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Orthogonal proteogenomic analysis
identifies the druggable PA2G4-MYC axis in
3q26 AML

Matteo Marchesini1,2,3, Andrea Gherli 1,2,14, Elisa Simoncini 1,2,14,
Lucas Moron Dalla Tor 1,2,14, Anna Montanaro1,2, Natthakan Thongon4,
Federica Vento2,5, Chiara Liverani3, Elisa Cerretani 2,5, Anna D’Antuono 1,2,
Luca Pagliaro 1,2,6, Raffaella Zamponi1,2, Chiara Spadazzi3, Elena Follini7,
Benedetta Cambò6, Mariateresa Giaimo 1,2,6, Angela Falco1,
Gabriella Sammarelli6, Giannalisa Todaro6, Sabrina Bonomini6, Valentina Adami8,
Silvano Piazza 8,9, Claudia Corbo 10,11, Bruno Lorusso 1,
Federica Mezzasoma 12, Costanza Anna Maria Lagrasta1,
Maria PaolaMartelli 12, Roberta La Starza12, Antonio Cuneo5,13, Franco Aversa,15,
Cristina Mecucci 12, Federico Quaini 1, Simona Colla 4 &
Giovanni Roti 1,2,6

Theoverexpressionof the ecotropic viral integration site-1 gene (EVI1/MECOM)
marks the most lethal acute myeloid leukemia (AML) subgroup carrying
chromosome 3q26 abnormalities. By taking advantage of the intersectionality
of high-throughput cell-based and gene expression screens selective and pan-
histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1.
To understand the mechanism driving on-target anti-leukemia activity of this
compound class, herewe dissect the expression dynamics of the bonemarrow
leukemia cells of patients treated with HDACi and reconstitute the EVI1
chromatin-associated co-transcriptional complex merging on the role of
proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues
AML cells from the inhibitory effects of HDACis, while genetic and small
molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in
patient-derived leukemia xenografts. This study positions PA2G4 at the
crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and
urges the use of HDACis-based combination therapies in patients with
3q26 AML.

In the last two decades, access to rapidly evolving molecular tech-
nologies has dramatically changed the treatment landscape for
patients with acute leukemia. Although an increased understanding of
the genomic underpinnings of hematopoietic malignancies has led to
targeted approaches, especially formutated kinases, little progresshas
beenmade in (i) highly aggressive and rare subgroups, (ii) relapsed and

refractory disease, and (iii) leukemia subtypes driven by aberrantly
activated transcription factors (TFs).

While TFs have been considered “undruggable” for decades,
emerging or improved approaches targeting the modulation of TF
activity or expression levels, TF trafficking, and nucleus positioning, or
accelerating TF degradation through proteolysis targeting chimeras
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have repositioned this unique class of drug targets among the most
desired cancer therapeutics1,2. Several of these approaches showed
promising preclinical activity, and a few have been translated into
clinical applicationsor clinical trials, paving theway for transcriptional-
based therapy in cancer.

The acute myeloid leukemia (AML) model that carries a 3q26
defect such as the inv(3)(q21q26), t(3;3)(q21;q26), ins(3;3)
(q26;q21q26), t(3;8)(q26;q24), and t(3;21)(q26;q22) involving the TF
Ecotropic Virus Integration EVI1 [MDS and EVI1 complex locus
(MECOM)]3 in the 3q26 locus exemplifies aggressiveness, with the
poorest overall survival (OS) and refractoriness against conventional
chemotherapy4,5.

While 3q26 AMLs have been identified as a distinct subgroup of
AML4,6–9, little has been done to improve their clinical outcome. Most
patientswith 3q26 abnormalities aremisdiagnosed10 and treatedwith a
cytarabine (ara-C) and anthracycline-based protocol11, despite early
evidence that they do not experience a response to cytotoxic drugs12,13

or myeloablative allogeneic hematopoietic stem cell (HSC)
transplantation14. However, targeted repression of EVI1 based on small
molecule, epigenetic, and metabolic approaches impairs leukemia
progression in preclinical cancer models, suggesting that EVI1 repre-
sents a cancer dependency and a tumor biomarker for high-risk
AML15–17. While these approaches are promising, efforts to optimize
EVI1 suppression for clinical translation are still underway.

Here, we identify a druggable mediator of HDACis response in
3q26 AML and mechanistically demonstrate evidence of targeted
suppression of EVI1using phenotypic and genome-based in silico small
molecule screen approaches and a proteomic analysis of the EVI1
chromatin complex in preclinical-3q26-leukemia-models and leukemia
patients.

Results
Identification of small molecules modulating EVI1
We performed a phenotypic screen focusing on antiproliferative
agents in parallel with a gene-expression-based screen approach to
identifymolecules that impair cell proliferation by suppressing an EVI1
signature (Fig. 1A) in AML cells overexpressing EVI1 (EVI1High). We
screened 5292 drugs or drug-like small molecules, including natural
derivative compounds in the human 3q26 EVI1High AML cell lines
MOLM1 and UCSD/AML1 carrying the chromosome recombinations
inv(3)(q21.3q26.2) and t(3;3)(q21.3;q26.2), respectively (Supplemen-
tary Data 1). The effect of compound treatment was normally dis-
tributed, and the majority of the compounds did not impair cell
viability (Supplementary Fig. 1A, B). Plate-specific spatial biases did not
affect the experimental screeningdata (Supplementary Fig. 1C), except
for differences due to cell lines. We scored compounds based on their
ability to suppress proliferation compared to vehicle controls (ΔPOC).
We selected 228 (95th percentile) small molecules to pursue further
based on ΔPOC inhibition (Fig. 1B). Among top-scoring hits, with the
potential for clinical translation, histone deacetylase inhibitors (HDA-
Cis), proteasome modulators, topoisomerase and protein kinase
inhibitors reduced the growth of EVI1High AML by 90% (Fig. 1C). Of
these, 40 small molecules with the highest ΔPOC index (>84%,
Adj.P ≤ 2 × 10−33) (Supplementary Data 1) were counter-screened in an
additional t(3;3)(q21.3;q26.2) EVI1High AML cell line (HNT34) and two
not-translocated (EVI1Low) AML cell lines, NOMO1 (KRASG13D) and THP1
(NRASG12D); these were selected because they carry mutations in the
RAS signaling18 as in 3q26 AMLs. The HDACis AR-42, belinostat, tri-
chostatin A, and entinostat preferentially affect the proliferation of
EVI1High AML cells compared to EVI1Low, suggesting that EVI1 sensitizes
3q26 AML cells to HDACi-mediated cytotoxicity (Supplemen-
tary Fig. 1D).

We redefined an EVI1 transcriptional signature from genome-wide
expression profiling of EVI1High AML (TF1) transduced with an siRNA
targeting EVI119. We obtained a set of 1428 modulated genes (P ≤0.05

by the two-sided Student’s t-test) and selected the top 100 up- or
down-regulated genes, ranked by the signal-to-noise ratio, to define an
EVI1 “On” versus an “Off” state (Supplementary Fig. 2A). We then
interrogated publicly available large-scale chemical and genetic per-
turbation datasets (https://clue.io/cmap)20 to identify small molecules
thatmimic EVI1 transcriptional suppression. HDACis ranked on the top
of the hit list were associated with the EVI1 “Off” status (Fig. 1D and
Supplementary Data 1). Most (56.2%) of the HDACis sampled in the
CMap libraries scored among the top 250 hits (P =0.0006, Fig. 1E).
However, because HDACis are overrepresented in small molecule
libraries compared to other classes, we determinedwhether the size of
the compound class (n = 32) interfered with our result. Compound
classes with similar or higher representation, such as histamine
(n = 52), glucocorticoid, (n = 47), or acetylcholine receptor antagonists
(n = 66), did not show significant enrichment with an EVI1 “Off “ status
(Supplementary Fig. 2B). Consistently, a tertiary screen of 4942 small
molecules confirmed the potent antiproliferative activity of HDACis
compared to non EVI1 “Off” inducers (Supplementary Fig. 2C) in
TF1 cells.

To validate data derived from the analysis of published datasets19,
we downregulated EVI1by shRNA inHNT34 cells and detected changes
in RNA abundancewithmore than 2224 transcripts changing from log2
fold ≥ 2 (false discovery rate (FDR) ≤0.01) (Supplementary Fig. 2D).
The overlap between EVI1-regulated gene signatures in HNT34 and
EVI1-dependent genes in TF1 (Supplementary Fig. 2E) indicates their
appropriateness for additional gene-expression-based in silico drug
screening approaches. Projection of the HNT34 signature onto the
LINCS L100021 dataset space demonstrated that transcriptional chan-
ges associated with an EVI1 “Off” status mimic and match HDACis sig-
natures (Fig. 1F, Supplementary Fig. 2F, G and Supplementary Data 1).
The suppression of an EVI1-transcriptional program due to HDAC
perturbation was also replicated in a separate dataset derived from
AML cell lines distinguished based on their 3q26 status (Fig. 1F, Sup-
plementary Fig. 2F, G and Supplementary Data 1)15.

Taken together, these data suggest that HDACis inhibit 3q26 AML
cell proliferation andmodulate EVI1, supporting their investigation as a
targeted approach in 3q26 AMLs.

HDACis suppress 3q26 AML growth
To set conditions for validating our results, we confirmed the
expression of EVI1 and ΔEVI1 protein isoforms22 in the 3q26 EVI1High

AML cell lines (Fig. 2A, B) and demonstrated the dependency of these
cells on EVI1 expression (Fig. 2C–E, Supplementary Fig. 3A–C). Sup-
pression of EVI1 abrogates the growth and the clonogenic capacity of
EVI1High AML (Fig. 2E, F and Supplementary Fig. 3C, D).

We then selected a panel of molecules with pan (AR-42, belinostat)
or selective (entinostat, class 1/2)HDAC inhibitory activity basedon their
potential in clinical translation in high-risk-AML. AR-42 (ΔPOC=99.54;
Adj.P= 1.51 × 10−34) has been investigated in clinical trials for the
treatment of hematologic malignancies (e.g. NCT01129193 and
NCT02569320); belinostat (also known as PXD101, ΔPOC=98.14;
Adj.P= 1.51 × 10−34) has been approved for cutaneous of T-cell
lymphoma23; and entinostat (ΔPOC=87.43; Adj.P= 7.55 × 10−34) has
been tested in myeloid malignancies, irrespective of the genetic status
(e.g. NCT00313586 and NCT01159301)24. All molecules displayed half-
maximal inhibitory concentrations (IC50) within the low micromolar
range: AR-42 from0.221μMto0.438μM(0.329 ±0.153), belinostat from
0.379μM to 0.951μM (0.665 ± 0.404), and entinostat from 0.812μM to
1.686μM(1.249±0.618) (Fig. 2G). TreatmentwithHDACis also induceda
dose-dependent increase in apoptosis (Fig. 2H, I and Supplementary
Fig. 3E, F), and suppressed blast colony formation (Fig. 2J, K).

EVI1 sensitizes 3q26 AML to HDAC-mediated suppression
To testwhether the effects ofHDACisweredue to EVI1 suppression,we
treated EVI1High AML cell lines with AR-42, belinostat, and entinostat
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and observed a loss of EVI1 both at transcriptional and protein level. In
contrast, cleaved caspase 3 was regulated in the opposite direction,
consistent with the apoptosis data presented above (Fig. 3A, B and
Supplementary Fig. 4A).

