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Abstract

Background: Platinum-based anticancer drugs have been at the frontline of cancer therapy for the last 40 years,
and are used in more than half of all treatments for different cancer types. However, they are not universally
effective, and patients often suffer severe side effects because of their lack of cellular selectivity. There is therefore a
compelling need to investigate the anticancer activity of alternative metal complexes. Here we describe the
potential anticancer activity of rhenium-based complexes with preclinical efficacy in different types of solid
malignancies.

Methods: Kinase profile assay of rhenium complexes. Toxicology studies using zebrafish. Analysis of the growth of
pancreatic cancer cell line-derived xenografts generated in zebrafish and in mice upon exposure to rhenium
compounds.

Results: We describe rhenium complexes which block cancer proliferation in vitro by inhibiting the signalling
cascade induced by FGFR and Src. Initially, we tested the toxicity of rhenium complexes in vivo using a zebrafish
model and identified one compound that displays anticancer activity with low toxicity even in the high micromolar
range. Notably, the rhenium complex has anticancer activity in very aggressive cancers such as pancreatic ductal
adenocarcinoma and neuroblastoma. We demonstrate the potential efficacy of this complex via a significant
reduction in cancer growth in mouse xenografts.

Conclusions: Our findings provide a basis for the development of rhenium-based chemotherapy agents with
enhanced selectivity and limited side effects compared to standard platinum-based drugs.
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Background

Cisplatin has been a frontline treatment for many can-
cers over the last 40 years [1, 2], and is still used for can-
cers of the bladder, ovary and testis, as well as for
cancers of the head and neck. Although cisplatin has
been successfully used in the treatment of many cancer
types, the fact that it functions via random DNA target-
ing and induces harsh side effects, such as neurotoxicity
and nephrotoxicity, makes it a far from ideal therapeutic
agent [3]. The development of chemoresistance is also a
significant limiting factor in the use of this drug [2, 4].
Carboplatin, another platinum-based drug that directly
interferes with DNA metabolism, leads to the formation
of cross-links in a manner similar to cisplatin. However,
its more stable structure confers the benefit of having
fewer side effects [5, 6], although its impact on bone
marrow results in a reduction in blood cells including
platelets [7]. A further platinum-based drug with cyto-
toxic activity is oxaliplatin, which differs mechanistically
from cisplatin and carboplatin as it promotes ribosome
biogenesis stress leading to cell death [2]. Because of the
severe side effects that result from the use of all
platinum-based drugs, other metal compounds are being
studied for their anti-proliferative activity, with the goal
of discovering new agents that are better tolerated by
cancer patients.

Rhenium is a transition metal that has been recently
studied for the development of novel anticancer agents
[8-10]. Its anticancer activity was first observed with tri-
carbonyl bismine complexes in HeLa cells [1, 4, 11-13].
Several different complexes have been designed which
utilize a combination of organometallic ligands, such as
N- or S-based ligands, oxo groups or peptides [14].
Rhenium-containing compounds have been found to
have promising anticancer activity associated with apop-
tosis [15], necrosis [16], autophagy [17], mitophagy [18]
and oxidative stress [19]. Notably, rhenium-based com-
pounds have a great potential as theranostics [20]. In-
deed, rhenium possesses two isotopes, *°Re and '**Re,
that have been used in nuclear medicine for more than
fifty years [21]. Rhenium use in medicinal pharmaceuti-
cals, radio-imaging and luminescent probes has led to its
consideration for use in diagnostic therapy. For example,
Rhenium-188 hydroxyethylidenediphonate (***Re-HEDP)
is a drug that has been repurposed for the use in the
treatment of prostate cancer with promising outcomes
[22]. In addition, when taxanes, known to increase the
sensitivity of tumour cells to radiotherapy, and Rhenium
compounds were combined for the treatment of prostate
cancer, a significant additive anti-proliferative activity
was observed [23]. In spite of increasing evidence for
their antiproliferative activity and the fact that different
rhenium-based compounds have a much lower toxicity
compared to other heavy metals, their mechanisms of
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action and structure activity relationships are not well
understood, with only a few studies published to date
[1, 9, 24].

Over the past few years, we have focused on the anti-
cancer properties of rhenium tricarbonyl complexes
bound to bidentate N-heterocyclic carbine ligands rather
than di-imine ligands (Re-NHC) [10, 25]. These com-
pounds have demonstrated antiproliferative activity in
pancreatic, neuroblastoma and ovarian cancer cells,
while possessing low toxicity. Here we present an inves-
tigation of the mechanism of action of Re-NHC com-
plexes and the results of experiments to test their
activity in vivo.

Methods

Cell culture

Human pancreatic cancer and neuroblastoma cell lines
were obtained from the American Type Culture Collec-
tion (ATCC) and cultured as per ATCC® guidelines.
AsPC-1 (ATCC® CRL-1682™) and BxPC3 (ATCC® CRL-
1687™) required RPMI-1640 as base medium, with the
addition of foetal bovine serum (FBS) to a final concen-
tration of 10% and glutamine to a final concentration of
2 mM. HPAF-II (ATCC® CRL-1997™) cells were cultured
in Eagle’s Minimum Essential Medium (EMEM) with
the addition of FBS to a final concentration of 10% and
glutamine to a final concentration of 2mM. SW1990
(ATCC® CRL-2172™) were cultured in Leibovitz’s L-15
medium, with the addition of FBS to a final concentra-
tion of 10%. SH-SY5Y (ATCC® CRL-2266™) cells were
grown in Dulbecco’s modified Eagle’s Medium (DMEM)
supplemented with 10% FBS, 1% penicillin/streptomycin,
2mM glutamine and 10 mM sodium pyruvate. IMR-32
(ATCC® CCL-127™) cells were cultured in RPMI-1640
medium containing 10% FBS, 2mM glutamine, 10 mM
sodium pyruvate and 10 mM non-essential amino acids
(NEAA).

