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A B S T R A C T

Diagnosing individuals with complex genetic diseases is a challenging task. Computational methodologies
exploit information at the genotype level by taking into account single nucleotide polymorphisms (SNPs)
leveraging the results of genome-wide association studies analysis to assign a statistical significance to each
SNP. Recent methodologies extend such an approach by aggregating SNP significance at the genetic level to
identify genes that are related to the condition under study. However, such methodologies still suffer from the
initial SNP analysis limitations. Here, we present DiGAS, a tool for diagnosing genetic conditions by computing
significance, by means of SNP information, directly at the complex level of genetic regions. Such an approach
is based on a generalized notion of allele spectrum, which evaluates the complete genetic alterations of the
SNP set belonging to a genetic region at the population level. The statistical significance of a region is then
evaluated through a differential allele spectrum analysis between the conditions of individuals belonging to
the population. Tests, performed on well-established datasets regarding Alzheimer’s disease, show that DiGAS
outperforms the state of the art in distinguishing between sick and healthy subjects.
1. Introduction

All human beings are on average 99.9% identical in their genetic
makeup. However, differences in the remaining 0.1% can significantly
affect human health. In human diseases, these variations can manifest
as variants involving single nucleotide changes called single nucleotide
polymorphisms (SNPs) and along this text also as single variants, or
non-SNP genetic variants such as insertions, deletions or larger genomic
rearrangements. Among these, SNPs represent the most abundant ge-
netic variation in the human genome, occurring once every 300 base
pairs throughout the genome [1]. The primary focus on SNPs in genetic
analysis is justified by their abundance, wide genomic coverage, heri-
tability, functional impact, relevance in population studies, and clinical
applications. SNPs, characterized by single nucleotide substitution, fol-
low Mendelian inheritance patterns and contribute to the heritability
of diseases and traits [2]. The analysis of one or multiple SNPs within
a gene or in intergenic non-coding regions allows researchers to iden-
tify the underlying mechanisms of diseases, gaining insights into the
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1 Data used in preparation of this article were obtained from the Alzheimer2019s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
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report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

assessment of disease risk, and develop targeted therapies for more
personalized approaches [3,4]. For instance, a specific single nucleotide
polymorphism in the APOE gene has been shown to contribute to the
development of Alzheimer’s disease [5,6]. Likewise a number of SNPs
within several immune response genes were found to influence the
individual susceptibility to autoimmune infectious diseases [3] and,
additionally, the identification of rare genomic variations has enabled
the development of targeted therapies for cystic fibrosis [4].

Genome-Wide Association Study (GWAS) is a well-established
methodology for identifying single variants associated with disease
risk [7,8]. GWAS allows testing of hundreds of thousands of SNPs across
entire genomes to find those that are statistically associated with a
specific disease outcome. Although the analysis of individual SNPs has
proven useful in the identification of different disease-susceptibility
variants, GWAS testing of millions of variants is however constrained
by multiple hypothesis testing [9], which increases chance of yielding
false-positive results, inhibiting the validity of the analysis results.
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Indeed, the capability of GWAS to detect SNPs with small effects that
are really linked to the outcome, also called causal SNPs, is limited
and individual SNPs genotyped on GWAS platforms commonly exhibit
only modest effects at phenotypic level. This could be the case when
there are typed SNPs that are in linkage disequilibrium (LD) with the
causal SNP, meaning SNPs belonging to different but non-randomly
associated loci. Therefore, when GWAS analysis is performed, the SNPs
in LD with the causal SNP show only moderate effects because serves
as an imperfect surrogate for the causal SNP. Given the high LD rate of
many typed SNPs with the causal SNP, it could be beneficial to consider
in the analysis the simultaneous effect of multiple SNPs in order to
capture the effective cause of a phenotypic condition, thus increasing
the significance of the results [10].

