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1 Abstract

2 Current analyses and predictions of spatially-explicit patterns and processes in ecology most often rely 

3 on climate data interpolated from standardized weather stations. This interpolated climate data 

4 represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many 

5 climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is 

6 particularly important in relation to effects of observation height (e.g. vegetation, snow and soil 

7 characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. 

8 topography, radiative forcing, or cold-air pooling). Since organisms living close to the ground relate 

9 more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground 

10 and near-surface data are needed to provide realistic forecasts of the fate of such organisms under 

11 anthropogenic climate change, as well as of the functioning of the ecosystems they live in.

12 To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a 

13 geospatial database initiative compiling soil and near-surface temperature data from all over the 

14 world. Currently this database contains time series from 7538 temperature sensors from 51 countries 

15 across all key biomes. The database will pave the way towards an improved global understanding of 

16 microclimate and bridge the gap between the available climate data and the climate at fine 

17 spatiotemporal resolutions relevant to most organisms and ecosystem processes. 

18 Keywords: microclimate, soil climate, climate change, topoclimate, database, temperature, species 

19 distributions, ecosystem processes

20 Introduction

21 Current ecological research increasingly deals with large-scale patterns and processes, with global 

22 databases of species distributions and traits becoming increasingly available (Bruelheide et al., 2018, 

23 Kissling et al., 2018, Kattge et al., 2019). Analyses of these patterns and processes – and their 

24 predictions under anthropogenic climate change – often rely on global climatic grids at coarse spatial 

25 resolutions interpolated from standardized weather stations that represent long-term average 

26 atmospheric conditions (Lembrechts et al., 2018). Moreover, sensors in these weather stations are 

27 shielded from direct solar radiation and located at ~2 meters above a frequently mown lawn (free-air 

28 temperature or 'macroclimate', Jarraud, 2008). These climatic grids thus ignore many climate-forcing 

29 processes that operate near the ground surface, at fine spatiotemporal resolutions, and in 

30 environments that vary in their exposure to winds, radiation and moisture ('microclimate', Daly, 2006, 

31 Bramer et al., 2018, Körner & Hiltbrunner, 2018). Importantly, while these microclimatic processes 

32 often operate at fine spatiotemporal resolutions, they can affect ecological relations both at the local 
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33 and the global scale (De Frenne et al., 2013, Ashcroft et al., 2014, Lembrechts et al., 2019). For 

34 example, they can potentially protect ground-dwelling biota against long-term climate variability, 

35 providing microrefugia for these species to survive in locations deemed unsuitable in models using 

36 climate data at coarse spatial resolutions, or buffer organisms against short-term extreme events (De 

37 Frenne et al., 2013, Lenoir et al., 2017, Bramer et al., 2018, Suggitt et al., 2018). Microclimates can 

38 however also expose organisms to more extreme temperatures, in which case distribution models 

39 that ignore such microclimates may erroneously predict species survival instead of extinction 

40 (Pincebourde & Casas, 2019). In order to provide realistic forecasts of species distributions and 

41 performance, as well as of the functioning of the ecosystems they operate in, climate data that 

42 incorporates microclimatic processes, ideally measured in-situ, are thus urgently needed (Körner & 

43 Hiltbrunner, 2018).

44 Horizontal and vertical features driving microclimate

45 The offset between micro- and macroclimate is particularly pronounced around the soil surface, as 

46 temperatures measured at 2 m above the ground can differ substantially from those at ground level, 

47 or in the layers just above and below it (Geiger, 1950, Lembrechts et al., 2019). This offset can result 

48 from both ‘horizontal’ and ‘vertical’ features (Fig. 1), and can exceed several degrees centigrade in 

49 annual averages. For example, Kearney (2019) modelled coarse-scale soil temperatures at various 

50 depths considering the vertical features affecting the radiation balance. These vertical features include 

51 the effects of vegetation characteristics (e.g. structure and cover), snow cover and soil characteristics 

52 (e.g. moisture content, geological types, texture and bulk density) (Li, 1926, Zhang et al., 2008, 

53 Lembrechts et al., 2019). The result of these vertical features is not only an instantaneous temperature 

54 offset between air and soil temperatures, but also a buffering effect, i.e. the temporal variability in 

55 temperature changes is lower in the soil than in the air (Geiger, 1950, Ashcroft & Gollan, 2013). 

