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Beta activity is thought to play a critical role in sensorimotor processes. However, little is known about how activity in this
frequency band develops. Here, we investigated the developmental trajectory of sensorimotor beta activity from infancy to
adulthood. We recorded EEG from 9-month-old, 12-month-old, and adult humans (male and female) while they observed
and executed grasping movements. We analyzed “beta burst” activity using a novel method that combines time-frequency
decomposition and principal component analysis. We then examined the changes in burst rate and waveform motifs along
the selected principal components. Our results reveal systematic changes in beta activity during action execution across devel-
opment. We found a decrease in beta burst rate during movement execution in all age groups, with the greatest decrease
observed in adults. Additionally, we identified three principal components that defined waveform motifs that systematically
changed throughout the trial. We found that bursts with waveform shapes closer to the median waveform were not rate-
modulated, whereas those with waveform shapes further from the median were differentially rate-modulated. Interestingly,
the decrease in the rate of certain burst motifs occurred earlier during movement and was more lateralized in adults than in
infants, suggesting that the rate modulation of specific types of beta bursts becomes increasingly refined with age.
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Significance Statement

We demonstrate that, like in adults, sensorimotor beta activity in infants during reaching and grasping movements occurs in
bursts, not oscillations like thought traditionally. Furthermore, different beta waveform shapes were differentially modulated
with age, including more lateralization in adults. Aberrant beta activity characterizes various developmental disorders and
motor difficulties linked to early brain injury, so looking at burst waveform shape could provide more sensitivity for early
identification and treatment of affected individuals before any behavioral symptoms emerge. More generally, comparison of
beta burst activity in typical versus atypical motor development will also be instrumental in teasing apart the mechanistic
functional roles of different types of beta bursts.

Introduction
Modulation of neural activity in different frequency bands is a clas-
sic signature of many sensory, motor, and cognitive processes.
However, the generative mechanisms that drive this activity and
the computational functions that band-specific neural activity sub-
serves remain unclear. Developmental research provides a unique
opportunity to elucidate these processes by allowing investigation
into the unfolding relationship between frequency-specific neural
activity and emerging abilities in various domains (Munakata et al.,
2004). Very little is known about the development of neural activity
in beta band (Cuevas et al., 2014; Perone and Gartstein, 2019), de-
spite its crucial role in sensorimotor and cognitive control in adults
(Pfurtscheller and Neuper, 1997; Järveläinen et al., 2004).

Traditionally, beta activity was thought to occur as a sustained
oscillation with slow task-related amplitude modulations. However,
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at the single-trial level, beta activity predominantly occurs
as transient bursts rather than oscillations (Feingold et al.,
2015; Sherman et al., 2016; Little et al., 2019), changes in
burst probability closely track trial-averaged beta power
(Feingold et al., 2015; Little et al., 2019), and burst timing is
highly predictive of behavior (Shin et al., 2017; Little et al.,
2019; Wessel, 2020; Diesburg et al., 2021; West et al., 2023).
This suggests that bursts are more informative about senso-
rimotor processing than beta power, and that averaging
bandpass-filtered power over trials may obscure important
features and functions of beta activity.

Bursts can be highly diverse in terms of time-frequency-based
features, such as power, peak frequency, and frequency span
(Feingold et al., 2015; Zich et al., 2020; Duchet et al., 2021; Enz et
al., 2021; Szul et al., 2022), as well as in waveform shape in the
temporal domain (Szul et al., 2022). In adult sensorimotor cor-
tex, beta bursts have a stereotyped mean waveform shape (Baker
et al., 1997; Sherman et al., 2016; Cole et al., 2017; Cagnan et al.,
2019; Karvat et al., 2020; Kosciessa et al., 2020; Bonaiuto et al.,
2021; Brady and Bardouille, 2022), but individual burst wave-
forms are highly diverse and occur within motifs, which are dif-
ferentially rate-modulated before, during, and after movements
(Szul et al., 2022). It has been suggested that different types of
beta bursts might therefore play different roles in sensorimotor
processes (Szul et al., 2022), but it is not yet known what these
processes are.

The first year of life is marked by rapid and significant
changes in perceptual and motor abilities (Adolph and
Franchak, 2017; von Hofsten and Rosander, 2018), making
this an ideal age range to probe the relationship between
beta activity and movement. Very few EEG studies have
looked at sensorimotor beta power in early development
(Samson-Dollfus et al., 1983; Ogawa et al., 1984; van Elk et
al., 2008; Meyer et al., 2011, 2016; Niemarkt et al., 2011),
although studies with young children have demonstrated
movement-related decreases in beta power (Gaetz et al.,
2010; Cheyne et al., 2014; Liao et al., 2015; Bryant and
Cuevas, 2019). We recently demonstrated that beta activity
does indeed appear “bursty” in 12-month-olds (Rayson et
al., 2022); but if different types of beta bursts are reflective
of different sensorimotor processes, they may be differen-
tially rate-modulated as these processes develop in infancy.

Here, we analyzed previously collected EEG recordings
obtained during execution and observation of a reaching-and-
grasping action in 9- and 12-month-old infants, and an adult
comparison group (Cannon et al., 2014; Yoo et al., 2016). We
found that overall, beta peak frequency increases over the first
year of life and beyond, and beta burst rate decreases around the
onset of movement in adults, but not until the hand contacts the
object in 9- and 12-month-olds. We use dynamic time warping
to show that infant beta bursts have the same waveform shape as
adult bursts, differing only in that they are stretched in time.
Principal component analysis (PCA) of burst waveforms was
then used to identify common waveform motifs that are increas-
ingly rate-modulated, earlier during the movement, and in an
increasingly lateralized way, from infancy to adulthood. These
results highlight the importance of considering the diverse fea-
tures and potential functions of beta bursts rather than conceptu-
alizing beta as a single phenomenon, and suggest that changes in
burst rate and waveform motifs reflect developmental changes in
the contralateral organization of the motor system and support
the emergence of internal models for motor preparation and
planning.

Materials and Methods
Participants.We analyzed data previously collected from 44 full-

term 9-month-old infants (25 female, age range 8.6-9.93 months),
46 full-term 12-month-old infants (26 female, age range 11.2-
12.93 months), and 23 adults (10 females, age range 18-22 years)
recruited for a study on the neural bases of action execution and
observation (Cannon et al., 2014; Yoo et al., 2016). Sixteen 9-
month-old infants were excluded because of unusable EEG data
before preprocessing (N¼ 5), fussiness after applying the EEG
electrode not (N¼ 6), and never grasping the toy during the
experiment (N¼ 1). Thirteen 12-month-old infants were excluded
because of unusable EEG data before preprocessing (N¼ 6),
becoming distressed shortly after applying the EEG electrode net
(N¼ 6), and recording failure (N¼ 1). One adult participant was
excluded because of a data recording error. The final sample there-
fore included 28 9-month-old infants, 33 12-month-old infants,
and 22 adults. All infants were typically developing with no known
or suspected neurodevelopmental or medical diagnoses. Before an
infant’s participation in the study, informed consent was obtained
from the infant’s parents. All adults had normal or corrected-to-
normal vision and did not have any neurologic disorder. They provided
informed consent before participating in the study. The experiment was
approved by the University of Maryland Institutional Review Board.

Procedure and task. Both infants and adult participants performed
the same task. The infants were seated on their caregiver’s lap, whereas
the adults were seated in a chair,;40 cm away from a black puppet stage
(99 cm� 61 cm� 84 cm), which was placed on a table. The area sur-
rounding the stage was covered by black curtains to conceal the experi-
menter and any equipment from the participant’s view. A video camera
was placed behind the presenter to record any significant behavioral
events that occurred during the testing, and the caregivers of the infants
were told to remain passive.

The task comprised two conditions: observation and execution. To
start the observation trials, the curtain was raised, revealing a female pre-
senter. The presenter made eye contact with the participant and then
looked toward a toy that was positioned in the center of the stage, but
not within the participant’s reach. The presenter then picked up the toy
using a hand-operated claw-like tool, brought it to themselves, and
briefly shook it. The curtain was lowered to mark the end of this trial,
which lasted;4 s. For the execution trials, a toy was placed on the table;
and while the presenter was hidden from the participant’s view, the table
was pushed toward the participant within reach as the curtain was raised.
Participants were given ;60 s to reach for the toy. The table was
then pulled back and the curtain was lowered to mark the end of
this trial. The order of the observation and execution trials was
pseudo-randomized.

