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Abstract

In this work, we consider a novel model for a binary mixture of inert gases. The model, which preserves the structure of
the original Boltzmann equations, combines integro-differential collision operators with BGK relaxation terms in each
kinetic equation: the first involving only collisions among particles of the same species, while the second ones taking
into account the inter–species interactions. We prove consistency of the model: conservation properties, positivity of
all temperatures, H-theorem and convergence to a global equilibrium in the shape of a global Maxwell distribution.
We also derive hydrodynamic equations under different collisional regimes. In a second part, to numerically solve the
governing equations, we introduce a class of time and space high order finite volume schemes that are able to capture
the behaviors of the different hydrodynamic limit models: the classical Euler equations as well as the multi-velocities
and temperatures Euler system. The methods work by integrating the distribution functions over arbitrarily shaped and
closed control volumes in 2D using Central Weighted ENO (CWENO) techniques and make use of spectral methods
for the approximation of the Boltzmann integrals with high order Implicit-Explicit (IMEX) Runge Kutta schemes. For
these methods, we prove accuracy and preservation of the discrete asymptotic states. In the numerical section we first
show that the methods indeed possess the theoretical order of accuracy for different regimes and second we analyse
their capacity in solving different two dimensional problems arising in kinetic theory. To speed up the computational
time, all simulations are run with MPI parallelization on 64 cores, thus showing the potentiality of the proposed
methods to be used for HPC (High Performance Computing) on massively parallel architectures.

Keywords: Inert gas mixtures, Kinetic Boltzmann equations, Hydrodynamic limit, Implicit-Explicit Runge Kutta,
Unstructured meshes, High order of accuracy in space and time.

1. Introduction

Kinetic theory for inert or reactive gas mixtures has been widely investigated in recent years, see for instance
[33, 54, 42, 15] and the references therein. Boltzmann equations for inert mixtures, as well as their major mathe-
matical properties, may be found also in classical books [22, 23, 35] but, since their numerical simulation in realistic
physical problems is not an easy task to accomplish, many simpler kinetic approximations have been proposed in
the past. In this respect, the most usual approach consists in suitable generalizations of the BGK relaxation model
proposed by Bhatnagar, Gross and Krook in [8] for a single gas. The idea of such kind of models comes from the
fact that the dynamics of the system drives the configuration to relax towards a Maxwellian state, so that collisions
cause a change rate for the distribution which is proportional to the difference between the distribution itself and a
Maxwellian attractor. The extension of the BGK model to a gas mixture is not unique, since in the Maxwellian at-
tractors several free parameters appear. These may be suitably chosen in order to reproduce some basic properties of
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the original Boltzmann operators. A milestone in the rigorous mathematical approach for the construction of BGK
operators is the work of Andries, Aoki and Perthame [2], where the kinetic equation for each species is governed by
a unique relaxation operator, with auxiliary parameters in the Maxwellian attractor taking into account the effects due
to collisions with whatever other species. This way of modeling collisions among different species has given rise to
various applications and generalizations, also to reactive mixtures [9] or to mixtures of monatomic and polyatomic
gases [13, 14]. In spite of its simplicity, this model is able to preserve correct collision invariants and collision equilib-
ria, fulfillment of Boltzmann H–theorem, positivity of distribution functions and temperatures. However, a drawback
of having a unique BGK operator for each constituent is that only global conservation laws can be imposed, hence
loosing the details of bi–species exchanges. For this reason another kind of models has been widely considered in the
literature [50, 43, 47], with a sum of BGK operators for each species, each one describing the interactions with any
other species (equal or different). Also the recent developments introduced in [15] fit into this research line, and the
proposed BGK model, that will be used also in this paper, aims at preserving the structure of the original Boltzmann
equations, imposing that each bi–species BGK operator preserves the bi–species Boltzmann exchange rates of mo-
mentum and energy, for general intermolecular potentials. The behaviors of the different BGK models for mixtures
studied in [2, 9, 15] have been recently numerically compared in [17] also in their hydrodynamic limits.

From the numerical point of view, modern deterministic solvers are often based on a spectral method for the
solution of the Boltzmann collision operator [52, 37]. Typically a discrete velocity model (DVM) [16] is used for the
discretization of the velocity space, while different spatial discretization techniques can be employed in the physical
space, e.g. finite element [34], finite volume [19, 24, 6] or discontinuous Galerkin [20, 45, 56] schemes. Particular
care must be devoted to the time discretization, which has to satisfy the so-called asymptotic preserving (AP) property,
thus ensuring that the numerical scheme is capable of retrieving a consistent discretization of the limit model in the
stiff relaxation limit of the governing equations. A well-suited class of methods that satisfies this requirement is
represented by Implicit-Explicit (IMEX) Runge-Kutta (RK) methods [29, 46, 36, 27, 53, 25, 30, 49], where the
collisional fast scale is discretized implicitly while keeping the transport part explicit, hence allowing for time steps
which are independent of the stiffness of the problem. Linear Multistep Methods [4, 31, 20] have also been investigated
in the literature, which are proven to be more efficient and more accurate compared to Runge-Kutta time stepping
techniques in many situations. For monatomic gas mixtures, in [48] a fast Fourier method is adopted,a moment method
is devised in [1] to approximate the Maxwell-Stefan limit of a multispecies gas, while in [5] a kinetic multispecies
model is solved at the aid of a projective integration technique in time, where the collisions among the species are
modeled with simpler BGK-type operators. Gas-kinetic schemes for binary gas mixtures have been presented in
[58, 57] and those methods are able to properly capture the two-species Navier-Stokes equations with the correct
Prandtl number, hence considering heat conduction effects as well.

In this paper, in order to preserve as much as possible the accuracy of the Boltzmann description but with a
kinetic system manageable from the computational point of view, we propose and investigate a mixed Boltzmann–
BGK model for a binary mixture, in which collisions occurring within the same species (intra–species) are modelled
by Boltzmann operators, while interactions between the two constituents (inter–species) are described by the BGK
operators given in [15], that represent the relaxation model for mixtures with the closest structure to the Boltzmann
one. To the best of our knowledge, this hybrid model has never been investigated before. For this reason, we first
show in the rest of the paper that it fulfills the basic mathematical properties of the Boltzmann equations that we
want to approximate. Specifically, we prove that the unique collision equilibrium admitted by this kinetic model
is the expected (Boltzmann) one: namely distributions accommodated at a Maxwellian shape, sharing a common
mean velocity and a common temperature. The crucial step to get this result will be the entropy dissipation estimate,
namely the Boltzmann H–theorem, that we demonstrate to be valid even for the present Boltzmann–BGK model. As
already discussed for Boltzmann or BGK models [42, 12, 10], having a sum of binary collision operators in the kinetic
equations allows to investigate also hydrodynamic regimes in which some collisions are more frequent than the others.
We present the Euler equations corresponding to our mixed model, both in a situation with all collisions dominant
and also in the case in which only collisions within the same species play the dominant role. This latter regime turns
out to be useful to describe some phenomena in plasma physics, where the mass for electrons is much smaller than
for ions [54], and also in general ε–mixtures of gases having very different masses, where energy exchanges between
particles with disparate masses occur more slowly than between particles of the same species [39].

In a second part, the proposed kinetic model will be solved with a fully second order accurate asymptotic pre-
serving numerical method in space and time, along the lines of some recent contributions in the context of finite
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volume [21, 19] and discontinuous Galerkin schemes [20]. The computational domain is discretized with general un-
structured control volumes made of polygons, where a CWENO reconstruction operator is used to increase the spatial
accuracy of a finite volume method. The velocity space is approximated relying on a discrete velocity model on a two-
dimensional Cartesian mesh, while the Boltzmann collision operator is evaluated by means of a fast spectral method
based on Fourier modes. Finally, time integration is carried out employing an IMEX Runga-Kutta method. For this
particular class of methods, we show that they are able to retrieve a consistent discretization of the hydrodynamic
limit models derived from the theory, in which the different collisional scales grow to infinity. The resulting scheme
is therefore numerically shown to be independent of the stiffness of the problem, thus allowing large time steps to be
adopted which eventually improve the computational efficiency of the algorithm. The scheme is implemented under
MPI parallelization and tested on several cores.

The rest of the work is organized in the following manner. In Section 2 we present the mixed Boltzmann–BGK
equations and also their dimensionless version. We prove the consistency of the model, namely fulfillment of the
expected entropy dissipation (Boltzmann H–theorem) and existence and uniqueness of a steady (Maxwellian) config-
uration. We also derive Euler hydrodynamic equations in two different asymptotic limits, namely a regime with all
collisions dominant and a case with intra–species collisions more frequent than the others. In Section 3, the numerical
method is presented, which is composed of three main discretizations: (i) the discrete velocity model, (ii) the spatial
discretization with the CWENO reconstruction operator, (iii) the time integration technique with asymptotic preserv-
ing IMEX Runge-Kutta methods. The proof of the asymptotic preservation and accuracy is also reported in this part.
The spectral method is briefly discussed after the introduction of the discrete velocy model while the details on the
spectral method for the approximation of the Boltzmann collision operator can be found in [52, 37] for the theoretical
part and in [19] for applications. Section 4 is devoted to the numerical validation of the novel model, therefore con-
vergence studies as well as other benchmark test cases are presented on unstructured polygonal meshes for different
collision regimes. Conclusions and future investigations are then drawn in Section 5.

2. Kinetic equations for a binary mixture

We consider a binary mixture of monatomic gases with masses mi, i = 1, 2, and distributions fi(t, x, v), i = 1, 2,
depending on time t ∈ R+, position x ∈ Rdx in dimension dx, and molecular velocity v ∈ Rdv . Number densities ni,
mean velocities ui and temperatures Ti of both constituents are recovered as moments of the distributions themselves
as

ni =

∫
Rd

fi(v) dv , ui =
1
ni

∫
Rd

v fi(v) dv , Ti =
mi

d ni

∫
Rd
|v − u|2 fi(v) dv , (1)

where we have assumed that dx = dv = d from now on even if not strictly necessary. The evolution of the system is
assumed to be governed by a new mixed Boltzmann–BGK model. Specifically, intra–species collisions are modeled
by Boltzmann operators while inter–species collisions are described by relaxation–type operators. The associated
kinetic equations read then as

∂ f1
∂t
+ v · ∇x f1 = Q11( f1, f1) + Q̂12( f1, f2)

∂ f2
∂t
+ v · ∇x f2 = Q̂21( f2, f1) + Q22( f2, f2).

(2)

Boltzmann terms modeling collisions within each component [22] are provided by the operators

Qii( fi, fi) =
∫
Rd

∫
S d−1

gii(|y|, ŷ · ω)
[
fi(v′ii) fi(w′ii) − fi(v) fi(w)

]
dw dω , i = 1, 2, (3)

with y = v − w the relative velocity and ŷ = y
|y| its direction. Moreover, gii is the so-called collisional cross section

depending only on the type of interactions between particles, S d−1 is the d − 1 unit sphere with d the dimension of the
velocity space, ω is the vector spanning the unit sphere S d−1 and finally w is the pre-collisional velocity of the particle
colliding with the one at velocity v, leading to post collisional velocity pair (v′ii, w′ii). In particular, the velocities
(v′ii,w

′
ii) in (3) are related to (v,w) by

v′ii =
1
2

(v + w) +
1
2
|y|ω , w′ii =

1
2

(v + w) −
1
2
|y|ω . (4)
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The interactions between different constituents are instead described by BGK–type relaxation operators. Among the
many consistent BGK approximations for inert gas mixtures available in the literature [2, 43, 47], here we adopt the
model proposed in [15], in which each bi–species relaxation term reproduces the exchange rate of momentum and
energy of the corresponding Boltzmann operator. More precisely, we set

Q̂ik = νik
(
Mik − fi

)
, (i, k) = (1, 2) , (2, 1) , (5)

where νik are suitable collision frequencies, while the attractors

Mik = niM
(
v,uik,

Tik

mi

)
= ni

(
mi

2πTik

)d/2

exp
(
−

mi

2Tik
|v − uik |

2
)

(6)

are Maxwellian distributions depending on auxiliary parameters uik and Tik which are determined by imposing that∫
Rd

v Q̂ik dv =
∫
Rd

v Qik( fi, fk) dv ,
∫
Rd
|v|2 Q̂ik dv =

∫
Rd
|v|2 Qik( fi, fk) dv , (7)

with Qik( fi, fk) denoting the bi–species Boltzmann operator [22]

Qik( fi, fk) =
∫
Rd

∫
S d−1

gik(|y|, ŷ · ω)
[
fi(v′ik) fk(w′ik) − fi(v) fk(w)

]
dw dω , (i, k) = (1, 2) , (2, 1) .