Highly effective methods for predicting the impact of SNPs are
also those based on deep learning models such as DeepSEA [11] and
DanQ [12]. These models leverage convolutional and recurrent neural
networks to predict the functional effects of non-coding single vari-
ants directly from DNA sequences. DeepSEA uses DNA sequences as
input and integrates additional features derived from ChIP-seq data,
instead DanQ extends this approach by combining convolutional layers
with bi-directional long short-term memory (LSTM) units to capture
dependencies in the data. Although these models demonstrate high per-
formance in terms of predictive power of specific single variants, they
require large amounts of labeled training data and significant compu-
tational resources. Moreover, single variants analysis only accounts for
the marginal effects of each variant, without considering the epistatic
interactions that predispose to disease with larger effects [13,14].

Analyzing sets of SNPs instead of single variants across the entire
genome may provide more robust and biologically meaningful re-
sults. This approach leverages information from multiple SNPs grouped
according to the biological context of their respective regions. The
power and relevance of their analyses can be enhanced by focusing on
candidate genomic regions, such as promoter regions or tissue-specific
genes, or prioritizing candidate genes known to play significant roles
in specific pathways Moreover, this approach also allows to reduce the
number of possible tests, improve the statistical power, and identify
novel loci without increasing sample sizes or collecting new data.
Thus, the chance to achieve significant results increases when biological
evidence and statistical significance are combined.

In this perspective, in 2011, Wu et al. proposed SKAT [15], a
test to evaluate SNP sets applying a logistic kernel-machine regression
framework to measure the combined effect of independent SNPs. SNPs
are grouped according to genomic features such as genes or haplotype
blocks considering SNP-sets as potential regulatory regions, reducing
the number of multiple comparisons. The goal of SNP set analysis
is to test the global null hypothesis of whether any of the SNPs are
related to the outcome while adjusting for the additional covariates.
Besides SKAT, other SNP sets tests have become increasingly important
in analyzing the association problem at the gene level through the
computation of gene-level p-values or gene scores.

In minSNP [16–18], the SNP with the smallest 𝑝-value is used as a
epresentative of the entire gene.

Alternatively, in permSNP [19–22] an empirical 𝑝-value for a SNP
et is determined by recomputing the p-values of individual SNPs using

permuted dataset. The SNP set’s 𝑝-value is then calculated as the
umber of times where the average 𝑝-value of the observed SNPs is
ower than the p-values obtained from the permuted data.

A similar empirical 𝑝-value is also computed in VEGAS [23] where
multivariate normal distribution is used to correct for uneven LD

istribution between SNPs. Alternatively, Pegasus [24] employs a chi-
quared distribution to capture LD between SNPs at gene level. How-
ver, all these methods inherit from GWAS the issue of assigning
ignificance to each SNP in a SNP analysis before grouping SNPs into
ets. Table 1 summarizes the main characteristics of these approaches
2

long with their limitations. w
In this context, we introduce DiGAS, a tool implementing an innova-
ive computational approach for the identification of genomic elements,
anging from individual exons to entire genomic regions, likely asso-
iated with a given phenotypic condition, such as diseases, treating
hem as potential causal factors. DiGAS introduces a novel genomic
nformation descriptor named the ‘‘generalized allele spectrum’’. This
escriptor is built upon the allele frequency spectrum, which captures
llele frequencies within a defined group of loci, specifically SNPs. The
llele spectrum combines the frequency of single alleles into an unique
ector of allele frequencies.

In contrast to the allele spectrum, the novel descriptor takes into
ccount the complete set of SNPs of a region at once, allowing to
ompute frequency at the genomic region level rather than at the SNP
evel. We define the Differential Generalized Allele Spectrum as the set
f significant differences in the frequency allele spectra between two
ample conditions. The proposed methodology (i) recognizes genetic
egions critical for a given phenotype, and (ii) builds a set of features
or supervised classification purposes.