To further assess whether EVI1 sensitizes AML cells to HDAC
inhibition, we leveraged an EVI1-inducible leukemia model25.
U937T cells that conditionally expressed the full-length isoformof EVI1

under the control of the tetracycline promoter were grown in the
presence (EVI1 “Off”) or absence of tetracycline (EVI1 “On”). EVI1
expression was observed 24hr after tetracycline removal (Fig. 3C and
Supplementary Fig. 4B). U937T (E10 clone) were then treated with AR-
42, belinostat, and entinostat in a 2-fold dilution series for three
additional days. Despite a growth difference between U937T “On” or
“Off” (Supplementary Fig. 4C), cells grown in the absence of
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tetracycline, with the highest EVI1 expression, were more sensitive to
the effects of HDACis (Fig. 3D). EVI1High and EVI1Low U937T were equally
sensitive to ara-C, suggesting that the expression of EVI1 preferentially
enhances the HDACi-induced inhibition of cell viability compared to
chemotherapy (Fig. 3D and Supplementary Fig. 4D). Similar results
were obtained in a constitutivemodel of EVI1 expression in HL-60 cells
(Fig. 3E, F and Supplementary Fig. 4E).We then sortedMOLM1 cells by
size, distinguishing EVI1-positive cells with large nuclei and prominent
nucleoli, and EVI1-negative cells, smaller in size with weak or no EVI1
protein expression (Figs. 2B and 3G, H). In this isogenic model HDACi
were more active in MOLM1 EVI1High cells compared to MOLM1 EVI1Low

(Fig. 3I). Consistently, EVI1High (n = 5) and EVI1Low (n = 7) AML cell lines
were equally sensitive to other chemotherapy agents but not to AR-42,
belinostat, and entinostat (Fig. 3J).

In addition, the interaction of 3q26 AML cells with a collagen
substrate in a three-dimensional (3D) porous and cell-permeant cul-
ture system26 (Supplementary Fig. 4F) used tomimic the bonemarrow
microenvironment did not rescue the cytotoxic effect of HDACis.
Here, EVI1High cells aggregate in niche-like structures similar to AML
clusters in the bone marrow stroma, retain EVI1 expression, and grow
with a doubling time of ∼6 days (Supplementary Fig. 4G–I). EVI1High

cells cultured in biomimetic 3D collagen scaffolds develop resistance
to ara-C but not to HDACis, suggesting that cell-extrinsic mechanisms
of acquired resistance to chemotherapy agents can be overcome by
targeting EVI1 in 3q26 AML (Supplementary Fig. 4J).

Collectively, these data demonstrate that EVI1 expression in 3q26
AML sensitizes cells to HDAC inhibition, providing a rationale for
translating these molecules in clinical practice.

HDACis suppress EVI1 in patients with 3q26 AML
Since January 2017, we have admitted five patients to our hospital
affected by AML carrying 3q26 abnormalities and collected six addi-
tional samples from different institutions (PR#001-009 and PR#023-
024). Four out eleven patients had atypical 3q26 rearrangements
(PR#001, PR#004, PR#005, and PR#024) (Supplementary Fig. 5A and
Supplementary Data 2). Sequencing and cytogenetic analyses con-
firmed a high frequency of RASmutations27 (63.6%mutated in KRAS or
NRAS) and monosomy of chromosome 7 (63.6%) compared to non-
rearranged cases (PR#010-022 and PR#025-039) (Supplementary
Fig. 5B and Supplementary Data 2). All patients carrying 3q26
abnormalities presented severe clinical conditions and experienced
disease relapse after multiple lines of chemotherapy or HSCT (Sup-
plementary Data 2). In primary AMLblasts, suitable for ex vivo studies,
AR-42, belinostat, and entinostat inhibited cell viability in 2D and 3D
models (Fig. 4A, B and Supplementary Fig. 6A). 3q26 AML cells col-
lected from clinical samples (n = 9) were more sensitive to HDAC
suppression than were other AML subtypes (n = 28) and equally
responsive to chemotherapy agents in vitro (Fig. 4C). For samples with
adequate cells for additional tests, EVI1 expression was almost unde-
tectable after 24 hr of HDACis treatment, consistent with the dis-
appearance from the nucleus, and inversely correlated with the

increase of cleaved caspase 3 (Fig. 4D–F). Importantly, ara-C did not
cause significant changes in EVI1 nuclear protein abundance (Fig. 4E, F
and Supplementary Fig. 6B).

Three patients (PR#001, PR#002, and PR#003) were enrolled in a
compassionate use program that tested azacitidine at 50mg/m2 (days
1–10) and entinostat 4mg/m2 (days 3 and 10), every 28 days. This
schedule was approved in the NCT00101179 clinical trial for AML or
myelodysplastic syndromes28. Two patients received standard support
or chemotherapy (PR#004 and PR#005); the remaining were treated
in a different hospital. Themean survival duration of patients receiving
an entinostat-based regimen was 20.3 months without significant
organ toxicity compared to 4.5months for those receiving standard of
care (Supplementary Fig. 6C, D and Supplementary Data 2).

Leveraging previous studies describing the pharmacokinetics
properties of entinostat29, we also demonstrated that EVI1 protein
levels markedly decrease in circulating AML blasts following 4mg/m2

of entinostat compared to ara-C both in treated patients (Fig. 4G) or in
the matched 3q26 PDLX models (Supplementary Fig. 6E).

In summary, these data support the idea of testing HDACi-based
combination therapy in patients with 3q26 AML in randomized clinical
trials and suggest the use of EVI1 as a potential biomarker of response
to epigenetic treatment or resistance to standard of care (Fig. 4H) in
patients with EVI1-dependent leukemia.

EVI1 inhibition modulates the Myc transcriptional program
We then hypothesized that the preferential activity of HDACis in
3q26 AML may be related to the impaired function of the EVI1 co-
transcriptional complex. We profiled EVI1High AML cell lines after
16 hr of treatment with AR-42 (0.5 μM and 1.0 μM, respectively) and
entinostat (2 μM and 4 μM, respectively) by mRNA and ChIP-Seq.
Consistent with the role of HDAC in chromatin-dependent tran-
scriptional regulation, there was a preponderance of up-regulated
genes (1309) versus down-regulated genes (107) (Supplementary
Fig. 7A and Supplementary Data 3). To assess the effects of HDACis
on the transcriptional programs regulated by EVI1, we interrogated
our data with four well-validated gene signatures for statistically
significant enrichment by single-sample gene set enrichment ana-
lysis (ssGSEA)30. We incorporated the following databases: Mole-
cular Signatures Database (MSigDB) of 50 gene sets, Elsevier of 1721
gene sets, Kyoto Encyclopedia of Genes and Genomes (KEGG) of
308 gene sets, and BioPlanet datasets of 1510 gene sets (Supple-
mentary Data 3). In each database, we combined EVI1High datasets
derived from the analysis of EVI1 upregulated signatures in primary
myeloid leukemias cells carrying 3q26 abnormalities (GSE14468,
GSE134589)31,32. Next, we determinedwhether any of the gene sets in
our selected collection were significantly enriched in EVI1High AML
treated with DMSO (control) compared to those treated with
HDACis. Data from the four databases revealed that treated samples
were strongly correlated with signatures associated with the mod-
ulation of MYC oncogene (Fig. 5A, Supplementary Fig. 7B and Sup-
plementary Data 3).

Fig. 1 | Identification of EVI1 modulators from the intersection of phenotypic
and genome-based approaches. A Identification of EVI1 “Off” modulators by the
integration of phenotypic and in silico gene-expression-based screen approaches.
B Circos plot summarizing primary small molecule screening in EVI1High AML cell
lines. The heatmap at the external circle shows the normalized percentage of cell
death (ΔPOC) for the 95th percentile for the compounds tested. The middle circos
shows the compound libraries: i) Spectrum Collection (n = 1914); ii) the anti-cancer
compound library (n = 343); and iii) the NDL-3000 library (n = 3035). The inner plot
shows a hierarchical cluster of top candidates’ scalarfingerprints (SMILE), basedon
the Tanimoto similarity metric. C Dot plot showing the effects of the compound
tested (n = 5292), ranked based on ΔPOC. The yellow area indicates the 95th per-
centile. HDAC inhibitors (HDACis) are labeled in red. D Rank-score log-scale plots
for HDACis (n = 32), histamine (n = 52), glucocorticoid (n = 47), and acetylcholine

receptor antagonists (n = 66). In black, the number of perturbagenes inferred in the
connectivity map of which 2836 are small molecules. Compounds of interest are
color-coded and expressed as a percentage relative to the entire library. E Bar plot
showing the HDACis (in red) ranking in the ConnectivityMap20 dataset. The tau
score represents the level of similarity to the EVI1 “On” or “Off” status. F L1000FWD
fireworks visualization of drug-induced signatures mimicking and reversing the
differential gene expression signature generated from EVI1-silenced HNT34 (left)
and from EVI1High (n = 5) or EVI1Low (n = 2) AML cell lines contained in the E-MTAB-
2225 dataset (right). Aquamarine circles indicate small molecules causing a reverse
signature EVI1 “Off”. Light violet circles indicate small molecules mimicking a sig-
nature EVI1 “On”. HDACis drug-induced signatures are indicated in green over-
lapping with aquamarine circles. See also Supplementary Fig. 1-2 and
Supplementary Data 1.
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We then set up a longitudinal study and profiled bone marrow
cells of PR#002 by single-cell RNA sequencing (scRNASeq) before and
after four cycles of azacitidine and entinostat (Supplementary Data 3).
A cluster dimensional analysis revealed 18 groups of transcriptionally
distinct cell populations, among which 15 were represented in both
samples (Fig. 5B and Supplementary Data 3). After treatment, we
observed a reduction of the more undifferentiated myeloid

compartment and a stimulatory effect, as seen before with HDACis33,
on the immune system cells (Supplementary Fig. 7C).

Next, we computed a score based on the combined expression
of the patients’ leukemic markers (CD34, KIT, CD33, ANPEP, CD38,
CD7, NCAM1, CD4, CD19, DNTT, ITGB3, HLA-DRA, HLA-DRB1, and
HLA-DRB5) using UCell34 and identified the leukemic population (LP)
in the PR#002 clone as the group of cells with score >0.2. This
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population accounts for 29.5% of the sample and is predominantly
composed of hematopoietic stem cells (HSCs) (61.4%) and lympho-
myeloid primed progenitor (LMPP) (31.6%) cell types. After therapy,
LP decreased to 3.1% while maintaining a similar proportion of the
cluster distribution (70.7% HSCs and 20.2% LMPP) if compared with
the sample before treatment (Fig. 5C, Supplementary Fig. 7D and
Supplementary Data 3).

In HSCs, LMPP, or LP cells, highly expressed genes are corre-
lated with Myc-associated gene sets, suggesting an inhibitory effect
on Myc signaling after azacitidine and entinostat treatment in
human 3q26 AML (Fig. 5D, Supplementary Fig. 7E and Supplemen-
tary Data 3). Consistently, we observed a reduction in MYC
expression in the leukemic cells in the bonemarrow of PR#002 after
two cycles of azacitidine and entinostat (Fig. 5E). Perhaps it was not
surprising that genetic or HDACi-mediated suppression of EVI1 led
to a decrement of MYC in ex vivo EVI1High AML patient blasts and cell
lines (Fig. 5F, Supplementary Fig. 7F, G). This result is consistent
with ChIP-Seq findings that reveal a biding of EVI1 at the MYC pro-
moter locus markerd by acetylated histone H3K27 (H3K27Ac). This
pattern is significantly diminished following treatment with HDACis
(Supplementary Fig. 7H).

Next, we asked whether azacitidine contributed to the clinical
response seen in 3q26 AML patients and whether azacitidine played a
part in the observed phenotypes. Then, we recapitulated our clinical
protocol testing azacitidine and entinostat in a 3q26 PDLX model. We
showed that entinostat controls proliferation, EVI1 modulation and a
Myc signalingofPDLX_PR#008LP (Fig. 5G-I and Supplementary Fig. 7I)
with minimal contribution from azacitidine (Fig. 5J–L).

Finally, to exclude a direct effect of HDACis on MYC as pre-
viously reported for other cancers35–37 we compared the effects of
AR-42, belinostat and entinostat in AML MYCHigh versus MYCLow

(Supplementary Fig. 8A, B) or by overexpressing MYC in the U937T
inducible model (Supplementary Fig. 8C, D). Differently from EVI1,
in these models MYC did not render cells more sensitive to HDAC
inhibition whereas, as expected, it exhibited this effect for JQ-1, a
potent repressor of MYC superenhancers (Supplementary
Fig. 8E, F)38. While we cannot exclude an effect of azacitidine on the
leukemia response in humans, these results suggest that an HDAC
epigenetic-based therapy limits Myc pathways in 3q26 AML and that
azacitidine-based protocols may not be as effective in 3q26 AML as
they are in other AML subgroups.

