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A B S T R A C T

The paper presents a solid-mechanics based method for the determination of the macroscopic tensile properties
of fibers composed of monodispersed Carbon NanoTubes (CNTs), whose length is much lower than the fiber
length, arranged in a cross-sectional square lattice. In the longitudinal direction, each CNT is offset, with
respect to the neighboring ones, of a given quantity. The interaction between the CNTs caps is negligible,
while the model takes into account the coupling occurring on their lateral surfaces, thanks to van der Waals
forces and cross-links, modeled as distributed springs. One of the main improvements with respect to previous
studies is that the CNTs are here modeled as deformable elastic bars, with given axial stiffness.

Under the assumption that, due to the periodicity of the CNTs arrangement, each CNT is subjected to the
same loading state, it is demonstrated that the axial strain/stress fields are governed by a delayed-advanced
differential equation, that is here solved by means of finite difference technique. This allows to evaluate the
total axial force on the fiber, and, consequently, its effective tensile stiffness, strongly dependent on the length
of the constituent CNTs, their offset and their axial compliance. Comparisons with literature data confirm the
accuracy of the proposed approach.
1. Introduction

Carbon NanoTubes (CNTs) are cylindrical nanoscopic structures
formed of one or more rolled-up graphite layers, with diameter of the
order of 1 nm and typical length of 1÷5 μm. Their discovery in the first
1990s [1,2] inspired a flood of scientific activities worldwide, crossing
several disciplines [3]. Indeed, due to their unique physical, thermal
and electrical properties [4–6], such as high strength, low density, high
conductivity and biological compatibility, they represent a very promis-
ing material for applications in nanoengineering [7,8], electronics
[9,10], as well as in the biomedical field [11,12]. Notwithstanding their
small size, discrete molecular structure and low wall thickness, CNTs
were found to behave similarly to continuum structures with tensile
and bending capacities, with exceptionally high Young’s modulus (1
TPa [13,14]), and tensile strength of the order of 50 GPa [6]. In
practical productions, CNTs may present different morphologies, as for
example helical geometry [15,16], due to the introduction of defects.

Their exceptional properties make them the ideal material to be
used in composites with improved mechanical properties. A typical
example are nanocomposite polymers, formed of CNTs incorporated
into host polymeric matrices [17–19], whose mechanical properties
increase with the increasing of the amount of CNTs, of their dispersion
and alignment in the polymeric matrix [20,21]. Other interesting CNT-
based structures are bundles and fibers (Fig. 1) of weakly interacting
tubes with compliant mobility associated with their relative sliding in
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the longitudinal direction. The interaction is due to the weak van der
Waals forces [22], as well as to cross-linking [23,24].

CNT bundles (Fig. 1(a)), produced and studied mainly during the
1990s and the early 2000s, are composed of a limited number of
CNTs (of the order of 10÷102), and have diameter of about 10÷20 nm.
On the other hand, fibers (Fig. 1(b)) with diameter of the order of
10÷100 μm, composed of a larger number of CNTs, are obtained by
means of different techniques, that may be divided into ‘‘liquid’’ meth-
ods (wet spinning, [25,26]), where CNTs are dispersed into a liquid and
solution-spun into fibers, and ‘‘solid’’ methods (dry spinning, [27,28]),
where CNTs are directly spun into ropes or yarns. However, these
processes yield fibers whose properties are not sufficiently close to
optimal [29,30]. In more recent years, innovative high-throughput
wet spinning procedures [31,32] have allowed to obtain macroscopic
continuous fibers, composed of highly oriented and well-packed CNTs,
with diameter up to 500 μm, and, in principle, no limit in terms of
length. Remarkably, fibers obtained from helically coiled CNTs exhibit
more tunable mechanical properties than those with straight ones and
hold great potential for a wide range of applications [33,34].

Thanks to their very high strength-to-weight ratio, these kind of
fibers, exhibiting mechanical properties competing with both high-
strength fibers and metals, are ideally suited for high-value applica-
tions, for example in electronics [36] and biomedics [37,38]. Thanks
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Fig. 1. (a) High-resolution TEM image of pristine single-walled CNT bundles [35] and (b) SEM image of the surface morphology of a CNT fiber [32].
to their flexibility, they can evolve into engineered materials, in the
design of efficient light-weight aerospace structures, large-span bridges,
and submarine structures [39,40]. The proper assessment of the effective
mechanical properties of CNT fibers is of paramount importance for
their possible use in macroscopic structural elements.

As discussed in [41], the macroscopic tensile stiffness of CNTs fibers
is dictated by the compliance of the lateral bond between adjacent
CNTs, dependent on their aspect ratio, arrangement and cross-link
density and, in particular, by their overlapping length [41]. The latter
is often neglected in analytical approaches (see, among the others, [42,
43], considering CNTs running along the entire fiber length), or taken
into account as a random variable in molecular mechanic simula-
tions [44,45]. In literature models based on solid mechanics [46,47],
one of the main simplifying assumption consists into neglect the axial
deformation of the CNTs composing the bundle/fiber, i.e., the con-
stituent CNTs are modeled as axially rigid bars [41,48]. This usually
leads to an overestimation of the macroscopic stiffness of the fiber.

This is why, in the refined model here proposed, the CNTs are
modeled as deformable bars, with given axial stiffness. The considered
model problem is that of a fiber composed of CNTs with length
much lower than the fiber length, and connected along their lateral
surfaces by means of distributed shear springs. CNTs are considered to
be arranged in a square lattice in the fiber cross-section, of arbitrary
shape, while in the axial direction they are offset of a given quantity
with respect to the adjacent ones. These assumptions are similar to that
adopted in [41], but in that study the CNTs were assumed to be axially
rigid, and hence the fiber elongation was due to their axial displace-
ment only. On the contrary, here they are modeled as deformable bars,
whose axial compliance is accounted for, and consequently the fiber
elongation results into both the axial displacement of the CNTs, and
their elongation.

The axial response of the fiber is here studied by prescribing it
a macroscopic elongation. In Section 2, the equation governing the
resulting axial strain of the composing CNTs is obtained, by assuming
that each CNT is subjected to the same actions, due to the periodicity of
their arrangement. It is demonstrated that the problem is governed by
a delayed-advanced differential equation, similar to those of nonlocal
theories in continuum mechanics [49–51], whose solution is here found
by means of finite difference technique. In Section 3, the obtained
solution is used to evaluate the axial force acting on the fiber and,
consequently, its axial stiffness, that turns out to be strongly dependent
on the length of the constituent CNTs, their offset and their axial
compliance. The obtained results show that the model allows for an
accurate interpretation of experimental data.

2. Traction response of a fiber of NanoTubes

To investigate the tensile response of the CNT fiber, an approach
similar to that adopted in [41] is used, i.e., a macroscopic elongation
is prescribed to the whole fiber, and the correspondent axial force
is evaluated a posteriori. In the aforementioned work, the constituent
2

CNTs were assumed to be axially rigid, and hence the fiber elongation
was given by the axial displacement of the CNTs. Here, the axial
compliance of the CNTs is accounted for, and hence the macroscopic
elongation results into two different-in-kind deformation mechanisms,
occurring at the nanoscopic level, that will be detailed in the sequel:
(i) the displacement in the axial direction of the CNTs composing the
fiber and (ii) the (possibly non-uniform) stretch of the individual CNTs.

2.1. The model problem

The considered model problem is that of a fiber of length 𝐿, with
cross section of arbitrary shape, with size of the order of 10÷100 μm,
as shown in Fig. 2. The fiber is composed of monodispersed CNTs,
arranged in a regular square lattice in the cross-section (Fig. 2), with
diameter 𝑑 of the order of 1 nm and length 𝑙 ≪ 𝐿 of the order of
1÷10 μm, so that the CNT aspect ratio is 𝑙∕𝑑 = 103 ÷ 104. Here, we
consider compliant single-walled1 CNTs, with axial stiffness 𝐸𝐴, where
𝐴 is the cross sectional area and 𝐸 the Young’s modulus.

The offset between the caps of CNTs placed on the same longitudinal
line allows their mobility in the longitudinal direction, and their inter-
action is negligible [52]. The shear coupling of adjacent CNTs on their
lateral surface is due to the presence of van der Walls forces, and may
be increased by cross-link [23,24]. Since the scale of the interaction
is at the atomistic level, this may be modeled, from the mechanical
point of view, by means of a soft thin interface layer [46,53], or with
shear springs à la Winkler [41,54]. In the present model, we use the
distributed shear springs shown in the magnified detail of Fig. 2(b),
with linear response2, and stiffness per unit length 𝜅.