Left hand sides of equalities (7), relevant to BGK contributions, may be straightforwardly computed, leading to

νik ni
(
uik − ui

)
=

∫
Rd

v Qik( fi, fk) dv ,

νik ni

(
d

Tik − Ti

mi
+ |uik |

2 − |ui|
2
)
=

∫
Rd
|v|2 Qik( fi, fk) dv .

The computation of Boltzmann contributions may be done explicitly only for Maxwell molecules, having the cross
section gik independent of |y|; in this case, skipping intermediate computations we get

uik = (1 − aik) ui + aik uk , Tik = (1 − bik) Ti + bik Tk + γik |ui − uk |
2 ,

aik =
µ nkmk

νik(mi + mk)
, bik =

2 aik mi

mi + mk
, γik =

mi aik

d

(
2 mk

mi + mk
− aik

)
,

(8)

where the parameter µ is related to the Boltzmann cross section as

µ ŷ =
∫

S d−1
(ŷ − ω) g12(ŷ · ω) dω =

∫
S d−1

(ŷ − ω) g21(ŷ · ω) dω . (9)

For general intermolecular potentials, the computation of contributions on the right hand sides of (7) involves the
angular integral

g̃(|y|) ŷ =
∫

S d−1
(ŷ − ω) g12(|y|, ŷ · ω) dω =

∫
S d−1

(ŷ − ω) g21(|y|, ŷ · ω) dω,

with g̃ depending on the relative speed. In order to complete the construction of the BGK operator, we approximate
g̃(|v − w|) by its value in some typical point, i.e. g̃(|v − w|) � g̃(z̄), where we choose as reference value z̄ a suitable
average of the relative velocity defined as

z̄ =
(

1
n1 n2

∫
Rd

∫
Rd
|v − w|2 f1(v) f2(w) dv dw

)1/2

=

[
d

(
T1

m1
+

T2

m2

)
+ |u1 − u2|

2
]1/2

.

This approach leads exactly to the formulas (8) obtained in the Maxwell molecules case, but with the parameter
µ = g̃(z̄).

Collision frequencies νik, with (i, k) = (1, 2) or (2, 1), are free parameters; as already noticed in the past, their
choice does not represent a trivial issue and various possible strategies have been proposed [11, 41] for different BGK
models. For the BGK operators used in the present paper, in [15] it has been proved that auxiliary temperatures Tik

defined in (8) are strictly positive only if νik ≥ µ nk/2. In order to fulfill this positivity constraint we adopt from here
on the choice νik = µ nk, and in numerical simulations we consider Maxwell molecules interactions.
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2.1. Dimensionless setting and properties of the kinetic model
In this section we derive the dimensionless form of our kinetic model (2). To this aim, we introduce the following

normalizations

f̃1 =
(

T0

m1

)d/2 f1
n0
, f̃2 =

(
T0

m1

)d/2 f2
n0
, ñ1 =

n1

n0
, ñ2 =

n2

n0
,

T̃1 =
T1

T0
, T̃2 =

T2

T0
, ṽ =

v√
T0
m1

, ũ1 =
u1√

T0
m1

, ũ2 =
u2√

T0
m1

,
(10)

where n0 and T0 are suitable reference number density and temperature, respectively. Moreover, we introduce the
mass ratio m = m2/m1. We scale also time and space variables as

t̃ = ν t , x̃ =
ν x√

T0
m1

, (11)

where ν is a suitable average collision frequency. Since in the following sections we aim at considering problems in
which collisions play the dominant role, but intra–species and inter–species rates of collisions could have different
orders of magnitude, we rescale collision frequencies as

ν̃12 =
ε ν12

α ν
, ν̃21 =

ε ν21

α ν
, g̃11 =

ε n0

ν
g11 , g̃22 =

ε n0

ν
g22 ,

with ε and α suitable constants. Finally, we note that we can take µ̃ = ε µ n0/(α ν), since the unit measure of coefficient
µ differs from the one of the collision frequencies only by a number density factor.

Substituting all these quantities into equations (2), and omitting all tildes (∼), the novel model equations in dimen-
sionless form may be cast as

∂ f1
∂t
+ v · ∇x f1 =

1
ε

Q11( f1, f1) +
α

ε
ν12

(
M12 − f1

)
∂ f2
∂t
+ v · ∇x f2 =

α

ε
ν21 (M21 − f2) +

1
ε

Q22( f2, f2)
(12)

where the nondimensional Maxwellian attractors are now given by

M12 = n1

(
1

2πT12

)d/2

exp
(
−
|v − u12|

2

2T12

)
, M21 = n2

(
m

2πT21

)d/2

exp
(
−

m |v − u21|
2

2T21

)
. (13)

The auxiliary parameters u12, u21, T12, T21 take the form

u12 = (1 − a12) u1 + a12 u2 , T12 = (1 − b12) T1 + b12 T2 + γ12 |u1 − u2|
2 ,

a12 = µ
n2

ν12

m
1 + m

, b12 = 2 a12
1

1 + m
, γ12 =

a12

d

(
2 m

1 + m
− a12

)
,

(14)

and
u21 = (1 − a21) u2 + a21 u1 , T21 = (1 − b21) T2 + b21 T1 + γ21 |u1 − u2|

2 ,

a21 = µ
n1

ν21

1
1 + m

, b21 = 2 a21
m

1 + m
, γ21 =

m a21

d

(
2

1 + m
− a21

)
.

(15)

In the specific case of Maxwell molecules, the above terms simplify since by assumption we have ν12 = n2 µ and
ν21 = n1 µ with constant µ and the coefficients become

a12 =
m

1 + m
, a21 =

1
1 + m

, b12 = b21 =
2 m

(1 + m)2 ,

γ12 =
1
d

( m
1 + m

)2
, γ21 =

γ12

m
.
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Since BGK operators in our model have been derived by imposing constraints (7), that are nothing but preser-
vation of Boltzmann bi–species momentum and energy exchanges, the mixed Boltzmann–BGK model (12) ensures
conservation of species number densities, global mixture velocity and global temperature, as it occurs for classical
Boltzmann equations.

Concerning steady configurations, we can observe that the expected physical steady state, namely the pair of
Maxwellians (M1,M2) with

M1 = n1

(
1

2πT

)d/2

exp
(
−
|v − u|2

2T

)
and M2 = n2

( m
2πT

)d/2
exp

(
−

m|v − u|2

2T

)
, (16)

and
u1 = u2 = u and T1 = T2 = T , (17)

turns out to be an equilibrium of (12). In fact, from (8) under the above hypothesis we get

u12 = u21 = u and T12 = T21 = T , (18)

and hence
M12 = M1 and M21 = M2 . (19)

This implies that
(
M12 − f1

)
=

(
M21 − f2

)
= 0. Then, since also Q11 = Q22 = 0 under the same hypothesis f1 = M1

and f2 = M2, we have that the pair (M1,M2) represents a possible equilibrium of the system.

2.2. Uniqueness and stability of the steady state configuration for the mixed Boltzmann–BGK model

In this part, we prove that the equilibrium steady state (16) is indeed the unique admissible steady configuration for
(12) and that, moreover, it is asymptotically stable. To this aim, we show that the classical Boltzmann H–functional

H =
∫
Rd

f1(v) log f1(v)dv +
∫
Rd

f2(v) log f2(v)dv (20)

is a Lyapunov functional (describing the entropy dissipation) for the mixed model (12). In order to avoid unessential
multiplicative constants we write the proof in the case ε = α = 1. The time derivative of the functional (20) (in space
homogeneous conditions) reads as

Ḣ =

∫
Rd

Q11( f1, f1) log f1 dv + ν12

∫
Rd

(M12 − f1) log f1 dv

+ ν21

∫
Rd

(M21 − f2) log f2 dv +
∫
Rd

Q22( f2, f2) log f2 dv . (21)

The first and last terms appear also in the classical one–species H–theorem [22] and may be cast as∫
Rd

Qii( fi, fi) log fi dv =

−
1
4

∫
Rd×Rd×Sd−1

gii log
(

fi(v′ii) fi(w′ii)
fi(v) fi(w)

) (
fi(v′ii) fi(w′ii)
fi(v) fi(w)

− 1
)

fi(v) fi(w)dvdwdω ≤ 0 .

(22)

Concerning the remaining terms in (21), using the inequality

(y − x) log x ≤ y(log y − 1) − x(log x − 1),

we can estimate ∫
Rd

(Mik − fi) log fidv ≤
∫
Rd

(
Mik log Mik − fi log fi

)
dv −

∫
Rd

(Mik − fi) dv . (23)
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The last integral vanishes since Mik and fi have the same number density. In the remaining integral, one can make use
of the classical result in [22], that is ∫

Rd
fi log fidv ≥

∫
Rd

M̄i log M̄idv ,

where M̄i denotes the Maxwellian distribution having macroscopic fields ni, ui and Ti of the i–th constituent, leading
to ∫

Rd
(Mik − fi) log fidv ≤

∫
Rd

(
Mik log Mik − M̄i log M̄i

)
dv = −

d
2

ni log
(

Tik

Ti

)
, (24)

where the last equality can be obtained by direct computations. Recalling now the definitions of T12 and T21 in (14)
and (15), respectively, and the inequality

log[(1 − b)x + by] ≥ (1 − b) log x + b log y,

for (i, k) = (1, 2) or (2, 1) we obtain

log
(
Tik

)
− log(Ti) ≥ bik log

(
Tk

Ti

)
. (25)

In conclusion, by using the relation
n1ν12b12 = n2ν21b21 , (26)

we eventually get the following inequality

ν12

∫
Rd

(M12 − f1) log f1dv + ν21

∫
Rd

(M21 − f2) log f2dv ≤

−
d
2

n1ν12b12 log
(

T2

T1

)
−

d
2

n2ν21b21 log
(

T1

T2

)
= 0 , (27)

and this concludes the proof of the entropy dissipation.
Moreover, the uniqueness of the equilibrium (16) follows from the condition Ḣ = 0. Indeed, if (F1, F2) is an

equilibrium, then it must hold Ḣ(F1, F2) = 0. Since Ḣ is provided by the sum of three non positive contributions,
i.e. the first and the last terms in (21) (estimated in (22)) and the sum of the BGK ones (estimated in (27)), all of
them must vanish. From the Boltzmann terms (the first and last in (21)), it follows by standard arguments that Fi is a
Maxwellian function depending on its own mean velocity ui and temperature Ti, i.e Fi = M̄i. By substitution of this
ansatz into the remaining terms we get

ν12

∫
Rd

(M12 − M̄1) log M̄1dv + ν21

∫
Rd

(M21 − M̄2) log M̄2dv

= ν12

∫
Rd

(M12 − M̄1)
[
log(n1) +

d
2

log
(

1
2 πT1

)
−
|v − u1|

2

2 T1

]
dv

+ ν21

∫
Rd

(M21 − M̄2)
[
log(n2) +

d
2

log
(

m
2 πT2

)
−

m |v − u2|
2

2 T2

]
dv

= ν12 n1

(
−

T12

T1
−
|u12 − u1|

2

2 T1
+ 1

)
+ ν21 n2

(
−

T21

T2
−

m |u21 − u2|
2

2 T2
+ 1

)
,

that, taking into account the expressions (14) and (15) for the auxiliary parameters and recalling the relation (26),
becomes

− ν12 n1 b12
(T1 − T2)2

T1 T2
−

[
ν12 n1

T1

(
γ12 +

(a12)2

2

)
+
ν21 n2

T2

(
γ21 +

(a21)2

2

)]
|u1 − u2|

2;

this sum of negative terms vanishes if and only if u1 = u2 and T1 = T2, therefore the unique collision equilibrium
admitted by our mixed Boltzmann–BGK model is (F1, F2) = (M1,M2) provided in (16).
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2.3. Hydrodynamic limits
Hydrodynamic equations may be derived from the kinetic model (12) in different collision dominated regimes

[10]. In what follows we present the Euler equations corresponding to two different scaling hypothesis.