PA2G4 bridges EVI1 with Myc signaling
To prioritize any significant pathway scored by ssGSEA, we dissected
the EVI1 chromatin-associated complex by rapid immunoprecipitation
mass spectrometry (MS) of endogenous proteins (RIME)39. We per-
formed these experiments in UCSD/AML1 and HNT34 cell lines and
cells derived from the PDLX_PR#003 model. This model retained the
parental t(3;3)(q21.3;q26.2) and EVI1 expression in the tumor mass
(Supplementary Fig. 9A, B).We identified 107 EVI1-interacting proteins
in HNT34 cells, 117 in UCSD/AML1, and 155 in the PDLX model sample

(Fig. 6A). Sixty-nine were common in all samples (Supplementary
Fig. 9C and Supplementary Data 4). Among EVI1 protein partners, we
found that translation-related proteins were represented prominently,
as well as translational initiating factors (1), ribosomal proteins (47)
and RNA binding factors (2), transcription factors (2), histones (2), and
DNA and RNA processing proteins (4). A small group of proteins with
heterogeneous functions (CENPV, RPN1, FBL, SND1, PARP1, PA2G4,
PABPC1, RACK1, MTDH, and ESYT1) was also recovered. In addition,
EVI1 partners identified by stable isotope–labeling amino acids in cell
culture-based quantitative proteomics, such as PARP1, XRCC5, RPS19,
and H2AZ40 (Supplementary Data 4), were also identified by our
approach.

We intersected the 69 hits with the enriched genes scored by
ssGSEA. Eleven of the 69 RIME targets were represented in the MYC
Target V1 pathway. In all other instances, the intersection resulted in
two or fewer hits, suggesting that EVI1 and Myc signaling share co-
regulators in their transcriptional machinery (Supplementary Fig. 9D
and Supplementary Data 4). Ten out eleven these proteins were con-
firmed by repating the analysis of MS RIME data with a label-free
quantification (LFQ) approach (Supplementary Fig. 9E and Supple-
mentary Data 4). A difference in EVI1-dependent transcriptional reg-
ulation was demonstrated with HDACis in only 3 of 11 common hits:
Fibrillarin (FBL: log2 fold change = −0.74, Adj.P = 0.017), nucleolar RNA
helicase 2 (DDX21: log2 fold change = −0.69, Adj.P = 0.006), and,
proliferation-associated 2G4 (PA2G4: log2 fold change = −1.45, Adj.P =
1.34 × 10−06) (Fig. 6B, C and Supplementary Data 3) that was retained
for validation since, in our model, PA2G4 interacts with EVI1 (Fig. 6A
and Supplementary Fig. 9F, G) and is transcriptionally repressed by
HDACis treatment (Supplementary Fig. 9H).

PA2G4 is involved in protein translation, cell cycle
progression41–43, and a cancer-druggable feed-forward transcrip-
tional regulator of MYCN in neuroblastoma44. Similarly, PA2G4 is
positively correlated with MYC expression in AML primary datasets
(GSE14468, n = 524 and GSE134589, n = 672; Supplementary
Fig. 9I)45,46 and interestingly, both EVI1 and MYC occupy the pro-
moter region upstream PA2G4 transcription site (Supplementary
Fig. 9J), suggesting that these genes are required for PA2G4 control
in 3q26 leukemia (Fig. 6B).

We next addressed whether the effect of HDACis on EVI1 was at
least partly related to PA2G4 and showed that PA2G4 knockout abro-
gates EVI1 and consequently MYC protein (Fig. 6D); it then prevents
the growth and formation of colonies in 3q26 AML (Supplementary
Fig. 10A, B). Conversely, the overexpression of PA2G4 increased EVI1
and MYC protein levels (Fig. 6E and Supplementary Fig. 10C) and
partially rescued AML cells from the apoptotic effect of HDAC inhibi-
tion (Fig. 6F), suggesting that PA2G4 is a putative mediator of HDAC
inhibition.

Because genetic loss of PA2G4 occurs in the absence of tran-
scriptional regulation of EVI1 or MYC (Fig. 6G), we speculated that
PA2G4 protects EVI1 from proteasome degradation, as seen for MYCN
in neuroblastoma44. Consistently, MG132 treatment partially rescues

Fig. 2 | Validation of HDACis as EVI1modulators. A EVI1 and ΔEVI1 expression in
EVI1High AML cell lines (n = 3 biological replicates).BNuclear localization expression
of EVI1 (in red) detected by immunofluorescence (IF) in EVI1High AML cell lines (n = 3
biological replicates). Cell nuclei were stained with DAPI (blue), scale bar: 10 µm.
C EVI1 and ΔEVI1 expression in TF1 cells 6 days after shRNA transduction.
D Percentage of EVI1mRNA relative to the control gene RPL13A (ΔΔCT) in TF1 cells
6 days after shRNA transduction. E Effect of EVI1 loss in TF1 cells at three or six days
after shRNA selection on cell proliferation. F Effect of shRNA-directed EVI1 loss in
the ability of TF1 to form colonies in methylcellulose compared to NT (n = 2 bio-
logical replicates). Scale bar: 1000 µm. The histogram on the right shows the mean
number of colonies per field 20 days after plating cells. NT = non-targeting, sh#16
and sh#87 = shRNA directed against EVI1 (C–F). G Effect of AR-42, belinostat, and
entinostat on cell viability in EVI1High cell lines following 72 hours (hr) of treatment.

HAnnexin V/propidium iodide (PI) staining after 72 hr of HDACis treatment. Events
≥ 20,000. I Apoptotic fold increase, expressed as a percentage of annexin
V-positive cells relative to vehicle control. J Effect of HDACis on the ability of 3q26
AML cell lines to form colonies inmethylcellulose. Representative images of UCSD/
AML1 treated with vehicle (DMSO), 0.5 µM AR-42, 0.5 µM belinostat, and 0.5 µM
entinostat (n = 3 biological replicates). Scale bar: 1000 µm. K The histogram shows
the mean number of colonies per field 20 days after plating cells (n = 3 biological
replicates). Statistical significance among groups was determined by one-way
(D, K) or two-way (E) ANOVA using Tukey’s correction for multiple comparison
testing. Data are presented asmean ± standard deviation (SD) inD (n = 3), E (n = 4),
F (n = 10 fields per condition), G (n = 2), and K (n = 10 fields per condition). Source
data are provided as a Source Data file. See also Supplementary Fig. 3.
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the EVI1 level in 3q26 AML cell lines (Fig. 6H and Supplementary
Fig. 10D), suggesting that PA2G4 acts as a scaffolding protein for EVI1
transcriptional complex.

Taken together, our data suggest that PA2G4 bridges EVI1 toMYC
and supports the disruption of this protein to diminish their respective
oncogenic signals in this leukemia subtype.

Selective PA2G4 inhibitor WS6 depletes EVI1 and MYC signaling
and blocks 3q26 AML in vivo
The selective PA2G4 inhibitor, WS6, was recently identified on high-
throughput screening for inducers of β pancreatic islet cells47. WS6 is a
dyarilurea compound that interferes with PA2G4-MYCN binding44.
Given the homology of MYC to MYCN48, we tested this molecule with
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the functional assays described above. WS6 inhibited cell proliferation
greatly in AML EVI1High vs. AML EVI1Low (Figures 7A–C and Supplemen-
tary Fig. 11A) and potentiate the effect of HDACis (Supplementary
Fig. 11B). To exclude the WS6 off-target effect, we demonstrated that
WS6 lacks activity against HDAC in biological assays, as shown by the
comparative quantification of H3K27 acetylation and β-tubulin in
EVI1High-treated AML cell lines (Supplementary Fig. 11C). WS6markedly
decreasedMYC and EVI1 in EVI1High primary blasts and EVI1High AML cell
lines (Fig. 7D and Supplementary Fig. 11D) and consequently their
occupancy at the PA2G4promoter (Supplementary Fig. 9J). Similarly to
HDACis, WS6 diminished EVI1 expression in circulating AML cells in
3q26 PDLX models in vivo (Fig. 7E). WS6 is a tool compound that has
not yet been optimized for continuous systemic delivery; thus, we
tested the tumor-suppressing capacity of thismolecule by treating two
3q26 AML PDLXs (PDLX_PR#003 and PDLX_PR#008)models at 25mg/
kg for 5 days/week for 15 days.Wedemonstrated that IP administration
ofWS6 inhibited LP progression, compared to vehicle-treated control,
traced by hCD45+ (Fig. 7F and Supplementary Fig. 11E) or scRNASeq
quantification (Fig. 7G and Supplementary Fig. 11F). Nomajor toxicities
were seen in treated animals. In addition, EVI1 and MYC protein levels
were diminished in WS6-treated tumors compared to vehicle-treated
control animals (Fig. 7H, Supplementary Fig. 11G), linking growth
inhibition (Ki67) to the suppression of EVI1-MYC.

Taken together, these results demonstrate that PA2G4 is a drug-
gable mediator of EVI1 complex and suggest that PA2G4 inhibitors
should be selectively optimized for clinical applications.

Discussion
Despite recent advancements in the treatment of low- and
intermediate-risk AML by targeting mutationally activated kinases49–51

and newer initial treatment options for a subset of patients52,53, high-
risk AML with recurrent genetic abnormalities, such as inv(3)
(q21.3q26.2) and t(3;3)(q21.3;q26.2) remains a significant clinical chal-
lenge. In these patient subgroups, induction54,55 and maintenance
cytotoxic chemotherapy have consistently failed to show a benefit56.
Patients with 3q26 AML, for example, eventually experience relapse,
even after allogeneic hematopoietic cell transplantation with curative
intent57,58.

In this case, the development of a small molecule that can block
the activity of EVI1 would be an attractive approach59–61. Given this
temporary absence, an alternative is to focus on unbiased strategies,
searching for modulators in one or more leukemogenic steps in the
metabolic, transcriptional, or epigenetic pathways that are aberrantly
activated by EVI1 in 3q26 AML15,17. Closer to clinical translation, the
PARP inhibitor emerged as a transcriptional repressor of EVI1 by
decreasing the interaction frequency between the GATA2 distal
hematopoietic enhancer (G2DHE) and the EVI1 promoter62. However,

the risk of secondary myelodysplastic syndrome and AML in cancer
patients treated with PARP inhibitors such as olaparib and veliparib63

raises concerns about their use inmyeloid leukemia andhematological
malignancies more broadly.

Our strategy was meant to identify clinically ready solutions to
modulate EVI1 in 3q26 AML. Among potential targets, we decided to
validate structurally different pan-HDACis and more selective mole-
cules in various stages of clinical development and subsequently
identified a potential mediator of this response.

The functional interaction of EVI1 with the HDAC complexes was
initially postulated in heterologous cells transfectedwith different EVI1
cDNAs isoforms64–66 or by quantitative proteomics combined with
yeast two-hybrid screens and subsequently validated by coimmuno-
precipitation experiments with endogenous EVI1 in cancer cell lines40.
While collectively, these studies suggest that EVI1 mainly associates
and cooperates with HDAC140,65,66, HDAC240 (class I), or HDAC4 (class
II)67, the number of studies validating EVI1-HDAC co-transcriptional
complex in human 3q26 AML and cancer models is surprisingly low.

Nevertheless, our results for EVI1 expression upon HDACis treat-
ment place this compound class in a fascinating scenario. While
HDACis have been shown to induce histone hyperacetylation, apop-
tosis, and anti-proliferative activities against a wide range of rear-
ranged leukemia cell lines or mouse models preclinically, no
pharmacodynamic demonstrations exist of their target engagement in
AML clinical trials. Further research will be crucial to uncover their
potential as therapeutic agents in 3q26 AML, particularly with the next
generation of selective HDACis.

MYC is broadly altered in AMLs68 and it is an independent prog-
nostic factor in high-risk AMLs, especially those associated with
myelodysplasia-related changes (AML-MRC)69–71. Ottema and collea-
gues recently found that the translocation of theMYC super-enhancer
(SE) leads to EVI1 overexpression in t(3;8)(q26;q24) AML72. This data
suggests that therapeutic approaches that interfere with TFs and co-
activators docking to this prototypical location (SE-EVI1 promoter)
negatively affect EVI1 expression in t(3;8)(q26;q24) or other 3q26
rearranged cases. However, the identification of EVI1 interactome in
AML is still lacking. Previous studies identified potential EVI1 inter-
actors in different tumor types40,73–76 but, given the heterogeneity of
these models, the number of genes overlapping across these approa-
ches is low.