With reference to Fig. 2, introduce the reference system (𝑥, 𝑦, 𝑧) with
𝑥 on the direction of the fiber axis and 𝑦, 𝑧 parallel to the lattice
directions. In the cross-section, each 𝑦-‘‘column’’ (𝑧-‘‘row’’, respectively)
is constituted by a number of CNTs dependent on the 𝑧 (𝑦, respectively)
coordinate. Following [41], the random axial misalignment of each
CNT with respect to those belonging to adjacent lines is interpreted
in an average way: when moving in the increasing 𝑦 (respectively, 𝑧)
direction, each CNT is offset (in the 𝑥 direction) of 𝜓𝑙, with 𝜓 ∈ [0, 1],
with respect to the ‘‘previous’’ one. The non-dimensional parameter 𝜓
will be referred to as offset parameter. According to this spatial distri-
bution, each CNT is connected to those composing the four adjacent
‘‘lines’’ in the 𝑦-column and 𝑧-row direction. Therefore, as emphasized
in Fig. 2(c), each nanotube is connected with eight CNTs.

1 The model can be easily extended to double-walled and multi-walled CNTs
simply by correctly account for their cross area.

2 More generally, the interaction between adjacent CNTs may be interpreted
by means of non-linear springs [55].
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Fig. 2. Geometry of the considered CNT fiber, (a) cross and (b) longitudinal sections; (c) shear coupling of the (𝑖, 𝑗, 𝑘) CNT.
2.2. Kinematics and loading state

By assuming that the CNTs are deformable bodies, when the CNT
fiber undergoes a macroscopic deformation 𝜖, this will produce two
different mechanisms, namely: the axial displacement of the individual
CNTs, moving apart from one another, and their elongation due to the
forces transmitted by the springs, providing a traction load on the CNT
itself. Due to the initial spacing between the CNT caps, and since their
axial displacement increases the distance of their centroids, the CNT
elongation does not affect the macroscopic stretch of the fiber. Hence,
it can be assumed that the distance increase between the centroids of
nanotubes belonging to the same line is homogeneous, and proportional
to 𝜖. As detailed in Appendix A.1, this allows to evaluate the CNTs
position in the deformed configuration and, consequently, the relative
displacement between points lying on adjacent CNTs.

A key point of the proposed model is that, due to the periodicity of
the considered geometry, each CNT will be subjected to the same ac-
tions3, transmitted by the shear springs. Hence, the axial displacement
field, hereafter referred to as 𝑢(𝜉), where 𝜉 is the local axial coordinate,
𝜉 ∈ [−𝑙∕2, 𝑙∕2], will be the same on all the CNTs composing the fiber4.
The shear forces (per unit length) transmitted by the springs, of stiffness
𝜅, connecting the CNT to the adjacent ones are derived in Appendix A.1,
and may be written as

𝑡𝑖,𝑗+1,𝑘(𝜉) = 𝑡𝑖,𝑗,𝑘+1(𝜉) = 𝜅 [𝜓𝑙𝜖 + 𝑢(𝜉 − 𝜓𝑙) − 𝑢(𝜉)] ,

𝑡𝑖−1,𝑗+1,𝑘(𝜉) = 𝑡𝑖−1,𝑗,𝑘+1(𝜉) = 𝜅 [−(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 + (1 − 𝜓)𝑙) − 𝑢(𝜉)] ,

𝑡𝑖,𝑗−1,𝑘(𝜉) = 𝑡𝑖,𝑗,𝑘−1(𝜉) = 𝜅 [−𝜓𝑙𝜖 + 𝑢(𝜉 + 𝜓𝑙) − 𝑢(𝜉)] ,

𝑡𝑖+1,𝑗−1,𝑘(𝜉) = 𝑡𝑖+1,𝑗,𝑘−1(𝜉) = 𝜅 [(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 − (1 − 𝜓)𝑙) − 𝑢(𝜉)] , (2.1)

where pedex follow the notation of Fig. 2(c).
As schematically indicated in Fig. 3(a), the (𝑖, 𝑗, 𝑘)th CNT can be

divided in three regions,5 where it is connected with different adjacent
CNTs, namely: region 𝐴, with 𝜉 ∈ [−𝑙∕2, 𝑙(𝜓 − 1∕2)]; region 𝐵, with
𝜉 ∈ [𝑙(𝜓 − 1∕2), 𝑙(1∕2 − 𝜓)]; region 𝐶, with 𝜉 ∈ [𝑙(1∕2 − 𝜓), 𝑙∕2].

3 This is not true for CNTs lying on the fiber surface, that are connected
with less than 8 adjacent CNTs. However, since the cross-sectional area of the
fiber is in general 4 (or even 5) orders of magnitude higher than that of CNTs,
the contribution of the external CNTs may be considered to be negligible.

4 Notice that other models proposed by the literature, based on similar
approaches [46,47], consider the interaction between only two adjacent CNTs,
so neglecting both the complex mutual interaction between the CNT lattice,
and the periodicity of the considered problem. Roughly speaking, these models
do not consider that the axial displacement/strain/stress fields must be the
same on all the CNTs composing the fiber.

5 Obviously, for 𝜓 = 0.5 (i.e., for CNTs offset by exactly half their own
length) the end of region 𝐴 (at 𝜉 = 0) coincides with the beginning of region
𝐶, while the length of region 𝐵 is nil.
3

The total force transmitted by the shear springs on the lateral
surface of the CNT, hereafter denoted to as 𝑡𝑡𝑜𝑡(𝜉), is the sum of the
forces transmitted by the adjacent CNTs. Hence, on the diverse regions
it takes different expressions, that are recorded in Appendix A.1.

2.3. Evaluation of axial force and displacement

The axial force 𝑁(𝜉) acting on the (𝑖, 𝑗, 𝑘)th CNT is related to the
axial displacement by

𝑁(𝜉) = 𝐸𝐴𝑢′(𝜉) , (2.2)

where ′ denotes differentiation with respect to 𝜉, 𝐸 is the CNT Young’s
modulus, of the order of 1 TPa [13,14,56], while 𝐴 is the cross sectional
area of the CNT. This may be evaluated as the area of the annulus (see,
among the others, [52,57]) having mean diameter 𝑑 and thickness 𝑠,
corresponding to the thickness of the graphite layer, assumed equal to
the interlayer spacing of graphite, i.e., 0.34 nm [58,59]. The axial force
is related to the total shear forces transmitted by the distributed springs
by the axial equilibrium of the CNTs, providing the differential relation

𝑁 ′(𝜉) = 𝐸𝐴𝑢′′(𝜉) = −𝑡𝑡𝑜𝑡(𝜉), (2.3)

taking different form in the different regions. In particular,

⎧

⎪

⎨

⎪

⎩

𝐸𝐴𝑢′′(𝜉) = 2𝜅 [−𝜖𝑙 + 𝑢(𝜉 + (1 − 𝜓)𝑙) + 𝑢(𝜉 + 𝜓𝑙) − 2𝑢(𝜉)] in region 𝐴,
𝐸𝐴𝑢′′(𝜉) = 2𝜅 [𝑢(𝜉 − 𝜓𝑙) + 𝑢(𝜉 + 𝜓𝑙) − 2𝑢(𝜉)] in region 𝐵,
𝐸𝐴𝑢′′(𝜉) = 2𝜅 [𝜖𝑙 + 𝑢(𝜉 − (1 − 𝜓𝑙)) + 𝑢(𝜉 − 𝜓𝑙) − 2𝑢(𝜉)] in region 𝐶.

(2.4)

Continuity condition on both 𝑢(𝜉) and 𝑁(𝜉) = 𝐸𝐴𝑢′(𝜉) should be
required at the interfaces between adjacent regions. Furthermore, since
the axial force is null at the ends of the CNTs, boundary conditions are

𝑁(𝜉)|𝜉=−𝑙∕2 = 𝐸𝐴𝑢′(𝜉)|𝜉=−𝑙∕2 = 0, 𝑁(𝜉)|𝜉=𝑙∕2 = 𝐸𝐴𝑢′(𝜉)|𝜉=𝑙∕2 = 0. (2.5)

Eq. (2.4) is a delayed-advanced differential equation, where the
derivative of the unknown function at a certain coordinate 𝜉 depends
on the function at other coordinates, with both a negative and a
positive shift. Qualitatively, this stems from the fact that the value
of 𝑢(𝜉) at a generic point 𝜉 of the CNT depends on what happens
at the ‘‘correspondent’’ points (i.e., points with the same axial global
coordinate 𝑥) of adjacent CNTs, having a different local coordinate 𝜉.
Due the symmetry of the problem (which causes the axial strain and
stress field to be the same on each of the CNTs constituting the fiber),
this value of 𝑢(𝜉) therefore depends on the value of the same function
at different points on the same CNT.

