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CRACK NUCLEATION IN SHELLS WITH
THROUGH-THE-THICKNESS MICROSTRUCTURE

PAOLO MARIA MARIANO∗ AND DOMENICO MUCCI†

Abstract. We refer to the common low-dimensional description of shells and thin films: surfaces
endowed with directors satisfying a non-degeneracy condition under large strain. We consider in
addition through-the-thickness material microstructure described by elements of a complete and
intrinsic Riemannian manifold. We look at brittle materials. Among all possible cracked and
uncracked admissible configurations, the one obtained under Dirichlet-type boundary conditions
realizes the minimum of a regularized Griffith’s energy that includes curvature terms. For it we
prove existence of minimizers for different constitutive functional choices and geometric structures
with or without active through-the-thickness microstructure. Deformations are taken as SBV maps
with jump set included in the support of a curvature varifold with boundary. Through-the-thickness
descriptors of the material microstructure are taken first as manifold-valued Sobolev maps. Then,
we consider pertinent SBV versions.
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1. Introduction. Three topics in continuum mechanics interact in the analysis
that we propose here:

• the representation of films such as thin shells modeled as surfaces endowed
with directors,

• the variational description of crack nucleation,
• the multi-field (at times called phase-field to adopt a common terminology

in solid-state physics, although with more restricted meaning) depiction of
microstructural effects on macroscopic motion.

Pertinent geometric and functional elements enter the energy. A requirement
of minimality selects equilibrium configurations among those with all possible crack
paths, depicted as rectifiable subsets of a domain Ω containing the shell middle surface.
Fields describing macroscopic and microstructural through-the-thickness morphology
and crack path are pertinent unknowns under large strain regime and Dirichlet or
Dirichlet-type (so called strong anchoring) conditions, assuming a local strong non-
degeneracy requirement.

The energy considered is surface polyconvex with respect to the shell middle
surface deformation gradient, and convex with respect to the derivative of thickness
and microstructure descriptor field. It also incorporates surface energy depending
on crack area and a generalized curvature tensor. This last term has a regularizing

∗DICEA, Università di Firenze, via Santa Marta 3, I-50139 Firenze, Italy
(paolomaria.mariano@unifi.it) .
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nature: it accounts for surface non-local interactions (precisely of second-neighbor-
type, thus of curvature-type) and bending effects in material bonds (for the latter ones
see [53]). A term taking into account possible tip energy (it appears prominently in
cohesive schemes) completes the energy. Deformations and microstructural fields are
only constrained to have their jump set contained in the crack path but not coinciding
necessarily with it.

Our analyses apply to several circumstances ranging from shells considered as
structural elements to thin films, to the description of biological tissues in which
one dimension is definitely smaller than the other two and a through-the-thickness
microstructure implies actions hardly representable in terms of standard stresses.

1.1. Structural shells and thin films as surfaces with directors. In 1958,
J. L. Ericksen and C. A. Truesdell adopted E. and F. Cosserat’s 1909 scheme (which
rests on a 1893 proposal by P. Duhem) to model structural elements as rods or shells
as one-dimensional or two-dimensional bodies endowed, respectively, with an out-of-
line or out-of-middle-surface vector field, with values, so-called directors, selected in
the unit sphere [17]. They describe the behavior of cross-sections, considered as rigid
bodies. An additional scalar factor may be used to represent variable thickness.

A massive body of pertinent work followed (see, for example, [6], [50], [51], [52],
[43], [44], and references therein; this is an incomplete list limited just by the need to
make a choice).

We may look just at bending – a curvature effect, indeed – when we constrain
the director to be coincident with the normal of the shell middle surface. G. R.
Kirchhoff’s, T. von Karman’s, P. Naghdi, W. Koiter’s, and P. Ciarlet’s plate and shell
theories are based, in fact, on different curvature-dependent energies [13], [56] (see
also [55], [54]).

These models imply the question of their justification in terms of dimensional
reduction from 3D space. A natural way to tackle the problem is via E. De Giorgi’s
Γ-convergence. In this view, in 1999 K. Bhattacharya and R. D. James argued that if
one considers a portion of an elastic cylinder between two cross sections at reciprocal
finite distance, and compute the Γ-limit of the energy (and related minimizers) as
the thickness goes to zero, one may obtain the energy pertinent to a membrane or to
a Cosserat’s surface, depending on whether the cylinder is made of a simple elastic
material or a second-grade one, i.e., one including in the list of energy entries the
second gradient of deformation. In the latter case, the limit generates a vector field
over the surface on which we shrink the cylinder portion (see [49], [21], [22]).

Roughly speaking, membrane energy of different plate models arises from separate
scaling assumptions for the energy with respect to the plate thickness. This result
comes from a top-to-bottom approach. On the other hand, if we reverse the view
[20] and construct a film by superposing an atomic layer over the other, we get at
continuum level a surface endowed at each point with as many directors as the number
of atomic layers considered. When we consider films constituted by a mixture of
atomic layers, the sequence of vectors at each point is known to within a permutation
[40].

1.2. Crack paths as rectifiable sets supporting varifolds. A variational
approach to the elastic-brittle behavior has been suggested in 1998 [19], based on
minimality required for A. A. Griffith’s energy [29]. Crack evolution is then considered
by partitioning the time interval and presuming that minimality governs transitions
between subsequent minimizers at discrete times. This scheme has its roots in De
Giorgi’s idea of minimizing movements [16].
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At first there is distinction between deformations and crack path, although they
are connected because the deformation jumps when crack margins detach. In two
dimensions we can control sequences of curves so that we can maintain the previous
distinction. To allow jumps across the crack path, deformations can be naturally
considered as special bounded variation maps (SBV ). Their distributional derivative
is a finite measure with H n−1-measurable jump set, where n is the ambient space
dimension and H n−1 the (n−1)-dimensional Hausdorff measure (see the treatise [5]).
In addition, considering a cracking process in the time-step sense above mentioned,
in 2D environment we can describe steps in which the crack margins come back
at least partially in a contact without shear with respect to the original uncracked
configuration. Material bonds are however not restored and a crack persists. The
approach requires to keep track of the previous steps (see [15] and subsequent work
of the same authors).

However, in general, in 3D space we cannot always control sequences of surfaces.
A way to overcome such a difficulty is to look for minimizing SBV deformations and
to consider the crack to be coincident with the deformation jump set (see once again
[15] and subsequent works of the same authors). Also, progressively onward in the
course of cracking, appropriate choices in looking at a crack as coinciding with the
jump set of a SBV deformation might allow us to describe steps in which the crack
margins come back at least partially in a contact without shear with respect to the
original uncracked configuration. The material bonds are however not restored, so
the crack persists. In so doing, we should look at a time-step-process such that if at
a time ti the crack margins restore the original contact they were detached at time tj
with j < i, according to the SBV setting. However, there are cases in which material
bonds break to allow the matter to reach a lower energy level but the margins of
pertinent cracks do not detach as it occurs in some cracking events in windscreens of
cars. Besides these specific cases, if we do not look at processes and consider a unique
minimizing step – as we do here – we do not have at disposal a “previous step” in
which crack margins are detached before coming back in contact.

To maintain the distinctions between deformations and crack paths in three-
dimensional space, we could consider sequences of surfaces with bounded curvature.
They can be described by means of rectifiable varifolds, i.e., Radon measures on the
Grassmannian constructed by using the tangent planes to H 2-rectifiable sets (see for
a general treatment [1], [2], [3], [36]). They admit a generalized notion of curvature
related to their support. The approach (proposed first in references [27], [38], [25])
implies the introduction of an energy which is a regularization of Griffith’s one, as
already mentioned above.

Here we adopt for shells the varifold-based description of crack paths. The
underlying two-dimensional setting notwithstanding (at least in terms of the reference
domain where fields are defined) allows us to consider in a unique step cases in which
crack margins remain or even “come back” at least partially in contact.