DiGAS was tested on a case study of Alzheimer’s disease(AD), a
erfect scenario where, considering the collective influence of multiple
NPs, we can gain a better understanding of the genetic architecture
nderlying the disease and potentially identify more comprehensive
ets of genetic markers associated with its progression [25,26]. AD
s a progressive neurodegenerative disease that induces a slow and
nevitable degeneration of brain functions. Up to date, AD has no
ure, and it represents a challenge at the forefront of biomedical
esearch [27]. Genetic factors play a significant role in the development
nd progression of AD, with variations in specific genes increasing the
isk of developing the condition. In studying Alzheimer’s disease, it has
een observed that a particular SNP may be present and associated with
he condition in one affected individual but not in another affected one
eaning that the presence or absence of a single specific SNP is not suf-

icient to determine the disease status or predict its occurrence. Instead,
D is influenced by the combined effect of multiple SNPs that may vary
etween individuals. Each individual may have a unique combination
f genetic variations, including different SNPs, that contribute to their
usceptibility or resilience to the disease [28,29].

We collected genetic data of AD patients from the Alzheimer’s Dis-
ase Neuroimaging Initiative (ADNI) [30] and used DiGAS to identify
ey sets of SNPs that differentiate between healthy and AD individuals.
iGAS was then compared with SKAT, which served as benchmark
ethod in the context of multiple SNPs analyses. Results show that
iGAS outperforms SKAT in the identification of predictive SNP sets

or the classification task.
To further evaluate the effectiveness of DiGAS on different pheno-

ypic conditions, we tested it on openly available data collected from
he Parkinson’s Progression Markers Initiative (PPMI) [31], which was
btained upon request. The results confirmed that DiGAS exhibit supe-
ior performance compared to SKAT in the identification of predictive
NP sets, reducing also significantly both the computational time and
emory usage.

DiGAS is implemented in Python and the open-source software is
vailable for both Windows and Unix systems at the following GitHub
epository: https://github.com/InfOmics/DiGAS.

In what follows we present a detailed description of the DiGAS
ethodology and the results obtained by testing the tool on the AD

ase study. Section 2.1 introduces the main methodological aspects of
he proposed approach. Section 2.2 describes the datasets used for the
valuation of the proposed model. Finally, the results in the form of a
upervised classification problem, are reported in Section 3.

. Material and methods

In this section, we present the proposed methodology, DiGAS, along

ith details about the data used for testing and the validation approach.

https://github.com/InfOmics/DiGAS


Computers in Biology and Medicine 179 (2024) 108924A. Aparo et al.

a
m
b
v
i
a
p
d
t
o

d

g
D

Table 1
A summary of the most commonly used SNP sets methods and limitations.

Methods Description Limitations

minSNP [16–18]
Computes a gene score based on Biases may occur as longer genes tend
the smallest SNP 𝑝-value observed to have lower gene scores.
within the gene in a GWAS.

permSNP [19–22]

Involves permuting case-control labels Computationally expensive for
in genotype data,recalculating SNP p-values, genome-wide datasets; gene score precision
and computing empirical gene p-values depends on the number of permutations.
using the observed and permuted data.

VEGAS [23]

Takes into account the observed correlation Precision of gene scores depends on
between SNPs (LD) and simulates a specified the number of simulations; computationally
number of statistics from which the resulting inefficient due to simulations.
𝑝-value is calculated.

Pegasus [24] Pegasus leverages pathway-based information Performance heavily influenced by the quality
to prioritize weak signals in GWAS. and the relevance of pathway databases.

SKAT [15]

Employs mixed-model regression, considering May have limited power for small sample sizes
covariates and genotypes for SNPs and rare variant detection.
in a gene set to assess disease association. Assume linear relationships between

SNPs and the phenotype.
i
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Table 2
A summary of the terminology and notation used in this article.
S a population of 𝑛 individuals

C a set of 𝑗 phenotype categories

S𝑐 a subset of S containing individuals belonging to
category 𝑐

𝛾 ∶ S− > C labeling of the individuals category

P the set of 𝑚 SNPs taken into account in the study

𝑙𝑜𝑐 ∶ P ↦ N+ the genomic location of a SNP

𝜓 ∶ S × P ↦ {0, 1} the state (genetic variation present or absent)
of each SNP for each subject

G the set of regions that are investigated in the
study

𝜂𝑐 (𝑔) ∈ [0, 1] the generalized allele spectrum of 𝑔
with respect to phenotypic category 𝑐

𝐹𝐶𝑐1 ,𝑐2 (𝑔) the fold change of the generalized allele
spectrum of region 𝑔 with respect to two
categories 𝑐1 and 𝑐2

𝑠𝑡𝑎𝑟𝑡 ∶ G ↦ N+ the position of the first nucleotide in the region’s
genomic sequence.