56 Horizontal processes on the other hand relate more to the spatial resolution of the climatic data. They 

57 can be broken up into those that require only fine-resolution environmental information for specific 

58 sites (e.g. effects of slope and aspect on radiation balances; Bennie et al., 2008), and those where 

59 temperatures are also affected by neighboring locations (e.g. topographic shading, cold-air drainage 

60 and atmospheric temperature inversions, which are landscape context dependent; Whiteman, 1982, 

61 Ashcroft & Gollan, 2012). 

62 How horizontal and vertical features interact to define differences between soil and air temperature 

63 may differ with the biome, season and day time. For example, in grasslands during summer, incoming 

64 short-wave solar radiation is usually the dominant factor determining daytime soil surface 

65 temperatures, which in turn result in higher air temperatures through convective heating (Geiger, 
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66 1950). However, during winter, horizontal processes such as cold-air drainage and coastal buffering 

67 can have larger effects, especially on overnight air temperatures, when air temperatures may be 

68 driving soil temperatures rather than vice-versa (Vitasse et al., 2017). In dense forests, the situation is 

69 even more complex: upper canopies block the bulk of short wave solar radiation, such that sub-canopy 

70 temperatures are determined by convective heat transfer between the air surrounding the canopy 

71 and direct conductance through physical contact of different parts of the canopy layer, in addition to 

72 the limited radiation that does permeate the canopy  (Körner & Paulsen, 2004, Lenoir et al., 2017, 

73 Zellweger et al., 2019). As a result, horizontal processes such as passing fronts, and winds blowing in 

74 hotter or colder air from outside the forest, will in large part define the – dampened – temperature 

75 patterns under forest canopies (Ashcroft et al., 2008). 

76 The need for microclimate data across the field of ecology

77 Many organisms living in the soil and close to the soil surface (e.g. soil micro-organisms like fungi, 

78 ground arthropods, herbs, mosses, tree seedlings and small vertebrates) only experience fine-scale 

79 soil and/or near-surface temperatures, and thus likely relate less strongly to free-air temperatures 

80 (Randin et al., 2009, Niittynen & Luoto, 2017, Lembrechts et al., 2019). This may be reflected in a 

81 species’ distribution, but also their morphology, physiology and behavior (Körner & Paulsen, 2004, 

82 Kearney et al., 2009, Opedal et al., 2015, de Boeck et al., 2016). Many species indeed survive, live and 

83 reproduce where average background climate appears unsuitable, and equally may be gone from sites 

84 within apparently suitable areas where microclimatic extremes exceed their limits (Suggitt et al., 

85 2011). Without microclimate data, we not only lack information on the potential thermal 

86 heterogeneity that is available for species to thermoregulate in situ, but also on the true magnitude 

87 of climate change that species will be exposed to (Pincebourde et al., 2016, Maclean et al., 2017). 

88 Accurately predicting how species' ranges will shift under climate change requires a good 

89 understanding of the variety of climate niches truly available to them (Maclean et al., 2015, Lenoir et 

90 al., 2017). The latter requires both a good understanding of what defines current microclimates, as 

91 well of how climate change will interact with the drivers of microclimatic conditions (Maclean, 2019). 

92 Additionally, it is the soil temperature rather than the air temperature that defines many ecosystem 

93 functions in and close to the soil, like evapotranspiration, decomposition, root growth, 

94 biogeochemical cycling and soil respiration (Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, Hursh 

95 et al., 2017, Gottschall et al., 2019, Medinets et al., 2019). Given the repeatedly proven sensitivity of 

96 many of these processes to temperatures (Rosenberg et al., 1990, Coûteaux et al., 1995, Schimel et 

97 al., 1996), here again having accurate measurements will be of utmost importance. The carbon 
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98 balance in boreal forests, for example, is largely dependent on soil thaw and thus soil rather than air 

99 temperatures (Goulden et al., 1998). 