1.3. Through-the-thickness microstructures. Thin films show their own
peculiar microstructures emerging from their thinness. Tents and tunnels appear in
film deposition [30] on a substrate as a consequence of martensite-austenite transitions
[9], [34], [35], [32]. In polycristalline thin films, there may be grain growth larger than
the film thickness in a way that grains traverse the film. In this case film surface and
grain boundary energies become comparable. Their interplay may pin the boundaries
against further migration, or may enhance them [23]. However, the presence of further
active material microstructure may influence drastically the film behavior, as in the
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presence of magnetization [8]. Besides thin films, in general shells may be made
of materials with active microstructure determining effects hardly representable in
terms of standard stresses. To account directly for them, in representing the body
morphology we exploit not only a fit region in the physical point space but also
introduce descriptors of the low-spatial-scale texture of the matter and consider them
to be observable. With the aim of having a general model-building framework, we take
such descriptors (say phase-fields) as elements of a finite-dimensional complete Rie-
mannian manifold M not embedded into a linear space (see [11], [37], [48], [39]). The
picture of shells as surfaces with directors not necessarily coinciding with the normal
vector field falls within the above mentioned general scheme. When we consider
structural shells and thin films endowed with active microstructures in the sense above
specified, we have at least a pertinent descriptor, say ν, which complements the vector
representing the cross-section behavior. This is the scheme that we investigate here
accounting for the energy dependence on ν and its gradient. Such an approach is also
a way to approximately describe fractures. In fact, we can choose ν to be as a scalar
damage indicator, which localizes in a small neighborhood of the crack path [42], [10].
Phenomena of localization, in fact, appear also for vector choices of ν and even in
linear elasticity setting, as harbingers (or precursors) of fracture [41].

1.4. The main energy under investigation. With progressive extensions, in
this paper we end up to the following energy functional:

F (u, ζ, V, ν) :=

∫
Ω

(ẽ(x, u, ζ, ν,∇u) + β1|∇ζ|q + f(x, ν,∇ν)) dx

+ γ‖V ‖+

∫
G1(Ω)

‖A‖p dV + α‖∂V ‖ ,

with Ω a domain in the plane, ζ an out-of-plane vector field describing the shell cross-
section (cf. equation (3.1)), ν the morphological descriptor of a through-the-thickness
(active) material microstructure (cf. Sec. 6), ẽ a surface polyconvex function with
respect to ∇u (cf. equation (6.3)), f a non-negative, continuous, and quasiconvex
W 1,s(Ω,M ) function (namely, f is bounded and such that f(x, ν,N), with N a linear
map from R2 onto the tangent space of M at ν ∈M , is lesser or equal to the integral
over unit square of f(x, ν,N+dϕ), with ϕ a compactly supported smooth function; for
a precise general definition see Definition 6.1), V a one-dimensional varifold with mass
‖V ‖ (the term including ‖V ‖ corresponds to the area term in Griffith’s energy) and
generalized curvature tensor A := A(V ). The boundary mass term ‖∂V ‖ accounts
for possible tip energy (cf. Sec. 2.3 for the notation concerning curvature varifolds
with boundary). We prove existence of minimizers in terms of deformations u, vector
fields ζ, descriptors ν, varifolds V .

Specifically, we take u in the space of weak diffeomorphisms constructed on SBV
maps – a space defined in [25] – which satisfy a local strong non-degeneracy condition.
Also, ν is taken as a Sobolev map valued on an intrinsic, finite-dimensional, complete,
differentiable Riemannian manifold. When ν is itself in SBV with values in the same
intrinsic manifold, in the list of energy entries, we replace the distributional derivative
of ν with its total variation (or semi-norm).

2. Background material.

2.1. Special functions of bounded variation. A summable function u ∈
L1(Ω), defined on a bounded domain Ω ⊂ R2, is said to be of bounded variation if the
distributional derivative Du is a finite measure in Ω. In this case, the function u is
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approximately differentiable L 2-a.e. in Ω, and the approximate gradient ∇u agrees
with the density of Radon-Nikodym’s derivative of Du with respect to the Lebesgue
measure L 2. Therefore, the decomposition Du = ∇uL 2 + Dsu holds true, where
the component Dsu is singular with respect to L 2. Also, denoting by H k the k-
dimensional Hausdorff measure, the jump set S(u) of u is a countably 1-rectifiable
subset of Ω that agrees H 1-essentially with the complement of u Lebesgue’s set. If,
in addition, the singular component Dsu is concentrated on the jump set S(u), we
say that u is a special function of bounded variation, and write in short u ∈ SBV (Ω).

A vector valued function u : Ω → R3 belongs to the class SBV (Ω,R3) if its
components uj are in SBV (Ω). In that case, we get

|Du|(B) =

∫
B

|∇u| dx+

∫
B∩S(u)

|u+ − u−| dH 1

for each Borel set B ⊂ Ω, where the approximate gradient ∇u ∈ L1(Ω,M3×2), the
jump set S(u) is defined as in the scalar case, or componentwise, and u± are the one
sided limits at H 1-a.e. point x ∈ S(u) [5].

2.2. Currents carried by approximately differentiable maps. Let Ω be a
bounded domain in R2. For u : Ω → R3 an a.e. approximately differentiable map,
we denote by ∇u its approximate gradient. The map u has a Lusin representative
on the subset Ω̃ of Lebesgue points pertaining to both u and ∇u. Also, we have
L 2(Ω \ Ω̃) = 0. We shall thus denote M(F ) := (F, adj2F ) ∈ M3×2 × R3, where
adj2F is the 3-vector given by the 2× 2 minors of the matrix F ∈M3×2. We say that
u ∈ A 1(Ω,R3) if ∇u ∈ L1(Ω,M3×2) and the adjoint vector adj2∇u ∈ L1(Ω,R3).

The graph of a map u ∈ A 1(Ω,R3) is defined by

Gu :=
{

(x, y) ∈ Ω× R3 | x ∈ Ω̃, y = ũ(x)
}
,

where ũ(x) is the Lebesgue value of u. It turns out that Gu is a countably 2-rectifiable
set of Ω × R3, with H 2(Gu) < ∞. The approximate tangent plane at (x, u(x)) is
generated by the vectors t1(x) = (1, 0, ∂1u(x)) and t2 = (0, 1, ∂2u(x)) in R5, where
the partial derivatives are the column vectors of the gradient ∇u, and we take ∇u(x)

as the Lebesgue value of ∇u at x ∈ Ω̃. Therefore, the 2-vector

ξ(x) :=
t1(x) ∧ t2(x)

|t1(x) ∧ t2(x)|

provides an orientation to the graph Gu.
The current Gu carried by the graph of u is a functional taking values

Gu(ω) = 〈Gu, ω〉 :=

∫
Gu

〈ω, ξ〉 dH 2

where ω belongs to the space D2(Ω× R3) of compactly supported 2-forms on Gu. It
turns out that Gu is an integer multiplicity (in short i.m.) rectifiable current with
finite mass M(Gu) equal to the area H 2(Gu) of Gu; we then write Gu ∈ R2(Ω×R3).
Since the Jacobian of x 7→ (x, u(x)), which is the graph map, is equal to |t1(x)∧t2(x)|,
by the area formula we get

M(Gu) = H 2(Gu) =

∫
Ω

√
1 + |∇u|2 + |adj2∇u|2 dx <∞
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(compare Thm. 4 at p. 225 in [28, Vol. I, Sec. 3.1.5]).
By duality the boundary of Gu is the 1-current ∂Gu acting on D1(Ω × R3), the

space of compactly supported smooth 1-forms η in Ω× R3, as

〈∂Gu, η〉 := 〈Gu, dη〉, η ∈ D1(Ω× R3) ,

where dη is the differential of η. By Stokes theorem we get ∂Gu = 0 on D1(Ω× R3)
if u is of class C2. Such a relation holds true also for Sobolev maps u ∈W 1,2(Ω,R3),
by approximation. However, in general, the boundary ∂Gu does not vanish and
may not have finite mass in Ω × R3. On the other hand, if ∂Gu has finite mass,
the boundary rectifiability theorem states that ∂Gu is an i.m. rectifiable current in
R1(Ω×R3). In particular, it turns out that u is special function of bounded variation,
u ∈ SBV (Ω,R3). Actually, u belongs to the class SBV0 discussed in reference [5].