While we confirmed the co-immunoprecipitation of previously
reported putative EVI1 co-regulators, such as PARP1, XRCC5, RPS19,
and H2AZ40, we did not observe enrichment for HDACs or MYC by
RIME. The interaction with the HDAC machinery, and hence the
response to therapy, might be indirect and mediated by different co-
regulatory proteins. We showed that PA2G4 contributes to linking
HDAC response to EVI1 loss and, in turn, to MYC suppression.

Fig. 3 | EVI1 sensitizes AML to HDACis. A EVI1, ΔEVI1, and cleaved caspase 3
expression in 3q26 EVI1High cell lines after 24 hr of treatment with DMSO or HDACis
(n = 2 biological replicates).BRepresentative IF images of EVI1 (red) in 3q26 EVI1High

cell lines (left, n = 3 biological replicates). Cell nuclei were stained with DAPI (blue),
scale bar: 100 µm. Right: fluorescence intensity of nuclear EVI1 content in 3q26
EVI1High AML cell lines after 24 hr of treatment. C IF images of U937T_E10 cells
cultured in the presence (EVI1Low, top panel) or absence (EVI1High, bottom panel) of
tetracycline, incubated with an anti-EVI1 (red) antibody (n = 2 biological replicates).
Nuclei in blue (DAPI). Scale bar: 100 µm. D Effect of HDACis and ara-C on cell
viability after 72 hr of treatment in U937T_E10 cell cultured in the presence (EVI1Low,
black line) or absence (EVI1High, red line) of tetracycline. ERepresentative IF showing
HL-60 cells transduced with an empty (top panels) or an ORF-EVI1 cDNA (bottom
panels) vector and stained with an anti-EVI1 antibody (in red, n = 2 biological
replicates).Nuclei inblue (DAPI). Scale bar: 100μm.F Effect ofHDACis and ara-Con
cell viability after 72 h of treatment in HL-60 ±ORF-EVI1 cDNA. G Abnormal 3q26
pattern on fluorescence in situ hybridization (FISH) in MOLM1 sorted by cell size.
The break-apart hybridization pattern 1F1G1O (one fusion and two separated

signals, one green and one orange) indicates the break and split of the EVI1 locus.
The abnormal pattern was observed in cells with large nuclei. At least 100 nuclei/
cells were analyzed (n = 2 biological replicates). Scale bar: 20 μm. H Expression of
EVI1 inMOLM1 sorted based on cell size. Large cells express EVI1 compared to small
cells. I Effects of HDACis and chemotherapy treatment on viability in MOLM1
EVI1High and MOLM1 EVILow after 72 h of drug exposure. J Effect of AR-42, belinostat,
entinostat, ara-C, vincristine, methotrexate, and daunorubicin on EVI1High (MOLM1,
UCSD/AML1, HNT34, TF1, and MUTZ-3) and EVI1Low (NOMO1, MOLM13, OCI/AML1,
OCI/AML2, GDM1, SKM1, and IMS-M2) AML cell lines calculated using the area
under the curve (AUC) model of the log-transformed dose-response data. A lower
AUC corresponds to greater sensitivity. Statistical significance was determined by
two-tailed non-parametric t-test (Mann-Whitney) (J), one-way ANOVA with Tukey’s
correction for multiple comparison testing (B). Data are presented asmean ± SD in
B (UCSD/AML1n = 828,MOLM1n = 1028,HNT34n = 571),D (n = 2), F (n = 2), I (n = 2)
and J (EVI1High n = 5, EVI1Low n = 7). Source data are provided as a SourceData file. See
also Supplementary Fig. 4.
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PA2G4 accounts for 10 exons and encodes two splice PA2G4 (also
known as ErbB3-binding protein 1, EBP1) variants, p48 and p42. The
difference, 54 amino acids in the N-terminus, between the long and
short isoforms directs unique function, oncogenic or tumor
suppressive77, and associationwithdifferent bindingpartners and their
regulation78. p48 PA2G4 is the dominant form that is highly expressed
in mammalian cells during embryogenesis or re-expressed in several

cancer types, including glioblastoma multiforme and lung cancer79,80.
p42, the short form, is scarcely detectable in cancers, while its tumor-
suppressive role has been established in several tumor models80–82.

Similar to aMYCN-dependent neuroblastomamodel44, the genetic
and chemical disruption of the PA2G4-MYC interface with the small
molecule inhibitor WS647 altered AML cell proliferation, supporting an
oncogenic role of PA2G4 in 3q26 AML. In AML, the mechanistic role of
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PA2G4 has not yet been investigated. Previous studies demonstrated
that PA2G4 is highly expressed in AML clinical samples compared to
mononuclear cells from healthy donors83. However, since only a few
cases have been cytogenetically characterized83, it is impossible to
speculate whether patients carrying 3q26 aberrancies express a higher
level of PA2G4 than do other subgroups. Interestingly, PA2G4 is part of
a transcriptional core signature of four genes (DNMT1, MYB, PA2G4,
and YBX1) repressed with de-differentiation in all-trans retinoic acid-
induced NB4 and HL60 AML cell lines, suggesting that PA2G4 plays a
role in AML maintenance84. Furthermore, in the murine myeloid pre-
cursor 32D cell line, PA2G4 participates in the regulation of HDAC8
ubiquitination that is disrupted by the forced expression of the Cbfb-
MYH11 fusion, indicating a contribution of PA2G4 in MDM2-mediated
HDAC8 ubiquitination in inv(16) leukemia59.

In conclusion, we propose a clinical treatment strategy that
capitalizes on the EVI1-suppressing capacity of some HDACis in
patients carrying 3q26 abnormalities that lack biomarker-directed
treatment approaches. Furthermore, based on the mechanism driving
efficacy upon HDAC inhibition, our work positions PA2G4 as a drug-
gable target for a neglected population with EVI1-expressing AML and
potentially for other Myc-dependent cancers.

Methods
Cell lines
The human cell lines MOLM1 (#ACC 720), UCSD/AML1 (#ACC 691),
HNT34 (#ACC 600), TF1 (#ACC 334), MUTZ-3 (#ACC 295), 293 T
(#ACC 635), OCI/AML3 (#ACC 582), MOLM13 (#ACC 554), NOMO1
(#ACC 542), OCI/AML2 (#ACC 99), GDM1 (#ACC 87), HL-60 (#ACC 3),
SKM1 (#ACC 547) and 5637 (#ACC 35) were purchased from the
Leibniz-Institut DSMZ-German collection of microorganisms and cell
cultures (Germany). IMS-M2 were previously reported in85. U937T and
U937T_E10 were a kind gift from the Rotraud Wieser laboratory (Uni-
versity of Vienna, Clinic of Medicine I, Waehringer Guertel 18-20, 1090
Vienna, Austria). Cells were cultured in RPMI 1640 (Thermo Fisher
Scientific, Waltham, MA, USA, #31870074) with 10% or 20% fetal
bovine serum (FBS) (Thermo Fisher Scientific, #10270106) and 1%
penicillin-streptomycin (EuroClone, Pero-Milan, Italy, #ECB3001D).
UCSD/AML1 medium was supplemented with 10 ng/mL rhGM-CSF
(ProteinTech Group, Rosemont, IL, USA, #HZ-1002). MUTZ-3 cells
were maintained in DMEM (Thermo Fisher Scientific, #11965118) with
20% FBS, 20% 5637 conditioned medium, and 2 mmol/L L-glutamine
(Thermo Fisher Scientific, #25030-024). The tetracycline-repressible
U937T and U937T_E10 were cultured in RPMI 1640 containing 10%
tetracycline-free FBS (Takara Bio Europe SAS, Saint-Germain-en-Laye,
France, #631367). 293 T cells were cultured in DMEM, 10% FBS, and 1%
penicillin-streptomycin. Cell lines were grown in a humidified incu-
bator at 37 °C and 5% CO2, routinely identified by short tandem repeat
profiling, and monitored for mycoplasma contamination.

Clinical AML samples and patients
Leukemia cells derived from the peripheral blood and bonemarrowof
patients with 3q26 AML were obtained under approved protocols at
the Department of Medicine and Surgery at Parma University Hospital
(n. 18249/18/05/2017, and n. 29785/13/07/2021), according to the
Declaration of Helsinki guidelines for the protection of human rights.
Mononuclear cells were isolated by density gradient centrifugation
using an LSM-lymphocyte separation medium (CappelTM MP Biome-
dicals, Solon, OH, USA, #50494). We collected a total of 39 samples
(Male = 18; Female=21;mean age = 64.4 -25-87-). Bonemarrow biopsies
were collected according to the protocol n. 265/2019, granted by the
same Institution. All biological sampleswere collected after the release
of a written informed consent. Three patients (PR#001, PR#002, and
PR#003) were enrolled in a compassionate use program (the treat-
ment schedule was described in the NCT00101179 clinical trial), they
have providedwritten consent and they did not receive compensation.
Individuals agreed to participate in our study and having their data
reported for scientific purposes. No sex and/or gender was considered
in the design of this study.

Karyotype analysis and fluorescence in situ hybridization
Primary leukemic blasts were isolated as described in the previous
section and cultured for 48 hr in RPMI 1640 in a humidified incubator
at 37 °C and 5% CO2. Cell media was supplemented with 0.1μg/mL of
colcemid (Thermo Fisher Scientific, #15212012) for 2 hr, followed by
incubation in a hypotonic solution (0.075M KCl). Cells were fixed in
a 3:1 methanol (Sigma-Aldrich, St. Louis, MO, USA, #322415) and acetic
acid glacial fixative solution (Sigma-Aldrich, #A6283) and spread on top
of Superfrost Plus microscope slides (Thermo Fisher Scientific,
#10149870). For the karyotype analysis, chromosome banding was
performed by quinacrine (Q-banding) or Giemsa (G-banding) staining.
A minimum of 20 metaphases per sample were acquired using a
Nikon Eclipse 80i microscope (Nikon Instruments, Inc., Melville, NY,
USA) and analyzed using NIS element software (Nikon Instruments,
Inc.). For the fluorescence in situ hybridization (FISH) analysis, 10μL of
MECOM/RUNX1 t(3;21) fusion (Kreatech Biotechnology B.V., Amster-
dam, The Netherlands, # KBI-10310) or MECOM t(3;3); inv(3)(3q26)
break-apart translocation probes (Kreatech Biotechnology B.V., # KBI-
10204) were incubated at 37 °C for 12-16 hr after a phase of DNA
dehydration with ethanol-scale incubation (75–85–100%) and DNA
denaturation [75± 1 °C 5minutes (min)]. Slides were washed once
with 0.4x saline sodium-citrate/0.3% NP40 buffer at 73± 1 °C, followed
by 4 x SSC/0,1% NP-40 at ambient temperature. DNA was counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich,
#10236276001) before microscope analysis (Eclipse 80i microscope,
Nikon Instruments, Inc.). Two-hundred interphase nuclei and at least
6metaphases were analyzed for each patient, and DNA rearrangements
were defined starting from a 5% cutoff for each probe.