2.3.1. Case with all dominant collisions
We assume, as in classical hydrodynamic limits, that all mechanical collisions play a dominant role in the evolu-

tion. This is equivalent to set α = 1 in the dimensionless kinetic system, hence obtaining

∂ f1
∂t
+ v · ∇x f1 =

1
ε

Q11( f1, f1) +
1
ε
ν12

(
M12 − f1

)
∂ f2
∂t
+ v · ∇x f2 =

1
ε
ν21 (M21 − f2) +

1
ε

Q22( f2, f2) ,
(28)

with ε representing a small parameter standing for the Knudsen number.
Collision invariants for the dominant terms (namely for the whole collision operator) correspond to species number

densities n1, n2, global mass velocity u and global temperature T . Their evolution equations at Euler accuracy read as

∂n1

∂t
+ ∇x · (n1 u) = 0 ,

∂n2

∂t
+ ∇x · (n2 u) = 0 ,

∂

∂t
(ρu) + ∇x · (ρu ⊗ u) + ∇x(n T ) = 0 ,

∂

∂t

(
1
2
ρ|u|2 +

d
2

n T
)
+ ∇x ·

[(
1
2
ρ|u|2 +

d + 2
2

n T
)

u
]
= 0 .

(29)

Here, the total mass density ρ is given by ρ = n1+m n2, since we have taken the particle mass of species 1 as reference
value, therefore dimensionless masses are 1 and m = m2/m1, for species 1 and 2, respectively.

2.3.2. Case with dominant intraspecies collisions
We assume now that only resonant collisions, namely interactions involving a pair of particles of the same species,

play the dominant role. This regime is well known to occur, for instance, in mixtures with constituents having very
disparate masses [54, 39, 10]. More precisely, in our rescaled model we set α = ε and we get

∂ f1
∂t
+ v · ∇x f1 =

1
ε

Q11( f1, f1) + ν12
(
M12 − f1

)
∂ f2
∂t
+ v · ∇x f2 = ν21 (M21 − f2) +

1
ε

Q22( f2, f2) .
(30)

Taking ε as small parameter, the dominant terms are the Boltzmann one–species operators. We apply the classical
Chapman-Enskog method [23], and we expand each distribution function fi in terms of the Knudsen number ε as
fi = f (0)

i + ε f (1)
i ; consequently, similar expansions hold for macroscopic fields, but with the constraint (typical of

the Chapman–Enskog procedure) of keeping unexpanded the collision invariants of the dominant part of the collision
operators, that in the present regime are densities, mean velocities and temperatures of single species. From rescaled
equations (30), at leading order we get

f (0)
i (v) = ni

(
mi

2πTi

)d/2

exp
(
−

mi

2Ti
|v − ui|

2
)
, (31)

and Euler equations for ni, ui, Ti (i = 1, 2) are thus provided by the zero–order terms of the weak form of kinetic
equations (30)

∂

∂t

∫
Rd
ϕi(v) f (0)

i dv + ∇x ·

∫
Rd
ϕi(v) v f (0)

i dv = ν(0)
ik

∫
Rd
ϕi(v)

(
M(0)

ik − f (0)
i

)
dv (32)
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corresponding to the weight functions ϕi(v) = 1, mi v, 1
2 mi |v|2, with (i, k) = (1, 2) or (2, 1) and masses m1 = 1 and

m2 = m in our dimensionless frame. Notice that on the right hand sides the contributions due to the Boltzmann
operators Qii (which would involve also the correction f (1)

i ) disappear because intra–species collisions do not modify
mass, momentum and energy of the species itself. As expected, on the right sides there appear only suitable collisions
contributions due to the interactions between the two different gases. The computations of streaming terms in (32) is
usual in kinetic theory [22, 23], while we refer the interested reader to [10] for a detailed investigation of the collision
contributions. Skipping intermediate details, the sought evolution equations may be cast as

∂n1

∂t
+ ∇x · (n1 u1) = 0 ,

∂n2

∂t
+ ∇x · (n2 u2) = 0 ,

∂

∂t
(n1u1) + ∇x · (n1 u1 ⊗ u1) + ∇x(n1 T1) = − µ n1 n2

m
1 + m

(u1 − u2) ,

∂

∂t
(m n2u2) + ∇x · (m n2 u2 ⊗ u2) + ∇x(n2 T2) = − µ n1 n2

m
1 + m

(u2 − u1) ,

∂

∂t

(
1
2

n1 |u1|
2 +

d
2

n1 T1

)
+ ∇x ·

[(
1
2

n1|u1|
2 +

d + 2
2

n1 T1

)
u1

]
= − µ n1 n2

m
(1 + m)2

[(
u1 + m u2

)
· (u1 − u2) + d (T1 − T2)

]
,

∂

∂t

(
1
2

m n2 |u2|
2 +

d
2

n2 T2

)
+ ∇x ·

[(
1
2

m n2|u2|
2 +

d + 2
2

n2 T2

)
u2

]
= − µ n1 n2

m
(1 + m)2

[(
u1 + m u2

)
· (u2 − u1) + d (T2 − T1)

]
.

(33)

Recalling that collision frequencies are provided by ν12 = n2 µ and ν21 = n1 µ, we note that in the limit µ → +∞ we
recover u1 = u2 and T1 = T2, therefore equations (33) correctly reduce to classical Euler equations (29) relevant to
situations in which all collisions are dominant.

3. The numerical scheme

In this section, we describe the numerical method designed to solve the dimensionless model (12). To make
notation easier and less heavy in the fully discrete numerical scheme, we slightly change the notation of the Boltzmann
collision operators in (12) as follows:

Q11( f1, f1) := Q( f1), Q22( f2, f2) := Q( f2). (34)

For the sake of clarity we divide the discussion in different parts, each of them taking into account a specific de-
scription of the discretization. We start by discussing discrete ordinate methods for our kinetic model, we continue
by introducing finite volume technique for the discrete ordinate model and we close our discussion with the time
integration. A last part is dedicated to the study of the numerical method for what concerns its limit behaviors and
the consistency with the hydrodynamic equations. We do not discuss here the spectral approximation of the collision
operators Q( f1) and Q( f2), and we refer to [52, 37] for details about this technique in general and to [19] for an
application in our context.

3.1. The Discrete Velocity Models (DVM)

We consider the following discrete space in velocity v = (vx1 , vx2 ) with x = (x1, x2):

V =
{
v(k1,k2) = (k1∆vx1 + vx1,min, k2∆vx2 + vx2,min)

}
, (35)
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with the mesh spacing in directions (x1, x2) given by

∆vx1 =
(vx1,max − vx1,min)

Nx1

, ∆vx2 =
(vx2,max − vx2,min)

Nx2

. (36)

The terms vmin = (vx1,min, vx2,min) is the vector indicating the lower admissible velocity and vmax = (vx1,max, vx2,max)
the maximum one. In the following, for simplicity and to shorten the notation, we introduce the mono-index k,
which spans all the discrete space of N = Nx1 × Nx2 total elements, i.e. the discrete velocity will be denoted by
vk, k = 1, . . . ,N. Furthermore, a regular Cartesian grid is assumed, hence implying that the mesh spacing is uniform,
i.e. ∆vx1 = ∆vx2 := ∆v.

The continuous distribution functions f1 and f2 are then replaced by the vectors f1,K (x, t) and f2,K (x, t) of size N
and we assume that

f1,K (x, t) = ( f1,k(x, t))k, f1,k(x, t) ≈ f1(x, vk, t),
f2,K (x, t) = ( f2,k(x, t))k, f2,k(x, t) ≈ f2(x, vk, t). (37)

The truncation of the velocity space leads to loss of conservation because in general the support of the distribution
functions is non compact, as for the case of the Maxwellian equilibrium states M11,M12,M21,M22. Nevertheless,
taking sufficiently large bounds in velocity makes the loss of conservation negligible. We do not further discuss this
issue here and we refer to previous works in which this problem has been tackled [40, 51]. We only observe that the
scheme described in the sequel can be easily adapted to exactly match the moments of the distributions, if required.

The discrete ordinate (or velocity) kinetic model (DVM) consists then in the following coupled linear hyperbolic
systems, each one composed of N equations which are linked through strongly nonlinear terms on the right hand side
characterizing the collisions among equal and different species particles. Thus, we have

∂t f1,k + vk · ∇x f1,k = 1
ε
Qk( f1,K ) + α

ε
ν12

(
E12,k[U1,U2] − f1,k

)
, k = 1, . . . ,N (38)

∂t f2,k + vk · ∇x f2,k = αε ν21
(
E21,k[U1,U2] − f2,k

)
+ 1
ε
Qk( f2,K ), k = 1, . . . ,N, (39)

where E12,k[U1,U2] and E21,k[U1,U2] represent suitable approximations of M12 and M21. In practice we consider

E12,k[U1,U2] = M12(x, vk, t), E21,k[U1,U2] = M21(x, vk, t), (40)

and we define the vectors of the macroscopic quantities as

U1 = (ρ1, ρ1u1, E1)T , U2 = (ρ2, ρ2u2, E2)T , (41)

with E1 =
1
2 n1 |u1|

2+ d
2 n1 T1 and E2 =

1
2 m n2 |u2|

2+ d
2 n2 T2. These macroscopic quantities are obtained starting from

the distribution functions f1K (x, t), f2K (x, t) thanks to numerical integration in the phase space. In practice, we use
these formulas

U1 =

N∑
k=1

∆v2 ϕk f1,k = ⟨ϕk f1,k⟩, U2 =

N∑
k=1

∆v2 ϕk f2,k = ⟨ϕk f2,k⟩ (42)

with ϕk = (1, vk, |vk |
2). An analogous definition is used for the one–species Maxwellian distributions:

E11,k[U1] = M11(x, vk, t), E22,k[U2] = M22(x, vk, t). (43)

Finally, Qk( f1,K ) and Qk( f2,K ) appearing in (38) and (39) correspond to the solution given by a suitable spectral
approximation of the collision integrals projected over the discrete velocity spaceV. We briefly discuss this strategy
in the following and we refer to [37] and [19] for details.

The collision operator modifies the solution only for what concerns the velocity variable and consequently the
spectral method is applied only to that variable. We then restrict ourselves for a moment to consider simply f1 = f1(v)
and f2 = f2(v). Moreover, the method applies to the continuous case and not to the discrete one and so, once the
spectral approximation is derived, the solution is projected over the discrete ordinate spaceV, this give Qk( f1,K ) and
Qk( f2,K ) in formulas (38) and (39).