Ten different toys were utilized, with each toy being used in two ob-
servation and two execution trials. For adults, there was a maximum of
20 trials per condition per adult. On average, 9-month-old infants each
completed 14.21 trials (SD¼ 4.82), 12-month-old infants completed
13.30 trials (SD¼ 4.82), and all adults completed 19.64 trials (SD¼ 1.71)
per condition.

Behavioral coding. Behavioral events were captured using video
recorded at a resolution of 640� 480 pixels and 30Hz frame rate, and
synchronized with the EEG recording. Two coders viewed the video off-
line and identified the frames when various events occurred (100% over-
lap). For the execution condition, these events were the first touch of the
toy with the hand, and the completion of the grasp. The same events
were coded for the observation condition, but the first touch was the
time when the presenter first touched the toy with the tool, and grasp
completion was the completion of the grasp of the toy with the tool. For
the execution condition, the hand or hands used to grasp the toy were
also coded (in the observation condition, the presenter always used their
right hand). The coders achieved an inter-rater agreement of 84%-94%
within a three-frame window of ;100ms (9m execution: first touch
93%, grasp complete 89%; 9m observation: first touch 92%, grasp com-
plete 92%; 12m execution: first touch 93%, grasp complete 86%; 12m ob-
servation: first touch 91%, grasp complete 94%; adult execution: first
touch 84%, grasp complete 94%; adult observation: first touch 93%,
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grasp complete 94%). These coded time points, as well as the start and
end of the trials, were then used to segment the EEG data into epochs
centered on these events.

EEG recording and preprocessing. EEG was recorded using a 65-
channel HydroCel Geodesic Sensor Net (Electrical Geodesics). The ver-
tex (Cz) electrode was used as an online reference. EEG data were
sampled at 500Hz using EGI’s Net Station (version 4.5.4) software.
Impedances were kept ,100 kV. After recording, EEG data were
exported to a MATLAB compatible format using NetStation software
for offline processing.

Both infant and adult datasets were preprocessed using MATLAB
R2018a with a custom version of the MADE pipeline (Debnath et al.,
2020), which was modified to include artifact detection routines from
the NEAR pipeline (Kumaravel et al., 2022). The data were high pass fil-
tered at 1Hz and low pass filtered at 100Hz using EEGLAB version
14.1.1 (Delorme and Makeig, 2004) FIR filters. Artifact-laden channels
were identified and removed using the local outlier factor metric from
the NEAR pipeline with an adaptive threshold starting at 2.5 for outlier
detection (9m infants: 0-13 channels, mean¼ 2, SD¼ 2.83; 12m infants:
0-8 channels, mean¼ 1.58, SD¼ 1.85; adults: 0-5 channels, mean¼ 1.18,
SD¼ 1.59). Artifact subspace reconstruction from the NEAR pipeline
was then used to identify and correct nonstereotyped artifacts, using a
cutoff parameter, k¼ 13. Stereotyped artifacts, such as eye blinks, eye
movements, and data discontinuities, were then detected and removed
using the independent component analysis (ICA)-based techniques
from the MADE pipeline. ICA was performed on an identical copy
of the dataset, which was first segmented into 1 s epochs. Noisy
epochs in the copied dataset were removed using a voltage threshold
of61000mV. After ICA decomposition, independent components
(ICs) were transferred from the copied dataset to the original data-
set, which was used from then on. Artifactual ICs were removed
from the original dataset using the EEGLAB Adjusted-ADJUST plu-
gin, using default values for blink identification thresholds and a
peak detection parameters (Mognon et al., 2011; Leach et al., 2020)
(9m infants: 3-50 components, mean¼ 18.14, SD¼ 11.67; 12m
infants: 6-52 components, mean¼ 18.48, SD¼ 10.22; adults: 6-34
components, mean¼ 16.77, SD¼ 6.98). The data were then divided
into 3.6-s-long epochs, centered on four events: the start of the trial,
the moment the toy was first touched, the completion of the grasp,
and the end of the trial. A voltage threshold of 6150 mV was used to
detect artifacts in each channel during each epoch. For each epoch,
if .10% of the channels contained artifacts, the epoch was removed
(9m infants: 0-30 epochs, mean¼ 5.68, SD¼ 7.95; 12m infants: 0-50
epochs, mean¼ 5.94, SD¼ 11.79; adults: no epochs removed); oth-
erwise, the artifacted channels were removed and interpolated for
that epoch. After artifact rejection, any remaining missing channels were
interpolated, and the data were average rereferenced. Finally, line noise
(60Hz) was removed using an iterative version of the Zapline algorithm
(de Cheveigné, 2020) implemented in the MEEGKit package (https://
nbara.github.io/python-meegkit/), using a window size of 10Hz for
polynomial fitting and 2.5Hz for noise peak removal and interpolation.
For the execution condition, epochs during trials in which no grasp was
made, the grasp used two hands, the toy was touched twice before grasp-
ing, or the grasp took longer than 1.6 s to complete were rejected.

Following preprocessing, for each epoch, all participants with at least 5
trials were included in the following analyses (Table 1). All source code
for preprocessing is available at https://github.com/danclab/dev_beta_
claw/tree/main/preprocessing.

Kinematics analysis. Before excluding trials in which two hands were
used to grasp the toy, the type of grasp (unimanual or bimanual) was an-
alyzed for the execution condition using a GLM model with a binomial
distribution and logit link function with age as a fixed effect and subject-
specific intercepts as random effects. The hand used (left or right) for
unimanual movements in the execution was then analyzed in the same
way. These were not analyzed for the observation condition because the
adult actor always performed the action using their right hand. The time
from the start of the trial until the first touch of the toy (reach duration),
from the first touch until grasp completion (grasp duration), and from
grasp completion until the end of the trial (manipulation duration) were
analyzed separately for the execution (including only unimanual trials)
and observation conditions using linear mixed models, including age as
a fixed effect, and subject-specific intercepts as random effects. All analy-
ses of movement kinematics were conducted using R (version 3.6.1) (R
Core Team, 2022) and lme4 (version 1.1.29) (Bates et al., 2014). Fixed
effects were assessed using Type II Wald x 2 tests (car version 3.1.0) (Fox
et al., 2019). Pairwise Tukey-corrected follow-up tests were run using
estimated marginal means from the emmeans package (version 1.7.3)
(Lenth et al., 2020).

Burst analyses. Power spectral densities were computed from 0.1 to
100Hz with the MNE-Python toolbox (Gramfort et al., 2014) using
Welch’s method (Welch, 1967) with a window size of 1 s, 50% overlap,
and 10 times oversampling, resulting in a frequency resolution of 0.1Hz.
For each participant (infants and adults), this was applied to all data
(i.e., from both epochs of the observation and execution conditions). For
each channel, the power spectral density was parameterized using
FOOOF (Donoghue et al., 2020) to obtain estimates of the aperiodic and
periodic spectral components. The periodic spectra were then averaged
over all electrodes in the C3 and C4 clusters (E16, E20, E21, E22, E41,
E49, E50, E51), and then across participants within each age group.
Group-level spectral peaks in the periodic component were identified
using an iterative procedure in which a Gaussian function was fitted to
the global maximum and subtracted from the periodic spectral density.
The procedure was then repeated using the result of the subtraction,
continuing until there are no more peaks above the noise floor (1 SD
across all frequencies). For each peak, the frequency band limits were
determined by computing the FWHM of the peak power, and only
bands ,10Hz with a FWHM of at least 1Hz or.10Hz with a FWHM
of at least 3Hz were retained.

Lagged coherence was computed for all data from each participant
(e.g., from both the observation and execution conditions) from 5 to
100Hz in 1Hz increments and 2-4.5 cycles in increments of 0.1 cycles
(Fransen et al., 2015) using FieldTrip version 20190329 (Oostenveld et
al., 2011). We used overlapping epochs with lag- and frequency-depend-
ent widths. Fourier coefficients were obtained for each epoch using a
Hann-windowed Fourier transform. Because lagged coherence depends
on data SNR (Fransen et al., 2015), we normalized lagged coherence val-
ues for each participant by the maximum lagged coherence over all
channels, frequencies, and lags for that participant.