Fig. 4 | Effect of HDACis in human 3q26 EVI1High AML. AH&E histological sections
of PR#003 bone marrow cells grown in collagen type I scaffolds with vehicle
(DMSO) or HDACis (AR-42, belinostat, and entinostat) for 72 hr. Scale bar: 40 µm.
BPercentageof cell viability ofprimary 3q26AMLgrown in collagen type I scaffolds
and treated with HDACis. Scale bar: 100 µm. Drug concentration (IC50) used in (A)
and (B) were established following a dose-response titration assay presented in
Supplementary Fig. 6A. C AUC effect of HDACis and chemotherapy agents in
EVI1High (samples PR#002-008, and PR#023-024) and EVI1Low (samples PR#010-022,
and PR#025-039) AML blasts. D EVI1, ΔEVI1, and cleaved caspase 3 protein
expression of primary 3q26AML samples after 24h of treatment with the indicated
concentrations of HDACis. E Representative images of IF staining of primary 3q26
EVI1High AML cell showing EVI1 nuclear content (in red) following 24 hr of treatment
with DMSO or HDACis at the indicated concentrations (n = 3 biological replicates).
Nuclei in blue (DAPI), scale bar: 100 µm. F Quantitative IF analysis of nuclear EVI1
content in 3q26 EVI1High primary AML cells after 24h of treatment with indicated

compounds.G Effect of entinostat (left) or ara-C (right) on EVI1 nuclear localization
(in red) following 6 hr of treatment in PR#003 or PR#004, respectively. The nuclei
were stained with DAPI (blue). Scale bar: 100 µm. IF quantification of EVI1 nuclear
content is presented at the bottom. H EVI1 expression (brownish) in bone marrow
leukemia cells at diagnosis and following two cycles of azacitidine and entinostat
(PR#002, left) or three cycles of ara-C and daunorubicin (3 + 7) (PR#004, right).
Top, formalin-fixed, paraffin-embedded (FFPE) tissue sections were stained with
anti-EVI1 antibody revealed by immunoperoxidase. Scale bar: 100 µm. Statistical
significance was determined by a two-tailed non-parametric t-test (Mann-Whitney)
(C, G, H) or one-way ANOVA with Tukey’s correction for multiple comparison
testing (B, F). Data are presented as mean ± SD in B (PR#003 n = 3, PR#004 n = 2),
C (EVI1High n = 9, EVI1Low n = 28), F (PR#002 n = 318, PR#003 n = 573), G (PR#003
n = 235, PR#004 n = 214), and H (n = 10 fields per condition). Source data are pro-
vided as a Source Data file. See also Supplementary Fig. 5-6 and Supplemen-
tary Data 2.
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Small molecule screening assay
We screened 5349 compounds in duplicates, including i) the Spectrum
Collection library (MicroSource Discovery System, Inc., Gaylordsville,
CT, USA) containing 1200 FDA/EMA-approved drugs, 500 natural
products, and 300 molecules in preclinical stages for a total of 2000
compounds; ii) the anti-cancer compound library (Selleck Chemicals,
Houston, TX, USA), containing 349 bioactive compounds with known

anti-cancer activity; and iii) the NDL-3000 library (TimTec, Tampa, FL,
USA) containing 3000 natural derivative compounds. MOLM1 and
UCSD/AML1 cells (1.5 × 103 per well) were plated in 384-well tissue
culture plates in 45μL of medium using the BioTeck EL460 automated
cell dispenser (BioTeck) and incubated for 72 h. Small molecules were
screened at the final concentration of 1μM dissolved in (dimethyl
sulfoxide) DMSO added by a Tecan Evo200 (Tecan, Switzerland).
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DMSO and etoposide (5μM) treated cells were used as negative
(vehicle) and positive controls, respectively.

The effect on cellular viability was quantified using an ATP-based
Cell Titer-Glo assay (Promega Corporation, Madison, WI, USA,
#G7573), and presented as a percentage of viable cells over control
(POC). We also defined the normalized percentage of cell death
(ΔPOC) on the basis of the average of duplicates (POC_molecules,
Supplementary Data 1) using the following formula: [negative controls
luminescence (DMSO)—sample luminescence]/[negative controls
luminescence (DMSO)] x 100. POC_molecule values for each com-
pound have been compared to the DMSO control values (n = 24) using
an ANOVA test applied to a linear regression model. The resulting
p-values were adjusted for the multiple comparisons using the Benja-
mini &Hochberg (BHorFDR)method included in thep.adjust function
implemented in the stats R package. We prioritized hits on the basis of
the 95th percentile limit of the highest statistically significant ΔPOC
[Benjamini-Hochberg P ≤0.05]. We then calculated all pairwise dis-
tances between the given fingerprints of the top candidates and fit a
beta distribution to the resulting Tanimoto scores, conditioned on the
number of set bits in each fingerprint (ChemmineR package). The
resulting matrix was clustered using the hclust function in the stats
package with Euclidean distance and the average agglomeration
method.

Forty compounds listed in Supplementary Data 2 were counter-
screened in additional cell lines (HNT34,NOMO1, andTHP1) in a six-log
[concentrations] dilution ranging from 10μM to 30nM. The tertiary
screen in TF1 assayed 4942 small molecules from the annotated
libraries derived from the Selleck and Sigma-Aldrich collection avail-
able at the screening unit of the Leibniz-Forschungsinstitut of Mole-
cular Pharmacology (FMP) and listed in Supplementary Data 1. BRAID
analysis of combined drug action was calculated according to86.

High-throughput in silico screening
Marker genes for the EVI1 “On” vs. “Off” signature were chosen using
publicly available Affymetrix microarray expression profiling data on
TF1 cells transduced with shRNAs targeting EVI1 (E-GEOD 16238) or
frommRNA quantification in AML cell lines harboring 3q26 aberration
(E-MTAB-2225)15. For the TF1 study, we then inferred marker genes to
the ConnectivityMap20,87 (CMap) database (https://clue.io/lincs), while

for the cross-validation set in EVI1 repressed HNT34 or AMLHigh vs.
AMLLow with the The Library of Integrated Network-Based Cellular
Signatures (LINCS)88. We used the parametric bootstrap method on
sets of molecules to calculate the enrichment of compound classes89.
CMap and LINCS/L1000FWD are accessible at https://clue.io/lincs and
https://lincsproject.org/, respectively.

Cell treatment and viability assay
AR-42 (#S2244), belinostat (PXD101, #S1085), entinostat (MS-275,
#S1053), cytarabine (ara-C, #S1648), vincristine sulfate (#S1241), dau-
norubicin HCl (#S3035), methotrexate (#S1220), WS6 (#S7442),
( + )-JQ-1 (#S7110) and MG132 (#S2619) were obtained from Selleck
Chemicals. Cell solution (50μL/well of 0.02 × 106/mL)was dispensed in
384-well plates (Corning Life Sciences Plastic, Bedford, MA, USA,
#3570) using MultidropTM Combi (Thermo Fisher Scientific,
#5840300). According to the manufacturer’s protocol, small mole-
cules were dissolved in DMSO or ddH2O and added with a nanometric
Tecan D300e dispenser (Tecan Trading AG, Switzerland) at the con-
centration indicated in the figures. Cell viability was assessed after
72 hr of drug treatment using a CellTiter-Glo ATP assay (Promega
Corporation, #G7573). Values for IC50 and the area under the curve
(AUC) were calculated using GraphPad Prism 8 software (La
Jolla, CA, USA).

Apoptosis and DNA content assays
Apoptosis was measured by annexin V (annexin V, FITC conjugate,
Thermo Fisher Scientific, #A13199) and propidium iodide (Thermo
Fisher Scientific, #BMS500PI) staining. Cells were analyzed by flow
cytometry with a FACScan (Beckman Coulter-Cytomics FC 500, Brea,
CA, USA) orAttuneNxT (ThermoFisher Scientific)flowcytometry, and
data were processed by FlowJo V10 (Tree Star, LLC, Ashland, OR, USA)
analytical software. Cellular DNA contentwas assessedby stainingwith
propidium iodide (50μg/mL). At least 20,000 events were acquired,
and all of the determinations were replicated at least twice.

Methylcellulose assay
Clonogenic assays were performed using the MethoCultTM colony-
formation assay (STEMCELL Technologies, Vancouver, BC, Canada,
#GFH84444). In brief, a 10x concentrated AML cell suspension was

Fig. 5 | HDAC-mediated suppression of EVI1 modulates Myc signaling.
A Heatmap showing ssGSEA enrichment of MSigDB of gene signature in MOLM1
and UCSD/AML1 HDACi-treated cells. Hot or cold colors indicate correlation or
anticorrelation of the top enriched gene sets from each functional group (P ≤ 0.05
in bold, calcolated according to30) among cell lines and treatments (bottom).
B Uniform manifold approximation and projection (UMAP) plot of clustering
results of PR#002 bone marrow cells before and after therapy. Colors indicate the
cell populations on the basis of the reference mapping approach. C UMAP plot of
clustering results of PR#002 bone marrow cells before (left) and after (right)
therapy, colored according to theUCell scoreof leukemicmarkers.DGSEA running
score plot of the top enriched MYC targets V1 pathway in HSC, LMPP, and LP
(Adj.P =0.0011) cell populations of PR#002. Each graph indicates the running
enrichment score (ES) of the pathway (top), the location of single genes of the gene
set in the ranking (central), and the distribution of the ranking metric (bottom).
E MYC expression (brownish) in bone marrow leukemia cells of PR#002 at diag-
nosis and following two cycles of azacitidine andentinostat (left). Scale bar: 100 µm.
Right, the scatter dot blot indicates the mean ± SD of the percentage of the MYC-
positive cells in FFPE tissue sections (n = 10 fields per condition). F EVI1, ΔEVI1, and
MYC expression in EVI1High AML cell lines, 6 days after shRNA transduction. NT =
non-targeting, sh#87= shRNAdirected against EVI1 (n = 3biological replicates).G In
vivo antileukemic effect of entinostat and azacitidine. Mice (PDLX_PR#008) were
treatedwith vehicle (DMSO), azacitidine (1mg/kg) for 5 days, entinostat (10mg/kg)
(5 days/week) or the combination of both for 3 weeks. Histograms show the per-
centage hCD45+ in bonemarrow (top) and the percentage of EVI1mRNA relative to
the control gene RPL13A (ΔΔCT) in CD45+ cells (bottom) at the end of treatment.
H UMAP plot of clustering results of PDLX_PR#008 bone marrow LP before (i) and

after entinostat (ii), azacytidine (iii) or the combination of both (iv), colored
according to the UCell score of leukemicmarkers. IGSEA running score plot of the
top enrichedMYC targets V1 pathway in PDLX_PR#008 LP after the treatment with
azacitidine/entinostat (Adj.P= 3.40× 10-8) or entinostat as a single agent
(Adj.P = 2.17 × 10-12). Each graph indicates the running enrichment score (ES) of the
pathway (top), the location of single genes of the gene set in the ranking (central),
and the distribution of the ranking metric (bottom). J Dot plot of GSEA results
illustrating Molecular Signatures Database (MsigDB) biological processes asso-
ciated with the indicated treatments compared to the vehicle in PDLX_PR#008 LP.
Set size refers to the number of genes associated with each (MsigDB) biological
process. Dot color indicates the range of Adj.P for each pathway. K EVI1, MYC, and
Ki67 expression (brownish) in bone marrow leukemia cells (PDLX_PR#008) fol-
lowing three weeks treatment of azacitidine and entinostat as described in panelG.
FFPE tissue were stainedwith anti-EVI1, anti-MYC and anti-Ki67 antibodies revealed
by immunoperoxidase. Scale bar: 100 μm. L Histograms display the mean± SD of
the percentage of the EVI1, MYC or Ki67-positive cells in FFPE tissue sections.
Statistical significancewas determinedby a two-tailed non-parametric t-test (Mann-
Whitney) (E), and one-wayANOVAwith Tukey’s correction formultiple comparison
testing (G, L). GSEA enrichment score significance was based on a weighted Kol-
mogorov Smirnov (WKS) test corrected for multiple hypotheses testing: Benjamini
& Hochberg (BHor FDR) (D, I, J). Data are presented asmean± SD in E (n = 10 fields
per condition),G (vehiclen = 7, treatedn = 5 per group;n = 9 for the bottompanel),
K (vehicle n = 7, treated n = 5 per group), L (n = 10 fields per condition). Source data
are provided as a Source Data file. See also Supplementary Fig. 7-8 and Supple-
mentary Data 3.
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prepared and mixed with thawed MethoCultTM in a 1:10 v/v ratio of
cells: MethoCultTM. Samples were vortexed thoroughly and left to
stand for at least 5min to allow bubbles to rise to the top before
dispensing; they were then incubated at 37 °C, in 5% CO2, with 95%
humidity for 15-20 days. Colony identification and counting were
performed using an EVOS FL inverted microscope (Thermo Fisher
Scientific) equipped with 4x and 10x objectives.