100 These realizations highlight the urgency to start using soil and near-surface microclimate data when 

101 modelling the ecology and biogeography of surface and soil-dwelling organisms, as well as the 

102 functioning of soil ecosystems, instead of readily available coarse-scaled free-air climate data (from 

103 e.g. CHELSA (Karger et al., 2017), TerraClimate (Abatzoglou et al., 2018) or WorldClim (Fick & Hijmans, 

104 2017)). While a suit of models now exist that produce fine-scale climate data (Bramer et al., 2018, 

105 Lembrechts et al., 2018), we do not yet fully understand whether models using data that represent 

106 average conditions over large areas provide adequate “mean field approximations” of (i.e. are 

107 representative for) more complex spatiotemporal effects driven by the climatic conditions that 

108 organisms experience (Bennie et al., 2014). To accomplish the latter, global in-situ data is needed for 

109 large-scale fine-resolution calibration and validation of these models. However, while the quality and 

110 resolution of free-air temperature data and models at the global scale is rapidly improving (Bramer et 

111 al., 2018), soil temperature datasets used in biogeography and biogeochemistry are still largely 

112 restricted to the landscape or regional scale, at best, and from intensively studied regions only 

113 (Ashcroft et al., 2008, Ashcroft et al., 2009, Carter et al., 2015, Aalto et al., 2018), or they are derived 

114 from models lacking fine-grained ground-truthing data (e.g. Copernicus Climate Change Service (C3S), 

115 2019). Land surface temperatures as obtained from satellite data, on the other hand, are hampered 

116 by their inability to measure below the vegetation cover (Bramer et al., 2018). 

117 In order to accurately describe and predict the (future) distribution and/or traits of surface and soil-

118 dwelling species at larger scales, we need to improve our general knowledge of the offsets and 

119 spatiotemporal changes in variability between soil-level and free-air temperatures (Aalto et al., 2018, 

120 Lembrechts et al., 2019). There is an urgent need to work towards globally available soil and near-

121 surface temperature data based on in-situ measurements and at relevant spatiotemporal resolutions 

122 (Ashcroft & Gollan, 2012, Pradervand et al., 2014, Slavich et al., 2014, Opedal et al., 2015, Meineri & 

123 Hylander, 2017).

124 Launch of the SoilTemp database

125 To tackle these issues, we launch an ambitious database initiative, compiling soil and near-surface 

126 temperature data from all over the world into a global geospatial database: SoilTemp. At the time of 

127 writing, we brought together temperature data from 7538 sensors placed both below, at and above 

128 (up to 2 m) the soil surface (Fig. 2a), which is an accumulation of over 180.000 months of temperature 

129 data with measurement intervals between 1 and 240 minutes (>30% every 60 minutes). The database 
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130 hosts loggers from 51 different countries spread across all continents, with a broad distribution across 

131 the world’s climatic space (Fig. 2b). There is a dominance of time series from Europe and areas below 

132 1500 m a.s.l. (Fig. 2c, d). More than 75% of sensor measurements occurred within the last decade, but 

133 the database does contain several time series covering longer time periods as well, with a maximum 

134 of 42 years (Fig. 2d).