Table 1. Participants and trials used in analysesa

9 months 12 months Adults

N Trials N Trials N Trials

Execution Start 27 5-19, mean¼ 13.00, SD¼ 3.38 31 6-20, mean¼ 12.55, SD¼ 4.75 22 11-20, mean¼ 19.50, SD¼ 1.92
Touch 22 5-18, mean¼ 10.09, SD¼ 3.26 25 5-18, mean¼ 10.36, SD¼ 3.51 22 10-20, mean¼ 19.45, SD¼ 2.13
Grasp 22 5-18, mean¼ 10.14, SD¼ 3.41 25 5-18, mean¼ 10.40, SD¼ 3.45 22 10-20, mean¼ 19.45, SD¼ 2.13
End 22 5-17, mean¼ 9.82, SD¼ 3.19 24 5-17, mean¼ 10.12, SD¼ 3.48 22 10-19, mean¼ 18.50, SD¼ 1.92

Observation Start 28 5-19, mean¼ 13.57, SD¼ 4.34 32 5-19, mean¼ 12.72, SD¼ 4.31 22 11-20, mean¼ 18.68, SD¼ 1.73
Touch 28 5-19, mean¼ 13.79, SD¼ 4.40 33 5-19, mean¼ 12.85, SD¼ 4.54 22 11-20, mean¼ 18.68, SD¼ 1.73
Grasp 28 5-19, mean¼ 13.79, SD¼ 4.39 33 5-19, mean¼ 12.91, SD¼ 4.56 22 11-20, mean¼ 18.68, SD¼ 1.73
End 27 8-19, mean¼ 13.74, SD¼ 4.05 33 5-19, mean¼ 12.55, SD¼ 4.44 22 10-20, mean¼ 18.64, SD¼ 1.94

aThe number of subjects per age group with at least 5 trials, and the range, mean, and SD of the number of trials per subject for each epoch.
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We used the superlet transform (Moca et al., 2021) to compute
single-trial TF decompositions for each electrode with optimally
balanced time and frequency resolution. We used an adaptive
superlet transform based on Morlet wavelets with varying central
frequency (1-100 Hz) and number of cycles (4 cycles) under a
Gaussian envelope. The order was linearly varied from 1 to 40 over
the frequency range.

For each channel of the C3 and C4 clusters, within the beta frequency
band identified, we used an adaptive burst detection algorithm to detect
all potentially relevant burst events across a wide range of beta ampli-
tudes during the execution condition (Szul et al., 2022). Similar to the
method used for peak detection with the power spectral densities, the
algorithm first subtracts the estimated aperiodic spectrum from each sin-
gle-trial TF decomposition and on each iteration, detects the global max-
imum amplitude in TF space and fits a two-dimensional Gaussian to
this peak by computing the symmetric FWHM in the time and fre-
quency dimensions. The Gaussian is then subtracted from the TF
decomposition, and the next iteration operates on the resulting residual
TF matrix. This process continues until there are no global maxima
above the noise floor remaining (2 SDs above the mean amplitude over
all time and frequency bins, recomputed on each iteration). We applied
the algorithm to TF data within a window 5Hz wider than the identified
beta band on either side, but only bursts with a peak frequency within
the band were retained for further analysis.

The waveform for each detected burst was extracted from the “raw”
time series (only 1Hz high pass and 100Hz low pass filtered during pre-
processing), based on their peak time. To eliminate the influence of
slower ERP dynamics on burst waveforms, the epochs were first aver-
aged in the temporal domain to calculate the ERP, and this was then
removed from the signal for each trial. The width of the time window
for waveform extraction was determined using the FWHM of lagged co-
herence averaged within the beta band. The time series within this win-
dow, centered on the peak time, was then extracted from the trial time
series. To find the signal deflection corresponding to the peak in TF am-
plitude, the burst waveforms were aligned by band pass filtering them
within their detected frequency span (using a zero-phase FIR filter with
a Hamming window), calculating their instantaneous phase using the
Hilbert transform, and recentering the “raw” waveform (before band
pass filtering) around the phase minimum closest to the peak time
detected in TF space (Boto et al., 2022; Szul et al., 2022). If this time
point was .30ms away from the TF-detected peak time, the burst was
discarded. The DC offset was then subtracted from the resulting wave-
form. Finally, to account for uncertainty in the orientation and source
location of the dipoles that generated the signals measured by the EEG
electrodes, the sign of burst waveforms in which the central deflection
was positive was reversed (Jones et al., 2009; Szul et al., 2022). Open-
source code for the burst detection algorithm can be found at https://
github.com/danclab/burst_detection.

Because infants tended to use either hand to grasp the toy, the time
courses of burst rate and beta power in the execution condition were an-
alyzed according to which electrode cluster (C3 or C4) was contralateral
or ipsilateral to the hand used. In the observation condition, bursts were
simply categorized according to the electrode cluster they were identified
in (C3 or C4). The burst rate was computed by binning bursts in 25ms
time bins, and then smoothing the resulting histogram with a Gaussian
kernel (width¼ 3 time points). Both burst rate and mean beta amplitude
(averaged within the identified beta band) were baseline-corrected using
the mean rate or amplitude during the 1.5 s before the start of the
trial, and expressed as a percentage change from baseline. To iden-
tify significant deviations from the baseline, we used a one-sample
cluster permutation test. The family-wise error rate was controlled
using a nonparametric resampling test with a maximum statistic
(taken across all data points). A t test with relative variance regulari-
zation (“hat” adjustment; s ¼ 0.001) (Ridgway et al., 2012) was used
as the statistic to minimize the impact of low variance data points
and prevent spurious results. Threshold-free cluster enhancement
was used to enhance the statistical power of cluster detection by
using an adaptive threshold on the level of a single data point (start-
ing threshold¼ 0, step¼ 0.01) (Smith and Nichols, 2009).

Burst peak amplitude, peak frequency, frequency span, and du-
ration were analyzed using R (version 3.6.1) (R Core Team, 2022)
with linear mixed models, including age, or age, cluster, and their
interactions as fixed effects, and subject-specific intercepts as ran-
dom effects (lme4 version 1.1.29) (Bates et al., 2014). Because the
peak frequency was necessarily different across ages because of the
beta band identification procedure, the analysis of the effect of
cluster on peak frequency included subject nested within age as
random effects, and duration as analyzed in terms of cycles (com-
puted as the burst duration in seconds divided by the burst peak
frequency). Fixed effects were assessed using Type III Wald x 2

tests (car version 3.1.0) (Fox et al., 2019). Pairwise Tukey-cor-
rected follow-up tests were run using estimated marginal means
from the emmeans package (version 1.7.3) (Lenth et al., 2020).

Burst waveforms from 9- and 12-month-old infants were sepa-
rately warped to adult burst waveforms using dynamic time warping
(Giorgino, 2009). To account for differences in burst amplitude, we
first normalized the median burst waveform for each group, and
performed dynamic time warping on the normalized median infant
burst waveforms using Rabiner-Juang step patterns (Type 5c)
(Rabiner and Juang, 1993), with the normalized median adult burst
waveform as the reference. The resulting alignments were then used
to warp all infant bust waveforms.

To classify burst waveform shapes, PCA (20 components, imple-
mented in the scikit-learn library) (Pedregosa et al., 2011) was applied to
the warped burst waveforms from all age groups (Szul et al., 2022). All
detected bursts were then projected onto each principal component
(PC), with each burst thus having a score for each component represent-
ing the shape of its waveform along that dimension. To determine which
components were not simply caused by noisy signal fluctuations, we
used a permutation approach (Vieira, 2012) to remove correlations
between features (waveform time points). The matrix containing all
burst waveforms was shuffled within each time point (column) inde-
pendently, and PCA was applied to the shuffled matrix. The p value for
each PC was then given by the probability of the proportion of variance
explained being lower after shuffling than that for the unshuffled data.
One hundred permutations were run for each component, with an a
threshold of p¼ 0.0035, using Bonferroni correction for multiple com-
parisons. To evaluate consistency in PCA results across age groups, we
ran a separate PCA for each age group, using only bursts detected from
participants in that group. For each group PCA, we examined correla-
tions between its eigenvectors and those of the global PCA by construct-
ing a correlation matrix comparing each component from one PCA to
each component of the other. Because the direction of each dimension
identified by PCA is arbitrary, we took the absolute value of the correla-
tion coefficient. To account for different potential ordering of compo-
nents, we looked at the maximum correlation in each row of the matrix
(i.e., for each component of the global PCA, the component of the group
PCA most correlated with it). This same procedure was used to examine
correlations between burst scores after projecting their waveforms onto
each dimension of the global and group PCAs.