This kind of equation is most frequently encountered when deal-
ing with time evolution problems, where a time-dependent function
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Fig. 3. (a) Different regions defined on the (𝑖, 𝑗, 𝑘)th CNT, and (b) forces transmitted by CNTs acting on the (𝑖, 𝑗, 𝑘)th CNT, on the (𝑥, 𝑦) plane.
Fig. 4. Case 𝑙 = 2 μm, 𝜓 = 0.2. (a) Undeformed and (b) deformed configuration of the (𝑖, 𝑗, 𝑘)th CNT and of its neighboring CNTs, on the (𝑥, 𝑦) plane, with plot of the axial strain
𝜀(𝜉) on the (𝑖, 𝑗, 𝑘)th CNT.
depends on both the current state, and the previous and subsequent
states. Applications can be found in electronic, physics, biology, and
economy fields [60,61], as well as in non-local elasticity [49,62] and
in peridynamic theory [50,63,64]. The exact solution of this class of
equations is a very difficult task [65], and it is usually found by means
of numerical techniques (see, among the others, [60,66,67]).

2.4. Results and comparisons

The delayed-advanced differential eq. (2.4) is numerically solved
by means of the finite difference technique, allowing to evaluate both
the axial displacement 𝑢(𝜉) and the axial force 𝑁(𝜉). The details of
the implementation may be found in Appendix A.3. This allows to
evaluate a posteriori the relative slips between adjacent CNTs and the
shear forces transmitted by the distributed springs. In Appendix A.2,
the results are analytically compared with the closed-form solution
obtained in [41] for the case of fiber composed of rigid CNTs. In the
sequel, the influence on the displacement field of the CNT length and
offset is studied.

2.4.1. Results in terms of axial displacement and axial force
Consider, as a reference example, a fiber composed single-walled

CNTs with diameter 𝑑 = 1 nm, and Young modulus 𝐸 = 106 MPa.
The axial stiffness of the individual CNT is, hence, 𝐸𝐴 = 1.068 10−6
4

N. According to [41], the stiffness of the shear springs6 connecting the
adjacent CNTs is assumed to be 𝜅 = 0.1 MPa. For these parameters,
Fig. 4(a) shows the arrangement of the reference (𝑖, 𝑗, 𝑘)th CNT and of
its neighboring ones, for CNT length 𝑙 = 2 μm and offset parameter 𝜓 =
0.2, in the undeformed (reference) configuration, while Fig. 4(b) shows
CNTs arrangement and deformation due to a prescribed macroscopic
fiber deformation 𝜖 = 10%.

It may be noticed from Fig. 4(b) that the CNTs not only move away
from each other, but also elongate. To clearly appreciate the extent
of this deformation in the figure, the representation of the CNTs with
initial length (shown with light colors) is superimposed on that of the
actually deformed CNTs (shown with darker colors). The axial strain
𝜀(𝜉) = 𝑢′(𝜉) in the (𝑖, 𝑗, 𝑘)th CNT is plotted, with colorbar, on the same
Figure. Notice that the CNT is not uniformly strained, i.e., 𝜀(𝜉) is higher
in the central part of the CNT, while being null at its ends.

6 Unfortunately, the scientific literature does not provide univoque values
for the shear stiffness of van der Waals bonding, that is highly dependent
on several chemical and geometrical parameters, as, for example, the CNT
chirality [68,69] and the spacing between adjacent CNTs [46]. Furthermore,
the shear stiffness of the bonding can be consistently increased by means of
cross-links (see, among the others, [45,47,70]). Hence, in order to compare
the proposed analytical model with that of [41], we consider the same value
𝜅=0.1 MPa recorded in that paper.
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Fig. 5. Case 𝑙 = 2 μm, 𝜓 = 0.5. Deformed configuration of the (𝑖, 𝑗, 𝑘)th CNT and of its neighboring CNTs, on the (𝑥, 𝑦) plane, with plot of the axial strain 𝜀(𝜉) on the (𝑖, 𝑗, 𝑘)th CNT.
Fig. 6. Case 𝑙 = 2 μm. (a) Axial displacement field 𝑢(𝜉), (b) axial force 𝑁(𝜉), (c) total shear force 𝑡𝑡𝑜𝑡(𝜉).
To investigate the influence on the CNT axial strain of the offset
parameter 𝜓 , now the case 𝜓 = 0.5 is considered. Fig. 5 shows the
arrangement of CNTs, with 𝑙 = 2 μm and 𝜓 = 0.5, before and after the
deformation.

For the cases 𝜓 = 0.2 and 𝜓 = 0.5, Fig. 6(a) shows the axial
displacement 𝑢(𝜉) of the CNT (to avoid rigid body displacement, here
𝑢(𝜉)|𝜉=0 = 0 has been set). As expected, due to the symmetry of the
considered problem, the displacement field is anti-symmetric. Graph in
Fig. 6(b) records the axial force 𝑁(𝜉) = 𝐸𝐴𝑢′(𝜉), varying along the axial
coordinate of the CNT. Fig. 6(c) show the trend of the total shear force
𝑡𝑡𝑜𝑡(𝜉) (A.7) transmitted by the adjacent CNTs.

It may be observed that, for 𝜓 = 0.2, 𝑡𝑡𝑜𝑡(𝜉) is approximately constant
in region 𝐴 and 𝐶, while being almost nil in the central region 𝐵.
Noticeably, this solution is qualitatively very similar to that obtained
by adopting the assumption of rigid CNTs (see Appendix A.2). On the
other hand, for 𝜓 = 0.5, the variation of the total force 𝑡𝑡𝑜𝑡(𝜉) along
the 𝜉 coordinate is more relevant than that recorded for 𝜓 = 0.2. This
indicates that the deformability of the individual CNTs plays a more
important role for high values of axial offset. It may also be noticed
that, for 𝜓 = 0.5, 𝑁(𝜉) takes high values in the central region of the
CNT, hence resulting in a high value of strain in proximity of 𝜉 = 0.

To investigate the influence of the CNT length on its axial displace-
ment field, now a fiber composed of CNTs 5 μm long is considered,
while leaving unchanged the other relevant parameters. Figs. 7(a) and
7(b) show the arrangement of CNTs, for the cases 𝜓 = 0.2 and 𝜓 = 0.5,
respectively. For the same cases, Fig. 8 shows the axial distribution of
5

the axial displacement and of the axial force in each CNT, as well as
the total shear forces.

It may be noticed from Fig. 7 that, in this case, the elongation of
the individual CNTs is consistently higher than that observed in Figs. 5
and 4(b). Furthermore, by comparing Fig. 8 with its counterpart for
CNTs 2 μm long (Fig. 6), it may be observed that, for longer CNTs,
the (non-linear) variation of the total force along the 𝜉 axis is much
more relevant. Notice, in particular, that for the case 𝜓 = 0.5 the axial
strain tends to localize in the neighboring of the interface between
the two regions (𝜉 = 0). It may be verified that this phenomenon is
even more relevant for higher values of 𝑙 (graphs are not recorded
here for the sake of brevity). This is because, for very high CNT
length (or, equivalently, for very low axial stiffness of the CNTs, or
for high stiffness of the distributed springs), the forces exerted by the
springs tend to concentrate at the interface between region 𝐴 and 𝐶.
Correspondingly, the axial force 𝑁(𝜉) tends to become constant along
𝜉, with a Dirac delta arising at 𝜉 = 0. Obviously, this kind of response
cannot be captured by the simpler model of [41].

The particular case of null axial offset (𝜓 = 0) corresponds to
a configuration with vertically stacked CNTs. As already observed
in [41], in this case the fiber is underconstrained and cannot bear
axial loads, because the stacks can move independently one another.
Therefore, both the displacement and strain fields are null, as well as
the forces transmitted by the (not-deformed) shear distributed springs.

For all the considered cases, the numerical model allows to evaluate
the resultant of the shear forces acting, on the (𝑥, 𝑦) plane, on the lower
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Fig. 7. Case 𝑙 = 5 μm. Deformed configuration of the (𝑖, 𝑗, 𝑘)th CNT and of its neighboring CNTs, on the (𝑥, 𝑦) plane, with plot of the axial strain 𝜀(𝜉) on the (𝑖, 𝑗, 𝑘)th CNT. Cases
(a) 𝜓 = 0.2 and (b) 𝜓 = 0.5.
Fig. 8. Case 𝑙 = 5 μm. (a) Axial displacement field 𝑢(𝜉), (b) axial force 𝑁(𝜉), (c) total shear force 𝑡𝑡𝑜𝑡(𝜉).
part of the CNT (i.e., in the direction of decreasing 𝑦), and on its upper
(direction of increasing 𝑦) part, i.e.,

𝑇𝑦− = ∫

𝑙(1∕2−𝜓)

−𝑙∕2
𝑡𝑖,𝑗−1,𝑘(𝜉) 𝑑𝜉 + ∫

𝑙∕2

𝑙(1∕2−𝜓)
𝑡𝑖+1,𝑗−1,𝑘(𝜉) 𝑑𝜉,

𝑇𝑦+ = ∫

𝑙(𝜓−1∕2)

−𝑙∕2
𝑡𝑖−1,𝑗+1,𝑘(𝜉) 𝑑𝜉 + ∫

𝑙∕2

𝑙(𝜓−1∕2)
𝑡𝑖,𝑗+1,𝑘(𝜉) 𝑑𝜉. (2.6)

Obviously, due to the symmetry of the problem, on the (𝑥, 𝑧) plane
the resultants will be 𝑇𝑧− = 𝑇𝑦− and 𝑇𝑧+ = 𝑇𝑦+ . To satisfy the rotational
equilibrium about the 𝑦 and 𝑧 axes, all the resultants must be nil (so to
not give rise to couples), i.e.,

𝑇 = 𝑇 = 𝑇 = 𝑇 = 0. (2.7)
6

𝑧− 𝑦− 𝑧+ 𝑦+
This obviously satisfies also the equilibrium in the axial direction.
Condition (2.7) has been numerically verified, confirming the accuracy
of the obtained solution. Remarkably, this will be useful for the eval-
uation of the effective tensile stiffness of the CNT fiber, as it will be
discussed in Section 3.2.