An extended treatment of currents is in the two-volume treatise [28].

2.3. Curvature varifolds with boundary. A 1-varifold over Ω, a domain in
R2, is a non-negative Radon measure on the trivial bundle G1(Ω) := Ω× G1,2, where
G1,2 is the Grassmannian manifold of 1-planes Π (straight lines) through the origin in
R2.

If b is a 1-rectifiable subset of Ω ⊂ R2, for H 1 b a.e. x ∈ Ω there exists the
approximate tangent 1-space Txb to b at x. We thus denote by Π(x) the 2× 2 matrix
that identifies the orthogonal projection of R2 onto Txb.

We define

(2.1) Vb,θ(ϕ) :=

∫
G1(Ω)

ϕ(x,Π) dVb,θ(x,Π) :=

∫
b

θ(x)ϕ(x,Π(x)) dH 1(x)

for any ϕ ∈ C0
c (G1(Ω)), where θ ∈ L1(b,H 1) is a nonnegative density function. If θ

is integer valued, V = Vb,θ is said to be the integer rectifiable varifold associated with
(b, θ,H 1).

The weight measure of V is the Radon measure in Ω given by µV := π#V , where
π : G1(Ω) → Ω is the canonical projection. Therefore, we find µV = θH 1 b, and
the mass of V is

‖V ‖ := V (G1(Ω)) = µV (Ω) =

∫
b

θ dH 1 .

Definition 2.1. An integer rectifiable 1-varifold V = Vb,θ is called a curvature
1-varifold with boundary if there exist a function A ∈ L1(G1(Ω),R2∗ ⊗ R2 ⊗ R2∗),
A = (A`ij ), and a vector valued Radon measure ∂V with finite mass ‖∂V ‖, such that∫

G1(Ω)

(ΠDxϕ+ADΠϕ+ ϕ ttr (AI)) dV (x,Π) = −
∫

G1(Ω)

ϕd∂V (x,Π)

for every ϕ ∈ C∞c (G1(Ω)). We write in short ∂V ∈ M (G1(Ω),R2). Moreover, for
p ≥ 1 the subclass of curvature 1-varifolds with boundary such that |A| ∈ Lp(G1(Ω))
is indicated by CV p1 (Ω) (see [27, Ex. 1,2] for specific examples).

With respect to Allard’s approach (see [1], [2]), with definition (2.1) we gain more
information. For example, if Ω is the unit disk centered at the origin and we take
a 1D varifold given by three half-lines from 0, which form three angles of 120◦, by
using Allard’s definition we find zero mean curvature and zero boundary. At variance
(compare with the results in [36]), with the view adopted here the boundary measure
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is the sum of three Dirac deltas supported at the points (0, Pi) in the Grassmannian
G1(Ω), where Pi is the 1D space determined by the i− th half-line, with i = 1, 2, 3.

Varifolds in CV p1 (Ω) have generalized curvature in Lp [36]. Therefore, Allard’s
compactness theorem applies (see [1], [2], [3]):

Theorem 2.2. For 1 < p <∞, let {V (h)} ⊂ CV p1 (Ω) be a sequence of curvature
1-varifolds V (h) = Vbh,θh with boundary. Corresponding curvatures and boundaries
are indicated by A(h) and ∂V (h), respectively. Assume that there exists a constant
c > 0 such that for every h

µV (h)(Ω) + ‖∂V (h)‖+

∫
G1(Ω)

|A(h)|p dV (h) ≤ c .

Then, there exists a (not relabeled) subsequence of {V (h)} and a 1-varifold V = Vb,θ ∈
CV p1 (Ω), with curvature A and boundary ∂V , such that

V (h) ⇀ V, A(h) dV (h) ⇀ AdV, ∂V (h) ⇀ ∂V,

in the sense of measures. Moreover, for any convex and l.s.c. function f : R2∗⊗R2⊗
R2∗ → [0,+∞], we get∫

G1(Ω)

f(A) dV ≤ lim inf
h→∞

∫
G1(Ω)

f(A(h)) dV (h).

3. A skeletal model. We look first to the shell middle surface and take for
it a planar reference configuration that is a two-dimensional smooth domain Ω in
R2, where Cartesian coordinates x = (x1, x2) are fixed. A map u : Ω → R3, say
u = (u1, u2, u3), represents a deformation.

When smoothness and non-singularity are assured, the map u determines an
immersion of Ω into R3; the tangent plane to the deformed film middle plane does
not degenerate. Formally, it is tantamount to impose |adj2∇u(x)| > 0 for any x ∈ Ω.
In other words, if ∂iu denotes a column vectors of the gradient matrix ∇u, we are
imposing that the vector product ∂1u×∂2u does not vanish at every point. Therefore,
the normal to u(Ω), the deformed middle surface, is the unit vector

(3.1) n(x) =
∂1u(x)× ∂2u(x)

|∂1u(x)× ∂2u(x)|
.

It can be considered as a descriptor of out-of-middle-surface film behavior. However,
such an information can be carried out by an S2-valued vector field x 7→ ζ(x) defined
over Ω and constrained to be at every x ∈ Ω such that

(3.2) (∂1u(x)× ∂2u(x)) • ζ(x) > 0

where • is the scalar product in R3; in the absence of out-of-middle-surface shear, we
get ζ(x) = n(x) (the scheme is standard, see [17], [50], [52], [51], [6] and references
therein).

Given q > 2 and r > 1, consider the energy

G (u, ζ) :=

∫
Ω

(
|∇u|q + |∇ζ|r + Φ(∇u, ζ)

)
dx

acting on couples of Sobolev functions (u, ζ) in [W 1,1(Ω,R3)]2, with |ζ| = 1 L 2-a.e.
in Ω. Impose also the uniform bound ‖u‖L∞(Ω) ≤ K. Eventually, we may consider
Dirichlet-type conditions for u and ζ over ∂Ω in the sense of traces.
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As a matter of notation, according to reference [14], we define the set

Ỹ := {(F, ζ) ∈M3×2 × R3 | det(F |ζ) > 0}

where (F |ζ) ∈M3×3. Therefore, according to (3.2), if F = ∇u one has

det(∇u|ζ) = (∂1u× ∂2u) • ζ .

Definition 3.1. We shall denote by F̃ the class of non-negative functions Φ :
Ỹ → [0,+∞) such that

(1) Φ(F, ·) is continuous in R3 for all F ∈M3×2;
(2) Φ(·, ζ) is polyconvex (precisely, Φ(·, ζ) is the restriction to {F ∈ M3×2 |

det(F |ζ) > 0} of a polyconvex function g : M3×2 → R, i.e., a convex functions
of all the minors of F), for all ζ ∈ R3;

(3) Φ(F, ζ)→ +∞ if det(F |ζ)→ 0+ .

We assume that the integrand Φ in G (u, ζ) be in the class F̃ . An example is given
by Φ(F, ζ) = − log(det(F |ζ)) ∨ 0 if det(F |ζ) > 0, and Φ(F, ζ) = +∞ otherwise in
M3×2 × R3. We also fix q > 2 and r > 1 ∨ 2q/(3q − 4).

Theorem 3.2. With the previous assumptions, minima of G (u, ζ) exist among
couples in W 1,q(Ω,R3) ×W 1,r(Ω,R3), with ‖u‖∞ ≤ K and |ζ| = 1. They are such
that (3.2) holds true L 2-a.e. on Ω.