𝑒𝑛𝑑 ∶ G ↦ N+ the position of the last nucleotide in the region’s
genomic sequence.

𝜌(𝑔 ∈ G) the set of SNPs whose genomic location reside
within the genomic location of the region 𝐺

Section 2.1 provides a formal description of the DiGAS method
nd a summary of the basic notions, as reported in Table 2. The
ethodology takes as input the coordinates of the genomic regions to

e analyzed and the genotyping data (SNPs information) and the single-
ariant information regarding such regions. Subsequently, the pipeline
nvolves the computation of the generalized allele spectrum, which is
measure related to the presence of SNPs in genomic regions for each
henotype condition analyzed in the study. Significant regions, that are
ifferentially altered between two conditions, are identified based on
he fold change of the generalized allele spectrum and the calculation
f p-values using permutation tests and output by the pipeline.

Section 2.2 describes the data used and the preprocessing proce-
ures applied.

Finally, Section 2.3 provides a description of the classification al-
orithms and evaluation metrics used to assess the performance of
3

iGAS.
2.1. DiGAS

Individuals with different phenotypic states can be categorized
based on their conditions. For example, when studying a specific
disease, we typically classify individuals into two groups: healthy and
sick. However, it is also possible to consider more than two categories
while ensuring that each individual belongs exclusively to one category.

In our model, the population of 𝑛 individuals, referred to as subjects,
is represented by the set S = {𝑠1, 𝑠2,… , 𝑠𝑛}, where 𝑠𝑖 represents the 𝑖th
ndividual. To categorize these individuals, we have a set of categories
= {𝑐1, 𝑐2,… , 𝑐𝑘}. We define a function 𝛾 ∶ S− > C to assign a category

to each subject. A subset of S containing only the individuals belonging
o category 𝑐 ∈ C is denoted as S𝑐 .

For each individual, we examine the occurrence of single variations,
i.e. single nucleotide polymorphisms (SNPs), in relation to a selected
reference genome. We establish the function 𝑙𝑜𝑐 ∶ P → N+ to determine
the position of a SNP within the genome. We define P = {𝑝1, 𝑝2,… , 𝑝𝑚}
s the set of 𝑚 SNPs that are being considered. It is important to note
hat in diploid genomes, where two alleles are present for each genomic
ocus, we do not differentiate between diploid variations at the same
ocus.

The function 𝜓 ∶ S×P ↦ {0, 1} indicates the absence or presence of
a SNP for an individual.

For instance, given an individual 𝑠𝑖 ∈ S and a SNP 𝑝𝑗 ∈ P, 𝜓(𝑠𝑖, 𝑝𝑗 )
is 0 if no SNP is observed at 𝑙𝑜𝑐(𝑝𝑗 ) in the genome of the individual 𝑠𝑖.

Experimental designs may necessitate the detection of SNPs
throughout the entire genome or in specific regions such as genes,
exons, or intergenic regions. The scope of SNP detection can be tailored
based on the objectives of the study and the specific genomic regions
of interest.

Consider the set of regions to investigate as G = {𝑔1, 𝑔2,… , 𝑔𝑙},
where each 𝑔𝑖 represents a contiguous region of nucleotides defined
by start and end coordinates with respect to the reference genome. We
denote the subset of SNPs residing in the region 𝑔𝑖 of the reference
enome as 𝜌(𝑔𝑖 ∈ G) = P𝑖 ⊆ P. This subset P𝑖 consists of SNPs where
he genomic location 𝑙𝑜𝑐(𝑝𝑗 ) satisfies the condition 𝑠𝑡𝑎𝑟𝑡(𝑔𝑖) ≤ 𝑙𝑜𝑐(𝑝𝑗 ) ≤
𝑒𝑛𝑑(𝑔𝑖) for each SNP 𝑝𝑗 ∈ P𝑖. In simpler terms, P𝑖 includes SNPs located
within the boundaries of the region 𝑔𝑖 in the reference genome.