2.4.2. CNT relative elongation and strain energy
The results presented in the previous subsection suggest that the

axial strain of the CNTs is higher for long CNTs, and for high values of
axial offset. To deeply investigate this phenomenon, consider the strain
energy of a single CNT, correspondent to the energy ‘‘spent’’ to deform
it, defined as

𝐶𝑁𝑇 = 1 𝑙∕2
𝑁(𝜉)𝑢′(𝜉) 𝑑𝜉 = 𝐸𝐴 𝑙∕2

[

𝑢′(𝜉)
]2 𝑑𝜉. (2.8)
2 ∫−𝑙∕2 2 ∫−𝑙∕2
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Fig. 9. Strain energy of the individual CNT (a) as a function of 𝜓 , for different values of 𝑙 and (b) as a function of 𝑙, for different values of 𝜓 .
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In Fig. 9(a), 𝐶𝑁𝑇 is plotted as a function of the offset parameter
, for different values of the CNT’s length (𝑙 = 2, 5, 7 μm). Obviously,

he graph is symmetric, because the case 𝜓 ∈ [0.5, 1] may be treated by
onsidering, instead of 𝜓 , the value 1 − 𝜓 . Obviously, for the stacked
onfiguration (𝜓 = 0, 1), the strain energy is null. Fig. 9(b) is the
ounterpart of Fig. 9(a), showing 𝐶𝑁𝑇 as a function of 𝑙, for different
alues of 𝜓 .

It is evident that the strain energy is strongly dependent upon the
NT length and offset, being higher for long and highly coupled CNTs
i.e., for high values of 𝜓). Fig. 9(b) highlights how the dependence of
𝐶𝑁𝑇 on the CNT length is superlinear.

Let us consider now the relative elongation of the individual CNTs,
𝑙∕𝑙, that is strongly dependent on their axial stiffness, and on the
tiffness 𝜅 of the distributed springs. By defining a coefficient 𝛽 ∶=
𝐴∕𝜅, the following non-dimensional quantity may be defined

(𝛽, 𝑙, 𝜓) ∶= 𝛥𝑙
𝜖𝑙

= 1
𝜖𝑙 ∫

𝑙∕2

−𝑙∕2
𝑢′(𝜉) 𝑑𝜉, (2.9)

correspondent to the ratio between the relative elongation of the in-
dividual CNTs and the prescribed macroscopic deformation 𝜖, corre-
spondent to the displacement of their centroids along the fiber axis
(independent on 𝑙 and 𝜓 , as discussed in Section 2.2). It may be verified
that, due to the linearity of the considered problem, 𝜙(𝛽, 𝑙, 𝜓) is inde-
pendent of 𝜖. It is expected to vary between 0 (when the CNTs are rigid
and hence 𝛥𝑙 = 0, and when they are stackered), and 1 (when the CNTs
are very deformable with respect to the shear springs, and hence all the
prescribed deformation results in an elongation of the individual CNTs).
Indeed, in the latter case, the axial displacement may be evaluated
by requiring that the relative displacement of adjacent CNTs is null,
and turns out to be in the form 𝑢(𝜉) = 𝜖𝜉, hence providing 𝛥𝑙 = 𝜖𝑙
and, consequently, 𝜙(𝛽, 𝑙, 𝜓) → 1. Hence, 𝜙(𝛽, 𝑙, 𝜓) may be regarded
as a ‘‘measure’’ of the relevance of the two deformation mechanisms
described at the beginning of Section 2. This will be discussed more in
detail in Section 3.3.1.

Fig. 10(a) shows 𝜙(𝛽, 𝑙, 𝜓) plotted as a function of the offset param-
eter 𝜓 , for the same values of 𝑙 considered in Fig. 9(a). Fig. 10(b) is
the counterpart of Fig. 10(a), showing 𝜙(𝛽, 𝑙, 𝜓) as a function of 𝑙, for
different values of 𝜓 .

As expected from previous results, the relative elongation of the
CNTs increases as their length and offset increase. With reference to the
two deformation mechanisms described at the beginning of Section 2,
this means that the stretch of the individual CNTs becomes more
relevant, with respect to the displacement of their centroids along the
fiber axis, for long and highly offset CNTs.

Notice that, for low values of 𝑙, the dependence on the offset
parameter 𝜓 is approximately parabolic, while for higher values of 𝑙 it
takes a more complicated dependence on 𝜓 . In particular, in the latter
case, 𝜙(𝛽, 𝑙, 𝜓) is almost constant for a wide range of values of 𝜓 , taking
7

u

lower values for 𝜓 ≃ 0.5. This is because, as discussed in Section 2.4.1,
in this case the strain tends to concentrate only in the central region
of the CNTs. It may be verified that this phenomenon is even more
relevant for higher values of 𝑙.

3. Effective tensile stiffness

The displacement field determined in Section 2 allows to evaluate
the macroscopic stiffness of the whole CNT fiber. This may be done by
considering the fiber as an equivalent homogeneous beam, subjected to
a macroscopic deformation 𝜖, whose effective Young’s modulus 𝐸𝑓 can
be defined as

𝐸𝑓 =
𝑁𝑓

𝐴𝑓 𝜖
, (3.1)

here 𝐴𝑓 is the cross-sectional area of the fiber, of arbitrary shape,
hile 𝑁𝑓 is the total axial force acting on the fiber itself, that may

be evaluated as the sum of the axial forces acting on the individual
CNTs. To calculate 𝑁𝑓 , it is important to proper account for the CNTs
istribution in the fiber cross section.

In the sequel, first the simple case where the fiber may be consid-
red as formed of ‘‘bunches’’ composed of a integer number of CNTs
s considered, for the sake of explanation, and hence the more general
ase is treated.

.1. Simple case

Consider first the simple case where 𝜓 = 1∕𝑛𝑏, being 𝑛𝑏 a natural
umber. Recall that, as discussed in Section 2, the CNTs are assumed
o be arranged in the fiber cross-section according to a square matrix,
llowing their distribution to be the same on the (𝑥, 𝑦) and (𝑥, 𝑧) planes.
ince the distribution of CNTs on each row/column repeats periodically
very 𝑛𝑏 CNTs, it is possible to identify ‘‘bunches’’ composed of 𝑛𝑏 CNTs
n each row/column composing the fiber cross section. Due to the
eriodicity, the bunches are equal one to each other, and repeat on each
ow/column (i.e., on both the (𝑥, 𝑦) and the (𝑥, 𝑧) planes). This kind of
ubdivision is illustrated in Fig. 11, referring to a fiber7 composed of
NTs offset in the axial direction of 1/5 of their length (i.e., 𝜓 = 0.2),
here ‘‘bunches’’ of 5 CNTs may be identified on both the 𝑦 and 𝑧
irections. In the sequel, for simplicity we will refer to bunches lying
n the (𝑥, 𝑦) plane.

Due to the periodicity of the considered structure, each bunch
arries the same axial load, hereafter denoted to as 𝑁𝑏. This may be
valuated by sectioning the bunch as shown in Fig. 12, at a generic
istance 𝛼𝑙, with 𝛼 < 𝜓 , from the left end of the first CNT.

7 For the sake of example, without loss of generality, in Fig. 11 a CNT fiber
ith circular cross section is shown. However, the proposed approach can be
sed for any shape of the cross section.
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Fig. 10. Non-dimensional function 𝜙(𝛽, 𝑙, 𝜓) (a) as a function of 𝜓 , for different values of 𝑙 and (b) as a function of 𝑙, for different values of 𝜓 .
Fig. 11. Section of the CNT fiber: (a) 3D and (b) 2D view, and (c) detail of the CNT bunch. Different colors indicate different axial position of the CNTs.
Fig. 12. Sectioning the bunch.