10



To proceed towards the approximation of the collision operators, we expand both f1 and f2 in Fourier and we
denote by f1,NM and f2,NM the approximate functions

f1,NM (v) =
NM∑

k1,k2=−NM

f̂1,keik·v =

NM∑
k=−NM

f̂1,keik·v, f2,NM (v) =
NM∑

k1,k2=−NM

f̂2,keik·v =

NM∑
k=−NM

f̂2,keik·v (44)

with coefficients
f̂1,k =

1
(2π)2

∫
[−π,π]2

f1(v)e−ik·v dv, f̂2,k =
1

(2π)2

∫
[−π,π]2

f2(v)e−ik·v dv (45)

where NM are the modes. Plugging the spectral expansions into the Boltzmann operators give

Q̂k( f1) =
NM∑

l,m=−NM
l+m=k

β̂F(l,m) f̂1,l f̂1,m, Q̂k( f2) =
NM∑

l,m=−NM
l+m=k

β̂F(l,m) f̂2,l f̂2,m, k = −NM , . . . ,NM , (46)

with the coefficients β̂F(l,m) which do not depend upon the distribution functions f1,NM (v) and f2,NM (v). These can
be efficiently computed by resorting to the so-called Carlemann representation of the Boltzmann collision operator
[37]. Finally, this representation permits to reduce (46) to a sum of convolution terms which in turns permits a fast
evaluation of the Boltzmann operators. It has been shown in [37] that this algorithm uses O(A N2

M log2 N2
M) operations

with A the number of discrete collision angles through the use of the fast Fourier techniques. Once Q̂k( f1) and Q̂k( f2)
are computed by reversing back to the physical variable one easily get Qk( f1,K ) and Qk( f2,K ).

3.2. Space discretization
We detail here how the construction of the mesh in the physical two-dimensional domain Ω is realized. Arbitrarily

shaped Voronoi-type meshes with a tessellation of NP non-overlapping polygons Pi, i = 1, . . . ,NP are considered.
This is obtained starting from a Delaunay triangulation with NT triangles and vertexes xci , i = 1, . . . ,NP which are
then used to generate the mesh employed in the computation. Inside each triangular element T j, j = 1, . . . ,NT , we
arbitrarily choose a point of coordinates xp j representing one of the vertices of the polygonal control volumes. Once
the set of points xp j is fixed, then each element Pi is constructed by connecting the surrounding points xp j ∈ Ici having
the generator point xci as a vertex, see Figure 1. In other words, Ici is the set of the Voronoi neighborhood on the
triangular mesh for the vertex located at xci . For example, if xp j is chosen as the center of mass of element T j, then
a rigorous Voronoi tessellation is retrieved. Different choices for the points xp j give instead arbitrarily meshes. The
center of mass xmi of the obtained polygon Pi is computed by

xmi =
1
|Pi|

∫
Pi

x dx. (47)

Let now NVi denote the number of vertexes of polygon Pi, i.e the number of points xp j belonging to each set
Ici , ci = 1, . . . ,NP. In order to be able to numerically integrate any quantity inside the cell Pi, we divide the polygon
Pi in NVi triangles by connecting the points xmi , i.e. the centroid, with each vertex of Ici . Thus integration is performed
by Gauss formulae of suitable order of accuracy [55] over each sub-triangle. This sub-triangulation is referred to as
T (Pi) in the following, and it is highlighted in blue in Figure 1.

3.2.1. Central WENO reconstruction on polygonal meshes
In this part we discuss the high order polynomial reconstruction starting from the following cell averages at time

tn

f̄ n
1,k,i =

1
|Pi|

∫
Pi

f1,k(x, tn)dx, f̄ n
2,k,i =

1
|Pi|

∫
Pi

f2,k(x, tn)dx. (48)

These values are computed for each discrete velocity k = 1, . . . ,N and in each spatial cell x ∈ Pi, i ∈ [1,NP] with |Pi|

the surface of cell Pi. In the sequel, for compactness of the notation, we will also make use of the quantities f̄ n
1,i, f̄ n

2,i
which read

f̄ n
1,i = ( f̄ n

1,1,i, . . . , f̄ n
1,N,i), f̄ n

2,i = ( f̄ n
2,1,i, . . . , f̄ n

2,N,i), (49)
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Figure 1: Example of mesh realization. The black dotted lines indicates the perimeters of the elements P j, j = 1, . . . ,Np. The element Pi is in gray
while the Delaunay triangulation used to construct this element is in red solid line. The generator points xci as well as the points xp j chosen inside
each triangle Tk are shown. The triangulation used to numerically integrate the variables in the finite volume method is identified by the dotted blue
lines.

i.e. the vectors containing the information relative to the distribution functions in each control volume Pi. The Central
WENO reconstructions of the functions f1(x, vk, t), f2(x, vk, t) from the cell averages f̄ n

1,k,i, f̄ n
2,k,i which we are going to

describe will be addressed with f W,n
1,k,i(x), f W,n

2,k,i(x) in the rest of the paper. In the following, we detail such reconstruction
in the sole case of f1(x, vk, t), being the reconstruction for f2(x, vk, t) analogous.

A non-oscillatory high order polynomial function approximating the cell average quantities is obtained in two
steps. The first one consists in computing a polynomial function f1,opt,k,i(x) of degree M > 1 for every cell Pi. The
second one consists in combining this function f1,opt,k,i(x) with a set of first order polynomials, which are consequently
non-oscillatory, and to construct a nonlinear combination of this family of functions with the scope of having both
high accuracy and monotonicity. The polynomial f1,opt,k,i(x) relative to a stencil S̃i, containing the cell Pi and a set of
close neighbors, is obtained as the solution of

f1,opt,k,i(x) = argmin
p∈Pi

∑
P j∈S̃i

 f̄ n
1,k, j −

1
|P j|

∫
P j

p(x)dx
2

, (50)

where Pi is the set of all polynomial functions PM of degree at most M, satisfying

Pi =

{
p ∈ PM : f̄ n

1,k,i =
1
|Pi|

∫
Pi

p(x)dx
}
⊂ PM . (51)

The meaning of the above relation is clear: f1,opt,k,i(x) is the polynomial of degree M taking the value f̄ n
1,k,i in the center

of cell Pi and close in the L2 sense to the neighbor cell averages, the ones in the stencil S̃i. We remark that even if the
number of degrees of freedom, and so the number of cell averages, needed to compute f1,opt,k,i(x) is (M+1)(M+2)/2,
a larger set of points must in general be considered to construct such interpolation to avoid ill-posedness which may
be due to the unstructured nature of the mesh (see [7] for details).

We now define a set of degree one polynomials using the cell Pi and other two cells. We indicate by f s
1,p,k,i(x)

the linear polynomial belonging to this set with s = 1, . . . ,NVi and NVi the number of polynomials. To conclude the
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construction, we define a so-called central polynomial f 0
1,p,k,i(x) by subtraction, i.e.

f 0
1,p,k,i(x) =

1
λ0,i

 f1,opt,k,i(x) −
NVi∑
s=1

λs,i f s
1,p,k,i(x)

 ∈ PM , (52)

where the coefficients λ0,i, . . . , λNVi ,i are positive and such that λ0,i ≫ λs,i with s = 1, . . . ,NVi and
∑NVi

s=0 λs,i = 1. The
CWENO function f W,n

1,k,i(x) is finally obtained through a nonlinear combination reading

f 1,W,n
k,i (x) =

NVi∑
s=0

ωs,k,i f s
1,p,k,i(x), (53)

where ωs,k,i are non linear weights given by

ωs,k,i =
ω̃s,k,i

NVi∑
s=0
ω̃s,k,i

, with ω̃s,k,i =
λs,i(

σs,k,i + ϵ
)r , (54)

with ϵ and r being parameters chosen as done in [38]. The coefficients σs,k,i are the indicators which permits to avoid
the oscillations and are defined as classically done in WENO reconstruction, see [19] for details. In the above detailed
reconstruction procedure the integrals appearing are computed by Gauss formulae summing the contribution of each
triangle T j ∈ T (Pi) composing the cell Pi [55].

The same reconstruction holds for the distribution function relative to the second species f 2,W,n
k,i (x). More in

general, this operation could be applied to any given quantity defined as a cell average and, when performed, it will be
addressed with superscript W to distinguish between the cell average and the corresponding CWENO reconstruction.
In particular, in the sequel we will often refer to the polynomials QW

1,k( f̄ n
1,i)(x) and QW

2,k( f̄ n
2,i)(x), i.e. to the polynomial

reconstructions of the Boltzmann operators computed in the cell centers.

3.2.2. Finite volume scheme on polygonal meshes
We move now a step back to equations (38) and (39) and we write a finite volume formulation for this coupled

model obtaining for k = 1, . . . ,N, i = 1, . . . ,NP

∂t

∫
Pi

f1,k dx +
∫

Pi

vk · ∇x f1,k dx =
1
ε

∫
Pi

Q1,k( f1,K ) dx

+
α

ε

∫
Pi

ν12
(
E12,k[U1,U2] − f1,k

)
dx, (55)

∂t

∫
Pi

f2,k dx +
∫

Pi

vk · ∇x f2,k dx =
α

ε

∫
Pi

ν21
(
E21,k[U1,U2] − f2,k

)
dx

+
1
ε

∫
Pi

Q2,k( f2,K ) dx. (56)

Using the divergence theorem, we get for k = 1, . . . ,N, i = 1, . . . ,NP,

∂t

∫
Pi

f1,k dx = −

NVi∑
j=1

∫
∂Pi j

L( f1,k) · ni j dS

+
1
ε

∫
Pi

Q1,k( f1,K ) dx +
α

ε

∫
Pi

ν12
(
E12,k[U1,U2] − f1,k

)
dx, (57)

∂t

∫
Pi

f2,k dx = −

NVi∑
j=1

∫
∂Pi j

L( f2,k) · ni j dS

+
α

ε

∫
Pi

ν21
(
E21,k[U1,U2] − f2,k

)
dx +

1
ε

∫
Pi

Q2,k( f2,K ) dx. (58)
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In the above system of equation, we have that ni j is the unit vector normal to the boundary ∂Pi of element Pi.
Moreover, we have that ∂Pi j is the line shared between element Pi and P j. We also have that L( f1,k), L( f2,k) are the
numerical flux functions (vk f1,k) and (vk f2,k). Starting from (57)-(58) we easily write a first order in time explicit
method which reads:

f̄ n+1
1,k,i = f̄ n

1,k,i −
∆t
|Pi|

NVi∑
j=1

∫
∂Pi j

L( f̄ n
1,k,i) · ni j dS +

∆t
|Pi|

∫
Pi

Q1,k( f̄ n
1,i,K ) dx

+
1
|Pi|

α

ε

∫
Pi

ν12
(
Ēn

12,k,i[U1,U2] − f̄ n
1,k,i

)
dx, (59)

f̄ n+1
2,k,i = f̄ n

2,k,i −
∆t
|Pi|

NVi∑
j=1

∫
∂Pi j

L( f̄ n
2,k,i) · ni j dS

+
1
|Pi|

α

ε

∫
Pi

ν21
(
Ēn

21,k,i[U1,U2] − f̄ n
2,k,i

)
dx +

∆t
|Pi|

∫
Pi

Q2,k( f̄ n
2,i,K ) dx, (60)

where the numerical fluxes are of Rusanov type. Now, by employing the CWENO reconstruction presented previously
we substitute f̄ n

1,k,i by f W,n
1,k,i(x) and the same for f̄ n

2,k,i with f W,n
2,k,i(x). This permits an high order evaluation of the fluxes

and of the collision terms. In the same way, the cell average Maxwellian functions and the cell average distribution
function of the second species appearing in (59)-(60) may be substituted with high order in space reconstruction
values and the same for what concerns the Boltzmann collision operators once the spectral method is used on the cell
averages. Thus, the high order in space finite volume scheme reads for k = 1, . . . ,N, i = 1, . . . ,NP as

f̄ n+1
1,k,i = f̄ n

1,k,i −
∆t
|Pi|

NVi∑
j=1

∫
∂Pi j

L( f W,n
1,k,i(x)) · ni j dS

+
∆t
|Pi|

∫
Pi

QW
1,k( f̄ n

1,i,K )(x) dx +
1
|Pi|

α

ε

∫
Pi

ν12
(
Ē

W,n
12,k,i[U1,U2] − f̄ W,n

1,k,i
)

dx, (61)

f̄ n+1
2,k,i = f̄ n

2,k,i −
∆t
|Pi|

NVi∑
j=1

∫
∂Pi j

L( f W,n
2,k,i(x)) · ni j dS

+
1
|Pi|

α

ε

∫
Pi

ν21
(
Ē

W,n
21,k,i[U1,U2] − f̄ W,n

2,k,i
)

dx +
∆t
|Pi|

∫
Pi

QW
2,k( f̄ n

2,i,K )(x) dx. (62)

In order to improve the time accuracy and to have a method which is able to handle the different values of the
Knudsen number ε without time step limitations, in the next section, we introduce a particular class of high order time
discretizations which enjoy the property of being stable independently on the value of the relaxation parameter ε.