We proceeded to select PCs that define dimensions along which the
mean burst waveform shape varied during either the action observation
or execution conditions. For each PC, the mean burst waveform score
was computed for each epoch in 50ms bins over both electrode clusters.
Subsequently, the scores were smoothed using a Gaussian kernel with a
width of 2 time points and baseline-corrected using the 1.5 s preceding
the beginning of the trial. To ascertain when the mean score deviated
from the baseline for each PC, a one-sample cluster permutation test
was used over all subjects from all age groups. To control the family-
wise error rate, a nonparametric resampling test with a maximum statis-
tic (taken across all data points) was used. A t test with a relative variance
regularization (i.e., “hat” adjustment) was used, and the threshold for
significance was set at p¼ 0.000025, Bonferroni-adjusted for multiple
comparisons. Threshold-free cluster enhancement was used, starting
with a threshold of 0 and a step size of 0.2. Components with mean
scores that significantly deviated from baseline during the toy touch,
grasp completion, and trial end epochs in either the action observation
or execution conditions were selected for further analysis.
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To analyze the burst rate according to waveform shape, we binned
bursts according to their component score, indicating their waveform
shape (four quartiles), and the time during the trial in which they
occurred (50ms bins). For each component score quartile, we then base-
line-corrected the burst rate as described above, but using only bursts with
a component score within that quartile in order account for quartile-spe-
cific differences in baseline rate, and smoothed it using a Gaussian kernel
(width¼ 2 time points). We used one-sample cluster permutation tests to
determine when burst rates in each component quartile significantly devi-
ated from the baseline. The family-wise error rate was controlled using a
nonparametric resampling test with a maximum statistic (taken across all
data points). A t test with a relative variance regularization (“hat” adjust-
ment; threshold p¼ 0.0000156, Bonferroni-adjusted for multiple compari-
sons) and threshold-free cluster enhancement (starting threshold¼ 0,
step¼ 0.2) was used.

All source code for these analyses is available at https://github.com/
danclab/dev_beta_claw.

Results
Behavioral kinematics
Overall, the kinematics analysis revealed several significant differen-
ces in the behavior of participants of different age groups. The
great majority of movements in the execution condition were
unimanual, and there was no difference in the amount of bima-
nual movements between age groups (x 2(2)¼ 5.57, p¼ 0.062;
9m mean¼ 0, SD¼ 0% of trials; 12m mean¼ 7.53, SD¼ 26.42%
of trials; adult mean¼ 1.40, SD¼ 11.74% of trials). There
was a difference in the hand used for unimanual movements
(x 2(2)¼ 21.06, p, 0.001), with adults using the right hand
(mean¼ 84.62, SD¼ 36.12% of trials) more than 9-month-olds
(Z¼ 4.00, p, 0.001; 9m mean¼ 60.33, SD¼ 48.99% of trials)
and 12-month-olds (Z¼ 4.37, p, 0.001; 12m mean¼ 60.15, SD¼
49.02% of trials), but there was no difference between 9- and
12-month-olds (Z ¼ �0.35, p¼ 0.935).

In the execution condition, the time until the first touch of
the toy was significantly different between the groups (x 2(2)¼
25.15, p, 0.001), with adults reaching the toy faster (mean¼
1.71, SD¼ 0.84 s) than both 9-month-olds (t(72.6) ¼ �3.55,
p¼ 0.002; 9m mean¼ 8.00, SD¼ 13.97 s) and 12-month-olds
(t(74.1) ¼ �4.90, p, 0.001; 12m mean¼ 9.63, SD¼ 16.81 s).
There was no significant difference in the time to reach between
9- and 12-month-olds (t(84.8)¼ 1.30, p¼ 0.401). The duration of
the grasping (x 2(2)¼ 232.16, p, 0.001) and manipulation
movements (x 2(2)¼ 30.65, p, 0.001) were also significantly dif-
ferent between the groups, with adults performing faster grasp-
ing (mean¼ 0.25, SD¼ 0.16 s) and manipulation movements
(mean¼ 1.41, SD¼ 0.40 s) faster than both 9-month-olds (grasp-
ing: t(69.9) ¼ �13.74, p, 0.001; 9m mean¼ 0.73, SD¼ 0.33 s;
manipulation: t(67.6) ¼ �5.19, p, 0.001; 9m mean¼ 2.49,
SD¼ 3.28 s) and 12-month-olds (grasping: t(71.7) ¼ �12.81,
p, 0.001; 12m mean¼ 0.68, SD¼ 0.35 s; manipulation: t(69.5) ¼
�4.29, p, 0.001; 12m mean¼ 2.33, SD¼ 1.96 s). However, there
was no significant difference in grasp duration (t(86.7) ¼ �1.29,
p¼ 0.403) or manipulation time (t(88.7) ¼ �1.01, p¼ 0.574)
between 9- and 12-month-olds. In summary, there were no
differences in the kinematics of performed actions between 9
and 12months, but adults performed faster reach, grasp, and
manipulations movements than both infant age groups.

During the observation task, there was no significant differ-
ence between age groups in the duration of the observed
reach (x 2(2)¼ 0.49, p¼ 0.782; 9m mean¼ 1.89, SD¼ 2.34 s;
12m mean¼ 1.87, SD¼ 0.75 s; adult mean¼ 1.81, SD¼ 0.92 s).
However, the durations of the observed grasp (x 2(2)¼ 11.83,
p¼ 0.003) and manipulation movements (x 2(2)¼ 7.45, p¼ 0.024)

were significantly different, with 12-month-olds observing longer
grasps (t(77.4) ¼ �3.33, p¼ 0.004; 12m mean¼ 0.68, SD¼ 0.31 s;
adult mean¼ 0.53, SD¼ 0.28 s) and manipulation movements
(t(79.5)¼ 2.57, p¼ 0.032; 12m mean¼ 2.76, SD¼ 0.38 s; adult
mean¼ 2.55, SD¼ 0.33 s). However, there were no significant
differences in grasp or manipulation duration during observa-
tion between 9-month-olds and either 12-month-olds (grasp:
t(82.0)¼ 2.23, p¼ 0.071; 9m mean¼ 0.58, SD¼ 0.29 s; manipu-
lation: t(80.4)¼ 0.28, p¼ 0.958; 9m mean¼ 2.77, SD¼ 0.35 s) or
adults (grasp: t(76.6) ¼ �1.18, p¼ 0.472; manipulation: t(79.3) ¼
�2.23, p¼ 0.072). There were therefore no consistent differen-
ces in the observed action kinematics with age.

Sensorimotor beta occurs as transient bursts in infancy and
adulthood
We first sought to confirm whether sensorimotor beta activity is
“bursty” rather than oscillatory in infants and adults. With this
aim, we analyzed EEG data recorded from clusters of electrodes
centered around C3 and C4, while 9-month-old, 12-month-old,
and adult participants reached for, grasped, and shook a toy, or
observed an adult performing the same series of actions. After
decomposing the power spectrum within these clusters into ape-
riodic and periodic components (Donoghue et al., 2020; Ostlund
et al., 2022), we identified group-level periodic peaks within the
canonical beta frequency range (13-30Hz) in each age group
from the periodic spectra averaged over all electrodes, condi-
tions, and epochs. The identified beta frequency bands increased
in peak frequency and range from 9months to adulthood
(9months: 12.75-16.25 Hz, 12months: 13.5-17.0 Hz, adults:
18.25-24.75 Hz, Fig. 1a,d,g) (Meyer et al., 2016; Rayson et al.,
2022). The periodic spectrum peak with a peak frequency
just below the beta peak was identified as a/m (9 months: 5.5-
9.0 Hz, 12months: 5.75-9.25 Hz, adults: 9.25-12.75 Hz).

We evaluated the rhythmicity of activity across the entire fre-
quency spectrum using lagged coherence from 2 to 4.5 cycles in
increments of 0.1 cycles. Activity in the a/m frequency range had
a high lagged coherence value that was sustained over at least 4.5
cycles, but lagged coherence in the beta frequency bands fell
rapidly after 2 cycles (Fig. 1b,e,h), meaning that its phase was
unpredictable after 2 cycles in the future. This indicates that
sensorimotor a/m activity occurred as a rhythmic oscillation
sustained over several cycles, whereas beta activity occurred as
transient bursts (Fig. 1c,f,i).