Notice that this correspond to section each CNT composing the
bunch at a different coordinate 𝜉. Consequently, by numbering the
CNTs composing the bunch with the pedex ℎ = 1… 𝑛𝑏 as in Fig. 12,
the axial force acting on the ℎth CNT may be evaluated as

𝑁ℎ = 𝑁(𝜉)|𝜉=−𝑙∕2+𝛼𝑙+(ℎ−1)𝜓𝑙 . (3.2)

Consequently, the normal force on the whole bunch is given by

𝑁𝑏 =
𝑛𝑏
∑

ℎ=1
𝑁ℎ =

𝑛𝑏
∑

ℎ=1
𝑁 (−𝑙∕2 + 𝛼𝑙 + (ℎ − 1)𝜓𝑙) . (3.3)

It has been numerically verified that 𝑁𝑏 is independent of the
parameter 𝛼. This is a noteworthy result, confirming that, even if the
axial force on the individual CNTs is highly variable along their axis
(see Figs. 6 and 8), their resultant on the bunch is uniform. Once
𝑁𝑏 is known, the total force acting on the fiber may be evaluated by
summing the contributions of all the bunches. Observing that the ‘‘area
of competence’’ of each bunch is

𝐴𝑏 = 𝑛𝑏𝑑
2 = 𝑑2 , (3.4)
8

𝜓

and consequently the total force 𝑁𝑓 may be evaluated as

𝑁𝑓 =
𝐴𝑓
𝐴𝑏

𝑁𝑏 =
𝜓𝐴𝑓
𝑑2

𝑁𝑏. (3.5)

3.2. General case

The approach proposed in Section 3.1 can be used only if the bunch
is composed of an integer number 𝑛𝑏 = 1∕𝜓 of CNTs, while the case
where 𝜓 is a generic real number may be treated in a more general
way. To illustrate it, consider the CNT bunch of Fig. 11, sectioned with
𝛼 = 0, as shown in Fig. 13(a). Consider also the cut with ‘‘saw-toothed
profile’’ indicated with dashed line in the same Figure, formed of 𝑛𝑏
inclined cuts with slope −𝜓𝑙∕𝑑.

Let us consider the equilibrium, in the axial direction, of the por-
tion comprised between these two ‘‘cuts’’, as shown in Fig. 13(b). As
schematized in the same Figure, on the l.h.s. each CNT, of diameter 𝑑,
is subjected to the axial forces 𝑁ℎ (3.2), while on the inclined cut the
force 𝑁(𝜉)

𝑑 𝑑𝜂 arise on the infinitesimal −𝑑𝜂. Furthermore, the portion
of bunch is also subjected to the shear forces8 acting on the lower
part of the CNTs, correspondent to 𝑡𝑖,𝑗−1,𝑘(𝜉) (in regions 𝐴 and 𝐵) and
𝑡𝑖+1,𝑗−1,𝑘(𝜉) (in region 𝐶, see also Fig. 3(a)).

The equilibrium of this portion of the bunch may be evaluated in a
very simple way. Indeed, by ‘‘translating’’ each CNT of 𝜓𝑙 in the axial
direction, as shown in Fig. 14, it is evident that the inclined cut covers
all the CNT length.

8 Recall that, due to the periodicity of the problem, each CNT is subjected
to the same action configuration.



International Journal of Mechanical Sciences 251 (2023) 108303L. Galuppi and V.A. Muratore

e

e

H
p
C
f

d
o
C

3

h

Fig. 13. (a) Cut with ‘‘saw-toothed profile’’; (b) Equilibrium of the portion between the cuts.
Fig. 14. (a) ‘‘Translating’’ each CNT of 𝜓𝑙 in the axial direction; (b) The inclined cut covers all the CNT length.
w

Recalling that the slope is −𝜓𝑙∕𝑑, and hence −𝑑𝜂 = 𝑑
𝜓𝑙 𝑑𝜉, the axial

quilibrium of the portion of the bunch between the cuts reads

−
𝑛𝑏
∑

ℎ=1
𝑁ℎ +

1
𝜓𝑙 ∫

𝑙∕2

−𝑙∕2
𝑁(𝜉) 𝑑𝜉 − ∫

𝑙(1∕2−𝜓)

−𝑙∕2
𝑡𝑖,𝑗−1,𝑘(𝜉) 𝑑𝜉

+∫

𝑙∕2

𝑙(1∕2−𝜓)
𝑡𝑖+1,𝑗−1,𝑘(𝜉) 𝑑𝜉 = 0.

(3.6)

Observe now that the latter two terms of (3.6) correspond to the
resultant of the shear forces acting on the lower part of the CNT,
i.e., 𝑇𝑦− of Eq. (2.6), that is nil as per Eq. (2.7). This allows to evaluate
the axial force on the bunch as

𝑁𝑏 =
𝑛𝑏
∑

ℎ=1
𝑁ℎ = 1

𝜓𝑙 ∫

𝑙∕2

−𝑙∕2
𝑁(𝜉) 𝑑𝜉. (3.7)

Eq. (3.7) may be regarded a generalization of Eq. (3.3), allowing to
valuate the axial force 𝑁𝑏 acting on the bunch as the integral of the

axial force 𝑁(𝜉) acting on the whole length of the constituent CNTs.
Remarkably, this expression can be used for arbitrary values of 𝜓 .

owever, in this case, unless 1∕𝜓 is an integer, it is obviously not
ossible to define a bunch composed of an integer number of CNTs.
onsequently, 𝑁𝑏 may be interpreted as the resulting axial force on a

iber portion, lying on the (𝑥, 𝑦) plane, of height 𝑑∕𝜓 and ‘‘thickness’’ 𝑑
(in the 𝑧 direction). Henceforth, its ‘‘area of competence’’ is again given
by (3.4), and the total force on the whole fiber may be evaluated with
an expression analogue to (3.5), i.e.,

𝑁𝑓 =
𝐴𝑓
𝑙𝑑2 ∫

𝑙∕2

−𝑙∕2
𝑁(𝜉) 𝑑𝜉 , (3.8)

while the effective Young’s modulus of the fiber (3.1) may be evaluated
as

𝐸𝑓 = 1
𝜖𝑙𝑑2 ∫

𝑙∕2

−𝑙∕2
𝑁(𝜉) 𝑑𝜉. (3.9)

This confirms that, as expected, the effective Young’s modulus is in-
ependent on size and shape of the fiber cross section, being dependent
nly on the geometrical and mechanical properties of the constituent
NTs, and on their lateral bond.

.3. Results and comparisons

Once the axial strain and the axial load on the individual CNTs
9

as been numerically evaluated as detailed in Section 2, the effective
Young’s modulus of the fiber can be calculated by means of Eq. (3.9).
Here, the obtained results are compared with those obtained by using
the simplified model of [41], assuming rigid CNTs, as well as with
experimental data from literature.

3.3.1. Influence of mechanical and geometric parameters
To evaluate the influence of the diverse geometric and mechanical

parameters, observe that, by recalling that ∫ 𝑙∕2−𝑙∕2𝑁(𝜉) 𝑑𝜉 = 𝐸𝐴 ∫ 𝑙∕2−𝑙∕2 𝑢
′

(𝜉) 𝑑𝜉 = 𝐸𝐴𝛥𝑙, Eq. (3.9) may be rearranged as

𝐸𝑓 =
𝜅𝛽
𝑑2

𝜙(𝛽, 𝑙, 𝜓). (3.10)

here, again, 𝛽 = 𝐸𝐴∕𝜅, and the non-dimensional function 𝜙(𝛽, 𝑙, 𝜓)
is given by (2.9). It may be verified that the fiber axial modulus is
intermediate between the following limits:

• when the CNTs are rigid (𝐸𝐴 → ∞), 𝛽 → ∞ and 𝜙(𝛽, 𝑙, 𝜓) → 0. In
this case, it may be verified that

𝛽 𝜙(𝛽, 𝑙, 𝜓) → 2𝜓(1−𝜓)𝑙2 ⇒ lim
𝛽→∞

𝐸𝑓 = 2𝜅𝜓(1−𝜓) 𝑙
2

𝑑2
, (3.11)

that coincides with the expression recorded in [41]. The details
of the calculation are recorded in Appendix A.2.

• when the shear springs are rigid, i.e., 𝜅 → ∞, 𝛽 → 0. In this case,
as discussed in Section 2.4.2, 𝜙(𝛽, 𝑙, 𝜓) → 1 and

lim
𝛽→0

𝐸𝑓 = 𝐸𝐴
𝑑2

. (3.12)

Notice that, since the quantity 𝐴∕𝑑2 is the ratio between the CNTs
cross sectional area and its ‘‘area of competence’’ in the cross
section of the fiber, the effective fiber stiffness simply corresponds
to the sum of the axial stiffness of the (fully coupled) individual
CNTs.

In Fig. 15, the non-dimensional function 𝜙(𝛽, 𝑙, 𝜓) is plotted, as a
function of 𝛽, for different values of 𝜓 . The different graphs correspond
to different CNT length. It is evident that 𝜙(𝛽, 𝑙, 𝜓) → 1 for low values
of 𝛽, also dependently on the values of 𝜓 and 𝑙. As expected, the ratio
between the axial stiffness 𝐸𝐴 of the individual CNTs, and the stiffness
𝜅 of the distributed springs, plays a definite role on the fiber response.
When the CNTs are bonded by means of cross-link, 𝜅 may be evaluated
as a function of the cross-link density [45,47].