Pancreatic cancer tumorspheres enriched in cancer
stem cells were cultured according to the protocol
previously described by Domenichini et al. [26].
Primary mouse pancreatic cancer cells KPC were used
according to the protocol previously described [26].
The KPC (KrasLSL.G12D/+; p53R172H/+; PdxCretg/+
) mouse model is a clinically relevant genetically
engineered mouse model (GEMM) for PDAC. Muta-
tionally activated Kras and mutated p53 drive the de-
velopment of a pancreatic intraepithelial neoplasia
that eventually progresses into pancreatic ductal
adenocarcinoma with pathological features closely re-
sembling the human disease [27]. LAN-1, KELLY and
the primary human neuroblastoma cell line (hNB) were
provided by Professor Arturo Sala (Brunel University)
and cultured as described [28].
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Western blots

Cell lysates and tissues were homogenised in RIPA buf-
fer (50 mM TRIS-HCI pH 7.4, 150 mM NaCl, 1% NP-40,
0.1% SDS, 5mM EDTA) supplemented with a protease
and phosphatase inhibitor cocktail (Roche). To termin-
ate the reaction, SDS sample buffer [125 mM Tris- HCI
(pH 6.8), 6% SDS, 20% glycerol, and 0.02% bromophenol
blue supplemented with 10% [-mercaptoethanol] was
added and the samples boiled for 10 min. Proteins were
separated on SDS-PAGE 8 to 12% Tris-glycine gels (Life
Technologies) and transferred to a nitrocellulose mem-
brane (BioRad). For protein detection, membranes were
incubated in 3% BSA in TBS/0.05% Tween-20 blocking
buffer for 1 h at room temperature, and incubated over-
night at 4 °C with primary antibodies from Cell Signaling
Technology®: Phospho-FGFR™®**%*% (#3471), Phospho-
Src Family™*'® (#2101), N-Myc (#9405), Phospho-
Akt™3%9) (#9275) and GAPDH (#5174), the latter used as
a loading control. The following day, membranes were
incubated with HRP-conjugated secondary antibodies
(Cell Signaling Technologies) at a 1:40000 dilution in
0.75% BSA in TBS/0.05% Tween-20 buffer for 1h at
room temperature. Signal was detected using the chemi-
luminescent detection reagent Amersham ECL Prime
Western Blotting Detection Reagent (GE Healthcare Life
Sciences) and imaged using BioRad ChemiDoc XRS+.

Soft agar Colony formation

The anchorage independent soft agar colony formation
assay is a well-established protocol to measure the pro-
liferative capacity of cancer cells [29]. Media were pre-
pared as 2X concentrated solutions, including noble agar
(Sigma-Aldrich) as two stocks to be diluted with 2X
media solutions, 1.2% for the first layer and 1% for the
second layer (the cell layer). Six well plates were coated
with a first layer (2 mL) of 1.2% noble agar in 2X RPMI
(final 0.6% agar in 1X media). Cells were counted using
trypan blue exclusion and about 3 x 10* cells were resus-
pended in 5 mL of 0.5% noble agar (1% noble agar in 2X
media) prior to treatment. For each six well plate, the
first row (3 wells) was seeded with cells treated with
JVG045 (10 uM) and the second row with cells treated
with DMSO. Once the first layer had settled, 1.5 mL of
cell suspension containing approximately 1 x 10* cells in
0.5% noble agar was distributed on top of the first layer.
The top layer was then covered with complete RPMI
and the plates incubated at 37 °C in a 5% CO, incubator
for 4 weeks. Media were removed and colonies fixed for
10 min at room temperature with 10% Methanol/10%
glacial acetic acid. Colonies were stained with 0.05%
crystal violet solution (Sigma-Aldrich) for 30 min at
room temperature on a rocking shaker and subsequently
washed with water on a rocking shaker to clear the agar.
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Colonies were imaged using BioRad ChemiDoc XRS+
and counted using Image].

Kinase profiler

A screen was done to determine the effect of JVG045
and Ps27 on the activity of a panel of protein-kinases via
SelectScreen Kinase Profiling Service (Invitrogen-Life
Technologies, Paisley, UK). The assay used 1 uM of vari-
ous compounds and ATP at the concentration noted
(see Supplementary Tables).

Analysis of effects of JVG045 on tyrosine trans-
phosphorylation activity of FGFR1<°?%8 kinase
N-terminally His-tagged FGFR1<"***® kinase carrying a
native cysteine at position 488 in the glycine-rich loop
was expressed in BL21 (DE3) E. coli cells at 20°C over-
night. Cells were lysed in 25 mM HEPES pH 7.5 buffer
containing 150 mM NaCl and 10% glycerol. Cell lysis
and subsequent column chromatography purifications
were done in presence reducing agent (ie., 10 mM B-
mercaptoethanol or 2 mM DTT) to avoid Cys488-
mediated disulfide-linked dimerization of kinases. Fol-
lowing high speed centrifugation at 20,000 x g, super-
natant was filtered, and loaded onto Ni** metal affinity
chromatography column (5 mL) (GE Healthcare Life
Sciences). Bound FGFR1<7**%® kinase was eluted with 18
column volumes of linear gradient of 0.5 M imidazole,
and applied onto a SourceQ anion exchange chromatog-
raphy column (20 mL) (GE Healthcare Life Sciences).
Column was developed with 13 column volumes of lin-
ear gradient of 1 M NaCl. Fractions containing
FGFR1<"***® kinase were pooled, concentrated, and ap-
plied to a Superdex 75 column (GE Healthcare). Eluents
containing kinase protein were then pooled, concen-
trated and incubated overnight with FastAP™ Thermo-
sensitive Alkaline Phosphatase (#EF0651; Thermo
Scientific), and re-purified by Source Q column chroma-
tography as above to obtain highly homogenous
phosphorylation-free FGFR1Y***® kinase.

