochastic approach the results are coherent with what is achieved in a
deterministic way.

Given the high variability of the electricity price in this region
of Sweden, the integration of this kind of technology can be helpful
in saving money and in the exploitation of the large availability of
renewable energy in the country during some periods of the year, which
leads to low electricity prices. Indeed, as shown in Table 6, the value of
the objective function, namely the total economic cost of the system, is
lower in the GC_Västerås_H2 case study, even if in this case study part
of the produced hydrogen is used to fulfill additional hydrogen needs.
It is worth underlining that it was possible to compare the results of
the deterministic approach and the stochastic approach in terms of cost
function value because the difference in percentage between the data
used for the deterministic simulations and the weighted values obtained
with the scenario approach over the whole year was not significant.

Fig. 15 displays the cumulative costs and revenues of the system
over the year in the four simulations. For the stochastic approach,
a weighted value for the cost of electricity was calculated and the
percentage indicated refers to the total positive economic cost (ex-
cluding revenues). It is possible to notice that the cost of electricity
represents more than half of the total cost for all the simulations,
followed by renewable fuel and biofuel. Residential waste, on the other
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Fig. 13. Electricity bought from the grid in the (a) GC_Västerås and (b) GC_Västerås_H2 case studies in the deterministic and stochastic approach.
Fig. 14. Management of the hydrogen storage in the GC_Västerås_H2 case study in the
eterministic and stochastic approach.

Table 6
Objective function obtained for the GC case studies.

Simulation approach Cost function value (EUR) Cost reduction

GC_Västerås GC_Västerås_H2

Deterministic 19 496 164 18 475 391 5.2%
Stochastic 19 636 593 17 164 267 12.6%

hand, allows for great savings, since the revenues deriving from its
use cover more than half of the expenses. By comparing deterministic
and stochastic approaches, it can be seen that the cost of electricity
is the main cost saving factor for the GC_Västerås_H2 case studies. As
already mentioned, in fact, with the introduction of the electrolyzer it
is possible to better exploit periods of low electricity prices and avoid
purchasing electricity at high prices.

Fig. 14 shows the management of hydrogen storage in the
GC_Västerås_H2 case study with the two approaches. A few considera-
tions can be made: with the deterministic approach, the storage is kept
empty during the first months of the year, when it is not used, and this
obviously leads to lower flexibility of the system, as in the case of a
sudden price increase, there is a lack of stored hydrogen available to
produce electricity; nevertheless, the stored hydrogen in the stochastic
approach is not always greater than in the deterministic approach, since
the energy security of the system does not need to be guaranteed, as
the plant is connected to the power grid.

Among the results, it is also obtained that the HP-el produce 0.7%
of the heat for the DHN supply in the deterministic approach, while
this number increases to 1.4% in the stochastic approach, showing that
the waste heat from the PtG plant, even if in modest quantities, also
allows for thermal energy to be used in the city’s DHN.
10
4.3. Results for the positive-energy case studies

The following results were obtained from the simulations for the PE
case studies. First of all, in Figs. 16 and 17, the electricity exported
to the grid is displayed: for the stochastic approach, the results are
shown in the form of bands of operation, as for the GC case study.
It needs to be highlighted that the maximum amount of electricity
exported from the system was constrained to be less than 24 MWh
per day. This was set for two reasons: first, since maximization of
exported electricity is the objective of the optimization, if the maximum
amount of exported electricity is not constrained, seasonal hydrogen
storage could be used less, mainly with the deterministic approach,
reducing the energy security of the system; secondly, considering the
integration of these positive energy districts with the electrical grid,
this allows for a lower impact on the stability of the electrical grid.
The systems, in fact, are considered self-sufficient, with the possibility
of feeding (if available) surplus renewable electricity into the electrical
grid. It is clear that, to integrate such positive energy systems into the
existing energy networks, they need to maintain their self-sufficient
characteristics and without impacting negatively on external networks.

These results show that in both cases the average amount of electric-
ity sold using the stochastic approach (the dotted line) is lower than the
electricity sold using the deterministic approach, which also leads to a
lower cost function value for the stochastic approach (see Table 7). This
management is due to the variability added through the scenarios both
in energy production and utilization, which causes a more conservative
behavior of the system, a lower export of electricity and therefore the
storage of a greater amount of energy.