Remarkably, graphs in Fig. 15 may represent a practical tool to

evaluate the effective stiffness of CNT fibers. Indeed, if the geometric
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Fig. 15. Evaluation of 𝜙(𝛽, 𝑙, 𝜓), as a function of 𝛽 = 𝐸𝐴∕𝜅, for different values of 𝜓 , for CNT length of (a) 2 μm, (b) 5 μm and (c) 7 μm.
Fig. 16. Effective Young’s modulus 𝐸𝑓 of the CNT fiber (a) as a function of 𝑙, for different 𝜓 , and (b) as a function of 𝜓 , for different 𝑙: proposed model (thick black curves) and
model by [41] (thin red curves).
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(𝑙, 𝜓) and mechanical (𝐸,𝐴, 𝜅) parameters are known, these allow to
evaluate the non-dimensional function 𝜙(𝛽, 𝑙, 𝜓) and, consequently, 𝐸𝑓
through Eq. (3.10).

3.3.2. Comparison with the results obtained for the case of rigid CNTs
Here, the effective Young’s modulus (3.9) is numerically evaluated

for CNT fiber with the same geometric and mechanical parameters
considered in Section 2.4.1, i.e., 𝑑 = 1 nm, 𝑠 = 0.34 nm, 𝐸 = 106 MPa,
𝜅 = 0.1 MPa, and variable 𝑙 and 𝜓 . According to Eq. (3.9), the size of
the fiber cross section does not affect its effective modulus.

Fig. 16(a) shows the effective Young’s modulus 𝐸𝑓 (plotted with
thick black lines), on a logarithmic scale, as a function of the CNT
length 𝑙. The different curves correspond to different values of the offset
parameter 𝜓 . To highlight the influence on the overall tensile response
of the compliance of the CNTs, the results are compared with those
obtained by assuming, as done in [41], the constituent CNTs to be rigid
(3.11) (thin red curves).
10

o

As expected, when the offset parameter 𝜓 increase, the coupling
between the different CNTs increases, so providing an increase of
macroscopic stiffness of the CNT fiber.

Notice that the model [41] provides an effective modulus directly
proportional to the square of the length of the constituent CNTs,
according to (3.11), so resulting in straight curves on the logarithmic
plane. As may be noticed from Fig. 16(a), for low values of 𝑙, the
roposed model provides results that in practice coincide with those
f [41]. This is because, when the constituent CNTs are ‘‘short’’, their
train is very low (see also plot in Fig. 10(b)) and it does not affect
he macroscopic stiffness. When 𝑙 increases, the contribution of the
eformability of the individual CNTs becomes more relevant, leading
o a decrease of the overall axial stiffness of the fiber, with respect to
hat predicted by the model [41]. This results in a decrease of the slope
f the curves in Fig. 16(a), that is more relevant for high values of the
ffset parameter 𝜓 .
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It can also be verified that, for very high values of the length 𝑙 of
he CNTs (dependently on the offset parameter, of the order of 10-
0 μm, a value that cannot be obtained with the current technology),
𝑓 settles to a constant value, independent on 𝜓 . This means that
hen the CNTs are very long, they are ‘‘well coupled’’ because of their

ength, regardless of the offset, which becomes irrelevant under these
onditions. This behavior is qualitatively similar to that observed in
41] for the bending response of CNT fibers.

Fig. 16(b) shows the effective Young’s modulus 𝐸𝑓 of the CNT fiber,
lotted as a function of the offset parameter 𝜓 , for various lengths 𝑙
f the CNTs composing the fiber. Again, also the result obtained by
ssuming rigid CNTs are plotted for the sake of comparison. When
NTs are rigid, Eq. (3.11) provides a quadratic dependence of 𝐸𝑓 on
he offset parameter, with 𝐸𝑓 = 0 for 𝜓 = 0, 1 (configuration with
tacked CNTs). The proposed model (Eq. (3.9)) provides a qualitatively
ifferent trend of 𝐸𝑓 : the stiffness is still null for 𝜓 = 0, 1, but the
iddle part of the graph is more ‘‘flattened’’. This behavior suggests

hat also values of 𝜓 quite distant from 0.5 are sufficient to impart to
he fiber an high coupling. This phenomenon is more marked for high
alues of 𝑙, confirming the conclusions drawn from Fig. 16(a).

It may be noticed that, since 𝐸𝑓 is proportional to ∫ 𝑙∕2−𝑙∕2𝑁(𝜉) 𝑑𝜉,
t has the same qualitative dependence on 𝜓 and 𝑙 of the function
(𝛽, 𝑙, 𝜓) plotted in Fig. 10(a). In particular, for higher values of 𝑙,
𝑓 has a slight decrease for 𝜓 = 0.5. This is because, as discussed in
ection 2.4.2, for 𝜓 = 0.5 the central region of the CNT is ovestrained,
o resulting in a decrease of the effective stiffness.

.3.3. Comparison with experimental results
The obtained results are now compared with those recorded in the

echnical literature. Usually, experimental papers report measures of
he effective axial stiffness of CNT fibers, sometimes indicating the
mean) values of 𝑑 and 𝑙, but with no consideration of the offset
arameter 𝜓 . Indeed, real fibers are composed of CNTs with different
engths, randomly aggregated. The proposed model interprets this ran-
om phenomenon by the parameter 𝜓 , which can be varied to obtain
range of values for the effective Young’s modulus, within which the

xperimental results should fall.
In the sequel, reference is made to the accurate experimental results

ecorded in [71]. These refer to tensile tests, performed with a rheome-
er, on 3 cm long fibers, with circular cross section of diameter 10 μm,
omposed of single-walled CNTs with 𝑑 ≃1.5 nm and different values of
mean) length 𝑙, i.e., 2.21 μm, 4.17 μm and 6.28 μm. Results presented
n the sequel have been evaluated by considering a shear stiffness9

f the lateral bonding 𝜅 = 0.1 Mpa, and a thickness of the graphite
ayer 𝑠 = 0.34 nm. Fig. 17 shows the comparison between the effective
odulus 𝐸𝑓 (3.9) and the experimental results recorded in [71].

The proposed model seems to correctly capture not only the order
f magnitude of the experimental results (the experimental data fall
ithin the band of values provided by the proposed model), but also

he decrease in the curve slope for increasing CNTs length. It may be
oticed that, for 2.21 μm and 4.17 μm long CNTs, the offset parameter
s near to 0.2, while it decreases with increasing length. As observed
n [41], this theoretical prediction may be justified by the particular
roduction process [31], in which long CNTs, having a limited mobility
ith respect to short CNTs, may tend to gather in bunches. It may be
asily verified, by comparing Fig. 17 with Fig. 16(a), that the proposed
odel provides a better fit of the experimental data, with respect to

he model assuming rigid CNTs [41], in particular for high values of 𝑙.
his confirms that, when CNTs are ‘‘long’’, their axial strain becomes
ore relevant, and to neglect it leads to an underestimation of the
acroscopic stiffness of the fiber.

9 Again, since no precise data on the shear stiffness of the bonding are
vailable, the value for 𝜅 recorded in [41] is here considered.
11
Fig. 17. Effective Young’s modulus 𝐸𝑓 of the CNT fiber as a function of 𝑙, for different
𝜓 : comparison among the proposed model and experimental data from [71].

4. Conclusions

The paper presents an analytical–numerical micromechanical model
for the evaluation of the tensile stiffness of Carbon NanoTube (CNT)
fibers, accounting for the coupling occurring on their lateral surfaces,
thanks to van der Waals forces and to cross-links. CNTs are modeled as
bars with a given axial compliance, a factor neglected in most models
previously proposed by the literature. The proposed model is based on
the consideration that, due to the periodicity of the considered geome-
try, the same loading state is defined on each CNT composing the fiber,
hence resulting in the same axial strain/stress field. It is demonstrated
that these are governed by a delayed-advanced differential equation,
here solved with finite difference technique. An analytical procedure
has been presented to evaluate the resultant, on the whole fiber, of the
axial forces on the individual CNTs, allowing to define the macroscopic
(effective) stiffness of the fiber. It is demonstrated that this increases
with the length of the CNTs and their axial offset, reaching its highest
values when the latter is near to the half of the CNTs length. Graphs
allowing to evaluate the effective stiffness of CNT fibers, as a function
of geometric and mechanical parameters, are recorded.