Beta power and lagged coherence had different spatial topog-
raphies across age groups. Beta power localized to peripheral
locations in 9- and 12-month-old infants (Fig. 2a,c), but to the
C3 and C4 clusters and central frontal electrodes in adults (Fig.
2e). However, in all age groups, lagged coherence in the beta
band localized to the C3 and C4 electrodes at 2 lag cycles, and
rapidly decreased with increasing cycles (Fig. 2b,d,f). Alpha/m
activity had a very different pattern of power and lagged coher-
ence topographies (Fig. 3). The beta band therefore has distinct
spectral and spatial signatures in infancy and adulthood, and the
spatial topography of beta power and lagged coherence confirmed
our choice of electrode clusters.

Beta bursts have diverse time-frequency based features
To detect beta bursts, we used an adaptive, trial-based method to
identify all potential burst events within each beta frequency
range for each age group (Szul et al., 2022). We first examined
the interburst intervals (IBIs) for each participant, and compared
the coefficient of variation to that computed for surrogate data
obtained by 1000 iterations of assigning each burst a random
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peak time during the trial. The coefficient of variation was ,1,
and lower than the 95% lower CI computed from the surrogate
data for all participants from all age groups (9m: 0.63-0.74,
mean¼ 0.69, SD¼ 0.02; 12m: 0.61-0.76, mean¼ 0.70, SD¼ 0.03;
adult: 0.52-0.79, mean¼ 0.70, SD¼ 0.06; Fig. 4a), indicating that
bursts occur more regularly than would be expected by a purely
Poisson process. The IBI distribution revealed that the low coeffi-
cient of variation is the result of a time window just after a burst
during which a consecutive burst is unlikely to occur (Fig. 4b),
indicating that there is little temporal overlap in the bursts
detected using this method.

We then compared time-frequency based features of these
bursts between age groups. Bursts across all age groups exhibited
a wide range of peak amplitudes (Fig. 5a), frequencies (Fig. 5b),
frequency spans (Fig. 5c), and durations (Fig. 5d). There was a
main effect of age for burst peak amplitude (x 2(2)¼ 118.75,
p, 0.001), frequency span (x 2(2)¼ 31.19, p, 0.001), and dura-
tion (x 2(2)¼ 25.41, p, 0.001). There was no difference in
peak amplitude between 9- and 12- month-olds (Z ¼ �0.21,
p¼ 0.975; 9m mean¼ 0.97, SD¼ 0.63mV; 12m mean¼ 0.99,
SD¼ 0.66mV), but adult bursts had lower peak amplitudes
than those detected in 9-month-old (Z ¼ �9.61, p, 0.001;
adult mean¼ 0.42, SD¼ 0.30mV) and 12-month-old infants
(Z ¼ �9.75, p, 0.001). Bursts detected in 12-month-olds
had a slightly narrower frequency span as those detected in
9-month-olds (Z ¼ �2.35, p¼ 0.049; 9m: mean¼ 2.12,
SD¼ 0.82 Hz; 12m: mean¼ 2.08, SD¼ 0.82 Hz), and adult
bursts were narrower than those of 9-month-olds (Z ¼
�5.57, p, 0.001; adult: mean¼ 2.00, SD¼ 0.82 Hz) and 12-
month-olds (Z ¼ �3.56, p¼ 0.001). Finally, beta bursts

were similar in duration at 12 months compared with at
9 months (Z¼ 0.13, p¼ 0.990; 9m: mean¼ 4.42, SD¼ 2.03
cycles; 12m: mean¼ 4.45, SD¼ 2.19 cycles), but lasted more
cycles in adults compared with 9-month-olds (Z¼ 4.46,
p, 0.001; adult: mean¼ 4.99, SD¼ 2.80 cycles) and 12-
month-olds (Z¼ 4.49, p, 0.001). In summary, while bursts
did not differ in peak amplitude or duration between 9- and
12-month-olds, they decreased in amplitude, decreased in
frequency span, and increased in duration from infancy to
adulthood.

We then sought to determine whether there was any
movement-related lateralization in burst TF-based features
and how this might change with age (Fig. 5e–h). We catego-
rized bursts in the execution condition based on whether
the electrode cluster they were detected from was contralat-
eral or ipsilateral to the performed movement. Our results
revealed an age-cluster interaction for burst peak amplitude
(x 2(2)¼ 379.91, p, 0.001), peak frequency (after accounting
for age-specific frequency ranges; x 2(2)¼ 12.54, p¼ 0.002),
frequency span (x 2(2)¼ 1203.56, p, 0.001), and duration
(x 2(2)¼ 2184.24, p, 0.001). At 9months, there was no differ-
ence in burst peak amplitude between hemispheres (Z ¼ �0.09,
p¼ 0.927; contralateral: mean¼ 0.98, SD¼ 0.67mV; ipsilateral:
mean¼ 0.99, SD¼ 0.63mV). However, at 12months and in
adults, contralateral bursts had lower amplitudes than ipsilat-
eral bursts (12months: Z ¼ �4.92, p, 0.001; contralateral:
mean¼ 0.97, SD¼ 0.72mV; ipsilateral: mean¼ 1.00, SD¼ 0.66mV;
adults: Z ¼ �35.31, p, 0.001; contralateral: mean¼ 0.35, SD¼
0.29mV; ipsilateral: mean¼ 0.44, SD¼ 0.27mV). Contralateral
and ipsilateral bursts had the same peak frequency at 9months
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Figure 1. Beta peak frequency increases with age, and beta activity consists of transient burst events in infancy and adulthood. a, Periodic power spectral density in the combined C3 and
C4 cluster of the 9-month-old participants. Dark lines indicate the mean over participants. Shaded areas represent SE. Gray shaded region represents the limits of the identified beta band.
Inset, The electrodes included in the analysis. b, Mean lagged coherence in the combined C3 and C4 cluster across all 9-month-old participants for a range of frequencies and lags. There is
high lagged coherence in the alpha band over a wide range of lags, but beta lagged coherence rapidly decreases after 2 cycles. c, Mean lagged coherence in the combined C3 and C4 cluster
across all 9-month-old participants for lags of 2, 3, and 4 cycles. Solid lines indicate the mean. Shaded areas represent SE. A prominent peak appears in the a range at 2-4 cycles, while a beta
peak is visible only at 2 cycles. d-f, Same as in a-c, for 12-month-old participants. g-i, Same as in a-c, for adult participants.
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(Z ¼ �1.23, p¼ 0.217; contralateral: mean¼ 14.31, SD¼ 0.97Hz;
ipsilateral: mean¼ 14.33, SD¼ 0.97Hz) and 12months (Z ¼
�0.50, p¼ 0.616; contralateral: mean¼ 15.32, SD¼ 0.95Hz; ipsi-
lateral: mean¼ 15.33, SD¼ 0.96Hz), but in adults, contralateral
bursts had a lower peak frequency than ipsilateral bursts (Z ¼
�7.05, p, 0.001; contralateral: mean¼ 21.12, SD¼ 1.77Hz; ipsi-
lateral: mean¼ 21.15, SD¼ 1.78Hz). There was no difference in
frequency span between hemispheres at 9months (Z ¼ �1.13,
p¼ 0.258; contralateral: mean¼ 2.12, SD¼ 0.83Hz; ipsilateral:
mean¼ 2.13, SD¼ 0.82Hz), but contralateral bursts had a nar-
rower frequency span than ipsilateral bursts at 12months (Z ¼
�5.72, p, 0.001; contralateral: mean¼ 2.06, SD¼ 0.83Hz; ipsilat-
eral: mean¼ 2.11, SD¼ 0.84Hz) and in adults (Z ¼ �61.38,
p, 0.001; contralateral: mean¼ 1.82, SD¼ 0.76Hz; ipsilateral:
mean¼ 2.12, SD¼ 0.83Hz). Finally, ipsilateral and contralateral
bursts did not differ in terms of duration at 9months (Z ¼ �1.18,
p¼ 0.239; contralateral: mean¼ 4.39, SD¼ 2.05 cycles; ipsilateral:
mean¼ 4.43, SD¼ 2.03 cycles), but contralateral bursts were
shorter than ipsilateral bursts in 12-month-olds (Z ¼ �5.15,
p, 0.001; contralateral: mean¼ 4.31, SD¼ 2.07 cycles; ipsilateral:
mean¼ 4.45, SD¼ 2.13 cycles) and in adults (Z ¼ �80.19,
p, 0.001; contralateral: mean¼ 4.20, SD¼ 2.42 cycles; ipsilat-
eral: mean¼ 5.41, SD¼ 2.80 cycles). Contralateral and ipsilat-
eral beta bursts did not differ in terms of TF-based features at
9months, but by 12months, contralateral bursts had a lower
peak amplitude, narrower frequency span, and shorter dura-
tion than ipsilateral bursts, and by adulthood, contralateral
bursts additionally had a lower peak frequency than ipsilateral
bursts.