Purified FGFR1<***® kinase was incubated with or
without compound JVG045 (100 uM) overnight at 4°C.
Trans-phosphorylation on tyrosines was initiated by
mixing FGFR1<"**®® Linase with a reaction buffer con-
taining ATP and MgCl, to final concentrations of
67.5 uM (kinase), 25 mM (ATP) and 50 mM MgCl,. Re-
actions were quenched at different times (as indicated in
figure) by adding EDTA (final concentration, 50 mM) to
the reaction mixture. The progress of FGFR kinase
trans-phosphorylation was monitored by native-PAGE
(#17062401, GE Healthcare).

Src kinase assay
Recombinant Src was expressed in BL21-Al Escherichia
coli (Thermo) containing the pEX-Src-C-His (Origene,
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Blue Heron Biotech) and purified in a modified proced-
ure as previously described [30]. The Src kinase assay
used was the ADP-GLO assay (Promega) according to
manufacturer protocol. Specifically, the kinase (1 ng)
was incubated with between 10 nm-10 mM JVGO045
compound/AZD0530 in 15 pL of kinase buffer for
30 min prior to the addition of 10 pL substrate solution
containing ATP and poly[4Glu:Tyr] (Sigma). This reac-
tion was allowed to react at RT for 1 h prior to quench-
ing with ADP-Glo reagent for 40 min, followed by the
addition of ADP-GLO detection reagent for 30 min
prior to reading luminescence on a 96-well microplate
reader.

Animal experiments

Toxicology studies

24 h post fertilisation (hpf), zebrafish embryos were
equally distributed into wells of a 24-well plate (about 10
embryos/well) and treated with increasing concentration
of selected compounds as shown in Supplementary Fig. 2.
Compounds were prepared in DMSO and then diluted
to the final concentration in embryo medium (E2),
which is a physiological solution [31].

Embryos were observed daily at 24 h intervals and tox-
icity scores (hatching and mortality) were recorded until
120hpf. For heart rate assessments, embryos were anesthe-
tized with tricaine (ethyl 3-aminobenzoate methanesulfo-
nate) at 48hpf and counted under the stereomicroscope
for Imin. To assess JVGO045 teratogenicity compared to
BGJ398, embryos were treated with the compounds start-
ing from 2hpf and results observed at 24hpf. Compounds
were prepared in DMSO and diluted to the final concen-
tration in E2 embryo medium. DMSO was used as nega-
tive control.

Zebrafish Xenografts

For zebrafish xenografts, wild type Tiibingen (TU) zebra-
fish were bred and maintained in the Western Australian
Zebrafish Experimental Research Centre (Biomedical Re-
search Facility- Shenton Park, Western Australia). Experi-
ments and data analyses were done as previously
described [32]. Briefly, HPAF-II human pancreatic cancer
cells were incubated with Vibrant™-Dil dye (ThermoFisher
Scientific) 4 uL/mL in HBSS at 37 °C for 10 min, followed
by 15min on ice in the dark. Cells were then harvested
and resuspended at a density of 10" cells/, loaded into a
capillary glass needle using a puller (p-97 Flaming/Brown
by Sutter Instrument®) and 10 nL of cell suspension (ap-
proximately 100 cells/embryo) was injected in the perivi-
telline space of 24-h post fertilisation (hpf) zebrafish
embryos. Zebrafish were incubated at 34 °C O/N to allow
for cell growth and the following day embryos were
equally distributed in to three treatment groups. One
group did not receive any treatment or cells (blank), a
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second group was treated with 0.1% DMSO and a third
group was treated with 10 uM JVGO045. At 5 days post fer-
tilisation (dpf), the effect of the drugs on cancer cell
growth was documented using a fluorescent stereomicro-
scope equipped with a digital camera (Nikon SMZ Zoom).
Images were analysed using Image]. Non injected embryos
were used to subtract background fluorescence.

Mice Xenografts

Six to seven-week-old NOD/SCID (NOD.CB17-
Prkdcscid/Arc) immune-deficient mice were purchased
from the Animal Resources Centre (ARC-Murdoch-West-
ern Australia) and maintained under pathogen-free condi-
tions with water and food provided ad libitum. Mice were
injected subcutaneously randomly on either the left or the
right flank with 3.5 x 10° HPAF-II human pancreatic can-
cer cells following a previously described protocol [32].
When tumours reached a volume of about 50 mm® (ac-
cording to the formula: tumour volume = 1/2(length x
width?), mice were randomized into two groups and
treated with either vehicle (0.5% carboxymethyl cellulose
(CMCQ)/0.4% Tween-80) or JVG045 30 mg/kg as a daily
intra-peritoneal injection (IP) in a volume of 250 pL. Ani-
mal health conditions were monitored daily and tumours
were measured three times a week by an unbiased oper-
ator until the largest tumours reached a volume of
1500mm°. Procedures involving animals and their care
were established according to the institutional guidelines
in compliance with national and international policies
(Curtin Animal Ethics Committee Approval 2016—40).

Reactive oxygen species (ROS) measurement by flow
Cytometry

The increase in production of reactive oxygen species
(ROS) was measured using the oxidation of 2’-7" dichlor-
ofluorescin diacetate (H2DCF-DA Sigma Aldrich D6883).
Cells were seeded in a 6-well plate at a density of 3.5 x 10°
cells/well and incubated overnight. The following day,
cells were treated with either DMSO or JVG045 (10 uM)
for one hour. Antimycin (50 uM) was used as positive
control. Cells were then washed with PBS and loaded with
1 pg/mL of H2DCE-DA diluted in serum-free medium for
one hour while protected from light. After incubation,
cells were detached, washed twice with ice-cold PBS and
resuspended in PBS containing 1 pg/mL propidium iodide
to exclude dead cells. Corresponding unstained controls
were also prepared. Cells were analysed using a BD FACS
CantoTMII flow cytometer and data were analysed using
Flow]Jo® software.