The obtained results are in good agreement with the literature
experimental data [71]. The accuracy of the model is found to be higher
than that obtained by neglecting the axial compliance of the CNTs [41].
Thus, this represents an important step forward in the study of CNT
fibers response, of particular importance in view of their use to produce
cables for large-scale structural purposes. In particular, as technology
is moving toward the production of longer CNTs, it is of particular
importance to correctly account for the CNTs compliance. Further
developments can consider more complex arrangements of CNTs, and
the non-linear response of the connection between adjacent CNTs. With
minor modifications, the proposed model could be suitable for the
description of other structures composed of aligned nano-components,
as for example boron nitride NTs [72].
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Appendix

A.1. Analytical evaluation of the shear forces transmitted by the distributed
springs

By considering the generic (𝑖, 𝑗, 𝑘)th nanotube, whose centroid has
axial coordinate 𝑥𝐺;𝑖,𝑗,𝑘, the axial coordinates of the centroids of the
adjacent CNTs on the (𝑥, 𝑦) plane, shown in Fig. A.1(a), are

𝑥𝐺;𝑖,𝑗+1,𝑘 = 𝑥𝐺;𝑖,𝑗,𝑘 + 𝜓𝑙, 𝑥𝐺;𝑖−1,𝑗+1,𝑘 = 𝑥𝐺;𝑖,𝑗,𝑘 − (1 − 𝜓)𝑙,

𝑥𝐺;𝑖,𝑗−1,𝑘 = 𝑥𝐺;𝑖,𝑗,𝑘 − 𝜓𝑙, 𝑥𝐺;𝑖+1,𝑗−1,𝑘 = 𝑥𝐺;𝑖,𝑗,𝑘 + (1 − 𝜓)𝑙. (A.1)

Consequently, by denoting by 𝜉 the local axial coordinate defined
on the (𝑖, 𝑗, 𝑘)th CNT (see Fig. A.1(a)), the local coordinates defined on
the four adjacent CNTs are

𝜉𝑖,𝑗+1,𝑘 = 𝜉 − 𝜓𝑙, 𝜉𝑖−1,𝑗+1,𝑘 = 𝜉 + (1 − 𝜓)𝑙,

𝜉𝑖,𝑗−1,𝑘 = 𝜉 + 𝜓𝑙, 𝜉𝑖+1,𝑗−1,𝑘 = 𝜉 − (1 − 𝜓)𝑙. (A.2)

Since the CNTs distribution on the (𝑥, 𝑦) and on the (𝑥, 𝑧) planes is
the same, due to the symmetry of the problem (see Fig. 2), relations
analogue to (A.2) may be written by considering CNTs adjacent to the
(𝑖, 𝑗, 𝑘)th one, lying on the (𝑥, 𝑧) plane.

As discussed in Section 2.2, the mesoscopic deformation of the fiber
produces the two mechanisms schematized in Fig. A.1(b), i.e., the CNT
elongation (highlighted by the darker regions in Fig. A.1(b)), due to
the forces transmitted by the springs, and their axial displacement. The
latter is proportional to the macroscopic stretch 𝜖 prescribed to the
fiber, and consequently the position of the centroid of the (𝑖, 𝑗, 𝑘)th CNT
in the deformed configuration is 𝑥𝐺;𝑖,𝑗,𝑘(1 + 𝜖), as shown in Fig. A.1(b).

To evaluate the relative slip between adjacent CNTs, consider first
the arrangement on the (𝑥, 𝑦) plane, as indicated in Fig. A.1(b). Consider
the generic points 𝑃0 and 𝑃1, belonging to the (𝑖, 𝑗, 𝑘)th and (𝑖, 𝑗+1, 𝑘)th
CNTs, respectively, and initially having the same axial position, as
shown in Fig. A.1(a). By denoting by 𝑢(𝜉) the axial displacement at
the local coordinate 𝜉, the position of 𝑃0 after the deformation will
be 𝑥 (1 + 𝜖) + 𝜉 + 𝑢(𝜉). Since, as discussed in Section 2.2, the axial
12

𝐺;𝑖,𝑗,𝑘
displacement field 𝑢(𝜉) is the same on each CNT, the axial position of 𝑃1
after the deformation will be (𝑥𝐺;𝑖,𝑗,𝑘+𝜓𝑙)(1+𝜖)+(𝜉−𝜓𝑙)+𝑢(𝜉−𝜓𝑙) (see
Fig. A.1(b)). The reciprocal sliding between 𝑃0 and 𝑃1 may be evaluated
simply as the difference between their final positions, and reads

𝛿𝑖,𝑗+1,𝑘(𝜉) = 𝜓𝑙𝜖 + 𝑢(𝜉 − 𝜓𝑙) − 𝑢(𝜉), (A.3)

while, analogously, the relative slip of the (𝑖, 𝑗, 𝑘)th CNT with the other
adjacent CNTs are

𝛿𝑖−1,𝑗+1,𝑘(𝜉) = −(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 + (1 − 𝜓)𝑙) − 𝑢(𝜉),

𝛿𝑖,𝑗−1,𝑘(𝜉) = −𝜓𝑙𝜖 + 𝑢(𝜉 + 𝜓𝑙) − 𝑢(𝜉),

𝛿𝑖+1,𝑗−1,𝑘(𝜉) = (1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 − (1 − 𝜓)𝑙) − 𝑢(𝜉). (A.4)

Consequently, the forces (per unit length) transmitted by the
springs, of stiffness 𝜅, connecting the CNT to the adjacent ones, on the
(𝑥, 𝑦) plane, may be written as

𝑡𝑖,𝑗+1,𝑘(𝜉) = 𝜅 𝛿𝑖,𝑗+1,𝑘(𝜉) = 𝜅 [𝜓𝑙𝜖 + 𝑢(𝜉 − 𝜓𝑙) − 𝑢(𝜉)] ,

𝑡𝑖−1,𝑗+1,𝑘(𝜉) = 𝜅 𝛿𝑖−1,𝑗+1,𝑘(𝜉) = 𝜅 [−(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 + (1 − 𝜓)𝑙) − 𝑢(𝜉)] ,

𝑡𝑖,𝑗−1,𝑘(𝜉) = 𝜅 𝛿𝑖,𝑗−1,𝑘(𝜉) = 𝜅 [−𝜓𝑙𝜖 + 𝑢(𝜉 + 𝜓𝑙) − 𝑢(𝜉)] ,

𝑡𝑖+1,𝑗−1,𝑘(𝜉) = 𝜅 𝛿𝑖+1,𝑗−1,𝑘(𝜉) = 𝜅 [(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 − (1 − 𝜓)𝑙) − 𝑢(𝜉)] . (A.5)

The forces transmitted by CNTs connected to the (𝑖, 𝑗, 𝑘)th nanotube on
the (𝑥, 𝑧) plane are analogue to that on the (𝑥, 𝑦) plane, and read

𝑡𝑖,𝑗,𝑘+1(𝜉) = 𝜅 [𝜓𝑙𝜖 + 𝑢(𝜉 − 𝜓𝑙) − 𝑢(𝜉)] ,

𝑡𝑖−1,𝑗,𝑘+1(𝜉) = 𝜅 [−(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 + (1 − 𝜓)𝑙) − 𝑢(𝜉)] ,

𝑡𝑖,𝑗,𝑘−1(𝜉) = 𝜅 [−𝜓𝑙𝜖 + 𝑢(𝜉 + 𝜓𝑙) − 𝑢(𝜉)] ,

𝑡𝑖+1,𝑗,𝑘−1(𝜉) = 𝜅 [(1 − 𝜓)𝑙𝜖 + 𝑢(𝜉 − (1 − 𝜓)𝑙) − 𝑢(𝜉)] . (A.6)

In the three regions schematically indicated in Fig. 3(a), the (𝑖, 𝑗, 𝑘)th
is connected with different adjacent CNTs, namely:

∙ region 𝐴: (𝑖−1, 𝑗 +1, 𝑘), (𝑖, 𝑗 −1, 𝑘), (𝑖−1, 𝑗, 𝑘+1), (𝑖, 𝑗, 𝑘−1) CNTs;
∙ region 𝐵: (𝑖, 𝑗 + 1, 𝑘), (𝑖, 𝑗 − 1, 𝑘), (𝑖, 𝑗, 𝑘 + 1), (𝑖, 𝑗, 𝑘 − 1) CNTs;
∙ region 𝐶: (𝑖, 𝑗 +1, 𝑘), (𝑖+1, 𝑗 −1, 𝑘), (𝑖, 𝑗, 𝑘+1), (𝑖+1, 𝑗, 𝑘−1) CNTs.
Hence, the total force transmitted by the shear springs on the lateral

surface of the CNT may be defined, in the three regions, as

𝑡𝑡𝑜𝑡(𝜉) =

⎧

⎪

⎨

⎪

⎩

𝑡𝑖−1,𝑗+1,𝑘(𝜉) + 𝑡𝑖,𝑗−1,𝑘(𝜉) + 𝑡𝑖−1,𝑗,𝑘+1(𝜉) + 𝑡𝑖,𝑗,𝑘−1(𝜉) in region 𝐴,
𝑡𝑖,𝑗+1,𝑘(𝜉) + 𝑡𝑖,𝑗−1,𝑘(𝜉) + 𝑡𝑖,𝑗,𝑘+1(𝜉) + 𝑡𝑖,𝑗,𝑘−1(𝜉) in region 𝐵,
𝑡𝑖,𝑗+1,𝑘(𝜉) + 𝑡𝑖+1,𝑗−1,𝑘(𝜉) + 𝑡𝑖,𝑗,𝑘+1(𝜉) + 𝑡𝑖+1,𝑗,𝑘−1(𝜉) in region 𝐶.