3.3. Time Discretization
We present here the time discretization technique employed in our numerical method. This takes inspiration from

the class of Implicit-Explicit (IMEX) methods [3, 29] which are used to handle the different scales present in the
model. In particular, we deal with three different regimes. The first one is the rarefied regime in which all collisions
act at the same pace as the transport scale. The second one arrives when all collisions are dominant giving rise to a
standard compressible Euler model for two species with the same mean velocity and temperature. This limit model
has been shortly reported and discussed in Section 2.3.1. The third case is the so-called resonant collisions regime
presented in Section 2.3.2, in which interactions involving pair of particles of the same species play the dominant role.
In this latter situation, the corresponding macroscopic equations describe a fluid with two interacting phases where,
however, each species has its distinct mean velocity and temperature field.

In order to be able to capture these different regimes with the same numerical method, the same accuracy and
using the same time step ∆t, we introduce a specific type of IMEX Runge-Kutta methods belonging to the class of
asymptotic-preserving (AP) schemes [30, 26, 27, 46]. In particular, we consider the extension, for the first time up to
our knowledge, to multispecies kinetic equations of the schemes introduced and theoretically analyzed in [28, 29] and
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used in [19] in a finite volume setting. After the introduction of the methods, in the next Section 3.4, we study their
asymptotic properties. Starting from equation (57)-(58), we introduce the following general formulation

F̄(l)
1,k,i = f̄ n

1,k,i − ∆t
l−1∑
m=1

ãlm⟨L(FW,(m)
1,k,i )⟩x +

∆t
ε

l∑
m=1

alm⟨QW
1,k(F̄(m)

1,i,K )⟩x

+
∆tα
ε

l∑
m=1

alm⟨QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )⟩x (63)

f̄ n+1
1,k,i = f̄ n

1,k,i − ∆t
ι∑

m=1

w̃m⟨L(FW,(m)
1,k,i )⟩x +

∆t
ε

ι∑
m=1

wm⟨QW
1,k(F̄(m)

1,i,K )⟩x

+
∆tα
ε

ι∑
m=1

wm⟨QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )⟩x (64)

F̄(l)
2,k,i = f̄ n

2,k,i − ∆t
l−1∑
m=1

ãlm⟨L(FW,(m)
2,k,i )⟩x +

∆t
ε

l∑
m=1

alm⟨QW
2,k(F̄(m)

2,i,K )⟩x

+
∆tα
ε

l∑
m=1

alm⟨QW
BGK2,1,k(Ū1,i, Ū2,i, F̄

(m)
2,i,K )⟩x (65)

f̄ n+1
2,k,i = f̄ n

2,k,i − ∆t
ι∑

m=1

w̃m⟨L(FW,(m)
2,k,i )⟩x +

∆t
ε

ι∑
m=1

wm⟨QW
2,k(F̄(m)

2,i,K )⟩x

+
∆tα
ε

ι∑
m=1

wm⟨QW
BGK2,1,k(Ū1,i, Ū2,i, F̄

(m)
2,i,K )⟩x (66)

In the above expression, Ū1,i and Ū2,i are the cell averages of the macroscopic quantities related to each species in the
control volume Pi, according to the definition (41). A total number of ι stages builds the underlying Runge-Kutta time
discretization. The functions F̄(l)

1,k,i and F̄(l)
2,k,i given by (63) and (65) are the so-called stage values of the Runge-Kutta

method which are used to identify the numerical solution at different time levels between [tn, tn+1]. Using the same
notation, FW,(m)

1,k,i (x) and FW,(m)
2,k,i (x) represent the high order CWENO reconstruction of the stage value (m) obtained

following the algorithm outlined in Section 3.2.1. Using these values, it is possible to compute the quantities

⟨L(FW,(l)
1,k,i )⟩x =

1
|Pi|

NVi∑
j=1

∫
∂Pi j

L(FW,(l)
1,k,i (x)) · ni j dS = LW,(l)

1,k,i , (67)

⟨L(FW,(l)
2,k,i )⟩x =

1
|Pi|

NVi∑
j=1

∫
∂Pi j

L(FW,(l)
2,k,i (x)) · ni j dS = LW,(l)

2,k,i , (68)

and
⟨QW

1,k(F̄(l)
1,i,K )⟩x =

1
|Pi|

∫
Pi

QW
1,k(F̄(l)

1,i,K )(x) dx = QW,(l)
1,k , (69)

⟨QW
1,k(F̄(l)

2,i,K )⟩x =
1
|Pi|

∫
Pi

QW
2,k(F̄(l)

2,i,K )(x) dx = QW,(l)
2,k . (70)

Finally, relying on suitable Gauss quadrature formula, one can evaluate the following quantities

QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(l)
1,i,K ) = ν12

(
E

W,n
12,k,i[Ū1, Ū2] − FW,(l)

1,i,k
)
,

QW
BGK2,1,k(Ū1,i, Ū2,i, F̄

(m)
2,i,K ) = ν21

(
E

W,n
21,k,i[Ū1, Ū2] − FW,(l)

2,i,k
)
, (71)

and the corresponding integrals

⟨QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )⟩x =

1
|Pi|

∫
Pi

QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )(x) dx, (72)
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⟨QW
BGK2,1,k(Ū1,i, Ū2,i, F̄

(m)
2,i,K )⟩x =

1
|Pi|

∫
Pi

QW
BGK2,1,k(Ū1,i, Ū2,i, F̄

(m)
2,i,K )(x) dx. (73)

To have a perfectly defined scheme it remains to define the role of the coefficients ãlm and alm in (63)-(66) which
are used to characterize the explicit and the (diagonally) implicit Runge-Kutta method, together with the vectors
w̃ = (w̃1, . . . , w̃ι)T and w = (w1, . . . ,wι)T . The coefficients of an IMEX method are typically given using a double
Butcher tableau, see Table 1, where c̃l =

∑l−1
m=1 ãlm, cl =

∑l
m=1 alm. In particular, in the following, we rely on the

so-called stiffly-accurate IMEX schemes, intending with such nomenclature that the coefficients of the last level of
the scheme coincide with respectively the vectors w̃ = (w̃1, . . . , w̃ι)T and w = (w1, . . . ,wι)T . This means that for
such methods the numerical solutions f̄ n+1

1,k,i , f̄ n+1
2,k,i are equal to F̄(ι)

1,k,i, F̄
(ι)
2,k,i respectively. For the sole case of the BGK

Table 1: An example of the Butcher tableau for the explicit and implicit Runge-Kutta schemes of an IMEX discretization.

c̃ Ã

w̃T

c A

wT

operator, we observe that the high order integration can be written as proposed in [18] as

⟨QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )⟩x =

1
|Pi|

∫
Pi

QW
BGK1,2,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )(x) dx

= ⟨QBGK1,2,k(Ū1,i, Ū2,i, F̄
(m)
1,i,K )⟩x + O(h2), (74)

where h is the typical mesh size (taken as the square root of the surface of the cell) and F̄(m)
1,i,K , Ū1,i, Ū2,i are the cell

average quantities at the stage m. The interpretation of the above formula is clear: if one considers a second order in
space method, the cell average can be used in the computation of the integrals appearing as source terms. Since in this
work we restrict to the case of second order schemes, we replace in the following the integrals of the BGK operators
⟨QW

BGK1,2,k
(Ū1,i, Ū2,i, F̄

(m)
1,i,K )⟩x and ⟨QW

BGK2,1,k
(Ū1,i, Ū2,i, F̄

(m)
2,i,K )⟩x by the cell average and we use the short notation

Q(m)
BGK1,2,k

:= ⟨QBGK1,2,k(Ū1,i, Ū2,i, F̄
(m)
1,i,K )⟩x, Q(m)

BGK2,1,k
:= ⟨QBGK2,1,k(Ū1,i, Ū2,i, F̄

(m)
1,i,K )⟩x. (75)

Unfortunately, the direct application of the time integration method above described is very difficult in practice. The
inversion of the numerical discretization of the Boltzmann operators QW

1,k(F̄(m)
1,i,K ) and QW

2,k(F̄(m)
2,i,K ) would imply the

solution of a very large non linear system at each stage of the Runge-Kutta time stepping and it has to be avoided.
In order to bypass this issue we use a strategy proposed in [36]. The idea consists in using a penalization of the
Boltzmann operator by a cell centered BGK operator relative to the single species dynamics. Thus, one first recasts
equations (12) as

∂ f1
∂t
+ v · ∇x f1 = GP( f1) +

ν11

ε
(M11 − f1) +

α

ε
ν12

(
M12 − f1

)
∂ f2
∂t
+ v · ∇x f2 =

α

ε
ν21 (M21 − f2) +GP( f2) +

ν22

ε
(M22 − f2) ,

(76)

where
GP( f1) =

1
ε

(Q( f1) − ν11 (M11 − f1)), GP( f2) =
1
ε

(Q( f2) − ν22 (M22 − f2)). (77)

Successively, we use the implicit time discretization for the four BGK operators appearing in (76) while we keep the
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penalization operators GP( f1),GP( f2) explicit. The modified IMEX Runge-Kutta schemes become then

F̄(l)
1,k,i = f̄ n

1,k,i − ∆t
l−1∑
m=1

ãlm

(
LW,(m)

1,k,i −GW,(m)
1,k,i

)
+
∆t
ε

l∑
m=1

almQ(m)
BGK1,1,k

+
∆tα
ε

l∑
m=1

almQ(m)
BGK1,2,k

(78)

f̄ n+1
1,k,i = f̄ n

1,k,i − ∆t
ι∑

m=1

w̃m

(
LW,(m)

1,k,i −GW,(m)
1,k,i

)
+
∆t
ε

ι∑
m=1

wmQ(m)
BGK1,1,k

+
∆tα
ε

ι∑
m=1

wmQ(m)
BGK1,2,k

(79)

F̄(l)
2,k,i = f̄ n

2,k,i − ∆t
l−1∑
m=1

ãlm

(
LW,(m)

2,k,i −GW,(m)
2,k,i

)
+
∆t
ε

l∑
m=1

almQ(m)
BGK2,2,k

+
∆tα
ε

l∑
m=1

almQ(m)
BGK2,1,k

(80)

f̄ n+1
2,k,i = f̄ n

2,k,i − ∆t
ι∑

m=1

w̃m

(
LW,(m)

2,k,i −GW,(m)
2,k,i

)
+
∆t
ε

ι∑
m=1

wmQ(m)
BGK2,2,k

+
∆tα
ε

ι∑
m=1

wmQ(m)
BGK2,1,k

(81)

where

GW,(m)
1,k,i =

1
ε

(
QW,(m)

1,k − Q(m)
BGK11,k

)
, (82)

GW,(m)
2,k,i =

1
ε

(
QW,(m)

2,k − Q(m)
BGK22,k

)
(83)

where the quantities Q(m)
BGK11,k

,Q(m)
BGK22,k

are the second order in space integrals of the one species BGK operators. Now,
thanks to the implicit treatment of the possibly stiff collision operators, the time step ∆t is computed according to a
CFL-type stability condition which only depends on the hyperbolic transport term, that is

∆t = CFL
(

minΩ hi

maxK (|vk |)