As found in previous studies of movement-related sensori-
motor beta activity, changes in the overall burst rate generally
tracked changes in mean beta amplitude in the execution condi-
tion (Little et al., 2019; Rayson et al., 2022) (Fig. 5i–k). In 9- and
12-month-old infants, there was a bilateral decrease in both the
burst rate and mean beta amplitude following the first contact of
the hand with the toy (Fig. 5i,j). However, in adults, the mean
beta amplitude decreased bilaterally following the onset of the
movement, whereas the burst rate only decreased contralaterally
(Fig. 5k). Thus, while mean beta amplitude was bilaterally modu-
lated by action execution in all age groups, only changes in the
overall beta burst rate were lateralized, and only in adults. Beta
activity was only modulated during action observation in adults
around the time of the first contact between the hand and toy,
and bilaterally for the mean amplitude, whereas the overall burst
rate only decreased in C3.

Infant beta bursts have the same mean waveform shape as
adult bursts
The differences in TF-based beta burst features between infants
and adults give little insight into the mechanisms underlying
these changes. All of these features are derived from time-fre-
quency decomposition of a time series during a small time win-
dow, corresponding to the burst event. Adults typically exhibit
beta bursts with a stereotyped wavelet-like shape in the time do-
main (Sherman et al., 2016; Bonaiuto et al., 2021; Brady and
Bardouille, 2022), which causes the observed features in the TF
domain (Jones, 2016; Sherman et al., 2016; Szul et al., 2022). To
determine the underlying cause of age-related changes in TF-
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Figure 2. Power and lagged coherence localize beta to the C3 and C4 clusters. a, Topography of beta band periodic power (after subtraction of the aperiodic spectral density), averaged over
9-month-old participants. White circles represent electrodes included in the C3 and C4 clusters. Power in the beta band is most prominent in peripheral electrodes. b, Beta lagged coherence
topographies at (from left to right) 2, 3, and 4 cycles averaged over 9-month-old participants. Lagged coherence in the beta band localizes to the C3 and C4 electrodes and decreases rapidly af-
ter two cycles. c, d, Same as in a, b, for the 12-month-old participants. e, f, Same as in a, b, for the adult participants.

Rayson et al. · Development of Sensorimotor Beta Bursts J. Neurosci., December 6, 2023 • 43(49):8487–8503 • 8493



based features, we compared the waveform shape of beta bursts
between 9- and 12-month-olds with adults. The time window for
waveform extraction was determined by the FWHM of lagged
coherence averaged within the age-specific beta band, yielding 5
cycles (344ms) for 9-month-olds, 5.2 cycles (341ms) for 12-
month-olds, and 5 cycles (233ms) for adults. Bursts identified in
each age group had a wavelet-like median waveform shape with
a strong central negative deflection and surrounding positive
deflections (Sherman et al., 2016; Bonaiuto et al., 2021) as well as
more peripheral peaks (Brady and Bardouille, 2022; Szul et al.,
2022), but there was great variability around this median (Fig.
6a–c). Infant bursts had a greater median waveform amplitude,

and because they had a lower peak frequency, had slightly longer
waveforms than adult bursts (Fig. 6a–c). However, after normal-
ization and dynamic time warping (Fig. 6d,e) (Giorgino, 2009),
bursts from both infant groups were revealed to have the same
qualitative median waveform shape as adult bursts (Fig. 6f,g).
The normalized distance between the infant burst waveforms
and those of adult bursts was slightly lower in 9-month-olds than
at 12months (9m: 0.023, 12m: 0.033). Despite differences in TF-
based burst features between age groups, beta bursts have a com-
mon median waveform shape across ages, suggesting that they
are generated via similar mechanisms that change only quantita-
tively with age.
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Figure 3. a-f, Alpha/m occurs as a sustained oscillation in the C3 and C4 clusters. Same as in Figure 2, for the a/m band. Power in the a/m band is strongest in peripheral, central, and
occipital electrodes in infants, and in central and frontal electrodes in adults. Lagged coherence localizes a/m to the C3 and C4 electrodes and remains high up to at least 4 cycles at all ages.

a b

Figure 4. Beta burst timing is not a pure Poisson process. a, The distribution of the coefficient of variation of the IBIs over participants from each age group (dark shaded histograms), and
from surrogate data with random burst times (light shaded histograms). b, The mean IBI distribution for each age group (solid lines; shaded area represents the SE).
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The same burst motifs are increasingly rate-modulated
during movement from infancy to adulthood
Although the warped burst waveforms were very similar
across age groups, there was a considerable amount of vari-
ability around the mean waveform shape. It has been sug-
gested that this variability reflects variability in function
(Szul et al., 2022); therefore, we then examined how wave-
form variability changes with age and thus might drive de-
velopmental changes in motor control. We applied PCA to
the warped, aligned waveforms from all age groups (364,728
bursts overall; 9m: 73,741; 12m: 94,856; adult: 196,131) to
identify common motifs that explain burst waveform variance
across ages. We extracted 20 PCs, of which 14 explained
80.42% of the waveform variance. To determine which com-
ponents significantly contributed to waveform variability, we
used a permutation test, resulting in 10 significant compo-
nents (PCs 1-10; p, 0.001). Each of these dimensions defined
changes in the amplitude or relative amplitude of the central
negative deflection, surrounding positive deflections, and pe-
ripheral deflections.

We used a single PCA applied globally to all warped burst
waveforms from all ages to compare waveforms between age
groups using a common set of dimensions. However, it could be

that each component describes waveform variance in a single age
group. To verify that the identified burst waveform motifs were
not biased toward an overrepresentation of waveform variability
from one or two age groups, we ran separate PCAs on warped
bursts from each age group and compared the resulting PCs and
burst scores with those from the global PCA applied to all bursts
from all age groups. PCs 1-8 were highly similar across ages,
both in terms of eigenvectors (9m: r¼ 0.73-1.0; 12m: r¼ 0.79-
1.0; adult r¼ 0.71-1.0; Fig. 7a–c), and burst scores (9m: r¼ 0.72-
1.0; 12m r¼ 0.84-1.0; adult: r¼ 0.73-1.0; Fig. 7d–i). For PCs 1-6,
the most similar component from each group PCA was the
corresponding one of the global PCA, indicating that for
these components, not only was the waveform motif very
similar, but the relative percentage of variance explained was
the same across ages. PCs 7 and 8, however, were reversed in
order for the adult PCA, meaning that these motifs explained
different amounts of variance in the infant versus adult
waveforms. Two of the significant components, PCs 9 and
10, mainly represented waveform variability in the adult par-
ticipants (PC 9: 9m eigenvector r¼ 0.75, burst score r¼ 0.74;
12m eigenvector r¼ 0.60, burst score r¼ 0.67; adult eigen-
vector r¼ 0.95, burst score r¼ 0.94; PC 10: 9m eigenvector
r¼ 0.57, burst score r¼ 0.61; 12m eigenvector r¼ 0.48, burst
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Figure 5. Beta bursts are diverse in infancy and adulthood. a-d, The distributions of beta burst peak amplitude (a), peak frequency (b), frequency span (c), and duration (d) for the 9-
month-old, 12-month-old, and adult participants over conditions, epochs, and clusters. e-h, The distributions of burst peak amplitude (e), peak frequency (f), frequency span (g), and duration
(h) for the (rows, from top to bottom), 9-month-old, 12-month-old, and adult participants for the ipsilateral and contralateral electrode clusters. i, The mean burst rate (dashed lines; shaded
area represents SE) and mean beta amplitude (solid lines; shaded area represents SE) in the ipsilateral and contralateral clusters for the 9-month-old participants in the execution condition.
Colored dots and asterisks represent times in which beta amplitude or burst rate significantly deviated from baseline. j, Same as in i, for the 12-month-old participants. k, Same as in i, for the
adult participants.
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score r¼ 0.51; adult eigenvector r¼ 0.72, burst score
r¼ 0.74). All but two of the significant burst waveform motifs
were therefore common among infants of 9 and 12months, as
well as adults.