Physiochemical and metabolic parameters
Physiochemical and metabolic parameters studies have
been performed at the Centre for Drug Candidate Opti-
misation, Monash University, as described below.
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a) Calculated physicochemical parameters using
ChemAxon JChem software
A range of physicochemical properties were
calculated using the Chem Axon chemistry
cartridge via JChem for Excel software
(version16.4.11).

b) Kinetic Solubility Estimation using Nephelometry
(SolpH)
Compound in DMSO was spiked into either pH 6.5
phosphate buffer or 0.01 M HCl (approxpH2.0)
with the final DMSO concentration being 1%. After
30 min had elapsed, samples were then analysed via
Nephelometry to determine a solubility range [33].

¢) Distribution Coefficient Estimation using
Chromatography (gLogDpH)
Partition coefficient values (LogD) of the test
compounds were estimated at pH 7.4 by correlation
of their chromatographic retention properties
against the characteristics of a series of standard
compounds with known partition coefficient t
values. The method employed is a gradient HPLC
based derivation of the method developed by
Lombardo et al. [34].

In vitro metabolic stability

The metabolic stability assay was performed by incubat-
ing the compound (0.5 M) in liver microsomes at 37 °C
and a protein concentration of 0.4 mg/mL. The meta-
bolic reaction was initiated by the addition of an NADP
H-regenerating system and quenched at various time-
points over a 60-min incubation period by the addition
of acetonitrile containing diazepam as internal standard.
Control samples (containing no NADPH) were included
(and quenched at 2, 30 and 60 min) to monitor for po-
tential degradation in the absence of cofactor. The hu-
man liver microsomes used in this experiment were
supplied by XenoTech, lot#1410230. The mouse liver
microsomes used in this experiment were supplied by
XenoTech, lot#1510256.

Statistical analyses

The results presented are representative of at least three
independent experiments. Statistical analyses were done
using GraphPad Prism v.8.4.2, and normalisation of data
was applied where appropriate. Statistical significance
was considered at a value of p < 0.05.

Results

Re-NHC complexes with inhibitory activity towards FGFR1
and Src

We recently showed that Re-NHC complexes suppress
the growth of pancreatic cancer cell lines by blocking
the cells in the G2/M phase via a mechanism involving
the inhibition of phosphorylation of aurora kinase A
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[25]. We have now identified a subset of compounds as
good candidates for further studies and for possible
therapeutic drug development. Two of these com-
pounds, JVG045 and ps27 (see structures in Supplemen-
tary Fig. 1) showed good pharmaco-toxicological profiles
and were selected for activity analysis in more detail (see
below and Supplementary Fig. 2).

To gain insight into their mechanism of action, we did
a large unbiased cell-free assay involving a protein kinase
screen using these compounds (SelectScreen Kinase Pro-
filing Service, Invitrogen-Life Technologies). This screen
involves a single point inhibition assay at 1 uM against
more than 120 kinases (Supplementary Table 1). Com-
pounds JVG045 and ps27 showed >50% inhibitory activ-
ity towards Fibroblast Growth Factor Receptor (FGFR1)
and Src (Fig. 1a) and did not inhibit (percentage of in-
hibition <40%) any of the other kinases tested. Further
evidence for this inhibition was obtained by Western
blot analyses (Fig. 1b), which were used to compare the
levels of phosphorylated Fibroblast Growth Factor Re-
ceptor (pFGFR) in two different pancreatic cancer cell
lines (HPAF-II and AsPC-1) using glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) to normalise pro-
tein content. The level of pFGFR1 Tyr653/654 was ana-
lysed under normal conditions (i.e., DMSO control) and
after incubation with JVG045 at 10 pM. We focussed on
JVGO045 rather than ps27 because of the latter’s toxicity,
as explained further below. The effect of JVG045 was
also compared with an equal amount of a known specific
FGFR inhibitor, BGJ398, as a positive control; the inert
[Re(CO)3(phen)Cl] (where phen is 1,10-phenanthroline;
the complex is referred herein to as ReCl) compound
was used as a negative control (Supplementary Fig. 1).
The results clearly show that JVG045 reduces the levels
of phosphorylation of FGFR with an effect comparable
to BGJ398. Furthermore, we assessed the effect of
JVG045 on FGF-induced downstream signalling and we
found that JVGO045 strongly attenuated FGF-induced
Akt phosphorylation at Thr308 in both AsPC-1 and
HPAEF-II (Supplementary Fig. 3).

Surprisingly, assessment of the substrate phosphoryl-
ation activity of purified FGFR1 showed no difference in
kinase activity in the presence of 10 uM JVGO045 (Fig.
1c). Furthermore, a direct kinase assay for Src using
JVGO045 at various concentrations showed no difference
in protein activity compared to the specific Src inhibitor
Saracatinib (AZD0530, Fig. 1d). These results indicate
that the inhibitory activity of JVG045 on FGFR1 and Src
kinases is indirect, either as a kinase inhibitor or as a co-
valent inhibitor [35]. In addition, JVG045 was more effi-
cient than ps27 in inhibiting the phosphorylation of
FGFR in pancreatic cancer cell lines ASPC-1 (see Sup-
plementary Fig. 4A) and HPAF-II (Supplementary
Fig. 4B). We therefore set out to determine the
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Fig. 1 Mechanism of action of tricarbony! rhenium complexes. a Summary of SelectScreen Kinase Profiling showing the % inhibition of JVG045 and
ps27 on the kinases FGFR1 and Src. b Western blots in pancreatic cancer cell lines AsPC-1 and HPAF-II showing that JVG045 (10 uM) indeed
inhibits the phosphorylation of FGFR1 with an effect comparable to the selective FGFR inhibitor BGJ398 (5 uM); ReCl was used as negative
control. ¢ Autophosphorylation activity of FGFR1, no difference in kinase activity is detected in the presence of JVG045, indicating that there is no
direct inhibition. d Src kinase assay shows that, when used on the purified kinase, VG045 does not have a direct action compared to the
selective Src inhibitor AZD0530. e, f JVG045 (10 uM) increases the production of reactive oxygen species (ROS) in pancreatic cancer cell lines
AsPC-1 (e) and HPAF-II (f) measured using the H2DCF-DA probe. Results are expressed as Mean + SEM and are representative of at least three
independent experiments. Mean fluorescence intensity DMSO: AsPC1 = 5368 + 1517 (n = 4); HPAF-Il =4094 + 1454 (n=3)

DMSO

JVG045 10uM

mechanism of action of JVG045 on the phosphorylation
of FGFR1 and Src.