Immunodetection and antibodies
Whole protein lysate was extracted using 1x cell lysis buffer (Cell Sig-
naling Technology, Danvers, MA, USA, #9803 S) supplemented with
phospho-stop phosphatase inhibitor (Sigma-Aldrich, #04906837001)
or protease/phosphatase inhibitor cocktail 100x (Cell Signaling Tech-
nology, Danvers MA, USA, #58725) and Complete Mini, EDTA-free
protease inhibitor (Sigma-Aldrich, #11836170001). Cells were lysed on
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ice for 10min with gentle stirring and centrifuged at 21,130x g for
10min at 4 °C. Protein assay dye reagent (Biorad Laboratories, Her-
cules, CA, USA, #5000006) was used for protein quantification, and
40μg of total lysate/sample was loaded for SDS-PAGE analysis. The
following specific antibodies were purchased from Cell Signaling
Technology: anti-EVI1 (C50E12, #2593), β-actin (8H10D10, #3700),
cleaved caspase 3 (Asp175, #9661), and MYC (#9402). Anti-PA2G4
antibodies were purchased from Sigma-Aldrich (#HPA016484,
#SAB1402863), Abcam (Cambridge, UnitedKingdom,#ab180602) and
Proteintech (Rosemont, IL, USA #66055-1-Ig, #15348-1-Ap). Anti-
histone H3 (acetyl K27) was purchased from Abcam (#ab4729). Anti-
acetylated α-Tubulin (#sc-23950) and HSP90 (#sc-69703) were pur-
chased from Santa Cruz Biotechnology (Dallas, TX, USA). All primary
antibodies were used at a dilution factor of 1:1000. IRDye 680LT goat
anti-mouse IgG (#925-68020), IRDye 800CW goat anti-rabbit IgG
(#925-32211), and IRDye 680RDgoat anti-rabbit IgG (#925-68071) from
LI-COR Biotechnology (Lincoln, NE, USA) were used as secondary
species–specific antibodies at a dilution factor of 1:10000. Signalswere
detected using the LI-COR Odyssey imaging system (LI-COR
Biotechnology).

RNA processing and quantification
RNA was extracted using the RNeasy mini kit (Qiagen, Hilden, Ger-
many, #74106). According to the manufacturer’s protocol, cDNA was
synthesized using the high-capacity cDNA reverse transcription kit
(Thermo Fisher Scientific, #4368814), using 1 µg of RNA as starting
material. A quantitative real-time polymerase chain reaction (qPCR)
was performed using TaqMan gene expression assays for MECOM
(Thermo Fisher Scientific, #Hs00602795_m1), MYC (Thermo Fisher
Scientific, #Hs00153408_m), PA2G4 (Thermo Fisher Scientific,
#Hs00854538_g1), and TaqMan™ Universal PCR master mix (Thermo
Fisher Scientific, #4364338) in anApplied Biosystems™ StepOne™ real-
time PCR system (Thermo Fisher Scientific, #4376357). Each condition
was run in triplicate. The expression levels of the target genes were
normalized to those of RPL13A or ACTB (Thermo Fisher Scientific,
#Hs04194366_g1, #Hs99999903_m1). Data were analyzed using theΔΔ
cycle threshold (CT) method and plotted as a percentage relative to
control.

Immunofluorescence
Cells (50 × 103) were washed in PBS and spotted on Superfrost Plus
microscope slides (Thermo Fisher Scientific, #10149870) using a
cytospin centrifuge (CR2000 Small Prime Centrifuge, Centurion).
Fixation was carried out for 10min in PBS, 4% paraformaldehyde
(Thermo Fisher Scientific, #28908) at 4 °C. For nuclear protein stain-
ing, cells were permeabilized for 10min in PBS and 0.4% Triton X-100
(Sigma-Aldrich, #T-9284) at ambient temperature. We applied a

blocking solution for 1 h at ambient temperature composed of 5%
bovine serum albumin, 0.1% Triton X-100, and 1% goat serum (Abcam,
#ab138478) diluted in PBS. Cells were then incubated for 1 hr at
ambient temperature with the antibody targeting EVI1 (Cell Signaling
Technology, #2593, 1:1000 dilution) or PA2G4 (Sigma-Aldrich,
#HPA016484, #SAB1402863 both diluted 1:1000) and subsequently
revealed by secondary antibodies (Invitrogen, Carlsbad, CA, USA,
#A11029, #A11036, both diluted 1:400) and diluted in blocking solu-
tion. Nuclei were stained with DAPI (Sigma-Aldrich, #D9542). Prolong
GoldAntifade reagent (Thermo Fisher Scientific, #P36934)was used as
a mounting solution. Images were captured using an EVOSTM M5000
microscope (Thermo Fisher Scientific) or a Leica Stellaris 5 confocal
microscope. ImageJ (http://rsbweb.nih.gov/ij/) and Leica Image Com-
pass were used for the analysis.

Immunohistochemistry
Informed consent was obtained from patients undergoing trephine
bone marrow biopsy from the iliac crest for diagnostic procedures
according to the ethical guidelines and the protocol 265/2019/TESS/
UNIPR, approved by the University of Parma. Following decalcification,
4-µm-thick sections obtained from formalin-fixed, paraffin-embedded
bone marrow biopsies were processed for immunohistochemical
staining. Bone marrow samples were deparaffinized and rehydrated in
decreasing alcohol scale; enzymatic epitope retrieval was performed by
water bath at 95 °C, 40min, in ULTRA Cell Conditioning Solution (Ven-
tana; 950-224); endogenous peroxidasewas blockedwith 3%H2O2. After
incubation with rabbit anti–EVI1 (Cell Signaling Technology, #2593;
1:400dilution; overnight; 4 °C), rabbit anti-MYC (CellMarqueTM; Rocklin,
CA, USA, #395R-18; ready to use; 40min; 37 °C), or mouse anti-Ki67
(Agilent, Santa Clara, CA, USA, #IR626; ready to use; 30min; 37 °C)
antibodies, all sections were revealed by IHC Detection Kit-
Micropolymer (Abcam #ab236466) according to manufacturer’s
recommendations. The nuclei were counterstained by light hematox-
ylin. All staining stepswereperformedat ambient temperature. 3D type I
collagen scaffolds and xenografted tumors were fixed in formalin,
included in paraffin, and processed as indicated above. Images were
acquiredwithaMoticEasyScanOne (Motic,HongKong)microscopeand
quantified using QuPath software v.0.3.2 (https://qupath.github.io/)90.

Chromatin immunoprecipitation and ChIP Sequencing
Chromatin was collected from HNT34 cells (20 × 106 cells each
condition) using ActiveMotif ChIP-IT® Express (ActiveMotif, Carls-
bad, CA, USA, #53008) according to the manufacturer’s instructions
and sheared in 12 sets of 10-second sonication using a BransonDigital
Sonifier (Thermo Fisher Scientific). Chromatin was incubated over-
night at 4 °C with 10μg of the following antibodies: EVI1 (Cell Sig-
naling Technology, #2593 S), MYC (Cell Signaling Technology,

Fig. 6 | PA2G4 mediates the effect of HDACis on EVI1 and MYC. A Circle plot
showing chromatin-associated proteins immunoprecipitated with an anti-EVI1
antibodyby RIME.The bar length indicates themeanofmass spectrometry spectral
count (SPEC) of uniquely identified proteins of two biological replicates per con-
dition. Bar colors indicate protein ontology of the EVI1 interactors. B Histograms
show the normalized gene expression levels of SERBP1, RPL14, RPL18, RPS2, PA2G4,
RPS10, FBL, PABPC1, RACK1, RSL1D1, and DDX21 following 16 hr of 0.5 µM AR-42,
2 µM entinostat in UCSD/AML1, or 0.8 µM AR-42 and 4 µM entinostat in MOLM1
compared to vehicle. Statistical significance was determined using DESeq2. Whis-
kers show median values (central black lines) and 25th and 75th percentiles (bottom
and top bounds), respectively. The bars represent values that exceed 1.5 times the
interquartile range (IQR) from the edge of each box: (vehicle n = 6, treated n = 12).
CTracks showing EVI1 binding andH3K27ac enrichment across theDDX21, FBL, and
PA2G4 locus in HNT34 cells treated with vehicle (DMSO), AR-42 and entinostat. The
bottom bar represents the genes (hg19), and the y-axis represents normalized read
density scaled to 1 million. D PA2G4, EVI1, ΔEVI1, and MYC expression in TF1,
HNT34, and UCSD/AML1 cells 6 days after shRNA transduction (n = 3 biological

replicates). E Effect of PA2G4 overexpression on HNT34 cells treated with HDACis.
Western blot analysis showing PA2G4, EVI1, ΔEVI1, and MYC in wild-type or PA2G4-
overexpressing HNT34 cells after 24 h of treatment with HDACi at the indicated
doses (n = 2 biological replicates). (F) Histogram indicates the percentage of viable
(white), dead (black), or rescued (red) HNT34 cells (n = 20.000) by the over-
expression of PA2G4 on the basis of positivity for annexin V/PI staining after 72 h of
HDACis treatment (n = 2 biological replicates). G Percentage of PA2G4, EVI1, and
MYC mRNA relative to the control gene ACTB (ΔΔCT) in HNT34 and UCSD/
AML1 cells 6 days after shRNA transduction. Data are presented as mean ± SD
(n = 3). Statistical significancewas determined by a two-tailed unpaired, parametric
t-test. H Proteasome inhibition rescues WS6-induced EVI1 and MYC protein
degradation. EVI1, ΔEVI1, MYC expression, and PA2G4 in HNT34 and UCSD/AML1
cell lines after treatment with DMSO and WS6 (24 hr) or MG132 (4hr) at the indi-
cated concentrations (n = 2 biological replicates). NT = non-targeting, sh#65 =
shRNAdirected against PA2G4 inC andF. Sourcedata are provided as a SourceData
file. See also Supplementary Fig. 9-10 and Supplementary Data 4.
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#9402 S), histone 3 at lysine 27 (H3K27Ac, Abcam, #ab4729), and
rabbit IgG (Merck, #12-370). DNA was purified with AMPureXP beads
(Beckman Coulter, #A63881) following the manufacturer’s protocol.
Real-time PCR was performed with SYBR-Green Reagents (Thermo
Fisher, #4309155) on a CFX96 Real-Time PCR System (Biorad)
with primers targeting the E-Box DNA binding sites in the PA2G4
gene promoter, 500 bp upstream of the transcription starting site

region (forward: CCTCCCCGACCTAGGTGTA; reverse: GCTGAGC-
GAGAGCCAGTAAC) and MYC gene promoter (forward: AGGGT-
GAGGTCAAGCATTTG; reverse: TGGCCTTGAACCCATACTTC). Fold
enrichment was calculated by dividing the input-normalized CT by
the negative IgG control CT.

For Chromatin Immunoprecipitation Sequencing (ChIP-Seq),
purified DNAwas processed using the NEBNext® Ultra™ II DNA Library
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PrepKit (#E7645, NewEnglandBiolabs, Ipswich,MA). Thefinal libraries
were paired-end sequenced using a 150-cycle kit on NovaSeq 600
(Illumina) with a sequencing depth of 50 million reads per samples.
Sequencing data were analyzed using the nf-core ChIP pipeline (ver-
sion 2.0.0)91 that utilizes MACS2 for peak calling92 and HOMER for
annotation of peaks93. Normalized BigWig files were scaled to 1 million
mapped reads to be able to compare coverage across multiple sam-
ples. Tracks illustrating read coverage and representative peaks were
visualized using the IGV genome browser with Human (GRCh37/hg19)
genome94. A range of ± 2 kb of the transcriptional start site (TSS) was
retained to define promoter-specific peaks.

Co-Immunoprecipitation
For the endogenous co-immunoprecipitation, HNT34 cells were lysed
in modified Cell Lysis Buffer II (Invitrogen #FNN0021) supplemented
with Protease and Phosphatase Inhibitors (Sigma #11836153001 and
#04-906-837-001) for 30minon ice and centrifuged at 14,000RPM for
10min at 4 °C. The protein lysates were then incubated overnight with
the following antibodies: EVI1 (Cell Signaling Technology, C50E12
#2593), PA2G4 (Proteintech 15348-1-AP), or Normal Rabbit IgG (Merck,
#12-370), at a concentration of 1μg/mg of IP reaction. Dynabeads
protein G magnetic beads (Thermo Fisher, #10003D) were added for
2 hr at 4 °C the next day, and then the purified proteins were eluted in
40μl of 1X L.B. For the overexpression in 293 T cells, cells were
transfected with Lenti-hEFI1a-ORF-P2A-eGFP-IRES-Puro expressing
MECOM or PA2G4 ORF. 48 hr after transfection, the cells were pro-
cessed similarly Co-IP experiment described above.