An interesting result concerns the management of the PEM elec-
trolyzer in the two approaches, displayed in Figs. 18 and 19. It is
possible to see that more hydrogen is produced in the stochastic ap-
proach in both case studies, leading to a higher amount of hydrogen
stored, as shown in Figs. 20 and 21. This is important because the
hydrogen storage is used from the optimizer to help mitigate the impact
of the uncertainties on the energy system. Indeed, by keeping it fuller,
the system is more robust against unpredictable events (such as a
sudden decrease in the energy production or an unexpected high energy
request from the end-users) and the energy security of the system is
higher.

Another significant result of this study regards the different man-
agement of the hydrogen storage in the two locations. Indeed, while in
Rome the storage is emptied during the spring (see Fig. 20), and the
hydrogen is mainly used to fulfill the thermal needs during the winter
season, in Guangzhou the storage is filled during the winter and the
hydrogen is used to fulfill the high cooling needs during the summer
(see Fig. 21). Especially, it can be seen that the storage is emptied
rapidly is the first half of October: here, as it can be seen in Fig. 10, the
electrical and cooling needs are high, while the PV production starts
to decrease because of the coming of the winter season. This shows

the algorithm is successful regardless of the geographical location or
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Fig. 15. Economic analysis for the GC_Västerås and GC_Västerås_H2 case studies in the deterministic and stochastic approach.
xternal conditions, which lead to a different energy demand, as shown
n Figs. 9 and 10.

Furthermore, when looking at the management of the GT (displayed
n Figs. 22 and 23), which was considered as a second-stage variable
nd therefore behaves differently for each of the scenarios, it can be
oted that the behavior obtained using the deterministic approach is
argely contained in the bands of operation derived for the management
f this plant in the stochastic approach.

Nevertheless, when comparing the deterministic and the stochastic
esults, it can be seen that the solution obtained from the deterministic
odel can be misleading. Indeed, when considering the uncertainties,

ess electricity is sold to the grid in the stochastic approach, leading
o a higher operational energy cost, showing that the solution of the
eterministic approach could be unrealistic and is vulnerable to uncer-
ainty. On the contrary, with the solution obtained from the stochastic
pproach, if any of the scenarios happen, the management of the MES is
ossible. Finally, analyzing the results obtained with this optimization
trategy, it can be seen that the trends and the management of the
ydrogen storage are in line with what was obtained by Bahlawan
t al. [5]. Nonetheless, when the system is optimally managed, using
oth the approaches presented, the results show that the system is
versized: in fact, part of the electricity is always exported. In addition
t is obtained that the AC is not used in the PE_Rome_H2 case study,
eaning that it is more convenient to use the renewable electricity to

ulfill cooling needs through the ASHP. In the PE_Guangzhou_H2 case
tudy, instead, the AC is used around 25 days per year in both the
pproaches, during April and October, which is quite a short amount of
ime. It was demonstrated that even when this plant is removed from
he energy system, its management is feasible, which means that the
C could also be omitted from the design of the system in both the

ocations.

. Conclusions

The increasing complexity of current energy systems leads to the
eed to find efficient optimization strategies to manage them in an
ntelligent way. In this work, an optimization algorithm based on
ixed-Integer Linear Programming is proposed, which is a useful tool
hen considering the management of a complex Multi-Energy Sys-
11

em, to determine its optimal operation. The novelty of this research
Fig. 16. Electricity exported in the PE_Rome_H2 case study in the deterministic and
stochastic approach.

Fig. 17. Electricity exported in the PE_Guangzhou_H2 case study in the deterministic
and stochastic approach.

is to introduce the uncertainty in various external parameters in a
conventional energy planning algorithm, to study the integration of a
Power-to-Gas solution for seasonal storage. This leads to a problem in
which the objective function considers the expected cost of the different
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Fig. 18. Management of the PEM electrolyzer in the PE_Rome_H2 case study in the
deterministic and stochastic approach.

Fig. 19. Management of the PEM electrolyzer in the PE_Guangzhou_H2 case study in
he deterministic and stochastic approach.

Fig. 20. Management of the hydrogen storage in the PE_Rome_H2 case study in the
eterministic and stochastic approach.

Fig. 21. Management of the hydrogen storage in the PE_Guangzhou_H2 case study in
the deterministic and stochastic approach.
12
Fig. 22. Management of the GT in the PE_Rome_H2 case study in the deterministic
and stochastic approach.

Fig. 23. Management of the GT in the PE_Guangzhou_H2 case study in the
deterministic and stochastic approach.

Table 7
Objective function obtained for the PE case studies.

Case study Cost function value (MWh) Difference

Deterministic Stochastic

PE_Rome_H2 7356 6443 −12.4%
PE_Guangzhou_H2 8263 6847 −17.1%

considered scenarios, and the aim is to use the developed algorithm in
a novel controller to optimize the management of an energy system.