It has been shown that both FGFR1 and Src can be
inactivated by a mechanism involving the direct oxida-
tion of a specific cysteine residue (Cys-277 in Src and
Cys-488 in FGFR1) [36]. Furthermore, it has been sug-
gested that tricarbonyl rhenium complexes exert

anticancer activity by elevating intracellular levels of re-
active oxygen species (ROS) [17]. Therefore, we deter-
mined the ability of JVG045 to induce the production of
intracellular ROS. Our results show that, at a concentra-
tion of 10 uM, JVGO045 induces a significant increase in
ROS production in human pancreatic cancer cell lines
AsPC-1 (p =0.0286; Fig. le) and HPAF-II (p= 0,0022;
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Fig. 1f). We conclude that JVG045 inhibits FGFR1 and
Src indirectly, possibly through oxidation of cysteine
residues.

Toxicology studies in zebrafish

With the intent to test compounds on mouse models
in vivo, we first verified their toxicity using zebrafish as a
screening platform. Six compounds were selected based
on previous in vitro results and compared to 1% DMSO
(as a control) and Cisplatin, in a dose response experi-
ment done by dissolving the drugs in zebrafish embryo
medium in 24-well plates. Compounds JVGO080, ps139a
and ps197c formed crystals in the embryo medium (a
physiological solution), and were therefore discarded
from further investigation as unpromising drug candi-
dates because of their limited solubility (Supplementary
Fig. 2). We therefore proceeded with toxicity studies on
zebrafish embryos in which we compared the toxic effect
of JVG045 and ps27 to cisplatin. DMSO was used as
negative control. Hatching and mortality rate are widely
accepted parameters for the evaluation of substance tox-
icity using the zebrafish model [37]. Zebrafish embryos
normally hatch around 3 days post fertilisation; our data
show that when DMSO (Fig. 2a) was included in the em-
bryo medium, at increasing concentration, 97.3% (+3.7
SD) of the embryos hatched after 3 days (72 h post fertil-
isation, hpf) and 99.6% (+0.9 SD) of the larvae were free
from their chorion at 5days (120hpf). On the other
hand, with cisplatin, even at the lowest concentration
(50 uM) only 15% (+12.9 SD) of the embryos hatched at
72hpf, increasing to an average of 27.5% (+30.9 SD) at
120hpf (Fig. 2b). In comparison with JVG045 at a con-
centration 10 times higher (500 uM), 50% (+46.9 SD) of
the embryos hatched at 72hpf, increasing to an average
of 78 (£30.3 SD) at 120hpf (Fig. 2c). In contrast, ps27
showed toxicity starting at a concentration of 100 pM,
when only 6.7% (+11.5 SD) of embryos hatched after
72hpf, with an average of 33.3% (+49.3 SD) of hatched
larvae after 120hpf (Fig. 2d). Mortality rate was assessed
daily until 120hpf (5 days); mortality in the presence of
1% DMSO, which was null (Fig. 2e), was considered as
the reference control. In the presence of cisplatin, 47.5%
(+17.1 SD) of larvae died by 120hpf at 50 uM and the
mortality rate reached 100% at a concentration of
500 uM, with 25% (£50.0 SD) of embryos already dying
at 55hpf (Fig. 2f). However, when zebrafish embryos
were exposed to JVG045 at the highest concentration
(500 uM), mortality was null at 55hpf and reached 60%
(+39.4 SD) at 120hpf (Fig. 2g). In comparison, when the
embryos were exposed to ps27, the mortality rate at
120hpf was 63.3% (+46.2 SD) at a concentration five
times lower than JVG045 (100 uM) and reached 96.7%
(+5.8 SD) at 150 uM (Fig. 2h). We conclude that JVG045
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has the lowest toxicity index and consequently offers sig-
nificant potential as a drug candidate.

Given these encouraging data, we investigated add-
itional toxicity parameters on zebrafish embryos by
monitoring the effects of increasing concentrations of
JVG045 and corresponding percentages of DMSO on
heartbeat. The normal zebrafish embryonic heartbeat
rate is 140—180 beats per minute (bpm); this parameter
is an established criterion for the evaluation of substance
toxicity [40]. Our analyses showed that heartbeat rates
did not differ from data reported in the literature across
all concentrations (DMSO average 142.0 bpm +11.17
SD; JVGO045 average 138.4bpm +12.95). In addition,
across all concentrations, there was no significant differ-
ence in the heartbeat rate between embryos exposed to
either control or JVG045 (Paired t-test t (5)=0.5706, p =
0.5930; Fig. 2i).

We took advantage of zebrafish transparency and
rapid development, which allow easy detection of devel-
opmental defects in the main organs and structures [41],
to examine the effects of JVG045 on embryogenesis.
BGJ398 is a fibroblast growth factor receptor (FGFR 1-
3) inhibitor [38], and when tested in zebrafish at a con-
centration of 0.5-1 pM, it impairs the proper develop-
ment of the embryo in the posterior mesoderm and tail
morphogenesis [35]. We found that JVG045 did not
show any zebrafish embryonic teratogenicity, consistent
with the notion that the mechanism of action of JVG045
is indirect (Fig. 2j). In addition, in zebrafish fgfr genes
display functional redundancy, and thus inhibition of the
activity of only one of these genes activates a compensa-
tory activity from the other genes [42] such that devel-
opment proceeds normally.