(A.7)
Fig. A.1. (a) Undeformed and (b) deformed configuration of adjacent CNTs, on the (𝑥, 𝑦) plane, highlighting the axial displacement of the individual CNTs, and their axial strain.
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Fig. A.2. CNT discretization, with evidence of the ‘‘ghost nodes’’.
Fig. A.3. Discretization of CNT regions.
A.2. Analytical comparison with the case of rigid CNTs

If the CNTs composing the fiber are assumed to be rigid, as in [41],
the governing equations turn out to be strongly simplified. Indeed,
when the axial stiffness of the CNTs is assumed to be 𝐸𝐴 → ∞, the
axial displacement field 𝑢(𝜉) is identically nil, and the expressions for
the shear forces transmitted by the distributed springs ((A.5) and (A.6))
may be simplified as follows:

𝑡𝑖,𝑗+1,𝑘 = 𝑡𝑖,𝑗,𝑘+1 = 𝜅𝜓𝑙𝜖,

𝑡𝑖−1,𝑗+1,𝑘 = 𝑡𝑖−1,𝑗,𝑘+1 = −𝜅(1 − 𝜓)𝑙𝜖,

𝑡𝑖,𝑗−1,𝑘 = 𝑡𝑖,𝑗,𝑘−1 = −𝜅𝜓𝑙𝜖,

𝑡𝑖+1,𝑗−1,𝑘 = 𝑡𝑖+1,𝑗,𝑘−1 = 𝜅(1 − 𝜓)𝑙𝜖, (A.8)

that coincide with expressions recorded in [41]. This allows to evaluate
the total force transmitted on the lateral surface of the CNT, according
to (A.7).

The axial force in each CNT may be evaluated by means of the
equilibrium relation (2.3), with boundary conditions (2.5) (null axial
force at the CNT’s ends), and by requiring the continuity of 𝑁(𝜉) at the
interfaces between adjacent regions. It may be verified that it takes the
following expression:

⎧

⎪

⎨

⎪

⎩

𝑁(𝜉) = 𝜅𝜖𝑙(𝑙 + 2𝜉) in region 𝐴,
𝑁(𝜉) = 2𝜅𝜖𝜓𝑙2 in region 𝐵,
𝑁(𝜉) = 𝜅𝜖𝑙(𝑙 − 2𝜉) in region 𝐶.

(A.9)

It has been numerically verified that the obtained solution, in terms
of 𝑁(𝜉), coincide with this closed form expression, when a very high
value for the axial stiffness of the individual CNTs is set, i.e., for 𝐸𝐴→
∞.

If the constituent CNTs are assumed to be rigid, as in [41], their
axial force 𝑁(𝜉) cannot be found from their constitutive law (2.2). This
is why in [41] the axial force in the whole fiber is evaluated as the
resultant of the shear interactions, by performing a ‘‘step-cut’’ of the
fiber, not intersecting the CNTs. However, 𝑁(𝜉) may be recovered from
the equilibrium of the individual CNTs, and it turns out to be in the
form (A.9). The proposed approach hence allows to calculate 𝑁𝑓 as
the resultant of the axial forces on the individual CNTs by means of
Eq. (3.8), providing the following expression:

𝑁𝑓 = 2 𝐴𝑓𝜅𝜖
𝑙2

𝑑2
𝜓(1 − 𝜓). (A.10)

The stiffness of the CNT fiber may be obtained by means of Eq. (3.1),
providing an expression that coincide with (3.11) obtained in [41].

A.3. Implementation of the finite difference model

The determination of the axial displacement field in the CNTs
composing the fiber is governed by the ‘‘delayed advanced differential
13
equation’’ (2.4), i.e., a differential equation in which the unknown
function and its derivatives at a given point in the domain depend
on the values taken by the function itself at ‘‘previous’’ and ‘‘subse-
quent’’ points, in terms of the axial coordinate. Because of the high
complexity, these kinds of equations are usually solved by numerical
techniques [60].

Here, the solution is found by implementing (2.4) with a finite
difference technique. The considered CNT is discretized by dividing
it into 𝑛𝑒 = 𝑛 − 1 elements, where 𝑛 is the number of nodes10, of
the same length 𝑏. To treat Neumann boundary conditions (2.5) in an
accurate way, it is necessary to add two ‘‘ghost nodes’’ (see, among the
others, [73,74]) outside of the domain and next to the boundaries, as
shown in Fig. A.2. This obviously results in a total number of 𝑛 + 2
nodes.

The displacement field in the CNT is described by a vector 𝐮, whose
components are denoted in the sequel as 𝑢𝑖, 𝑖 = 1… 𝑛+2. Notice that this
choice ensure the continuity of the axial displacement at the interfaces
between the different regions. In the interior of the computational
domain the second derivative is defined by using the ‘‘second central
difference’’ scheme, i.e.,

𝑢′′(𝜉) ⇒
𝑢(𝑖+1) − 2𝑢𝑖 + 𝑢(𝑖−1)

𝑏2
, (A.11)

while boundary conditions (2.5) are prescribed by using the ‘‘backward
difference’’ and ‘‘forward difference’’ schemes at the two ends of the
domain, respectively, i.e.,
𝑢2 − 𝑢1
𝑏

= 0,
𝑢(𝑛+2) − 𝑢(𝑛+1)

𝑏
= 0. (A.12)

The numbers of elements in region 𝐴, 𝑛𝐴, and 𝐵, 𝑛𝐵 , are respectively
given by

𝑛𝐴 = 𝜓 𝑛𝑒 𝑛𝐵 = (1 − 2𝜓) 𝑛𝑒. (A.13)

Hence, the boundary nodes between regions 𝐴 and 𝐵, and between
𝐵 and 𝐶, are located at 𝑖𝐴𝐵 = 𝑛𝐴 + 2 and 𝑖𝐵𝐶 = 𝑛𝐴 + 𝑛𝐵 + 2, as
schematized in Fig. A.3. Obviously, for 𝜓 = 0.5 the end of region 𝐴
coincides with the beginning of region 𝐶, while the length of region 𝐵
is nil. Henceforth, in the numerical code 𝑖𝐴𝐵 = 𝑖𝐵𝐶 .

To avoid ambiguities, the continuity of the axial force 𝑁(𝜉), i.e., the
equality between the backward and the forward first derivative of 𝑢(𝜉),
is prescribed at the interface nodes 𝑖𝐴𝐵 and 𝑖𝐵𝐶 , in the form
𝑢𝑖 − 𝑢(𝑖−1)

𝑏
=
𝑢(𝑖+1) − 𝑢𝑖

𝑏
𝑖 = 𝑖𝐴𝐵 , 𝑖𝐵𝐶 , (A.14)

10 To have a symmetrical configuration with respect to the central node, 𝑛
is chosen to be an odd number.
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while the field Eqs. (2.4) are prescribed on the three regions in the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝐴 𝑢(𝑖+1)−2𝑢𝑖+𝑢(𝑖−1)
𝑏2

= 2𝑘(𝜀𝑙 − 𝑢(𝑖+𝑛𝐴) − 𝑢(𝑖+𝑛𝐴+𝑛𝐵 ) + 2 𝑢𝑖) ∀𝑖 ∈ [2, 𝑖𝐴𝐵 − 1]

𝐸𝐴 𝑢(𝑖+1)−2𝑢𝑖+𝑢(𝑖−1)
𝑏2

= 2𝑘(𝑢(𝑖+𝑛𝐴) − 𝑢(𝑖−𝑛𝐴) + 2 𝑢𝑖) ∀𝑖 ∈ [𝑖𝐴𝐵 + 1, 𝑖𝐵𝐶 − 1]

𝐸𝐴 𝑢(𝑖+1)−2𝑢𝑖+𝑢(𝑖−1)
𝑏2

= −2𝑘(𝜀𝑙 − 𝑢(𝑖−𝑛𝐴−𝑛𝐵 ) − 𝑢(𝑖−𝑛𝐴) + 2 𝑢𝑖), ∀ ∈ [𝑖𝐵𝐶 + 1, 𝑛 + 1].

(A.15)

To avoid rigid body displacements, the displacement of the central node
has been set equal to zero. Eq. (A.15) may be rearranged in a matrix
form as 𝐊𝐮 = 𝐛, where 𝐊 is the matrix of coefficients, 𝐮 is the vector
of unknown nodal displacements, and 𝐛 is the vector of known terms.
It may be verified that 𝐊 is a banded matrix.
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