To determine whether the dynamic time warping applied to
infant burst waveforms had an effect on the PCA results, we
compared burst scores for each PC with those obtained from
running PCA on the unwarped infant bursts. This revealed that
burst scores for PCs 1-8 were very highly correlated between the
warped and unwarped waveforms (9m: r¼ 0.97-1.0; 12m:
r¼ 0.95-1.0; Fig. 8). PCs 9 and 10 were less highly correlated
between warped and unwarped waveforms (PC 9: 9m r¼ 0.96,
12m r¼ 0.77; PC 10: 9m r¼ 0.67, 12m r¼ 0.57), and they were
also the ones identified as mainly representing variability in the
adult burst waveforms. This demonstrates that dynamic time
warping does not appreciably modify patterns of burst waveform
variability. We therefore proceeded in the following analyses

using PCs 1-8 from the global PCA run on warped burst wave-
forms from all age groups.

We then further analyzed three components based on signifi-
cant changes in the mean burst score in the action execution
epochs (no components were significantly modulated in the
action observation condition), thus selecting dimensions along
which the mean burst shape varied systematically over the course
of the trial. Each of these components defined dimensions along
which the waveform shape varied markedly from the median
waveform (Figs. 9a,c,e, 10a,c,e). In each of these dimensions, the
amplitude of peaks surrounding the central negative deflection,
and that of the central deflection itself varied, but the most strik-
ing feature of each of the three components is that they represent
waveforms with additional peripheral peaks and waveform
asymmetry. PCs 3 and 4 defined motifs in which the asymmetry
between the surrounding positive deflections and the magnitude
of the central negative deflection varied (Fig. 9a,c), and PC 6
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Figure 6. Infant and adult bursts have qualitatively similar burst waveforms. a, The median waveform (thick red line) over all detected beta bursts from 9-month-old participants had a
wavelet-like shape, but there was great variability in the waveforms of individual bursts (thin colored lines). b, Same as in a, for the 12-month-old participants. c, Same as in a, for the adult
participants. d, Correspondence between time points (dashed lines) of 9-month-old beta burst waveforms (red) and adult beta burst waveforms (green). Inset, The alignment curve (solid line)
resulting from dynamic time warping of beta burst waveforms from 9-month-old participants to those of adults. The dashed line indicates the alignment curve for two already aligned signals.
e, Same as in d, for the 12-month-old participants. f, The adult beta burst waveforms were, on average, shorter in absolute duration and smaller in amplitude than the mean infant bursts. g,
Normalization and dynamic time warping revealed that the infant and adult beta bursts have qualitatively similar waveform shapes.
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mainly represented changes in the amplitude of the deflections.
The mean burst waveform score for each of these components
decreased just before or after toy contact, and further decreased
during the movement. Hence, not only did the overall burst rate
decrease during the movement, but the mean burst waveform
shape systematically changed throughout the task.

The systematic changes in overall burst rate and mean wave-
form shape do not indicate whether there was an increase in
bursts with low component scores, or a decrease in bursts with
high component scores. To investigate whether different wave-
form motifs were differentially rate-modulated during move-
ment, we therefore examined the burst rate according to the
waveform shape in the execution condition. For each of the three
selected PCs, we binned bursts into four quartiles based on their
score along that dimension, as well as the time during the trial in
which they occurred. We then computed the burst rate for each
PC score quartile, baseline-corrected the burst rates, and used
permutation tests to determine significant deviations from the
baseline. Along PCs 3, 4, and 6, bursts with scores in the first and
fourth quartiles decreased in rate contralaterally during the
movement compared with baseline, whereas those in the second
and third quartiles (with waveform shapes closer to the median
waveform) were not rate-modulated (Fig. 9b,d,f). Interestingly,
the decrease in rate of bursts in the first and fourth quartiles
occurred just after the onset of the trial in adults, and only just
before or after the moment the hand touched the toy in 9-
and 12-month-olds. Moreover, this decrease was significantly

different from the baseline rate over longer periods of time in
adults than in infants. Ipsilaterally, in adults, for the most
part, only bursts in the fourth quartiles of PCs 3, 4, and 6
decreased in rate during movement (Fig. 10), and for PC 4,
bursts closer to the median waveform actually increased in
rate during movement (Fig. 10d). In infants, the rate of ipsilat-
eral bursts in the first and fourth quartiles of each selected PC
decreased during movement, similar to contralateral bursts.
The other significant components were not reliably differen-
tially rate-modulated during action execution in any age
group, or only in adults. Beta bursts therefore occur within
specific burst waveform motifs, some of which reduce in rate
increasingly earlier during movement from infancy to adult-
hood, and others which are differentially rate-modulated ipsi-
lateral to movement only in adulthood.

Discussion
This study provides insights into the developmental trajectory of
beta bursts and their potential role in sensorimotor processing.
Findings demonstrate that infant beta activity, similar to adults,
manifests as transient bursts with diverse spectral and temporal
features, albeit at a lower peak frequency. Beta burst feature later-
alization increases between 9 and 12months, and further into
adulthood. Infant beta bursts exhibit a mean waveform shape
similar to adults and occur within a set of common motifs at all
ages, indicating a possible shared mechanism of generation.
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Figure 7. Global versus age group-specific PCA. a, Absolute value of the correlation coefficient between eigenvectors from the PCA ran only on 9-month-old bursts, and those from the
global PCA. b, c, Same as in a, for 12-month-olds (b) and adults (c). d, For each burst detected in 9-month-olds, the score for each PC from PCA ran on only the 9-month-old bursts (x axis) ver-
sus the score from the PCA ran on all bursts over all ages. e, f, Same as in d, for 12-month-olds (e) and adult participants (f). g, Absolute value of Pearson’s correlation coefficient between
scores for 9-month-old infant bursts from PCA applied only to 9-month-old bursts and the global PCA, for each PC. h, i, Same as in g, for 12-month-olds (h) and adult participants (i).
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Interestingly, several motifs classify beta bursts into those that
decrease in rate during movement and those whose rate remains
static or slightly increases, suggesting that different burst types
are involved in distinct sensorimotor processes. Moreover, our
results demonstrate that the bursts with waveforms furthest from
the mean decrease more in rate and earlier during movement
with age. In adults, the burst rate of certain motifs is differen-
tially modulated ipsilateral and contralateral to the hand used
for grasping, but infant beta bursts in these motifs are bilaterally
rate-modulated during movement. Together, these findings
highlight the complexity and diversity of beta bursts and their
potential role in sensorimotor development.

The fact that infant and adult beta bursts have qualitatively
similar mean waveform shapes suggests that they are generated
by the same mechanism, which changes in a quantitative way
with age. The dominant computational model of beta burst gen-
eration proposes that beta bursts are driven by temporally
aligned synaptic inputs to deep and superficial layers that drive
intracellular current in opposite directions within a cortical col-
umn (Sherman et al., 2016; Law et al., 2022). This model was
based on the somatosensory cortex, but experimental support for
the model has been found in the human motor cortex (Bonaiuto
et al., 2021; Szul et al., 2022). The primary motor cortex receives
layer-specific projections from different thalamic motor nuclei
that relay information from the basal ganglia and cerebellum
(Kuramoto et al., 2009, 2015; Hooks et al., 2013), as well as from
thalamic sensory nuclei (Ohno et al., 2012; Hooks et al., 2013;

Kuramoto et al., 2009, 2015). These projections may account
for the stereotypical mean burst waveform shape, but the
motor cortex also receives lamina-specific inputs from the
sensory and frontal cortices (Rouiller et al., 1993; Mao et al.,
2011; Hira et al., 2013; Hooks et al., 2013), which may account
for the observed burst waveform variability (Szul et al., 2022).
Myelination of inter-regional fiber tracts is particularly inten-
sive during the first year of life (Dubois et al., 2014), which
shapes neurophysiological activity (Adibpour et al., 2017);
therefore, maturation of thalamocortical and corticocortical
projections may explain differences in the peak frequency of
infant and adult beta bursts.

Our results suggest that different types of beta bursts are
involved in different sensorimotor mechanisms. Interestingly, we
observed that bursts with certain waveforms decreased in rate
earlier during movement in adults compared with infants. This
may be because of the increasing use of visual information for
movement preparation and planning and, more generally, a shift
from reflexive to prospective control of movement (von Hofsten,
1993; van der Meer et al., 1994; Witherington, 2005). However,
in this study, adults performed faster reaching movements than
infants; therefore, the earlier burst rate decrease we observed in
adults may simply reflect the fact that their hand was closer to
the toy at the same time post-trial start.