Proof. By using compactness arguments, we shall repeatedly pass to not relabeled
subsequences. Taking a minimizing sequence {(uh, ζh)}, we infer that uh ⇀ u∞
weakly inW 1,q(Ω,R3) and ζh ⇀ ζ∞ weaklyW 1,r(Ω,R3) for some functions (u∞, ζ∞) ∈
W 1,q(Ω,R3)×W 1,r(Ω,R3). Moreover, the a.e. convergences uh → u∞ and ζh → ζ∞
imply that ‖u∞‖L∞(Ω) ≤ K and |ζ∞| = 1 a.e. in Ω, whereas by lower semicontinuity∫

Ω

(|∇u∞|q + |∇ζ∞|r) dx ≤ lim inf
h→∞

∫
Ω

(|∇uh|q + |∇ζh|r) dx .

The bound suph
∫

Ω
Φ(∇uh, ζh) dx <∞ implies that

(3.3) (∂1uh(x)× ∂2uh(x)) • ζh(x) > 0

holds true for each h ∈ N and L 2-a.e. in Ω. We claim that condition (3.3) is preserved
(with possibly the equality sign instead of >) when passing to the limit. In fact, by
the parallelogram inequality we get for every h and for a.e. x ∈ Ω the bound

(3.4) |∂1uh × ∂2uh|q/2 ≤ C · |∇uh|q , q > 2

for some absolute constant C. Moreover, if 1 ∨ 2q/(3q − 4) < r ≤ 2 we also have
strong convergence ζh → ζ∞ in Lp(Ω) for p = 2r/(2− r), where p is greater than the
conjugate exponent to q/2. Therefore, we infer the existence of a function H ∈ L1(Ω)
such that (∂1uh×∂2uh)•ζh ⇀ H weakly in L1(Ω). On the other hand, by (3.4) and a
standard density argument it turns out that in the distributional sense we have, e.g.,

Div(u1
h ∂2u

2
h,−u1

h ∂1u
2
h) = (∂1u

1
h ∂2u

2
h − ∂2u

1
h ∂1u

2
h) L 2 Ω ∀h ∈ N̄

where N̄ := N ∪ {∞}, i.e., for each test function ϕ ∈ C∞c (Ω)∫
Ω

(∂1u
1
h ∂2u

2
h − ∂2u

1
h ∂1u

2
h)ϕdx =

∫
Ω

u1
h (∂1u

2
h ∂2ϕ− ∂2u

2
h ∂1ϕ) dx .

8



We thus infer the weak convergence

(∂1u
1
h ∂2u

h
2 − ∂2u

1
h ∂1u

2
h) ⇀ (∂1u

1
∞ ∂2u

2
∞ − ∂2u

1
∞ ∂1u

2
∞)

in Lq/2(Ω), and hence a.e. in Ω. This implies H = (∂1u∞ × ∂2u∞) • ζ∞ and also the
pointwise convergence a.e. in Ω

(∂1uh × ∂2uh) • ζh → (∂1u∞ × ∂2u∞) • ζ∞ .

Therefore, the lower semicontinuity∫
Ω

Φ(∇u∞, ζ∞) dx ≤ lim inf
h→∞

∫
Ω

Φ(∇uh, ζh) dx <∞

holds, whence the couple of functions (u∞, ζ∞) satisfies the strict inequality in (3.2)
for L 2-a.e. x ∈ Ω, as required.

It may happen that the deformed surface u(Ω) has a crease. This is described,
e.g., when the unit normal n(x) is smooth outside a 1-rectifiable set J of Ω. In this
case, ζ satisfies the condition ζ(x) •m > 0 at x ∈ J, for some unit vector m that lies
in the cone between the one-sided limits of n at x ∈ J.

Therefore, a second order theory (yielding e.g. to a regularity of the unit normal
n(x)) should be applied in order to describe in a precise way the above mentioned
angle condition along creases over the deformed surface.

4. Cracks and jump sets. We assume here that the components uj of u are
L∞-functions in the class SBV (Ω). Again, we assume a uniform bound ‖u‖L∞(Ω) ≤
K.

We then choose the descriptor ζ : Ω → S2 ⊂ R3 of the out-of-middle-surface
film behavior as a special function of bounded variation in SBV (Ω,R3), with |ζ| = 1
almost everywhere, in such a way that the constraint (3.2) holds true L 2-a.e. in
Ω \ S(u). Since ζ describes the behavior of shell cross-sections, the continuity of
matter allows us to consider the discontinuity set of ζ as included in the one of u,
namely

S(ζ) ⊆ S(u) .

The strict inclusion occurs when the crack margins are in contact across the whole
shell thickness; in this case we would have no deformation jump along the crack portion
where the margins remain in contact. If one thinks of a cracking process, there could
be circumstances already above mentioned in which margins remain, at least in part,
always in contact, although the energetic content of the material bond is such that
they become unstable and prefer, energetically, to break. Accounting for this aspect
– i.e., a permanent contact in a portion of a crack – is a peculiarity of the present
model. For analytical reasons, we replace the above set inclusion by the inequality:

(4.1) H 1 S(ζh) ≤H 1 S(uh) ∀h,

along minimizing sequences {(uh, ζh)}.
In principle, the limit maps (u, ζ) may not satisfy condition (4.1). In fact, it may

happen that the jump of uh on S(uh) goes to zero somewhere, when passing to the
limit through the compactness theorem. In order to preserve inequality (4.1), we shall
introduce a condition ensuring that the jump u+

h −u
−
h on S(uh) cannot “decrease” or

“disappear”, so that one has H 1(S(uh))→H 1(S(u)).
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Over the reference domain Ω we consider a curvature 1-varifold with boundary
V = Vb ,θ such that the discontinuity set S(u) of the deformation map u is contained
in the 1-rectifiable set b . A crack in which the margins remain at least partially in
contact is characterized by H 1(b \ S(u)) > 0.

4.1. Membranes with cracks. At a first glance we do not consider the out-of-
middle-surface descriptor ζ.

Definition 4.1. A macroscopic configuration of a cracked membrane is a pair
composed by the bounded connected open set Ω ⊂ R2 with Lipschitz boundary and a
curvature 1-varifold with boundary, namely V = Vb ,θ ∈ CV p1 (Ω) for some p > 1.

We consider bounded deformation maps u in A 1(Ω,R3), i.e., a.e. approximately
differentiable maps u with ∇u ∈ L1(Ω,M3×2) and |adj2∇u| ∈ L1(Ω), so that the
current Gu carried by the rectifiable graph of u is i.m. rectifiable in R2(Ω×R3) and
with finite mass, M(Gu) <∞.

In general, the boundary current ∂Gu ∈ D1(Ω× R3) is non zero and it may also
have unbounded mass. Therefore, we assume furthermore that fractures and holes in
the graph of u are controlled by the crack V , namely

(4.2) π#|∂Gu| ≤ µV

where µV is the weight measure in Ω of the varifold V , π : Ω×R3 → Ω the projection
onto the first two coordinates, and | · | the total variation of the vector-valued measure
∂Gu, so that π#|∂Gu|(B) = |∂Gu|(B × R3) for each Borel set B ⊂ Ω.

If µV (Ω) < ∞ and the bound (4.2) holds true, |∂Gu| is a finite measure, and
actually M(∂Gu) < ∞. Therefore, the boundary rectifiability theorem yields that
∂Gu is an i.m. rectifiable current – in short ∂Gu ∈ R1(Ω × R3) – and hence u is a
special function of bounded variation, namely u ∈ SBV (Ω,R3).

More precisely, since |Dju| ≤ ‖u‖∞ π#|∂Gu|, recalling that µV = θH 1 b , by
the assumption (4.2) it turns out that the jump set of u is contained in the support
b of V where the positive multiplicity function θ is integer-valued, and we actually
have

(4.3) H 1 S(u) ≤H 1 b .