Indeed, while it is simple to implement and solve a deterministic
model, the main disadvantage of these models is their inability to
consider the uncertainties in the parameters of the optimization, which,
however, is possible when employing stochastic programming. The
proposed method showed its efficiency in dealing with large-scale
problems by applying a precise stochastic modeling of the uncertain
parameters and the Mixed-Integer Linear Programming approach.

The case studies considered involved the integration of Power-to-
Gas technologies to provide seasonal storage, both in positive energy
districts and in grid-connected energy systems. Indeed, the algorithm
was applied to four different case studies, with different configurations
and boundary conditions: this made it possible to obtain a wide range
of results and to test its efficiency. The results obtained using both a
deterministic and the novel stochastic algorithm were compared, show-
ing the ability of the latter to optimize the management of the system
considering uncertainties in energy production, prices and needs, and
providing higher flexibility. The research led to the following main
results:

• The hydrogen seasonal storage ensured energy security in the
positive-energy case studies, and different climate conditions led

to different ways of managing the storage.
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• In a grid-connected case study, its management is both related to
climate conditions and electricity prices, and makes it possible to
reduce the cost of purchasing electricity over one year.

• The exploitation of this technology acts as a buffer to forestall
unpredictable behavior of the disturbances and can help to pre-
vent any undesirable disservices due to this unexpected behavior.
Therefore, the flexibility of the system is increased, and the
impact of the uncertainties on its management is mitigated.

• When using the stochastic approach, the optimal management
of the system is robust to the uncertain boundary conditions
and optimal bands of operation can be obtained for the decision
variables, by combining the results for each scenario.

he developed algorithm is easily applicable to other case studies,
evealing to be a useful tool to study various applications at different
cales. Indeed, depending on the case study considered, a different
usiness model can be taken into account, by changing the goals and
he objective function implemented. However, the algorithm could
e improved further, for example by taking into consideration the
nterdependence of the uncertainties or by performing a multi-objective
ptimization, to address different purposes.

The results show that it is worth investing in these technologies to
erform seasonal storage in terms of energy management and operating
ost: further studies need to be done to investigate the economics of the
ystems also taking into account the investment costs.

Future studies will include the usage of this optimization algorithm
n a Model Predictive Controller, to optimally control the energy system
onsidered, using the operational bands obtained with the stochastic
pproach to bind a real-time controller and provide it with indications
n the long-term optimal operation of the system.

omenclature

𝑐 energy cost, EUR∕MWh
𝐷𝑇 (𝑖, 𝑗) distance between scenarios 𝜉i and 𝜉j, −

𝐸 energy, MWh
𝑓obj objective function, MWh∕EUR
𝑁s total number of scenarios, −
𝑁t total number of time-steps, −
𝑁u total number of uncertainties, −
𝑝k probability of occurrence of interval 𝑘, −

𝐷(𝑘, 𝑟(𝑘)) distance between scenarios 𝑘 and 𝑟(𝑘) times probability of
scenario 𝑘, −

𝑃𝑟(𝑠) probability of occurrence of scenario s, −
𝑡 time, hour

𝛥𝑡 time-step, hour
𝑣it,u value of the scenario 𝜉i at time 𝑡 for uncertain parameter 𝑢,

−
𝛿 binary on–off variable, −
𝜂 efficiency, −
𝜇 mean of the normal distribution, −
𝜎 standard deviation of the normal distribution, −
𝜉s scenario s, −

Subscripts and superscripts

bo bought
c charge
d discharge
el electricity

ext external
f fuel

H2 hydrogen
s index for scenario

sd self-discharge
13

so sold
th thermal
u uncertain parameter

Acronyms

AC Absorption Chiller
SHP Air Source Hear Pump
BES Battery Electric System
CHP Combined Heat and Power plant
COP Coefficient Of Performance
DHN District Heating Network
EER Energy Efficiency Ratio

FC Fuel Cell
GC Grid-Connected
GT Gas Turbine
HP Heat Pump
HS Hydrogen Storage
LP Linear Programming

MES Multi-Energy System
MILP Mixed-Integer Linear Programming
MPC Model Predictive Control
NLP Nonlinear Programming
PDF Probability Distribution Function

PE Positive-Energy
PEM Proton Exchange Membrane
PtG Power-to-Gas
PV Photovoltaics

RES Renewable Energy Sources
TES Thermal Energy Storage
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