)
, CFL =

1
2
, (84)

with the characteristic mesh size hi =
√

Pi. Let us notice that the CFL coefficient can not be set to unity because we
deal with unstructured two-dimensional meshes, thus it obeys the standard restriction CFL < 1/d. These schemes are
proven in [29, 21] to be stable and capable of describing different collisional regimes as well as consistent with the
limit model of the compressible Euler equations in the case of single species kinetic equations. In the following part,
we extend this analysis to the case of mixtures showing consistency with the different hydrodynamic limits (29) and
(33).
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3.4. On the preservation of the asymptotic states
We start by rewriting (78) and (80) by making explicit the contribution of the diagonally implicit BGK operators

in the stage evaluation. We reduce then to the following form

F̄(l)
1,k,i = f̄ n

1,k,i − ∆t
l−1∑
m=1

ãlm

(
LW,(m)

1,k,i −GW,(m)
1,k,i

)
+
∆t
ε

l−1∑
m=1

almQ(m)
BGK1,1,k

+
∆tα
ε

l−1∑
m=1

almQ(m)
BGK1,2,k

+
∆t
ε

ammν11
(
Ē

(l)
11,k,i[Ū1, Ū2] − F̄(l)

1,i,k
)
+
∆tα
ε

ammν12
(
Ē

(l)
12,k,i[Ū1, Ū2] − F̄(l)

1,i,k
)

(85)

F̄(l)
2,k,i = f̄ n

2,k,i − ∆t
l−1∑
m=1

ãlm

(
LW,(m)

2,k,i −GW,(m)
2,k,i

)
+
∆t
ε

l−1∑
m=1

almQ(m)
BGK2,2,k

+
∆tα
ε

l−1∑
m=1

almQ(m)
BGK2,1,k

+
∆t
ε

ammν21
(
Ē

(l)
21,k,i[Ū1, Ū2] − F̄(l)

2,i,k
)
+
∆tα
ε

ammν22
(
Ē

(l)
22,k,i[Ū1, Ū2] − F̄(l)

2,i,k
)
. (86)

Moving on the left hand side the linear implicit term corresponding to the evaluation of the cell average stage level
gives

F̄(l)
1,k,i =

ε

ε + amm∆t(ν11 + ν12α)

 f̄ n
1,k,i − ∆t

l−1∑
m=1

ãlm

(
LW,(m)

1,k,i −GW,(m)
1,k,i

)
+

∆t
ε + amm∆t(ν11 + ν12α)

 l−1∑
m=1

almQ(m)
BGK1,1,k

+ α

l−1∑
m=1

almQ(m)
BGK1,2,k


+

∆tamm

ε + amm∆t(ν11 + ν12α)

(
ν11

(
Ē

(l)
11,k,i[Ū1, Ū2]

)
+ αν12

(
Ē

(l)
12,k,i[Ū1, Ū2]

))
(87)

F̄(l)
2,k,i =

ε

ε + amm∆t(ν22 + ν21α)

 f̄ n
2,k,i − ∆t

l−1∑
m=1

ãlm

(
LW,(m)

2,k,i −GW,(m)
2,k,i

)
+

ε

ε + amm(ν22 + ν21α)

 l−1∑
m=1

almQ(m)
BGK2,2,k

+ α

l−1∑
m=1

almQ(m)
BGK2,1,k


+

∆tamm

ε + amm∆t(ν22 + ν21α)

(
ν11

(
Ē

(l)
22,k,i[Ū1, Ū2]

)
+ αν12

(
Ē

(l)
21,k,i[Ū1, Ū2]

))
. (88)

Now, we discuss separately the case α = O(1) from the case α = ε. We start by considering the case α = 1, i.e. the
case in which the collisions among particles act at the same pace independently on the species to which they belong.
In this situation, when ε→ 0, one gets from system (76) the compressible Euler equations (29) for a two components
fluid. On the other hand, under the hypothesis of well-prepared initial data, i.e.

f̄ 0
1,k,i = Ē

0
11,k,i[Ū1, Ū2] = Ē0

12,k,i[Ū1, Ū2], f̄ 0
2,k,i = Ē

0
22,k,i[Ū1, Ū2] = Ē0

21,k,i[Ū1, Ū2], (89)

for i = 1, . . . ,Np, k = 1, . . . ,N, with u1 = u2 = u and T1 = T2 = T , one gets

u12 = u21 = u and T12 = T21 = T , (90)

as already observed in (18). Thus, letting the scale parameter ε→ 0, gives for the stage values

F̄(l)
1,k,i =

1
ν11 + ν12

(
ν11

(
Ē

(l)
11,k,i[Ū1, Ū2]

)
+ ν12

(
Ē

(l)
12,k,i[Ū1, Ū2]

))
F̄(l)

2,k,i =
1

ν21 + ν22

(
ν11

(
Ē

(l)
22,k,i[Ū1, Ū2]

)
+ ν21

(
Ē

(l)
21,k,i[Ū1, Ū2]

))
.

In fact, thanks to our choice of diagonally implicit tableaux in the IMEX schemes, the terms Q(m)
BGK1,1,k

,Q(m)
BGK2,1,k

,Q(m)
BGK1,2,k

and Q(m)
BGK2,2,k

are all identically equal to zero for (m) < (l) being f̄ n
1,k,i = E

n
11,k,i[Ū1, Ū2] = En

12,k,i[Ū1, Ū2] and
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f̄ n
2,k,i = E

n
22,k,i[Ū1, Ū2] = En

21,k,i[Ū1, Ū2] by hypothesis at time t = 0, i.e. n = 0, and then recursively at time n if
true for n = 1. Moreover,under the same hypothesis, one has that ν11 = ν12 and ν22 = ν21, which means that each stage
is projected over the corresponding equilibrium state at time level (l). Finally, being the IMEX schemes also stiffly
accurate, i.e. since the last stage coincides with the numerical solution, we also obtain that

f̄ n+1
1,k,i =

1
2

((
Ēn+1

11,k,i[Ū1, Ū2]
)
+

(
Ēn+1

12,k,i[Ū1, Ū2]
))

f̄ n+1
2,k,i =

1
2

((
Ēn+1

22,k,i[Ū1, Ū2]
)
+

(
Ēn+1

21,k,i[Ū1, Ū2]
))
.

It remains to discuss how the Maxwellian functions at time level (l) and at time n + 1 are obtained. To that aim, let us
notice that E11,k,i[Ū1, Ū2],E12,k,i[Ū1, Ū2],E21,k,i[Ū1, Ū2] and E22,k,i[Ū1, Ū2] depend on mass, momentum and energy
of the two species, i.e. on Ū1, Ū2. These latter can be explicitly computed by integrating in phase space the IMEX
method (85) and (86). This gives

Ū(l)
1,i = Ūn

1,i − ∆t
l∑

m=1

ãlmLW
U (Ū(m)

1,i ), (91)

Ū(l)
2,i = Ūn

2,i − ∆t
l∑

m=1

ãlmLW
U (Ū(m)

2,i ), (92)

where LW
U (Ū(m)

1,i ) and LW
U (Ū(m)

2,i ) are high order evaluation of the macroscopic fluxes for the conserved quantities. These
macroscopic fluxes are given by applying again the same CWENO reconstruction procedure to the macroscopic cell
centered quantities Ūn

1,i and Ūn
2,i. Moreover and most important, the contribution of the collision terms is zero at the

macroscopic level. In fact, one has by definition of the Boltzmann and BGK operators that

⟨ϕk,Q
(m)
BGK1,1,k

⟩ = ⟨ϕk,Q
(m)
BGK2,2,k

⟩ = ⟨ϕk,Q
W,(m)
1,k ⟩ = ⟨ϕk,Q

W,(m)
2,k ⟩ = 0.

On the other hand, thanks to the fact that u1 = u2 = u and T1 = T2 = T at time t = 0, the quantities E(m)
12,k,i[Ū1, Ū2] and

E
(m)
21,k,i[Ū1, Ū2] share the same moments of F̄(m)

1,k,i and F̄(m)
2,k,i recursively from m = 1 because of the diagonally implicit

tableau and therefore it also holds true that

⟨ϕk,Q
(m)
BGK1,2,k

⟩ = ⟨ϕk,Q
(m)
BGK2,1,k

⟩ = 0.

As a consequence, Maxwellian distributions can be explicitly evaluated and then the scheme (85)-(86) is explicitly
solvable. Finally, since the system (92) corresponds to a kinetic scheme for the compressible Euler equations (29), it
follows that it remains true that u1 = u2 = u and T1 = T2 = T for all times and so mixed Maxwellian functions coin-
cide with single species ones. This is enough to prove that the schemes are asymptotic preserving and asymptotically
accurate for the case α = 1 under the hypothesis of well-prepared initial data.

We discuss now the case α = ε. In this case, the intraspecies collisions are supposed to be much more frequent
with respect to the collisions with the second species. This setting gives rise to the resonant collisions limit (33)
discussed in Section 2.3.2. We suppose once again well-prepared initial data (with respect to the resonant collision
case), hence setting

f̄ 0
1,k,i = Ē

0
11,k,i[Ū1, Ū2], f̄ 0

2,k,i = Ē
0
22,k,i[Ū1, Ū2], i = 1, . . . ,Np, k = 1, . . . ,N, (93)

with in general u1 , u2 and T1 , T2. This implies that Ē0
21,k,i[Ū1, Ū2] , Ē0

11,k,i[Ū1, Ū2] and Ē0
12,k,i[Ū1, Ū2] ,

Ē0
22,k,i[Ū1, Ū2]. Under this setting, in the limit ε→ 0, we get from (87)-(88)

F̄(l)
1,k,i = Ē

(l)
11,k,i[Ū1, Ū2], F̄(l)

2,k,i = Ē
(l)
22,k,i[Ū1, Ū2].

By replacing these values into equations (85)-(86) and by integrating in velocity space one then gets a finite volume
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with CWENO reconstruction IMEX-Runge-Kutta scheme for the system (33). This reads

Ū(l)
1,i = Ūn

1,i − ∆t
l∑

m=1

ãlmLW
U (Ū(m)

1,i ) + ∆t
l∑

m=1

alm⟨ϕk,Q
(m)
BGK1,2,k

⟩, (94)

Ū(l)
2,i = Ūn

2,i − ∆t
l∑

m=1

ãlmLW
U (Ū(b)

2,i ) + ∆t
l∑

m=1

alm⟨ϕk,Q
(m)
BGK2,1,k

⟩, (95)

where the terms ⟨ϕk,Q
(m)
BGK1,2,k

⟩ and ⟨ϕk,Q
(m)
BGK2,1,k

⟩ correspond to the integration in velocity space of the mixed BGK
operators against the collision invariants ϕk. These terms are, contrarily to the case of α = 1, different from zero since
the moments of the mixed Maxwellians do not coincide with the moments of the distribution function in general. Let
us notice that, in this case, the macroscopic set of equations discretizing the resonant collision dynamics is diagonally
implicit in the source terms ⟨ϕk,Q

(m)
BGK1,2,k

⟩ and ⟨ϕk,Q
(m)
BGK2,1,k

⟩ while in the case α = 1 the macroscopic dynamic was
fully explicit. These implicit terms are responsible for the right hand side terms appearing in (33). For the first species,
they read

− µ n1 n2
m

1 + m
(u1 − u2), (96)

for the moment equations and

− µ n1 n2
m

(1 + m)2

[(
u1 + m u2

)
· (u1 − u2) + d (T1 − T2)

]
, (97)

for the energy one, with opposite signs for the second species. However, since the density equations are fully explicit,
these terms become simply linear with respect to the moments Ū(l)

1,i and Ū(l)
2,i. Thus, in order to solve system (94)-(95) it

is sufficient to invert a rank-two linear system for the coupled velocity field and successively a rank-two linear system
for the coupled energy field once the velocity field is determined. This permits to compute the moments at the next
time step and to define the new Maxwellian states Ēn+1

11,k,i[Ū1, Ū2] and Ēn+1
22,k,i[Ū1, Ū2], and eventually to advance in the

computation. To conclude, let us observe that the scheme (94)-(95) represents a high order accurate method for the
resonant collision model and, as such, asymptotic preservation and accuracy is proved also in this case.