135 When the remaining critical gaps in our spatial coverage will be filled (see below), this database will 

136 allow global assessments of the long-established theories on boundary layer climatology in 

137 heterogeneous environments (Geiger, 1950), which has so far been lacking. The growing database 

138 provides a unique opportunity to disentangle the role of the different horizontal and vertical features 

139 influencing soil and near-surface temperature across all biomes of the world, with high spatial and 

140 temporal resolutions. It will allow relating patterns in soil temperature to processes in the lower air 

141 layers and calibrate and validate global models of soil temperature and (micro)climate (Kearney et al., 

142 2014a, Kearney et al., 2014b, Carter et al., 2015, Maclean et al., 2017). It will also allow us to create 

143 global maps of a wide array of general and microclimate-specific bioclimatic variables (e.g. growing 

144 degree days, growing season length) at relevant spatiotemporal resolutions (Körner & Hiltbrunner, 

145 2018). 

146 Ultimately, this joint global effort and the resulting global microclimatic products will enable us to 

147 improve analyses of the relationships between species’ macroecology and the microclimate they 

148 experience, identify microrefugia and stepping stones and improve global models of ecosystem 

149 functioning and element cycling. Indeed, replacing the coarse-scaled free-air temperature averages 

150 used traditionally in models in all fields of ecology with these more relevant soil-specific data products 

151 is likely to increase their descriptive and predictive power, as the countless above-mentioned regional 

152 studies exemplify (Lembrechts et al., 2019). Additionally, this first global effort to combine and collect 

153 in-situ measurements will help solve long-standing issues regarding sensor comparability and data 

154 collection variability (Bramer et al., 2018), as well as address the question at what spatial scale 

155 microclimate data can prove most informative for ecological modelling  (Jucker et al., 2020). The 

156 temperature time series in the database, many of which are covering increasingly long time periods 

157 of up to a decade or more, will also allow fine-tuning forecasts of microclimate data into the future by 

158 deepening our understanding of the link between microclimatic dynamics in the soil and the air (Lenoir 

159 et al., 2017, Wason et al., 2017, Bramer et al., 2018, Maclean, 2019), improving our predictions of 

160 biodiversity and ecosystem functioning under climate change.

161 Dig out your loggers! A call for contributions
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162 To reach these goals, we encourage scientists owning in-situ measured temperature data to submit 

163 these to the growing SoilTemp database. All time series spanning one month or more, with 

164 temperature measurements a maximum of 4 hours apart, all soil depths, all heights above the ground 

165 up till two meters, all biomes, and all sensor types and brands will be accepted. Note that both spatially 

166 dense and sparse logger networks, as well as single loggers are accepted. The achieved spatial 

167 resolution is dependent on the provision of spatially precise coordinates to achieve a good relationship 

168 with potential explanatory variables (e.g. high resolution remotely sensed environmental data). If we 

169 have these coordinates and thus the location and distance between loggers, we can effectively obtain 

170 the extent and spacing for each logger network (Western et al., 2002). 

171 We include data from both observational and experimental plots, yet sensors have to be measuring 

172 in-situ and not in pots, and experiments manipulating the local climate (e.g. open-top chambers, rain-

173 out shelters or vegetation-removal experiments) are excluded (Table 1). Given currently less well-

174 represented climate regions, we especially encourage submissions from extreme cold and hot 

175 environments to fill the remaining gaps in our global coverage. More specifically, hot tropical climates 

176 (both tropical rainforests and tropical seasonal forests and savannas) and cold and hot deserts are 

177 currently still largely underrepresented (Fig. 2b), in particular from Africa, Asia, Antarctica and the 

178 Americas (Fig. 2a). Data contributors will be invited as co-authors on the main global papers resulting 

179 from this database (see Supplementary Materials for details on terms of use and data ownership). 

180 By encouraging sampling and submissions from remote areas, we aim to help solve the global sampling 

181 bias in soil ecological data (Cameron et al., 2018, Guerra et al., 2019), and we hope to build a truly 

182 global network representing – and actively engaging - scientists from a wide diversity of cultural 

183 backgrounds (Maestre & Eisenhauer, 2019). More information is available on the SoilTemp website, 

184 accessible via Figshare (DOI 4/m9.fi ). 