JVGO045 inhibits KPC mouse-derived primary cancer cell
growth and reduces their anchorage-independent growth
To better understand the potential efficacy of the se-
lected Rhenium compound in a tumour setting, we
tested the effect of JVG045 on primary cell cultures
derived from pancreatic ductal adenocarcinoma
isolated  from  KrasLSL.G12D/+;  p53R172H/+;
PdxCretg/+ (or KPC) mice. We found that JVG045
impairs KPC primary cell growth in a dose-
dependent manner (Fig. 3a, b), reaching statistical
significance at 5 and 10 uM (One-way ANOVA F (4,
20)=11.87, p<0.0001). We also tested the effect of
10 uM JVGO045 on anchorage independent soft agar
colony formation, which measures the ability of can-
cer cells to grow and to proliferate without support
on a solid surface [29, 43]. Our data showed that at
this concentration, JVGO045 significantly impaired the
anchorage-independent growth of KPC primary cell
colonies in soft agar (two-sample t-test, t ) = 5.544;
p =0.0015; Fig. 3¢, d).
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Fig. 2 In vivo toxicity of tricarbonyl rhenium complexes VG045 and ps27. (A-H) Graphs comparing the effect of a dose response of JVG045, ps27,
Cisplatin and DMSO control on zebrafish hatching (a-d) and embryo mortality (e-h) from 24 h post fertilisation (hpf) until 120hpf. i Effect of a dose
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10 M on the number of primary pancreatic cancer cells isolated from the KrasLSL.G12D/+; p53R172H/+; PdxCretg/+ (or KPC) mouse model,
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Table 1 VG045 IC50 values for different human and murine cancer cell lines

. . Myc-N IC50

Cell line  Cancer type Species amplifiction (Y/N) (uM)
A2780 Ovarian Homo sapiens - 7.5
SHSY5 Neuroblastoma  Homo sapiens N >20
hNB Neuroblastoma  Homo sapiens N >20
Kelly Neuroblastoma  Homo sapiens Y 8.1
IMR32  Neuroblastoma  Homo sapiens Y 6.2
LAN1 Neuroblastoma  Homo sapiens Y 6.6

4T1 Breast Mus musculus - 18.9
MT4-2d Pancreas Mus musculus - 5.5
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Re-NHC complexes show anticancer activity in

neuroblastoma cell lines with an amplified MYCN oncogene
To determine the efficacy of JVG045 on different cell
types, we screened a variety of cell lines derived from
various cancer types (Table 1). These experiments

showed that this compound is particularly active in inhi-
biting in vitro growth of human neuroblastoma cell lines
containing an amplification of the MYCN proto-
oncogene (Kelly, IMR-32, LAN-1), while having only a
limited effect on neuroblastoma cell lines lacking MYCN
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amplification (Fig. 4a) [44]. For example, treatment with
JVGO045 at up to 20 uM in the MYCN-non-amplified cell
line SHSY5 had no significant effect on cell number
(One-way ANOVA, F (5 9)=1.157, p =0.3989). Similarly,
in the MYCN-non-amplified primary human neuroblast-
oma cell line hNB, treatment with JVG045 up to 20 uM
had no significant effect (F (5, 9=1.649, p =0.2421). In
contrast, in the MYCN-amplified cell lines Kelly (F s,
12)=51.56, p<0.0001) and IMR-32 (F (5, 12=21.37,
p < 0.0001), the effect of JVG045 treatment on cell num-
ber reduction was significant starting at 2.5uM (p =
0.0084 in Kelly and p =0.0212 in IMR-32). JVG045 also
significantly ablated cell number in another MYCN-
amplified cell line, LAN-1 (One-way ANOVA, F (5 1=
36.06, p< 0.0001) starting at a concentration of 5uM
(p=0.0192). Figure 4b shows a representative Western
blot analysis showing the Kelly human neuroblastoma
cell lines treated with JVG045, together with the FGFR
inhibitor BGJ398 and the Src kinase inhibitor Bosutinib.
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Data from the R2: Genomics Analysis and Visualization
Platform (http://r2.amc.nl) databases confirm that
FGFR1 (Fig. 4¢, d) and Src (Fig. 4e, f) are unfavourable
prognostic markers for pancreatic cancer adenocarcin-
oma and human neuroblastoma.

Oncogene KRAS status determines responsiveness to
JVGO045 in pancreatic cancer cell lines

To test the effect of JVG045 on pancreatic cancer cells
with varying degrees of genetic complexity (ATCC® TCP-
1026), we exposed a range of cell lines to JVG045. These
experiments showed that, compared to K-RAS mutated
cell lines (IC50 AsPC-1 4.0+1.2uM, HPAF-II 56+
0.6 uM, CFPAC-1 5.7+28uM [25] and Supplementary
Table 2), JVG045 had an insignificant effect on the only
cell line that contains wild-type RAS and is not RAS-
activated, BxPC-3 (IC50 > 20 uM; One-way ANOVA, F 5
17=0.6535, p =0.6630; Fig. 5a). In contrast, SW1990, a
pancreatic cancer cell line with mutationally activated
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Fig. 5 Effect of VG045 on pancreatic cancer cell lines depends on mutationally activated KRAS. a Graph showing that in the BxPC-3 human
pancreatic cancer cell line (which lacks a KRAS mutation) increasing doses of JVG045 had no significant effect on cell number. In contrast,
SW1990, a pancreatic cancer cell line bearing a KRAS mutation and wt P53, showed enhanced sensitivity to increasing concentrations of JVG045.
b Representative western blot showing the effect of JVG045 and ps27 (both at 10 uM) on the phosphorylation of FGFR1(Y653/654) and Src(Y416)
in the presence or absence of the FGF ligand (20 ng/ml). ReCl was used as a negative control. ¢ Effect of JVG045 (10 uM) in significantly reducing
cell numbers in chemoresistant AsPC-1 tumorspheres enriched in cancer stem cells. d JVG045 (10 uM) shows no significant effect in KRAS wt
BxPC-3 tumorspheres. e Effect of JVG045 (10 uM) in significantly reducing cell number in chemoresistant primary KPC tumorspheres enriched in
cancer stem cells. Results are expressed as Mean + SEM and are representative of at least three independent experiments
J
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KRAS but bearing wild type tumour suppressor P53, dis-
played a statistically significant dose-dependent reduction
of cell number in response to JVG045 treatment (IC50 =
5.4 uM; One-way ANOVA, F (5, 12=8.208, p = 0.0014; Fig.
5a). Western blot analysis on BxPC-3, when probed for
pFGEFR and pSrc, showed no difference following JVG045
treatment (10 uM) compared to an untreated control in
presence or absence of FGF ligand (Fig. 5b). We next de-
termined the effect of JVG045 on cell growth in K-RAS
mutated non-pancreatic cancer cell lines. We found that
JVGO045 is able to inhibit both K-RAS mutated ovarian
(OVCARS5) and lung cancer cell lines (A549) in a dose-
dependent manner (Supplementary Fig. 5 and Supplemen-
tary Table 2).