Example 4.1. Recalling that µV = θH 1 b , the validity of inequality (4.2)
relies on the presence of the positive integer θ, that actually accounts for the multiplicity
of the projection of ∂Gu. Taking, e.g., Ω = B2, the unit open disk centered at the
origin, and u : B2 → R3 given by

u(x1, x2) :=

{
(x1, x2, 0) if x1 < 0
(1 + x1, x2, 0) if x1 > 0

we get ∂Gu = γ0#[[ I ]]− γ1#[[ I ]] on D1(B2×R3), where I = (−1, 1) and γα : I → R5

is defined by γα(t) := (0, t, α, t, 0), for α = 0, 1. Therefore, u ∈ SBV (B2,R3), with
jump set S(u) = {0} × I, so that inequality (4.2) holds true with, e.g., θ = 2 and
b = S(u).

We have already defined M(F ) = (F, adj2F ) ∈M3×2 ×R3. Here we assume that
a sequence {uh}h ⊂ A 1(Ω,R3) is such that

sup
h
‖uh‖L∞(Ω) ≤ K , sup

h
‖M(∇uh)‖L1(Ω) <∞ ,
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where the sequence {|M(∇uh)|} is equi-integrable on Ω. In addition, we assume that
π#|∂Guh

| ≤ µVh
for each h. If we have suph µVh

(Ω) < ∞, by compactness, possibly
passing to a (not relabeled) subsequence, we have Vh ⇀ V weakly as measures, and
we find a deformation map u as above, such that Gu is i.m. rectifiable and with
finite mass, Guh

⇀ Gu weakly as currents, π#|∂Gu| ≤ µV < ∞, whence ∂Gu is i.m.
rectifiable, too.

In order to recover the weak L1 convergence of M(∇uh) to M(∇u), the starting
point is the following special case of the closure theorem proven in reference [24].
On account of the compactness theorem in SBV , it extends a classical result proved
in reference [7] for Sobolev maps, where the divergence form of gradient minors is
exploited.

Theorem 4.2. Let Ω ⊂ R2 be a bounded domain and {uh} a sequence of functions
from SBV (Ω,R3) converging in L1(Ω,R3) to a summable function u : Ω → R3.
Assume that for some real exponents q > 2 and r > 1

sup
h

{
‖uh‖∞ +

∫
Ω

(
|∇uh|q + |adj2∇uh|r

)
dx+ H 1(S(uh))

}
<∞ .

Then, u ∈ SBV (Ω,R3), and the sequence H 1 S(uh) weakly converges in Ω to
a measure µ greater than H 1 S(u). Moreover, ∇uh weakly converges to ∇u in
Lq(Ω,M3×2), and adj2∇uh weakly converges to adj2∇u in Lr(Ω,R3).

4.2. Accounting for the thickness. We fix q > 2, r, p > 1, K > 0, and
introduce the class Aq,r,p,K of triplets (u, ζ, V ) where

(i) u : Ω→ R3 is a special function of bounded variation, u ∈ SBV (Ω,R3), with
H 1(S(u)) < ∞, such that ‖u‖L∞(Ω) ≤ K, ∂1u × ∂2u 6= 0 L 2-a.e. on Ω,
∇u ∈ Lq(Ω,M3×2), and |adj2∇u| ∈ Lr(Ω);

(ii) ζ : Ω→ R3 is a special function of bounded variation, with H 1(S(ζ)) <∞,
such that |ζ| = 1 L 2-a.e. on Ω, and ∇ζ ∈ Lq(Ω,M3×2);

(iii) V ∈ CV p1 (Ω), i.e. V is a integer rectifiable curvature 1-varifold with boundary
and second fundamental form A ∈ Lp(G1(Ω),R2∗ ⊗ R2 ⊗ R2∗), with µV =
θH 1 b ;

(iv) π#|∂Gu| ≤ µV ;
(v) H 1 S(ζ) ≤ π#|∂Gu|;

(vi) (∂1u(x)× ∂2u(x)) • ζ(x) > 0 for L 2-a.e. x ∈ Ω \ b .
Then, we consider on the class of triplets (u, ζ, V ) ∈ Aq,r,p,K the energy

(4.4) F (u, ζ, V ) :=

∫
Ω

e(x, u, ζ,∇u,∇ζ) dx+ ‖V ‖+

∫
G1(Ω)

‖A‖p dV + ‖∂V ‖ ,

where e : Ω× R3 × R3 ×M3×2 ×M3×2 → R ∪ {+∞} is the sum

e(x, u, ζ, F,G) = ẽ(x, u, ζ, F ) + β1 |G|q

for every (x, u, ζ, F,G) ∈ Ω × R3 × R3 ×M3×2 ×M3×2, with β1 > 0 and the first
addendum a non-negative Carathéodory function satisfying the following properties:

(a) ẽ(x, u, ζ, F ) is polyconvex with respect to F , namely

ẽ(x, u, ζ, F ) = g(x, u, ζ,M(F )) ∀F ∈M3×2,

where g : Ω×R3 ×R3 × (M3×2 ×R3)→ [0,+∞] is a Carathéodory function,
with g(x, u, ζ, ·) convex for L 2-a.e. x ∈ Ω, and for all (u, ζ) ∈ R3 × R3;
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(b) for L 2-a.e. x ∈ Ω and every (u, ζ, F ) such that det(F |ζ) > 0,

ẽ(x, u, ζ, F ) ≥ β2 (|F |q + |adj2F |r) + Φ(F, ζ),

where β2 > 0 and Φ ∈ F̃ , see Definition 3.1.

Theorem 4.3. The energy minimum of F (u, V, ζ) is attained in the class Aq,r,p,K .

Proof. As before, we repeatedly pass to not relabeled subsequences. Choose a
minimizing sequence {(uh, ζh, V (h))} ⊂ Aq,r,p,K . On account of assumptions (iv) and
(v), by the energy lower bounds we infer that Ambrosio’s compactness theorem in
SBV [5, Thm. 4.8] applies to both sequences {uh} and {ζh}. Therefore, uh → u
in L1(Ω,R3) to some function u ∈ SBV (Ω,R3) with ‖u‖L∞(Ω) ≤ K, whereas ∇uh
weakly converges to ∇u in Lq(Ω,M3×2) and H 1 S(uh) weakly converges in Ω to a
measure greater than H 1 S(u). In a similar way, we prove existence of a function
ζ ∈ SBV (Ω,R3) satisfying |ζ| = 1 a.e. in Ω, such that ζh → ζ in L1(Ω,R3), ∇ζh
weakly converges to ∇ζ in Lq(Ω,M3×2), and H 1 S(ζh) weakly converges in Ω to
a measure greater than H 1 S(ζ). Furthermore, Allard’s compactness theorem 2.2
applies to the sequence {V (h)} in CV p(Ω). Also, Federer-Fleming’s closure theorem
applies to the sequence Guh

(see [28]).
On account of Theorem 4.2, we obtain a triplet (u, ζ, V ) satisfying properties

(i)–(v). In fact, using (a), the lower-semicontinuity result in reference [24] yields∫
Ω

ẽ(x, u,∇u, ζ) dx ≤ lim inf
h→∞

∫
Ω

ẽ(x, uh,∇uh, ζh) dx

and ∫
Ω

|∇ζ|q dx ≤ lim inf
h→∞

∫
Ω

|∇ζh|q dx

whereas

‖V ‖+

∫
G1(Ω)

‖A‖p dV + ‖∂V ‖ ≤ lim inf
h→∞

(
‖V (h)‖+

∫
G1(Ω)

‖A(h)‖p dV (h) + ‖∂V (h)‖
)

so that by equation (4.4) we get

F (u, ζ, V ) ≤ lim inf
h→∞

F (uh, ζh, V
(h)) .

Also, by the weak convergence adj2∇uh ⇀ adj2∇u in L1(Ω,R3), using the bound
suph |∇ζh|q dx < ∞ for q > 2 and the embedding theorem, we obtain the weak
convergence (∂1uh × ∂2uh) • ζh ⇀ (∂1u × ∂2u) • ζ in L1(Ω). As a consequence, the
lower semicontinuity inequality∫

Ω

Φ(∇u, ζ) dx ≤ lim inf
h→∞

∫
Ω

Φ(∇uh, ζh) dx

holds true. Hence, by the lower bound (b), property (vi) is satisfied by the triplet
(u, ζ, V ), whence (u, ζ, V ) ∈ Aq,r,p,K , as required.