4. Numerical results

In this section, the numerical validation of the finite volume IMEX Runge-Kutta scheme is assessed against a set of
test problems. The numerical scheme is labeled with FVRK-M and it is applied to the novel mixed Boltzmann–BGK
model with second order of accuracy in space and time (the ARS(2,2,2) IMEX scheme [3] is adopted). Dominant
and resonant collision regimes refer to the limit models presented in Section 2.3.1 and 2.3.2, respectively. Numerical
convergence studies on smooth fluid flows with variable Knudsen numbers are carried out first, then shock capturing
properties are proven to be achieved by the numerical method through Riemann problems in 1D and 2D. Finally,
a more complex test case involving the interaction of two bubbles embedded into a background gas is set up and
discussed.

The velocity space is discretized by means of a Cartesian mesh, thus the mesh spacing is given by ∆vx1 = ∆vx2 :=
∆v. A total number of N = 32 × 32 = 1024 equal elements is used, unless otherwise stated. This also corresponds to
the number of modes NM adopted in the spectral method for the solution of the Boltzmann collision operator.

The initial data are given in terms of the macroscopic variables Ui = (ρ, ux, uy,T )i for gas 1 and 2, hence as-
signing U1 and U2, respectively. The distribution function is initially prescribed as a Maxwellian with the moments
corresponding to Ui.

4.1. Numerical convergence studies at different Knudsen numbers

The numerical convergence of the FVRK-M schemes is studied relying on the smooth isentropic vortex test case
introduced in [44] for the Euler equations of compressible gas dynamics. The aim of this test is to numerically
investigate the rate of convergence of the novel methods, thus we simply consider the same initial condition for
both species in the mixture. Let Ω = [0; 10] × [0; 10] be the computational domain, where periodic boundaries are
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set everywhere. A sequence of refined unstructured triangular meshes is used to discretize the physical space, with
characteristic mesh size h(Ω) =

(∑NP
i=1 hi

)
/NP with hi =

√
|Pi| and |Pi| denoting the surface of the cell Pi. The velocity

space has bounds withinV = [−10; 10]2 and the initial condition is given by U1 = U2 = U with

U = (ρ, ux, uy,T ) = (1 + δρ, δux, δuy, δT ), (98)

where the space–dependent perturbations for temperature δT , density δρ and velocity (δux, δuy) are

δT = −
(γ − 1)β2

8γπ2 e1−r2
, δρ = (1 + δT )

1
γ−1 − 1,

(
δux

δuy

)
=
β

2π
e

1−r2
2

(
−(y − 5)

(x − 5)

)
, (99)

with β = 5 and r =
√

x2 + y2 denoting the generic radial coordinate. The ratio of specific heats for each gas of the
mixture is set to γ = 2. A unity mass ratio is assumed. The final time of the simulation is chosen to be t f = 0.1 and
the errors are computed in L1 norm as

L1 =

∫
Ω

∣∣∣Ure f (x, y) − UW (x, y)
∣∣∣ dx dy, (100)

where UW (x, y) is the second order Finite Volume solution for the macroscopic quantities, while Ure f (x, y) is a given
reference solution. The initial condition corresponds to the analytical solution for this smooth stationary vortex flow
only in the hydrodynamics limit, i.e. ε → 0. Since no analytical solution is available for arbitrary values of the
Knudsen number, the reference solution Ure f (x, y), needed for computing the error norms, is obtained by running the
test case on a very fine physical mesh while keeping the same discretization in the velocity space. Mesh refinement
is carried out for triangular meshes relying on conforming finite element discretizations, hence each element is split
into sub-elements with the isotropic refinement factor χ. Specifically, a total number of sub-elements NR = χ

2 is
generated, as depicted in Figure 2. The reference triangular mesh is constructed by applying a refinement factor of
χ = 8 to the coarsest grid used for the convergence analysis which counts NP = 102 elements, thus subdividing each
triangle into NR = 64 sub-triangles. Then, the numerical solution on each coarse grid is interpolated on the reference
mesh and the errors can be computed.

Figure 2: Convergence analysis. Example of isotropic mesh refinement used for convergence analysis with triangular meshes and refinement factor
χ = 1 (NR = 1), χ = 2 (NR = 4) and χ = 3 (NR = 9).

Tables 2 and 3 report the error norms and convergence rates for the dominant and resonant collision regimes,
respectively. Three different Knudsen numbers are considered, namely ε = 10−6, ε = 10−4 and ε = 10−2, and the
norms refer to number densities n1 and n2 as well as temperatures T1 and T2. In all cases we observe that the formal
second order of accuracy in space and time is achieved, demonstrating that the space-time accuracy of the FVRK-M
schemes is independent of the stiffness of the problem under consideration, both in terms of ε and α.

4.2. Shock tube problems
In order to check the capability of the scheme to capture flow discontinuities, a one–dimensional Riemann problem

is solved with different fluid conditions. Indeed, the shock tube test is run using three values of the Knudsen number,
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Table 2: Numerical convergence results for the mixed Boltzmann–BGK model using second order FVRK-M schemes at time t f = 0.1 with
ε = [10−6, 10−4, 10−2] and α = 1 on a sequence of refined triangular meshes of size h(Ω) obtained with refinement factor χ = [2, 3, 4, 5]. The
errors are measured in L1 norm and refer to the variables n1 (number density of gas 1), T1 (temperature of gas 1), n2 (number density of gas 2), T2
(temperature of gas 2). Dominant collision regime.

ε = 10−6, α = 1
h(Ω) n1L1 O(n1) T1L1 O(T1) n2L1 O(n2) T2L1 O(T2)

2.87E-01 6.369E-02 - 1.551E-01 - 1.038E-01 - 2.487E-01 -
1.91E-01 2.959E-02 1.89 6.964E-02 1.97 4.757E-02 1.92 1.101E-01 2.01
1.44E-01 1.584E-02 2.17 3.619E-02 2.27 2.510E-02 2.22 5.691E-02 2.29
1.15E-01 1.052E-02 1.83 2.410E-02 1.82 1.636E-02 1.92 3.740E-02 1.88

ε = 10−4, α = 1
h(Ω) n1L1 O(n1) T1L1 O(T1) n2L1 O(n2) T2L1 O(T2)

2.87E-01 6.370E-02 - 1.551E-01 - 1.037E-01 - 2.486E-01 -
1.91E-01 2.959E-02 1.89 6.964E-02 1.97 4.754E-02 1.92 1.101E-01 2.01
1.44E-01 1.584E-02 2.17 3.619E-02 2.28 2.508E-02 2.22 5.689E-02 2.29
1.15E-01 1.052E-02 1.83 2.410E-02 1.82 1.635E-02 1.92 3.738E-02 1.88

ε = 10−2, α = 1
h(Ω) n1L1 O(n1) T1L1 O(T1) n2L1 O(n2) T2L1 O(T2)

2.87E-01 6.380E-02 - 1.553E-01 - 1.013E-01 - 2.435E-01 -
1.91E-01 2.947E-02 1.90 6.959E-02 1.98 4.610E-02 1.94 1.073E-01 2.02
1.44E-01 1.566E-02 2.20 3.612E-02 2.28 2.408E-02 2.26 5.516E-02 2.31
1.15E-01 1.033E-02 1.86 2.405E-02 1.82 1.573E-02 1.91 3.639E-02 1.86

Table 3: Numerical convergence results for the mixed Boltzmann–BGK model using second order FVRK-M schemes at time t f = 0.1 with
ε = [10−6, 10−4, 10−2] and α = [10−6, 10−4, 10−2] on a sequence of refined triangular meshes of size h(Ω) obtained with refinement factor
χ = [2, 3, 4, 5]. The errors are measured in L1 norm and refer to the variables n1 (number density of gas 1), T1 (temperature of gas 1), n2 (number
density of gas 2), T2 (temperature of gas 2). Resonant collision regime.

ε = 10−6, α = 10−6

h(Ω) n1L1 O(n1) T1L1 O(T1) n2L1 O(n2) T2L1 O(T2)
2.87E-01 6.431E-02 - 1.570E-01 - 1.016E-01 - 2.449E-01 -
1.91E-01 2.987E-02 1.89 7.050E-02 1.97 4.653E-02 1.93 1.083E-01 2.01
1.44E-01 1.598E-02 2.17 3.673E-02 2.27 2.448E-02 2.23 5.590E-02 2.30
1.15E-01 1.056E-02 1.86 2.439E-02 1.83 1.609E-02 1.88 3.685E-02 1.87

ε = 10−4, α = 10−4

h(Ω) n1L1 O(n1) T1L1 O(T1) n2L1 O(n2) T2L1 O(T2)
2.87E-01 6.429E-02 - 1.569E-01 - 1.016E-01 - 2.447E-01 -
1.91E-01 2.985E-02 1.89 7.048E-02 1.97 4.650E-02 1.93 1.082E-01 2.01
1.44E-01 1.596E-02 2.18 3.671E-02 2.27 2.445E-02 2.23 5.581E-02 2.30
1.15E-01 1.054E-02 1.86 2.438E-02 1.83 1.607E-02 1.88 3.679E-02 1.87

ε = 10−2, α = 10−2

h(Ω) n1L1 O(n1) T1L1 O(T1) n2L1 O(n2) T2L1 O(T2)
2.87E-01 6.354E-02 - 1.550E-01 - 1.000E-01 - 2.390E-01 -
1.91E-01 2.919E-02 1.92 6.926E-02 1.99 4.521E-02 1.96 1.049E-01 2.03
1.44E-01 1.542E-02 2.22 3.589E-02 2.29 2.346E-02 2.28 5.373E-02 2.32
1.15E-01 1.016E-02 1.87 2.390E-02 1.82 1.536E-02 1.90 3.558E-02 1.85
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namely ε = 10−6, ε = 10−4 and ε = 10−2, and both dominant and resonant collision regimes are investigated in the
gas mixture dynamics. The computational domain is the box Ω = [−0.5; 0.5] × [−0.05; 0.05] discretized with NP =

[100×10] polygonal control volumes with characteristic mesh size of h(Ω) = 0.01. Slip wall boundary conditions are
set in y−direction, while Dirichlet boundaries are imposed in the x−direction. The final time is chosen to be t f = 0.05,
so that no waves exit the physical domain. The velocity space is defined within the interval V = [−15; 15]2 and the
initial condition is given by a left QL = (U1,U2)L and a right QR = (U1,U2)R state separated by a discontinuity located
at x = 0: {

QL = (1, 0, 0, 5, 1, 0, 0, 5) ,
QR = (0.125, 0, 0, 0.5, 0.125, 0, 0, 4) .

(101)

The mass ratio between the gases is m2/m1 = 0.6. Since the computational domain is discretized by means of a
two–dimensional unstructured mesh, although solving a one–dimensional problem, this test can also demonstrate the
ability of maintaining a one–dimensional structure of the numerical solution even if the element edges are not aligned
with the fluid motion.

Figure 3 shows the results obtained in the fluid limit ε = 10−6 for the resonant collision regime with α = 10−6.
A comparison against the exact solution of the Euler equations of compressible gas dynamics is proposed for gas 1,
highlighting the correct behavior of our scheme. Furthermore, a three-dimensional view of the number density profile
n1 is depicted, proving that the two–dimensional polygonal mesh does not affect the symmetry of the solution along
the y−axis.

Figure 4 is concerned with the dominant collision regime for different values of the Knudsen number, thus we
fix α = 1. The temperature of both gases collapses to the same profile, as expected from the limit analysis of the
continuous model in the case of dominant collisions. When dealing with ε = 10−2, the highly rarefied gases have still
to reach the dominant collision regime, thus they exhibit different temperatures at the final time of the simulation.