Consistent with our behavioral results, young infants exhibit
an ambidextrous pattern of hand usage (Corbetta and Thelen,
1999; Rönnqvist and Domellöf, 2006), but a bias for using one

a

c d

b

Figure 8. PCA on warped versus unwarped infant burst waveforms. a, For each burst detected in 9-month-olds, the score for each PC from PCA ran on only the warped 9-month-old bursts
(x axis) versus the score from the PCA ran on only the unwarped 9-month-old bursts. b, Same as in a, for 12-month-olds. c, Absolute value of Pearson’s correlation coefficient between scores
for 9-month-old infant bursts from PCA applied only to warped 9-month-old bursts and the PCA applied to unwarped 9-month-old bursts, for each PC. d, Same as in c, for 12-month-olds.
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hand emerges between 12 and 18months (Fagard and Marks,
2000; Hinojosa et al., 2003). While we observed a change in burst
feature lateralization between 9 and 12months, the overall burst
rate was only lateralized in adults. Sensorimotor activity is not
hemispherically lateralized in neonates (Erberich et al., 2006),
which may be why there were no hemispheric differences in
burst features or rate at 9months. The increasing lateralization
of beta burst activity between 9months and adulthood may be
because of the decrease in interhemispheric functional connec-
tivity between motor cortices that occurs during the first year of
life (Xiao et al., 2018), and the ongoing development of interhe-
mispheric inhibition in childhood (Ciechanski et al., 2017).
However, the pattern of activity that we observed in adults has
implications for the functional role of beta activity. If beta

activity is purely inhibitory in nature (Zhang et al., 2008; Picazio
et al., 2014), one would expect a decrease in contralateral beta ac-
tivity during movement, thus disinhibiting the limb to be moved,
and either no change or an increase in ipsilateral beta activity.
Consistent with this view, we observed a decrease in overall burst
rate contralaterally in adults, and no change in overall ipsilateral
burst rate. However, we found four main types of rate lateraliza-
tion in different burst motifs: bursts with a static rate bilaterally,
bursts that remained static contralaterally and increased in rate
ipsilaterally, bursts that decreased in rate contralaterally and
were static ipsilaterally, and bursts that decreased in rate bilater-
ally. These findings suggest that the role of beta activity in senso-
rimotor processes is more complex than a simple inhibitory
effect.
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Figure 9. Contralateral burst waveform motifs are increasingly rate-modulated during movement from infancy to adulthood. a, The mean normalized and warped waveforms of beta bursts
with scores in four quartiles of PC 3 scores (colored lines) and the mean overall burst waveform (black). b, The mean baseline-corrected rate of bursts with scores in each PC 3 score quartile
(colored lines; shaded area represents SEM) over the course of the (columns, from left to right) trial start, first touch, grasp completion, and trial end epochs in the contralateral center cluster
for 9-month-old (top row), 12-month-old (middle row), and adult (bottom row) participants. Colored dots represent where the burst rate in the corresponding score quartile is different from
baseline. c, d, Same as in a, b, for PC 4. e, f, Same as in a, b, for PC 6.
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Burst rate and beta power were only modulated during action
observation in adults. Previous work has found a reduction in
a/m activity during action observation in infants and adults
(Marshall and Meltzoff, 2011; Marshall et al., 2011; Cannon et
al., 2014; Filippi et al., 2016), but beta activity has only been
shown to be modulated during action observation in older
infants (van Elk et al., 2008) and adults (Press et al., 2011).
Motor simulation theory suggests that observation of someone
else performing an action activates an internal sensorimotor sim-
ulation of performing that same action (Jeannerod, 2001; Miall,
2003; Wolpert et al., 2003; Press et al., 2011). If certain burst
types are related to the activation of internal models, one possible
explanation for this finding is that these internal models are not
yet well developed in infants and are therefore not activated

during action observation. This is in line with the increasing
amount and earlier timing of rate modulation of these burst
motifs from infancy to adulthood during action execution.

In accordance with the few previous studies that have identi-
fied age-specific beta frequency bands in infancy (Meyer et al.,
2016; Rayson et al., 2022), we found the peak beta frequency to
be ;15Hz in 9- and 12-month-old infants. One factor that
may have contributed to the lack of previous research on
infant beta activity is the fact that, in infants, muscle artifacts
from jaw and arm movements appear at 15Hz in peripheral
electrodes, spectrally overlapping the sensorimotor beta fre-
quency range (Georgieva et al., 2020). However, it is unlikely
that our results are driven by these artifacts because the spatial
topography of lagged coherence in the identified beta band
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Figure 10. Ipsilateral beta burst motifs rate-modulated differently from contralateral motifs during movement in adulthood, but not infancy. a, The mean normalized and warped wave-
forms of beta bursts in with scores in four quartiles of PC 3 scores (colored lines) and the mean overall burst waveform (black). b, The mean baseline-corrected rate of bursts with scores in
each PC 3 score quartile (colored lines; shaded area represents SEM) over the course of the (columns, from left to right) trial start, first touch, grasp completion, and trial end epochs in the ipsi-
lateral central cluster for 9-month-old (top row), 12-month-old (middle row), and adult (bottom row) participants. Colored dots represent where the burst rate in the corresponding score quar-
tile is different from baseline. c, d, Same as in a, b, for PC 4. e, f, Same as in a, b, for PC 6.
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localizes very strongly to the central electrodes, and we found
a decrease in burst rate during movement. Beta peak frequency
increases with age in older children and adults (Trevarrow et al.,
2019; Johnson et al., 2020), suggesting that this spectral shift is an
ongoing developmental process, similar to that observed in a/m
(Berchicci et al., 2011).

The present study has several limitations worth noting. Our
results suggest developmental shifts in the strength, timing, and
duration of different synaptic drives to the sensorimotor cortex,
thus modulating the features and rate of sensorimotor beta
bursts. However, without any measure of anatomic or functional
connectivity, it is impossible to know where these projections
originate from. In this study, the actual 3D trajectories of the
arm and hand during performed and observed movements were
not quantified, but the movements were quite complex, limiting
the granularity of the conclusions that can be drawn about the
relationship between beta activity and sensorimotor processes.
Very few adult subjects performed a small number of grasps with
their nonpreferred (left) hand, whereas infants tended to use
either hand, and therefore these results cannot shed light on
lateralized control of the preferred versus nonpreferred hand.
We analyzed EEG data, which is limited in spatial precision
because of the effects of volume conduction and uncertainty
regarding the exact position of each electrode with respect to
the brain. Although this study included multiple age groups, it
was cross-sectional. The ideal future study for determining
the developmental role of beta bursts would therefore be lon-
gitudinal from infancy to early childhood, and involve MRI,
MEG/EEG analysis in source space, and markerless kinematic
tracking during simple movements with each hand in all age
groups to determine the precise relationship between afferent
brain regions driving beta bursts, burst characteristics, and
movement. Finally, the burst detection approach that we use
extracts waveforms centered on peaks of beta power, and
therefore highlights high SNR temporal features around these
peaks (Szul et al., 2022) at the expense of the small number of
potentially longer-lived oscillatory bursts. Future approaches
for burst analysis could use some form of phase information
or measure of instantaneous frequency to tease apart these
potentially two types of beta activity patterns.

Critically, several developmental disorders, such as atten-
tion deficit/hyperactivity disorder (in a subset of children)
(Clarke et al., 2007, 2013) and autism spectrum disorder
(Coben et al., 2008; Tierney et al., 2012), are associated with
aberrant beta activity. Early diagnosis is crucial for identifying
individuals who would benefit from therapeutic intervention
(Landa, 2008; Rommel et al., 2015), with the most effective
interventions implemented during sensitive periods of brain
development. However, such interventions require sensitive
biomarkers to determine their efficacy in their early stages
because their behavioral effects may be delayed (Cioni et al.,
2016; Finlay-Jones et al., 2019; Morris et al., 2023), and the
notion of “aberrant beta activity” is undermined by the diver-
sity of burst activity we observe. Burst waveform shape could
therefore provide the required sensitivity by allowing detec-
tion of abnormal burst waveforms, altered rate-modulation of
certain types of bursts, or atypical lateralization of burst fea-
tures or rate, all of which would be masked by nonspecific
measures of highly averaged beta power. More generally, com-
parison of beta burst activity in typical versus atypical motor
development trajectories may be instrumental in teasing apart
the different mechanistic functional roles of different burst
types.
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