In fact, we could follow the view suggested in reference [14], considering energy

functionals F̃ (u, ζ, V ) in which we mix together the gradients of u and ζ. Namely, in
(4.4) we could assume that e(x, u, ζ, F,G) = ẽ(x, h,H), where h := (u, ζ), H ∈M6×2 is
the matrix with rows (F,G), while ẽ(x, h,H) is a non negative Carathéodory function,
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which is polyconvex with respect to H and such that for L 2-a.e. x ∈ Ω and every
(h,H), with det(F |ζ) > 0

ẽ(x, h,H) ≥ β2 (|H|q + |adj2H|r) + Φ(F, ζ)

where β2 > 0 and Φ ∈ F̃ .
Since the closure and semicontinuity properties continue to hold, the minimum

of F̃ (u, ζ, V ) is attained in the class Ãq,r,p,K of triplets (u, ζ, V ) in Aq,r,p,K , which
satisfy the additional condition |adj2∇(u, ζ)| ∈ Lr(Ω), so that we should presume in
this case what follows:

1. u ∈ SBV (Ω,R3), with H 1(S(u)) < ∞, ‖u‖L∞(Ω) ≤ K, ∂1u × ∂2u 6= 0
L 2-a.e. on Ω, ∇u ∈ Lq(Ω,M3×2);

2. ζ ∈ SBV (Ω,R3), with H 1(S(ζ)) < ∞, |ζ| = 1 L 2-a.e. on Ω, and ∇ζ ∈
Lq(Ω,M3×2);

3. |adj2∇(u, ζ)| ∈ Lr(Ω);
4. V ∈ CV p1 (Ω), with µV = θH 1 b ;
5. π#|∂Gu| ≤ µV ;
6. H 1 S(ζ) ≤ π#|∂Gu|;
7. (∂1u(x)× ∂2u(x)) • ζ(x) > 0 for L 2-a.e. x ∈ Ω \ b .

However, we prefer to maintain separate membrane and out-of-middle-surface
behavior, so that we refer to surface polyconvexity as considered in reference [40].

5. Boundary conditions. We consider two types of boundary conditions. As
a first choice we prescribe Dirichlet-type data, namely

(5.1) u = u0 , ζ =
∂1u0 × ∂2u0

|∂1u0 × ∂2u0|
on ∂Ω

in the sense of traces, respectively, for some given a.e. injective function u0 ∈
W 1,q(Ω,R3) with ‖u0‖∞ ≤ K and |adj2∇u0| ∈ Lr(Ω,R+).

Then, we consider those that we call strong anchoring conditions, determined
by assigning the boundary current, i.e., in terms of smooth and bounded 1-forms in
Ω× R3,

∂Gu (∂Ω× R3) = ∂Gu0
(∂Ω× R3)

a condition that clearly implies the trace equality u = u0. As already mentioned,
from a physical viewpoint such a condition means that we are assigning the work
performed in all possible strain modes, all considered at first to be independent and
then reconciled in the limit to be compatible (see [26]). This boundary condition is
generally not preserved in the minimization process because along the boundary open
cracks may have optimal placement.

A confinement condition prescribing the existence of a compact set C contained
in the open set Ω and such that

(5.2) sptµV ⊂ C ∀ (u, ζ, V ) ∈ Aq,r,p,K

avoids the problem.
The chain of inequalities H 1 S(ζ) ≤ π#|∂Gu| ≤ µV implies that the restriction

to Ω\C of both u and ζ belongs to the Sobolev class W 1,q(Ω\C ,M3×2). Therefore, the
prescribed Dirichlet or strong anchoring conditions are preserved in the limit process,
due to the weak convergence in W 1,q(Ω \ C ,M3×2) of both {uh} and {ζh}.
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Corollary 5.1. Let C and u0 as above. Assume that competitors (u, V, ζ) in
Aq,r,p,K have finite energy F (u, V, ζ) and satisfy the prescribed boundary, clamping,
and confinement conditions, with C is a non-empty set. Then, the energy minimum
of F (u, V, ζ) is attained in the same class.

Remark 5.1. Condition (5.2) excludes circumstances in which a crack path may
go to the boundary, breaking part of a link with the environment.

6. Shells made of complex materials. To account for active microstructures
(e.g., polarization in ferroelectric films) we introduce over Ω another map ν taking
values on a connected, complete, n-dimensional Riemannian differentiable manifold
M of class C2. At every x ∈ Ω, the map ν summarizes at gross scale geometric
information on material microstructure in the film thickness. For this reason, we call
M = (M n, g) as the manifold of microstructural shapes. The generality adopted
in choosing M is a way to furnish unified results, which are independent of specific
microstructural features.

First we assume the layer-descriptor map ν : Ω →M to be an intrinsic Sobolev
map in W 1,s(Ω,M ) for some real exponent s > 1. Then, we’ll discuss the case in
which ν can be considered as a special function of bounded variation.

The essential point is that we do not use any embedding of M in some Euclidean
space. Even choosing it to be isometric, it would not be unique (as Nash’s theorems
indicate). Thus, its choice would become part of the model, while the common effort
is to offer a description of the phenomenological world as much as possible free of non
intrinsic elements.

6.1. The Sobolev case. Under previous assumptions, with dM the geodesic
distance in M , by the Hopf-Rinow theorem (M , dM ) is a complete metric space.
Consequently, we keep referring to results in such spaces, summarizing those aspects
that we need for the analysis developed here from essential references [4], [45], [46],
[47] on this topic.

Let Ω ⊂ Rm be a bounded domain and s ≥ 1. A Borel map ν : Ω → M is said
to be an intrinsic Sobolev map in W 1,s(Ω,M ), if there exists a non-negative function
φ ∈ Ls(Ω) such that for every ν0 ∈M

1. x 7→ dM (ν(x), ν0) is in Ls(Ω), i.e., ν ∈ Ls(Ω,M );
2. the distributional gradient map x 7→ DdM (ν(x), ν0) satisfies the inequality
|DdM (ν(x), ν0)| ≤ φ(x) for Lm-a.e. x ∈ Ω.

In this setting, the “norm” |Dν|(x), which is, in essence, the optimal function
φ ∈ Ls(Ω) satisfying the inequality |DdM (ν(x), ν0)| ≤ φ(x), is well-defined for Lm-
a.e. x ∈ Ω by

|Dν|(x) := sup
k∈N
|D(dM (ν(x), νk))|

where {νk}k∈N forms a dense and enumerable set in M .
Weak convergence in W 1,s of a sequence {νh} ⊂ W 1,s(Ω,M ) to some map ν ∈

W 1,s(Ω,M ), when s > 1, is defined by requiring that ‖dM (νh, ν)‖Ls(Ω) → 0 as h→∞
and suph ‖ |Dνh| ‖Ls(Ω) <∞. When s = 1, one assumes in addition that the sequence
{|Dνh|} is equi-integrable.