We also verified the efficacy of JVG045 in a population
of pancreatic cancer tumorspheres enriched in cancer
stem-like cells [26]. Cancer stem-like cells are slow-
cycling cells with a capacity for self-renewal that can
elude most therapeutic treatments and are thus respon-
sible for chemoresistance, tumour relapse and metastatic
spread to distant sites [45]. We previously showed that
pancreatic cancer tumorspheres are highly resistant to
the main therapeutic drugs Gemcitabine and Carbopla-
tin [26]. To test its potential as a therapeutic agent, we
tested JVG045 on tumorspheres isolated from the hu-
man pancreatic cancer cell line AsPC-1. These experi-
ments showed that JVGO045 at 10pM significantly
reduced the number of cancer stem-like cells in AsPC-1
(two-sample t-test, t ) = 9.429; p <0.0001; Fig. 5c). In
contrast, when tested on tumorspheres isolated from the
KRAS wild type pancreatic cancer cell line BxPC-3, no
significant effect of JVG45 was observed (two-sample t-
test, t 4 = 1.224; p =0.2880; Fig. 5d). Importantly, pri-
mary KPC tumorspheres enriched in cancer stem cells
and isolated from primary pancreatic ductal adenocar-
cinomas in KPC mice showed a significant reduction in
cell number after treatment with 10 uM JVGO045 (two-
sample t-test, t (4) = 4.158; p = 0.0142; Fig. 5e) .

JVGO045 reduces in vivo PDAC progression in xenografts
models

We next tested the antitumor activity of JVG045 in vivo
using different xenografts models. Following a previously
described protocol [32], we injected 100-200 DiL-
labelled (Vybrant™ Dil Cell-Labeling Solution, Thermo-
Fisher Scientific) HPAF-II human pancreatic cancer cells
into the perivitelline space of 24 h-old zebrafish em-
bryos. After 24h, embryos were treated with either
DMSO or 10 uM JVG045 for 3 days, until the embryos
reached 5 days post fertilisation (Fig. 6a). At the end of
the experiment, 15/25 embryos DMSO-treated were
alive, while all zebrafish treated with JVG045 survived till
the end of the experiment (21/21). Moreover, treatment
with the tricarbonyl rhenium compound significantly
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reduced the overall tumour burden (two-sample t-test, t
ae) = 2.887; p =0.0107; Fig. 6b).

To extend these data to a mammalian context, we ex-
amined the therapeutic effect of JVG045 on mice har-
bouring HPAF-II human pancreatic cancer cell line
xenografts. These mice were treated with a daily intra-
peritoneal injection of JVG045 (30 mg/kg) over a 25-day
period; the experiment was terminated when the tu-
mours reached the critical limit volume of 1500mm?®,
Body weight and tumour measurements were recorded
to assess whether JVG045 was well tolerated. Data from
multiple t-tests for different measurement points showed
no significant difference between the weight of
xenograft-bearing mice treated with vehicle, compare to
those treated with JVG045 (Supplementary Fig. 6). Not-
ably, however, JVG045 was effective in reducing the
tumour burden, with a small but significant effect in re-
ducing the tumour volume after 23 days of treatment
(mean Vehicle = 1262.483mm? + 328.433, n=8; mean
JVG045 = 1010.422mm® + 275.295, n=9; t ratiogss) =
2.481; p=0.0141) and after 25 days of treatment (mean
Vehicle = 1702.1mm> + 588.412, n= 8; mean JVG045 =
1468.022mm”> + 364.188, n= 9; t ratioqsg) = 2.499; p=
0.0136) (Fig. 6¢, d). However, no significant difference
was found in the weight of the tumours at the end of
the experiment (mean Vehicle =821 mg+187.1, n= 8;
mean JVGO045=733.6mg+189.5, n= 9; t 5= 0.9580;
p =0.3533; Fig. 6e).

To establish whether there was any effect of JVG045
on the phosphorylation of Src at tyrosine residue 416
and/or FGFR or at tyrosine residues 653/654, we pre-
pared extracts from a section of the tumours and per-
formed western blot analyses (Fig. 7a). Quantification of
the WB signal was normalised to the loading control
and the average data for untreated (control) tumour-
bearing mice was compared to the average for tumour-
bearing mice treated with JVG045. On average, we ob-
served a significant inhibition of phosphorylation of Src
at Tyr41l6 (Fig. 7b) in animals harbouring tumours
treated with JVG045 compared to control (vehicle)
treated tumours (two-samples t-test on normalised data
t(1a97) = 2.207, p =0.0434). However, no significant dif-
ference was detected on the levels of Tyr653/654 phos-
phorylation of FGFR (two-samples t-test on t (j5=
0.04187, p = 0.9672; Fig. 7c).