The same set of simulations has also been carried out in the resonant collision regime, thus imposing α = ε for
ε = [10−6, 10−4, 10−2]. Here, the interaction between the gases almost disappears and each single gas is not mixed
with the other one. Therefore, one can solve the Boltzmann model for one single species and compare the solution
against the results obtained from the mixture Boltzmann–BGK model. Indeed, this is shown in Figure 5 for gas 1,
where a perfect overlapping with the Boltzmann solution can be appreciated. This demonstrates the consistency of the
mixed Boltzmann–BGK model which retrieves the Boltzmann model for one gas in the case of resonant collisions.

4.3. Two–dimensional Riemann problem

The next test handles more complex wave patterns which arise from a genuinely two-dimensional Riemann prob-
lem. The initial condition is taken from [32] and modified in order to fit the Boltzmann–BGK model for gas mixture.
The computational domain is Ω = [−0.5; 0.5] × [−0.5; 0.5] and slip wall boundaries are assigned everywhere. A
polygonal grid composed of NP = 1502 control volumes is used to pave the domain, thus involving a total number
of approximately 69 · 106 degrees of freedom. We use a velocity space spanning the domain V = [−15; 15]2. The
initial condition is given by four piecewise constant states defined in each quadrant of the two–dimensional coordinate
system:

U1,2(x, 0) =


UI = (2, 0, 0, 1, 1.5, 0, 0, 4/3) if x > 0 ∧ y > 0,
UII = (1, 0, 0, 1, 0.5, 0, 0, 2) if x ≤ 0 ∧ y > 0,
UIII = (2, 0, 0, 1, 1.5, 0, 0, 4/3) if x ≤ 0 ∧ y ≤ 0,
UIV = (1, 0, 0, 1, 0.5, 0, 0, 2) if x > 0 ∧ y ≤ 0.

(102)

The Knudsen number is ε = 10−5, thus the hydrodynamic limit is approached and shocks are more evident. In
this way the numerical scheme is tested against more stringent flow conditions rather than in rarefied gas regimes.
The interaction between the gases is controlled by imposing α = 0.8, hence allowing almost full mixture between
the species. Figure 6 depicts the distribution of the number density and temperature for both gases with mass ratio
m2/m1 = 0.5, while in Figure 7 the same plots are proposed for the case m2/m1 = 2. Several shocks are generated
which interact simultaneously at the center of the domain as well as along the boundaries. The numerical scheme
is capable of maintaining stability because of the nonlinear CWENO spatial reconstruction and the IMEX time dis-
cretization. Due to the gas interaction, temperature tends to converge to the same profile in both cases. The lower is
the mass ratio, the stronger are the shocks generated in gas 2, as evident comparing the results in the bottom left panel
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Figure 3: Shock tube problem at time t f = 0.05 with second order FV IMEX-RK scheme for mixed Boltzmann–BGK model. Resonant collision
regime with [ε, α] = [10−6, 10−6]. 1D cut along the x-axis through the numerical results for number density (top right), horizontal velocity (bottom
left) and temperature (bottom right). The solution of the Euler equations is shown in red solid line for comparison purposes. A three-dimensional
view of the number density profile for gas 1 is plot in the top left panel.
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Figure 4: Shock tube problem at time t f = 0.05 with second order FV IMEX-RK scheme for mixed Boltzmann–BGK model. Dominant collision
regime with [ε, α] = [10−6, 1] (top row), [ε, α] = [10−4, 1] (middle row), [ε, α] = [10−4, 1] (bottom row). 1D cut along the x-axis through the
numerical results for number density (left), horizontal velocity (middle) and temperature (right).
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Figure 5: Shock tube problem at time t f = 0.05 with second order FV IMEX-RK scheme for mixed Boltzmann–BGK model. Resonant collision
regime with [ε, α] = [10−6, 10−6] (top row), [ε, α] = [10−4, 10−4] (middle row), [ε, α] = [10−2, 10−2] (bottom row). 1D cut along the x-axis
through the numerical results for number density (left), horizontal velocity (middle) and temperature (right). The solution of the Boltzmann model
is computed according to [19] and it is shown in red solid line for comparison purposes against gas 1.
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of Figures 6-7. This test proves that the numerical scheme can deal with shocks and strong discontinuities that exhibit
a truly multidimensional behavior. Furthermore, the results are independent of the Knudsen number and the type of
collision among the species, governed by the parameter α. Different mass ratio between the gases can also be easily
handled by the FVRK-M scheme.

Figure 6: Two-dimensional Riemann problem at time t f = 0.15 with second order FV IMEX-RK scheme for mixed Boltzmann–BGK model.
Dominant collision regime with [ε, α] = [10−5, 0.8] and mass ratio m2/m1 = 0.5. Distribution of number density n1 (top left), temperature T1 (top
right), number density n2 (bottom left), temperature T2 (bottom right). 40 contour levels within the maximum and minimum value of each variable
are used.

4.4. Interaction of two bubbles of gas

As last test case, we propose to simulate the interaction of two colliding bubbles of gas embedded into another gas
which is at rest. The computational domain is given by Ω = [−0.5; 0.5] × [−0.5; 0.5] and slip wall boundaries are set
everywhere. The physical space is discretized using a total number of NP = 1002 polygonal cells, while the velocity
space is bounded in the intervalV = [−12; 12]2, thus the problem size counts a total number of approximately 30 ·106

degrees of freedom. The initial condition for gas 1 is simply given as a background state and reads U1 = (1, 0, 0, 1).
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Figure 7: Two-dimensional Riemann problem at time t f = 0.15 with second order FV IMEX-RK scheme for mixed Boltzmann–BGK model.
Dominant collision regime with [ε, α] = [10−5, 0.8] and mass ratio m2/m1 = 2. Distribution of number density n1 (top left), temperature T1 (top
right), number density n2 (bottom left), temperature T2 (bottom right). 40 contour levels within the maximum and minimum value of each variable
are used.
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The second species with state U2 is initially distributed as follows:

U2(x, 0) =


(2, 2, 0, 1) if r1 < Rb,

(2,−2, 0, 1) if r2 < Rb,

(0.1, 0, 0, 1) otherwise,
(103)

with the radial positions r1 =
√

(x − X1)2 + (y − Y1)2 and r2 =
√

(x − X2)2 + (y − Y2)2. The first bubble is centered at
(X1,Y1) = (−0.5, 0), while the second bubble is centered at (X2,Y2) = (0.5, 0), and they are both assigned a size of
radius Rb = 0.2. Figure 8 shows the initial condition for number density n2 and horizontal velocity u2 as well as the
unstructured polygonal mesh used for carrying out the computation.
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y

1 0.5 0 0.5 1
1

0.5

0
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1

Figure 8: Interaction of two bubbles at initial time t = 0. Distribution of number density n2 (left) and horizontal velocity u2 (right) of gas 2 and
polygonal computational mesh (right).

A relatively long time simulation is considered, by setting the final time to t f = 0.8, hence allowing shock and
contact waves to travel several times across the domain and being reflected by the boundary walls as well as by in-
teractions among themselves. The Knudsen number is fixed at the value ε = 10−4 and the mass ratio is chosen to
be m2/m1 = 0.4. Figures 9 and 10 collect the time evolution of number density n1 and temperature T1, respectively,
in the dominant collision regime with α = 0.8. One can notice that the numerical solution exhibits an excellent
preservation of symmetry, despite the fully unstructured mesh and the complex structure of the flow. The same wave
patterns generated by the number density are also qualitatively recovered by the corresponding temperature distribu-
tion. Boundary conditions reflect the impinging waves by emitting them back into the computational domain, hence
giving rise to additional interactions inside the physical space. At the final time the solution looks quite complicated
with several shocks that are still symmetrically distributed over the domain.

Finally, the same simulation is run approaching the resonant collision regime, hence setting α = 10−3. Figures 11
and 12 deal with a comparison against the dominant collision simulation for both number density n2 and temperature
T2, respectively, at output times t = 0.2, t = 0.5 and t = 0.8. The comparison shows that in the resonant collision
regime the mixing process is inhibited, thus gas 2 follows its own dynamics that is responsible for a stronger inter-
section of the two bubbles, which change and deform their initial shape much faster than in the dominant collision
regime, as can be noticed in Figure 11 for n2. The same behavior is also evident in the temperature distribution T2
in Figure 12, where the mixture occurring for α = 0.8 mitigates the impact between the two bubbles by letting gas 2
interacting and spreading within gas 1. Let us also observe that the order of magnitude of both n2 and T2 undergoes a
remarkable change when passing from dominant to resonant collision regime.

5. Conclusions

In this work, we have presented a new model that aims at describing the dynamics of a binary mixture of inert
gases. This models relies on the original Boltzmann equation for governing collisions among particles of the same
species, while it makes use of simpler and computationally efficient BGK relaxation terms to consider the interspecies
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Figure 9: Interaction of two bubbles with [ε, α] = [10−4, 0.8]. Distribution of number density n1 at times t = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
(from top left to bottom right). 40 contour levels within the maximum and minimum value of n1 at each output time are used.

Figure 10: Interaction of two bubbles with [ε, α] = [10−4, 0.8]. Distribution of temperature T1 at times t = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
(from top left to bottom right). 40 contour levels within the maximum and minimum value of T1 at each output time are used.
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Figure 11: Interaction of two bubbles with [ε, α] = [10−4, 0.8] (top row) and [ε, α] = [10−4, 10−3] (bottom row). Distribution of number density n2
at times t = 0.2 (left), t = 0.5 (middle) and t = 0.8 (right). 40 contour levels within the maximum and minimum value of n2 at each output time are
used.
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Figure 12: Interaction of two bubbles with [ε, α] = [10−4, 0.8] (top row) and [ε, α] = [10−4, 10−3] (bottom row). Distribution of temperature T2 at
times t = 0.2 (left), t = 0.5 (middle) and t = 0.8 (right). 40 contour levels within the maximum and minimum value of T2 at each output time are
used.
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interactions. The novel model is referred to as mixed Boltzmann–BGK model and it has proven to satisfy conservation
properties and positivity for the thermodynamic quantities. The uniqueness and stability of the steady state configura-
tion of the model has been assessed by fulfilling the so-called H-theorem, and the hydrodynamic limits of the model
under different collisional regimes have been investigated. In the case of all dominant collisions, the classical Euler
equations of compressible gas dynamics are retrieved at the macroscopic level, whereas in the resonant collision limit
we obtain a set of Euler equations which exhibit evolution equations for densities, mean velocities and temperatures
of single species.

The governing kinetic equations have then be written in dimensionless form and discretized using a global second
order in velocity, space and time finite volume method while the Boltzmann collision operator is solved at the aid of
a fast spectral method. A discrete velocity model on Cartesian meshes is used in the phase space while the physical
space is paved with arbitrarily unstructured two-dimensional control volumes, where a Central WENO polynomial
reconstruction allows high order spatial accuracy to be reached. In order to obtain a stability condition of the time
step which is independent of the stiffness of the equations, Implicit-Explicit (IMEX) Runge-Kutta time stepping
techniques have been employed up to second order of accuracy in time. In the case of diagonally implicit and stiffly
accurate IMEX methods asymptotic preservation and accuracy have been proved for the full discrete scheme under the
hypothesis of well-prepared initial data. Finally, the robustness of the proposed numerical scheme is validated against
a set of test cases which involve shock waves in multiple space dimensions under different stiff regimes, and the
accuracy is experimentally shown to achieve second order in space and time on smooth solutions. The code has been
implemented under MPI parallelization and all test cases have been run on 64 cores to demonstrate the applicability
of our algorithm to large scale HPC architectures, taking into account up to ≈ 70 · 106 degrees of freedom.

We plan to extend the present approach to higher order space-time schemes following the seminal works devised
in [19, 20], which also include a discontinuous Galerkin (DG) space discretization along with a Linear Multistep (LM)
time integrator. The possible extension of the mixed Boltzmann-BGK kinetic model to a general N-component (inert
or reactive) gas mixture will be also investigated in future. Finally, we plan also to extend the present approach to
ideal magnetohydrodynamics (MHD) flows to be modeled in the stiff limit by the mixture kinetic equations.
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