Scaffold-based 3D AML culture
To synthesize collagen scaffolds, an acid suspension of type I collagen
was precipitated at pH 5.5 and cross-linked with 1,4-butanediol digly-
cidyl ether. The scaffold’s porosity was generated by a freezing
and heating ramp to ensure desired pore size, interconnectivity, and
orientation. The materials were sterilized in 70% ethanol for 1 hr and
washed in sterile Dulbecco phosphate-buffered saline (Life Technolo-
gies, Carlsbad, CA, USA). Scanning electron microscopy was used to
characterize the scaffold macrostructure and microstructure. In brief,
scaffolds were fixed in 2.5% glutaraldehyde 0.1M sodium cacodylate
buffer for 2 hr at 4 °C, dehydrated in a series of ethanol, dried in a
desiccator overnight, and sputter-coated with platinum. Images were
acquired with a Nova NanoSEM 230 (FEI, Hillsboro, OR, USA). The
human AML cell lines HNT34 and MOLM1 were seeded in 2 × 9-mm
scaffolds at concentrations of 0.25 × 106, 0.5 × 106, and 1 × 106 cells.
Seeding was reached by soaking 50μL of cell suspension in dry scaf-
folds placed in a multi-well plate. Cells were allowed to adhere for 1 hr

at 37 °C before adding the culture medium. After 24 hr, the scaffolds
were gently moved onto a new multi-well plate. The medium was
replaced every 2-3 days. Cell growth was monitored after 1, 3, and
7 days by MTT assay. Scaffolds were then incubated with 1mg/mL of
MTT solution (Sigma-Aldrich) in culture medium for 2 hr at 37 °C. Cell
viability was determined by reading the absorbance at 550nm. The
scaffoldswerefixed in neutral buffered formalin, dehydrated in scaling
ethanol solutions, and embedded inparaffin to assess cell morphology
and distribution. Hematoxylin-and-eosin staining was performed in 5-
μm-thick scaffold sections mounted onto Superfrost Plus microslides
(ThermoFisher Scientific, #10149870). Drug treatment was performed
after 72 hr from seeding. Drug efficacy was evaluated byMTT assay, as
described above. Results were presented as a percentage of cells alive
relative to vehicle-treated cells. The drug concentrations that reduced
cell viability to 50% of vehicle controls (IC50) were calculated using
GraphPad Prism 8 software (La Jolla, CA, USA).

Virus production and transduction of AML cell lines
For virus production, 3 × 106 293 Twere transfectedwith 2 µgof pCMV-
VSV-G and pCMV-deltaR8.91 vectors (kind gift from Kymberly Steg-
maier laboratory, Dana Farber Cancer Institute, Boston, MA, USA).
pZIP-hEF1a-RFP-Puro vector (Transomic, Huntsville, AL, USA,
#TLHSU1444) harboring the shRNA sequences listed in Table 1 was
used for genetic downregulation experiments.

The Lenti-hEF1a-ORF-P2A-eGFP-IRES-Puro (Transomic, Huntsville,
AL, USA, #TLO2015.1) vectors containing the MECOM (NM_005241.1),
PA2G4 (Gene BankBC001951.1) andMYC (NM_002467.6) open reading
frame (ORF) sequences were used for genetic overexpression experi-
ments. Cells were transfected using the FUGENE6 protocol (Promega
Corporation, #E2691), and viral supernatant was harvested and filtered
(0.4 µm) after 72 hr. AML cells were resuspended at a concentration of
4 × 106 cells per 1mL of serum-free RPMI and spin-infected for 1 h at
ambient temperature with 100 µL of lentivirus particles and 8 µg/mL
polybrene (Sigma-Aldrich). Puromycin (1 µg/mL) was added for selec-
tion (Thermo Fisher Scientific, #A1113803).

Rapid immunoprecipitation mass spectrometry of endogenous
proteins (RIME)
For chromatin immunoprecipitation, cells were fixed with 1%
methanol-free formaldehyde (Cell Signaling Technology, #12606) for
8min and quenched with 0.125M glycine (Sigma-Aldrich, #G8898).
Chromatin was isolated by adding lysis buffer, followed by disruption
with a Dounce homogenizer (ActiveMotif, #40401). The lysates were
sonicated, and the DNA sheared to an average length of 300-500bp.
Genomic DNA (input) was prepared by treating aliquots of chromatin

Fig. 7 | PA2G4 suppression alters 3q26 AML proliferation in vivo. A Effects of
WS6 treatment on viability in primary 3q26 AML samples following 72 hr of drug
treatment.B Effect ofWS6 in EVI1High (samples PR#002 - 006, PR#008andPR#023 -
024) and EVI1Low (samples PR#025-039) primary AML samples. The AUC model of
the log-transformed dose-response data is depicted. C Effects of WS6 treatment
compared to control (DMSO) on viability in primary 3q26 AML samples following
72 hr of drug treatment. Left: H&E of PR#005 bone marrow cells in 3D cell culture
after 72 hr of treatment with vehicle (DMSO) or WS6 at 1/2 IC50 and IC50 con-
centrations. Scale bar: 40 µm. Right: histograms indicate the fraction of viable cells
expressed as a percentage relative to control. D PA2G4, EVI1, ΔEVI1, and MYC and
cleaved caspase 3 protein expression in primary 3q26 AML samples following 24h
of treatment with the vehicle (DMSO) or WS6 at the indicated concentrations.
E Effect of WS6 (50mg/kg) on EVI1 nuclear localization (in red) following 6 hr of
treatment in PDLX_PR#009 (n = 3 biological replicates). Nuclei in blue (DAPI). Scale
bar: 100 µm.Histograms indicate the fluorescence intensity of EVI1 nuclear content
before and after treatment. F In vivo antileukemic effect of WS6. On the top the
draft of the experiments. Mice were treated with vehicle (DMSO) or 25mg/KgWS6
for 5 days/week for 15 days. On the bottom-left dot plot showing the number of
hCD45+ cells expressed as the percentage difference of BM leukemic cells at T1

(endpoint-day 15) vs. T0 (pre-treatment-day 0) normalized for T0 in control (n = 7)
andWS6-treated PDLX_PR#003 (n = 6). On the bottom-right the dot plot shows the
percentage of hCD45+ cells in the bone marrow between vehicle (n = 4) or WS6-
treated PDLX_PR#008 (n = 5) at the endpoint. Events ≥ 20.000. G UMAP plot of
clustering results of PDLX_PR#003 hCD45 bone marrow–positive cells before (left
panel) and after (right panel) 15 days ofWS6 treatment (25mg/kg/IP/5days aweek),
color-coded according to the UCell score of leukemic markers (MECOM, MYC,
CD45, CD34, KIT, CD33, ANPEP, CD38, CD2, TFRC, HLA-DRA, HLA-DRB1, and HLA-
DRB5). H EVI1, MYC, and Ki67 expression in PDLX_PR#003 after 15 days of WS6
treatment (25mg/kg/IP/5 days a week) or vehicle (DMSO). Scale bar: 100 µm. His-
tograms to the right indicate the mean ± SD of the percentage of the EVI1, MYC, or
Ki67-positive cells inFFPE tissue sections. Statistical significancewasdeterminedby
a two-tailed non-parametric t-test (Mann-Whitney) (B, E, F, H). Data are presented
as mean± SD in A (n = 2), B (EVI1High n = 8, EVI1Low n = 15), C (n = 2), in E (n = 125),
F (vehicle PDLX_PR#003 n = 7, treated PDLX_PR#003 n = 6, vehicle PDLX_PR#008
n = 4, treated PDLX_PR#008 n = 5) and H (vehicle n = 7, treated n = 6; n = 10 fields
per condition). Source data are provided as a Source Data file. See also Supple-
mentary Fig. 11.
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with RNase, proteinase K, and heat for de-crosslinking, followed by
ethanol precipitation. Pelletswere resuspended, and the resultingDNA
was quantified on an ND-2000 NanoDrop spectrophotometer
(Thermo Fisher Scientific). Extrapolation to the original chromatin
volume allowed quantitation of the total chromatin yield. An aliquot of
chromatin (150 µg) was pre-cleared with protein G agarose beads
(Thermo Fisher Scientific, #15920010). Proteins of interest were
immunoprecipitated using 15 µg of antibody targeting EVI1 (Cell Sig-
naling Technologies, cat. #2593 S) and protein G magnetic beads
(Thermo Fisher Scientific, #88847). Protein complexes were trypsi-
nized to release the immunoprecipitate from the beads and digest the
protein samples. Protein digests were purified using a C18 spin column
(Harvard Apparatus, Holliston,MA, USA, #74-7242). The peptides were
vacuum-dried using a SPD130XL SpeedVac (Thermo Fisher Scientific).

Mass spectrometry
Digested peptides were analyzed by LC-MS/MS on a Q Exactive Orbi-
trap mass spectrometer linked to Dionex Ultimate 3000 HPLC and a
nanospray FlexTM ion source (Thermo Fisher Scientific). Samples were
loaded directly onto the separation column BEH C18, 75 µmx 100mm,
130Å 1.7-µm particle size (Waters Corporation, Milford, MA, USA).
Peptides were eluted using a 100-min gradient with a 323 nL/min flow
rate. AnMS survey scanwas obtained for them/z range 340-1600, and
MS/MS spectra were acquired using a top 15 method, where the top
15 ions in the MS spectra were subjected to high-energy collisional
dissociation. An isolation mass window of 1.6m/z was used for the
precursor ion selection, and a normalized collision energy of 27% for
fragmentation. A 20-second duration was used for the dynamic
exclusion.

Tandem mass spectra were extracted and analyzed by PEAKS
Studio version 8 build 20. Charge state deconvolution anddeisotoping
were not performed. The database consisted of the Uniprot database
(version 180508, 71,771 curated entries) and the cRAP database of
common laboratory contaminants (www.thegpm.org/crap; 114
entries). The database was searched with a fragment ion mass toler-
anceof 0.02Da and a parent ion tolerance of 10 parts permillion. Post-
translational variable modifications consisted of methionine oxida-
tion, asparagine, and glutamine deamidation. Peaks studio built-in
decoy sequencing and FDR determination (decoy fused method) with

a cutoff set to -10logP > 20 was used to validate MS/MS-based peptide
and the parsimony rules for protein identifications. A threshold of
≥-10logP of 20 was applied for peptide identifications. The weighted
sum of nine parameters for peptide scoring is converted to a P value,
representing the probability of false identification. Protein identifica-
tions were accepted if they could pass the -10logP of 20 and contained
at least one identified unique peptide. Proteins that contained similar
peptides and could not bedifferentiated onMS/MSanalysis alonewere
grouped to satisfy the principles of parsimony. Proteins sharing sig-
nificant peptide evidence were grouped into protein groups.

The hit list was generated by taking all proteins (sample vs. IgG
control) with a spectral count of five and above from each replicate.

For a label-free quantitation (LFQ) analysis, we included technical
and biological replicates (n = 6) in a group named “3q26 AML” and
compared them to the group including all the correlative IgG controls
(n = 6), named “Control”. The Thermo raw files were analyzed using
MaxQuant (MQ) version 2.4.2.0. The LFQ intensities of proteins from
MQ analysis were imported and filtered for reverse identifications
(false positives), contaminants, and proteins “only identified by site”.
Data were transformed to log2 scale. Then, we imputed missing values
and replaced them from a normal distribution. The protein quantifi-
cation and calculation of statistical significancewere performedwith a
two-sample t-test and with a permutation-based correction controlled
with an FDR threshold of 0.05. A protein was considered as EVI1’s
interactor if the difference between the “3q26 AML” and “Control”
groups was statistically significant (P <0.05), the fold change was 4,
and it was identified with a minimum of two peptides.