Physiochemical and metabolic evaluation of JVG045

Finally, we assessed JVGO045 for its physiochemical
(Table 2) and metabolic properties (Table 2), including
kinetic solubility, chromatographic LogD (gLogD) and
microsomal stability in human and mouse liver micro-
somes. JVG045 exhibited poor solubility in pH 6.5 buf-
fer, which remained unchanged in a pH2 buffer,
inferring neutral character. The lipophilic butyl chain is
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a likely contributor towards the poor solubility of this
compound. JVG045 exhibited moderate lipophilicity
(Table 2). Metabolic stability was assessed at a substrate
concentration of 0.5 M in human and mouse liver mi-
crosomes. JVG045 showed a moderate rate of NADPH-
dependent degradation in both human and mouse liver
microsomes, with no indication of non-NADPH
dependent metabolism in microsomal control samples.

Discussion

Despite the extensive clinical utilization of platinum-
based drugs as anticancer agents over more than four
decades, their use is currently limited by the occurrence
of severe adverse events and the development of che-
moresistance. Attempts to substitute platinum with
other metals has not produced tangible results in a

clinical setting. Among all metal-based drugs, those con-
taining rhenium have recently attracted major interest:
several rhenium-based compounds have been tested for
their anticancer activity in vitro and in vivo with promis-
ing results [3, 8, 9, 24, 46]. However, the lack of a known
mechanism of action and molecular target represents a
major obstacle in advancing these therapeutics to the
clinical trial stage. In previous work, we identified Re-
NHC complexes that can induce G2/M arrest and inhib-
ition of the aurora kinase A phosphorylation [25]. Here,
we characterized the molecular targets of our leading
compounds and evaluated their anticancer potential
in vitro and in vivo. Based on the data we present, we
surmise that our rhenium-based compounds target
FGFR and Src, possibly through ROS interaction with
specific cysteine residues. How exactly the rhenium
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Table 2 (A) Physicochemical and (B) Metabolic evaluation of VG045
Table 2A. Physicochemical evaluation of JVG045

Compound Mw PSA FRB HBD HBA Arom. fgps glogD  Sol,,  Sol,
(A2) Rings atpH7.4 (ug/mL) (ug/mL)

JVG045 55141 698 3 0 0 0 0.27 3.0 1.6-3.1 1.6-3.1

Table 2B. Metabolic evaluation of JVG045

. CcL . .
Compound Microsome T1',2 P aviseo

Species (m' m(guprotein)

Human 42 41
JVG045

Mouse 24 73
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compounds inhibit FGFR1 and Src remains to be deter-
mined. It is currently unclear why our compounds
showed inhibitory effects in the kinases screen but not
in the individual kinase activity or autophosphorylation
assay. A possible explanation is the presence of different
amounts of redox reagents such as dithiothreitol. Our
proposed ROS-based mechanism is consistent with pre-
vious work showing that both FGFR and Src are regu-
lated by ROS-mediated cysteine oxidation [36]. On the
other hand, our previous work suggested that low levels
of ROS can enhance Src activation, and therefore
JVGO045, by targeting the conserved cysteine residue,
could prevent such oxidative activation [30]. Another as-
pect that needs to be determined is the lack of embry-
onic teratogenicity of JVG045 compared to the pan-
FGEFR kinase inhibitor BGJ398. Zebrafish embryo devel-
opment is dependent on FGFRs and the four FGFRs
present in zebrafish are highly redundant; it is possible
that JVGO045 is not able to block all zebrafish FGFRs
[42]. Alternatively, a possible explanation could be that
the targeted cysteine is not present in the zebrafish
FGFR. Indeed, a comparison of the human FGFRs se-
quences shows that in the zebrafish counterpart few
cysteine residues are missing [47—49]. Interestingly, re-
cent data demonstrated that aurora kinase A is also reg-
ulated by reversible cysteine oxidation, suggesting that
our observed Aurora Kinase inhibition by JVG045 [25]
could occur through a similar proposed mechanism [50].
Our results showed that JVG045 is rather specific in tar-
geting K-Ras mutated pancreatic cancer cells and MYCN
amplified neuroblastoma cells. The toxicity profile of
our lead compound in zebrafish and mouse is also very
favourable. The anticancer activity of our lead com-
pound was also investigated using zebrafish and mice
models. Our results showed that JVG045 is able to in-
hibit tumour growth in vivo, although the activity in
mice was less impressive compared to the zebrafish
model. This is likely due to solubility issues as shown by
our physiochemical studies. Furthermore, we could con-
firm in vivo inhibition of Src phosphorylation but not
FGFR1. This indicates that JVGO045 is able to reach the
tumour but probably the concentration and/or the dur-
ation of persistence in the circulation is suboptimal. Al-
though our study provides strong evidence of in vivo
activity for rhenium tricarbonyl compounds, it is clear
that the pharmacodynamics and pharmacokinetics of
these compounds require improvement. Moreover, it
would be interesting to see whether multiple administra-
tions (i.e. twice a day) or higher concentrations are able
to increase the anti-tumour activity in mouse models.

Conclusions
In conclusion, this work provides novel mechanistic
insight and the molecular targets for Re-NHC complexes
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and demonstrates their specificity in blocking cancer
growth in vitro and in vivo. The minimal or lack of ac-
tivity of these compounds in non-malignant cells and in
cancer cells with wild type KRas and low levels of
MYCN is a promising feature for the development of
novel therapies. The identification of the mechanism of
action and of the molecular targets is pivotal for the ad-
vancement of these agents in an effort to develop effica-
cious and non-toxic therapeutics. Both FGFR1 and Src
play a key role in cancer progression and it is therefore
anticipated that the development of these novel antican-
cer agents could have a broad spectrum of application in
different cancer settings.
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