Also, the trace operator Tr : W 1,s(Ω,M ) → Ls(∂Ω,M ) is well-defined in such
a way that for continuous maps ν ∈ W 1,s(Ω,M ) ∩ C0(Ω,M ) it agrees with the
restriction ν|∂Ω. Moreover, if {νh} ⊂ W 1,s(Ω,M ) weakly converges to some map
ν ∈ W 1,s(Ω,M ), then Tr(νh) converges to Tr(ν) strongly in Ls(∂Ω,M ). Finally,
traces of maps in W 1,s(Ω,M ) have a W 1−1/s,s-regularity, when s > 1 (see [33] and
[12]).
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We endow the tangent bundle TM with the metric dTM induced by dM and
consider the vector bundle with base space M and typical fiber the space of linear
homomorphisms Hom(Rm, TM ). Points of such a bundle are couples (ν,N), where
ν ∈M and N : Rm → TνM is a linear map. For any fixed ν ∈M , we can identify
N ∈ Hom(Rm, TνM ) with the m-tuple (v1, . . . , vm) ∈ (TνM )m, where vi = Nei and
(e1, . . . , em) is the canonical basis in Rm. Therefore, a metric structure on the vector
bundle Hom(Rm, TM ) is defined through the distance

D((ν,N), (ν̃, Ñ)) :=
{ m∑
i=1

dTM

(
(ν, vi), (ν̃, wi)

)2}1/2

if Ñ ∈ Hom(Rm, Tν̃M ) and wi = Ñei for each i.
A non-negative and continuous integrand f : Ω × Hom(Rm, TM ) → [0,+∞) is

said to be admissible in W 1,s(Ω,M ) if for some fixed point ν0 ∈M and some positive
constant C the bounds

0 ≤ f(x, ν,N) ≤ C
(

1 + dM (ν, ν0)s + ‖N‖sg(ν)

)
hold true for all (x, ν,N) ∈ Ω × Hom(Rm, TνM ), where ‖ · ‖g(ν) is the operatorial
norm. A functional

(6.1) ν 7→
∫

Ω

f(x, ν(x), dνx) dx

with an admissible integrand f is well-defined on maps ν ∈ W 1,s(Ω,M ), where dνx
is the approximate differential. Precisely, if ν : Ω→M is a Borel map, and x ∈M is
a point of approximate continuity of ν, a linear map N ∈ Hom(Rm, Tν(x)M ) is said
to be an approximate differential of ν at x if, for all ε > 0,

lim
ρ→0+

1

ρm
Lm

({
y ∈ Bmρ (x) | dM

(
ν(y), expν(x)(N(y − x))

)
≥ ε |y − x|

})
= 0 .

When it exists, the approximate differential of ν at x is unique. For smooth
maps, it agrees with the classical differential (in geometric sense). For this reason,
the notation dνx is used for it. A Sobolev map ν in W 1,s(Ω,M ) is approximately
differentiable at Lm-a.e. x ∈M , whence the functional (6.1) makes sense.

We ask for sequential lower semicontinuity. Thus, we need a suitable notion of
quasiconvexity.

Definition 6.1. A locally bounded function f : Ω× Hom(Rm, TM )→ R is said
to be quasiconvex if for every (x, ν,N) ∈ Ω×Hom(Rm, TνM ) and every test function
ϕ ∈ C∞c (Q1, TνM ), where Q1 := [−1/2, 1/2]m, by looking at dϕy as an element of
Hom(Rm, TνM ), the following inequality holds true:

f(x, ν,N) ≤
∫
Q1

f(x, ν,N + dϕy) dy .

Theorem 6.2 ([18]). Take s ≥ 1. Let f : Ω × Hom(Rm, TM ) → [0,+∞)
be a non-negative and continuous admissible integrand in W 1,s(Ω,M ). Then, the
functional (6.1) is sequentially weakly lower semicontinuous in W 1,s(Ω,M ) if and
only if f is quasiconvex.
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Coming back to the physical dimension m = 2, a membrane with out-of-middle-
surface vector field ζ, a crack represented by a 1-varifold V , a descriptor ν of the
through-the-thickness material morphology, subjected to a deformation u, is modeled
by a quadruplet (u, ζ, V, ν) belonging to the class Aq,r,p,K,s(M ) constructed as follows:
for q > 2, r, p, s > 1, K > 0, we assume that the triplet (u, ζ, V ) belongs to the class
Aq,r,p,K introduced above, while we let ν ∈ W 1,s(Ω,M ), where M = (M n, g) is as
above.

On the class Aq,r,p,K,s(M ) we consider the energy functional

(6.2) F (u, ζ, V, ν) :=

∫
Ω

e(x, u, ζ, ν,∇u,∇ζ, dν) dx+ ‖V ‖+

∫
G1(Ω)

‖A‖p dV + ‖∂V ‖ .

The energy density e : Ω×R3×R3×M ×M3×2×M3×2×Hom(R2, TM )→ R∪{+∞}
is presumed to be

e(x, u, ζ, ν, F,G,N) = ẽ(x, u, ζ, ν, F ) + β1|G|q + f(x, ν,N)

for every (x, u, ζ, ν, F,G,N) ∈ Ω × R3 × R3 ×M ×M3×2 ×M3×2 × Hom(R2, TM ),
where β1 > 0, and the first addendum is a non-negative Carathéodory function with
the following properties:

(a’) ẽ(x, u, ζ, ν, F ) is polyconvex with respect to F , namely

(6.3) ẽ(x, u, ζ, ν, F ) = g(x, u, ζ, ν,M(F )) ∀F ∈M3×2

where g : Ω × R3 × R3 ×M × (M3×2 × R3) → [0,+∞] is a Carathéodory
function, with g(x, u, ζ, ν, ·) convex for L 2-a.e. x ∈ Ω and for all (u, ζ, ν) ∈
R3 × R3 ×M ;

(b’) for L 2-a.e. x ∈ Ω and every (u, ζ, ν, F ) such that det(F |ζ) > 0

ẽ(x, u, ζ, ν, F ) ≥ β2 (|F |q + |adj2F |r) + Φ(F, ζ)

where β2 > 0 and Φ ∈ F̃ , a function class specified in Definition 3.1.
Moreover, the third addendum f : Ω × Hom(R2, TM ) → [0,+∞) is a non-negative,
continuous, and quasiconvex admissible integrand in W 1,s(Ω,M ). We presume it is
such that for positive constants C1, C2 > 0 the inequality

C1 · ‖N‖sg(ν) ≤ f(x, ν,N) ≤ C2 · ‖N‖sg(ν)

holds true for every (x, ν,N) ∈ Ω×Hom(R2, TM ).

Theorem 6.3. Under previous assumptions, the energy functional F (u, V, ζ, ν)
attains a minimum in the class Aq,r,p,K,s(M )

Proof. Choose a minimizing sequence {(uh, ζh, V (h), νh)} ⊂ Aq,r,p,K,s(M ). The
growth assumptions on f imply

sup
h

∫
Ω

‖d(νh)x‖sg(νh(x)) dx <∞ .

By compactness (see [33]), possibly passing to a (not relabeled) subsequence, {νh}
weakly converges in W 1,s to some ν ∈W 1,s(Ω,M ), which satisfies dM (νh(x), ν(x))→
0 for L 2-a.e. x ∈ Ω. Moreover, by exploiting Theorem 6.1, we get∫

Ω

f(x, ν(x), dνx) dx ≤ lim inf
h→∞

∫
Ω

f(x, νh(x), d(νh)x) dx .

Then, we follow the same path adopted for Theorem 4.3. We omit further details.
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As to the boundary conditions on the quadruplets (u, ζ, V, ν) in Aq,r,p,K,s(M ),
we first assume

u = u0 , ζ =
∂1u0 × ∂2u0

|∂1u0 × ∂2u0|
, ν = ν0 on ∂Ω

in the sense of traces, for given maps ν0 ∈ W 1,s(Ω,M ) and u0 ∈ W 1,q(Ω,R3), with
‖u0‖∞ ≤ K and |adj2∇u0| ∈ Lr(Ω).

Then, we also prescribe a compact set C contained in Ω such that

sptµV ⊂ C ∀ (u, ζ, V, ν) ∈ Aq,r,p,K,s(M ) .

In this case, strong anchoring conditions are correspondingly defined in terms of the
graph boundary current ∂Gu as in the previous section.

Corollary 6.4. Let C , u0, and ν0 as above. Assume that competitors (u, V, ζ, ν)
in Aq,r,p,K,s(M ) have finite energy F (u, V, ζ, ν) and satisfy prescribed boundary,
clamping, and confinement conditions, with C a non-empty set. Then, the energy
minimum of F (u, V, ζ, ν) is attained in the same class.