RNA sequencing
PolyA-enriched, strand-specific RNA libraries were generated with the
TruSeq mRNA stranded sample preparation kit (Illumina, San Diego,
CA, USA, #20020594) starting from 1 µg of RNA from each sample. In
brief, RNA was subjected to polyA selection using magnetic oligo-dT
beads (ThermoFisher Scientific, #61002). A 94 °C-incubation for 4min
partially fragmented polyA RNA. Both actinomycin-D (during the first-
strand cDNA synthesis) anddUTP (during the second-strand synthesis)
were used to keep the strand information. The libraries were end-
repaired and adenylated before being ligated with Y-shape single-
indexed adapters and amplified by 11 PCR cycles. The last purification
step was performed with Ampure XP beads (Beckman Coulter,
#A63882) at 0.8x to remove all adapter dimers. Each library was
quantified and quality-controlled using aQubit 4 fluorometer (Thermo
Fisher Scientific) and LabChip GX (Perkin Elmer, Waltham, MA, USA).
The adaptor-tagged pool of libraries was loaded onto Illumina
Hiseq2500 rapid-run flow cells (SR100 chemistry) for cluster genera-
tion and deep sequencing. The raw sequence files were quality-
controlled using FastQC (v 1.3) (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/, accessed in May 2020). Transcripts were
aligned using the STAR package (v2.7.1a) and quantified using the
“quantMode GeneCounts” function with ENSEMBL annotation and the
humangenomeversionGRCh38 as a reference. Read counts generated
by STAR were analyzed using the DESeq2 R package to detect differ-
entially expressed genes (DEGs) with an adjusted P value (Adj.P) less
than 0.05.

Single-cell RNA sequencing
Sequencing was carried out at the University of Texas MD Anderson
Cancer Center’s Advanced Technology Genomics Core (PR#002 and
PDLX_PR#003) or at the NGS core facility of the Istituto Romagnolo
per lo Studio dei Tumori “Dino Amadori” (PR#008). Cell viability was
detected using the Countess II FL Automated Cell Counter (Thermo
Fisher Scientific). Single cells were lysed, barcoded, andnormalized for
input onto the Chromium Single Cell A Chip Kit (10x Genomics, Plea-
santon, CA, USA). Indexed sample libraries were pulled together and
sequenced using a NovaSeq6000 SP 100-cycle flow cell (Illumina).

Table 1 | Short hairpin RNA sequences for genetic knockdown
of EVI1 (shRNA#16, shRNA#87and shRNA#88), PA2G4
(shRNA#65, shRNA#66 and shRNA#68) and Not Targeting
control

Gene ID Sequence

EVI1 shRNA#16 3’TAAATTTCTCTTTATCACTTTC
5’AAAAGTGATAAAGAGAAATTTA
Loop:TAGTGAAGCCACAGATG

EVI1 shRNA#87 3’TATATCATTGTCTTCATCCTCC
5’AGAGGATGAAGACAATGATATA
Loop:TAGTGAAGCCACAGATGTA

EVI1 shRNA#88 3’TTCTTCAACTTCTTCATCATCC
5’AGATGATGAAGAAGTTGAAGAA
Loop:TAGTGAAGCCACAGATGTA

PA2G4 shRNA#65 3’TAGTGGTTCTCTGTCCTGCATC
5’AATGCAGGACAGAGAACCACTA
Loop:TAGTGAAGCCACAGATGTA

PA2G4 shRNA#66 3’TTCATGGTCCTTCTTCTGCTGG
5’ACAGCAGAAGAAGGACCATGAA
Loop:TAGTGAAGCCACAGATGTA

PA2G4 shRNA#68 3’TAATTCAGCTTTTTCATGGTCC
5’AGACCATGAAAAAGCTGAATTA
Loop:TAGTGAAGCCACAGATGTA

Not Targeting 3’ATGCTTTGCATACTTCTGCCTG
5’AAGGCAGAAGTATGCAAAGCAT
Loop:TAGTGAAGCCACAGATGTA
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Sequencing readswere aligned to the humangenomeversionGRCh38.
A digital expression matrix was generated for each sample using
Cellranger software (10x Genomics), and the data were integrated
using Harmony and analyzed using Seurat (R package)95,96. Cells with
less than 100 genes and 500 unique molecular identifiers were exclu-
ded from the analysis. Cell types were assigned using the Seurat label-
transferring method and a bone marrow–specific reference (included
in the SeuratData package). Conserved markers and differentially
expressed genes were identified for each cluster/cell type using the
Benjamini-Hochberg method to Adj.P for multiple testing. Statistically
significant DEGs for each cluster/cell type were used to performa gene
set enrichment analysis (GSEA) using the ClusterProfiler package and
the Hallmark gene-set from MSigDB. Furthermore, the identification
of the leukemic cell population was assessed by computing a tran-
scriptional signature score using the UCell R package (score ≥ 0.2)
based on the expression of leukemia-associated immunophenotype
for PR#002 (CD34, KIT, CD33, ANPEP, CD38, CD7, NCAM1, CD4, CD19,
DNTT, ITGB3, HLA-DRA, HLA-DRB1, and HLA-DRB5), PDLX_PR#003
(CD34, CD45 KIT, CD33, ANPEP, CD38, CD2, TFRC, HLA-DRA, HLA-
DRB1, HLA-DRB5, MYC, and MECOM), PR#008 in the treated and
untreated samples (CD34, KIT, CD33, ANPEP, CD38, CD2, TFRC,
MECOM, HLA-DRA, HLA-DRB5, HLA-DRB1, PTPRC, MYC).

Next-generation sequencing
DNAwas extracted using aMaxwell® 16 DNA purification kit (Promega,
#AS1010), following the manufacturer’s instructions. The concentra-
tion and purity of the DNA samples were determined with a Qubit 4
fluorometer (Thermo Fisher Scientific, #33226). Primary samples were
sequenced at the NGS platform of the University-Hospital of Parma
using the “Myeloid Solution” kit (Sophia Genetics SA, Saint Sulpice,
Switzerland, #BS.0207.0102-48). Library preparation and sequencing
were performed on a MySeq system (Illumina) following the manu-
facturer’s instructions.Datawere analyzedwith SophiaDDM® software
version 5.10.11.1 (Sophia Genetics SA).

Animal Models
PDLXs were established by tail vein injection of mononucleated cells
(2.0 × 106) isolated from AML patients, PR#003, PR#008, PR#009,
with t(3;3)(q21.3;q26.2), t(3;3)(q21.3;q26.2), and inv(3)(q21.3q26.2),
respectively, into 6-week-old male non-obese diabetic, severe com-
bined immune-deficient, interleukin (IL)-2 receptor gamma-deficient
mice (NOD-SCID IL2Rgammanull, NSG, The Jackson Laboratory, Charles
River Italia). Leukemic cell engraftment was monitored every 2 weeks
by flowcytometry of peripheral blood cells stainedwith an anti-human
CD45-PE antibody (Becton Dickinson, Franklin Lakes, NJ, USA,
#555483). For PDLX_PR#003, 10 × 106 cells were injected into the flank
to establish a subcutaneous orthotopic model. Mice’ body weight and
tumor growth were evaluated every two days using caliper measure-
ments. Tumors did not exceed 10% of the animal’s body weight and
had an average diameter of 15mm. Mice were housed in specific-
pathogen-free conditions (25 °C, 12-h light/12-h dark cycle, 50%
humidity). Gender-based analysis was not performed because AML
affects both males and females. Male mice are prioritized due to a
higher incidence of AML inmales compared to females. All procedures
were approved under the MD Anderson (Houston, TX) Institutional
Animal Care and Use Committee protocol or the N.682/2019-PR pro-
tocol at the University of Parma. Mice were sacrificed when signs of
distress were observed.

For pharmacodynamic studies, three 6-week-old male NOD-SCID
IL2Rgammanull (NSG, The Jackson Laboratory, Charles River Italia)mice
were treated when cell engraftment of circulating hCD45 reached at
least 10% of the total mononucleated cells in peripheral blood with a
single administration of 10mg/kg entinostat (PDLX_PR#003 and
PDLX_PR#009) or 50mg/kg of WS6 (PDLX_PR#009) diluted in DMSO
(Sigma-Aldrich, #276855); peripheral blood cells were collected before

and after 6 hr of treatment with HDACis for immunofluorescence
analysis.

For efficacy studies we used the triple-transgenic NSG-SGM3
(NSGS)(PDLX_PR#003) mice expressing human IL3, GM-CSF (CSF2),
and SCF (KITLG) or NSG (PDLX_PR#008). AML leukemia cells (1 × 106)
from the PDLX_PR#003 and (10 × 106) PDLX_PR#008 model were
transplantedby tail vein injection in 12- to 16-week-oldmale and female
NSGS mice, irradiated (125 cGy) 12 hr before transplantation
(PDLX_PR#003). Engraftment of human PDLX cells was monitored
every 2 weeks by flow cytometry of bone marrow–aspirated samples
(PDLX_PR#003) or peripheral blood (PDLX_PR#008) stained with an
anti-human CD45 antibody (BD Bioscience, Franklyn Lakes, NJ, USA,
#AB11153499, #555482 and #555483, all diluted 1:40). Mice were
selected for treatment randomization 4 to 6 weeks after transplanta-
tionwhen the human fractionof cells in thebonemarrowwas≥0.5%or
≥0.1% in the peripheral blood. Entinostat (MedChemExpress, Sollen-
tuna, Sweden, #HY-12163) and azacitidine (Selleck Chemicals, #S1782)
were dissolved in DMSO, diluted in sterile PBS, and administered by
oral gavage at 10mg/kg per five days/week for three weeks and by
intraperitoneal injection at 1mg/kg per five days respectively.WS6was
dissolved in Tween 80 (50:50), diluted in sterile PBS, and administered
by intraperitoneal injection (IP) at 25mg/kg per five days/week for
three weeks. Mice were euthanized by cervical dislocation, and organ
biopsies (tibias and femurs) were collected from animals and fixed
overnight in 10% neutral-buffered formalin (Sigma-Aldrich, #
HT501128-4L). Tibias or vertebrae were incubated for 24 hr in Cal-Ex
(Thermo Fisher Scientific, #C511-1D) to remove calcium residues and
then dehydrated and preserved in 70% ethanol at ambient tempera-
ture. Fixed tissues were then embedded in paraffin following standard
protocols. Leukemic cells were released from femurs and tibias by
mechanic crushing in a solution of 2% FBS/PBS and filtered using 30-
µm pre-separation filters (Miltenyi Biotec, Bergisch Gladbach, Ger-
many #130-041-407) prior to analysis of hCD45 by flow cytometry.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 8 or R
software. The means, standard deviation (±SD), group size, experi-
mental details, and statistical significance are described in the figure
legends in the methods section. The assumption of normal distribu-
tion was not determined, and the P value among samples was calcu-
lated by parametric and non-parametric t-test. We used one- or two-
way ANOVA using statistical correction for multiple comparison
algorithms, as specified in the figure legends, to determine appro-
priate significance among groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available dataset used in this study are available at https://
www.ebi.ac.uk/biostudies/arrayexpress, https://www.ncbi.nlm.nih.gov/
geo/, or https://www.cbioportal.org/ (E-GEOD 1623819, GSE1446831,
GSE13458932, E-MTAB-222515). Data generated in this study have
been deposited in ProteomeXchange Consortium PRIDE repository
under accession number PXD038686 (RIME mass spectrometry),
NCBI’s GEO repository under accession number GSE259221 (HNT34
RNA-seq), GSE220170 (MOLM1 and UCSD/AML1 RNA-seq), GSE256129
(HNT34 ChIP-seq), GSE256130 (PR#002 scRNA-seq), GSE256040
(PDLX_PR#003 scRNA-seq), GSE256076 (PDLX_PR#008 scRNA-seq).
The raw FASTQ files from NGS DNA sequencing (Sophia “Myeloid
solution” panel) are available under restriceted access, due to Institu-
tianal policies and privacy laws for sensitive, genomic, and personal
data, in the European Genome Archive (EGA) repository at
EGAD50000000506. Access for non-commercial academic use can be
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granted upon an email request to the lead contact (giovanni.r-
oti@unipr.it) within two weeks and is contingent upon a Data Access
Agreement between institutions. Data will be available for six month
once access has been granted. The remaining data are available within
the Article, Supplementary Information or Source Data File. Source
data are provided with this paper.
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