185 When fully established, the SoilTemp database and its derivative products (e.g. bioclimatic variables) 

186 will be made freely available to facilitate the analysis of global patterns in microclimates, increase the 

187 comparability between regional studies and simplify the use of accurate microclimatic data in ecology 

188 (Bramer et al., 2018). At the moment, critical metadata is already freely accessible via Figshare (DOI 

189 4/m9.fi ). Given the absence of and the need for globally available soil 

190 microclimate data products at relevant spatial resolutions for use in ecological analyses, we believe 

191 that SoilTemp has the potential to become a highly important resource that will enable a step change 

192 in ecological modelling.

193
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194 Table

195 Table 1: Minimal data requirements and obligatory metadata for submission to the database. For 

196 more details, see Supplementary Material.

197

Minimum data requirements Obligatory metadata

Minimum one consecutive month of in-situ 

measured temperature time series

Accurate (handheld GPS or finer) spatial 

coordinates of the loggers (+ estimated 

accuracy)

Maximum time interval between measurements: 4 

hours

Height/depth of the sensor relative to the 

soil surface 

No climate manipulation experiments (only control 

plots of those experiments, or observational studies)

Type or brand of temperature sensor used, 

and type of shelter (e.g. no shelter, home-

made shelter, Stevenson screen…) 

No modelling studies (only empirical data) Temporal resolution of the sensor

Habitat classification

198

199

200 Figures

201 Figure 1: The horizontal and vertical drivers of the offset between in-situ soil and free-air 

202 temperatures. Conceptually, there are two different sets of features responsible for the offset between 

203 coarse-scale free air temperatures (top left, e.g. WorldClim, Fick & Hijmans, 2017) and fine-scale soil 

204 temperatures (bottom right, e.g. Ashcroft & Gollan, 2012, Lembrechts et al., 2019),. Firstly, one can 

205 incorporate fine-scale horizontal climate-forcing factors like topography and terrain-related features, 

206 land cover types and distance to water bodies to go from coarse-scaled to finer resolutions (top right, 

207 e.g. Aalto et al., 2017, Macek et al., 2019). Secondly, one can consider observation height, and the 

208 effects of vegetation characteristics (like structure and cover), snow cover and soil characteristics (like 

209 moisture, geological types, texture and bulk density) on the radiation balance to convert from free-air 
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210 to soil temperatures (e.g. Kearney, 2019). Both horizontal and vertical features can introduce positive 

211 or negative differences (offset values) between soil and air temperatures through their effects on 

212 processes related to the radiation balance, like wind, convective heat transfer and surface albedo. The 

213 complexities of these horizontal and vertical processes can vary with biome, season and time of day. 

214 Temperatures are represented here using an unspecified temperature range from cold (blue) to warm 

215 (red).

216 Figure 2: Overview of the status of the SoilTemp-database as of March 2020. Spatial (a), climatic (b), 

217 elevational (c) and temporal (d) distribution of sensors in the SoilTemp-database as of March 2020. (a) 

218 Background world map in WGS1984, hexagons with a resolution of approximately 70.000 km² using 

219 the dggridR-package in R. (b) Colors of hexagons indicate the number of sensors at each climatic 

220 location, with a 40 × 40 bin resolution. Small dots in the background represent the global variation in 

221 climatic space (obtained by sampling 1.000.000 random locations from the CHELSA world maps at a 

222 spatial resolution of 2.5 arc minutes. Overlay with dotted lines and numbers (from 1 to 9) depict a 

223 delineation of Whittaker biomes (adapted from Whittaker, 1970): (1) tundra and ice, (2) boreal forest, 

224 (3) temperate seasonal forest, (4) temperate rainforest, (5) tropical rainforest, (6) tropical seasonal 

225 forest/savanna, (7) subtropical desert, (8) temperate grassland/desert, (9) woodland/shrubland. (c) 

226 Number of sensors in each elevation class. (d) Time span covered by each sensor in the database, 

227 ranked by starting date. Data showed from 1992 onwards, note that the time period covered by 4 

228 loggers with starting dates in 1976 is truncated. 
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