6.2. The SBV case. The through-the-thickness descriptor of the material mi-
crostructure ν might jump across the crack margins. So it could be natural to consider
ν : Ω→M as a special function of bounded variation. However, in this case we do not
have at disposal a lower semicontinuity result for manifold-valued BV -maps. Then,
we restrict ourselves to consider just the total variation of ν distributional derivative
among the energy entries and base the pertinent analyses on the closure-compactness
theorem proven in reference [4].

The class of Sobolev maps ν ∈ W 1,s(Ω,M ) can be equivalently defined in terms
of post-composition with Lipschitz functions ϕ : M → R. By letting

F̂ := {ϕ ∈ Lip(M ,R) | Lip(ϕ) ≤ 1}

one requires ν ∈ Ls(Ω,M ) and the existence of a non-negative function φ ∈ Ls(Ω)

such that ϕ ◦ ν ∈ W 1,s(Ω) and ‖∇(ϕ ◦ ν)‖Ls(Ω) ≤ ‖φ‖Ls(Ω) for every ϕ ∈ F̂ . The
optimal function φ ∈ Ls(Ω), which satisfies the previous inequality independently of

ϕ ∈ F̂ , agrees Lm-essentially with the function |Dν| previously considered.
A summable map ν ∈ L1(Ω,M ) is said to be a function of bounded variation in

BV (Ω,M ) if there exists a finite Borel measure µ in Ω such that the total variation
of the distributional derivative D(ϕ ◦ ν) is bounded by µ, i.e., |D(ϕ ◦ ν)|(B) ≤ µ(B)

for every Borel set B ⊂ Ω and every ϕ ∈ F̂ . The least measure µ satisfying such a
property is denoted by |Dν| (see reference [4] for further details).

If ν ∈ BV (Ω,M ), the countably (m − 1)-rectifiable jump set S(ν) is defined in
terms of the jump sets of the BV functions ϕ ◦ ν, for a suitable countable set of

functions ϕ ∈ F̂ . The one-sided limits ν±(x) are correspondingly defined at H m−1-
a.e. x ∈ S(ν), once the H m−1-measurable unit normal nν(x) to S(ν) is fixed, as
the manifold elements z± ∈ M such that the set {y ∈ Ω | dM (ν(y), z±) > ε , 〈y −
x,±nν(x)〉 > 0} has 0-density at x for any ε > 0.

In a similar way, we define a non-negative function |∇ν| ∈ L1(Ω) in terms of
sup |∇(ϕ ◦ ν)|, where ∇(ϕ ◦ ν) denotes the approximate gradient of the BV function
ϕ ◦ ν. Then, |∇ν| agrees with the Radon-Nikodym derivative of |Dν| with respect to
Lm Ω so that for Lm-a.e. x ∈ Ω we compute the approximate limit

ap lim
y→x

dM (ν(y), ν(x))

|y − x|
= |∇ν|(x) .
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A function ν ∈ BV (Ω,M ) is said to be a special function of bounded variation if

ϕ ◦ ν ∈ SBV (Ω) for every ϕ ∈ F̂ . If ν ∈ SBV (Ω,M ), for every Borel set B ⊂ Ω we
get the decomposition formula

|Dν|(B) =

∫
B

|∇ν| dx+

∫
B∩S(ν)

dM (ν+, ν−) dH m−1 .

Theorem 6.5 ([4]). For K ⊂ M a compact set, consider {νh} ⊂ SBV (Ω,M )
such that νh(Ω) ⊂ K for every h. If for some exponent s > 1

(6.4) sup
h

(∫
Ω

|∇νh|s dx+

∫
S(νh)

(
1 + dM (ν+

h , ν
−
h )
)
dH m−1

)
<∞,

there exists a (not relabeled) subsequence of {νh} converging Lm-a.e. in Ω to some
ν ∈ SBV (Ω,M ), and such that∫

Ω

|∇ν|s dx ≤ lim inf
h→∞

∫
Ω

|∇νh|s dx∫
S(ν)

dM (ν+, ν−) dH m−1 ≤ lim inf
h→∞

∫
S(νh)

dM (ν+
h , ν

−
h ) dH m−1 .

In the case considered here, we take first q > 2, r, p, s > 1, K > 0. Then, we
consider a compact set K in M , where M = (M n, g) is given as above. We say

that (u, ζ, V, ν) ∈ Ãq,r,p,K,s,K (M ) if the triplet (u, ζ, V ) belongs to the class Aq,r,p,K

previously introduced and ν ∈ SBV (Ω,M ) satisfies the following relations:
1. ν(Ω) ⊂ K with |∇ν| ∈ Ls(Ω), and
2. H 1 S(ν) ≤ µV .

Assumption 1. is of technical nature, whereas 2. means that ν jumps only over
the fracture.

Thus, we consider the energy to be

(6.5) F̃ (u, ζ, V, ν) :=

∫
Ω

e(x, u, ζ, ν,∇u,∇ζ, |∇ν|) dx+‖V ‖+

∫
G1(Ω)

‖A‖p dV +‖∂V ‖ .

The density e : Ω× R3 × R3 ×M ×M3×2 ×M3×2 × R→ R ∪ {+∞} is such that

(6.6) e(x, u, ζ, ν, F,G,N) = ẽ(x, u, ζ, ν, F ) + β1|G|q + β3|N |s

for every (x, u, ζ, ν, F,G,N) ∈ Ω×R3 ×R3 ×M ×M3×2 ×M3×2 ×R, where β1 > 0,
β3 > 0, and the first addendum is a non-negative Carathéodory function satisfying
the properties (a’) and (b’) above introduced when ν ∈W 1,s(Ω,M ).

Theorem 6.6. The minimum of the energy functional F̃ (u, ζ, V, ν) given by (6.5)

is attained in the class Ãq,r,p,K,s,K (M ).

Proof. Take a minimizing sequence {(uh, ζh, V (h), νh)} ⊂ Ãq,r,p,K,s,K (M ). Since
H 1 S(νh) ≤ µV (h) and νh(Ω) ⊂ K for each h, we have dM (ν+

h , ν
−
h ) ≤ c(K ) < ∞

for H 1-a.e. x ∈ S(νh) and for each h, where c(K ) is a real constant. Therefore, since
β3 > 0 in formula (6.6), the uniform bound (6.4) holds and we can apply Theorem 6.2.
The proof then goes along the same path followed in Theorem 4.3. Also, the limit
point ν ∈ SBV (Ω,M ) satisfies conditions 1.-2. We omit further details.
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Under prescribed Dirichlet or strong anchoring conditions for the triplets (u, V, ζ)
as given in previous section, if the corresponding class of competitors (u, V, ζ, ν) in

Ãq,r,p,K,s,K (M ) with finite energy (6.5) is non-empty, the energy attains its minimum
in the same class. Notice that a Dirichlet condition on the through-the-thickness
descriptor ν is not preserved by the weak convergence in Theorem 6.2.

Remark 6.1. In order to consider cohesive effects instead of looking at brittle

fracture, as we have done here so far, we could add to the energy F̃ (u, ζ, V, ν), with
density (6.6), a term of the type

ν 7→ β4

∫
S(ν)

δM (ν+, ν−) dH 1 , β4 ≥ 0 .

On the other hand, a term of the type∫
S(ν)

g(ν+, ν−,nν) dH m−1 ,

with g : Rn × Rn × Sm−1 → [0,+∞) a suitable “jointly-convex” function is presently
hard to be treated when we consider M as intrinsic manifold not necessarily coinciding
with a linear space.

Remark 6.2. Finally, a lower semicontinuity result necessary to analyze the SBV
case when Dν enters the energy density instead of its total variation could perhaps be
reached by adopting techniques presented in reference [31]. However, we do not tackle
the problem here, leaving it open.

Remark 6.3. Our analysis does not exclude that distant portions of the shell
might interpenetrate. Avoiding it would require to account for the shell thickness and
to prescribe a pertinent bound involving it. We leave the analysis to a further ongoing
work.
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