For a genomic region 𝑔 belonging to the set G, the overall allele
spectrum of 𝑔 in relation to the specified phenotype category 𝑐 repre-
sents the ratio between the total count of SNPs observed in the region
across all individuals within that category and the maximum possible
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count of SNPs in that region for the same category. This can be defined
as:

𝜂𝑐 (𝑔) =

∑

𝑠𝑖∈S𝑐
∑

𝑝𝑗∈𝜌(𝑔) 𝜓(𝑠𝑖, 𝑝𝑗 )

|𝜌(𝑔)| × |S𝑐 |
∈ [0, 1]

with 𝜂𝑐 (𝑔) is in the range [0, 1] because 𝜓(𝑠𝑖, 𝑝𝑗 ) can be 0 or 1 and the
summation cannot exceed |𝜌(𝑔)|× |S𝑐 |. The value is 1 when all subjects
belonging to the given category present all SNPs in the considered
region.

Suppose that we aim to compare the overall allele spectrum for
a specific genomic region 𝑔 belonging to the set G, between two
phenotype sample categories 𝑐1 and 𝑐2. For such purpose, we define the
fold change 𝐹𝐶 of a genomic region 𝑔 with respect to the two categories
𝑐1 and 𝑐2 as:

𝐹𝐶𝑐1 ,𝑐2 (𝑔) = |𝑙𝑜𝑔(
𝜂𝑐1 (𝑔) + 1
𝜂𝑐2 (𝑔) + 1

)| = |𝑙𝑜𝑔(𝜂𝑐1 (𝑔) + 1) − 𝑙𝑜𝑔(𝜂𝑐2 (𝑔) + 1)|

where 𝜂𝑐1 (𝑔) is the overall allele spectrum of region 𝑔 in the phenotype
category 𝑐1 and 𝜂𝑐2 (𝑔) is the overall allele spectrum of region g in the
phenotype category 𝑐2. Algorithm 1 presents the DiGAS pseudocode
for the estimation of the overall allele spectrum of a region and the
calculation of the allele spectrum fold change between two phenotype
categories.
Algorithm 1 Procedure for computing FC values.
1: procedure ComputeFC(𝑔,S, 𝛾, 𝜌, 𝜓, 𝑐1, 𝑐2)
2: S𝑐1 ← {𝑠 ∈ S ∶ 𝛾(𝑠) = 𝑐1}
3: S𝑐2 ← {𝑠 ∈ S ∶ 𝛾(𝑠) = 𝑐2}

4: 𝜂𝑐1 ←

∑

𝑠𝑖∈S𝑐1

∑

𝑝𝑗∈𝜌(𝑔) 𝜓(𝑠𝑖 ,𝑝𝑗 )

|𝜌(𝑔)|×|S𝑐1 |

5: 𝜂𝑐2 ←

∑

𝑠𝑖∈S𝑐2

∑

𝑝𝑗∈𝜌(𝑔) 𝜓(𝑠𝑖 ,𝑝𝑗 )

|𝜌(𝑔)|×|S𝑐2 |
6: return |𝑙𝑜𝑔(𝜂𝑐1 + 1) − 𝑙𝑜𝑔(𝜂𝑐2 + 1)|
7: end procedure

Since our model allows us to compute the fold change of each region
cross each pair of phenotype categories, the selection of statistically
ignificant regions is obtained by calculating an empirical 𝑝-value

through a permutation test [32].
In Algorithm 2 we show the complete DiGAS pseudocode, including

the steps needed to perform the permutation test. To achieve this, we
initiate the process by randomly permuting the original category as-
signments of the subjects. This results in the creation of 1000 different
random labelings of subject categories, denoted as {𝛾0, 𝛾1,… , 𝛾1000}.
To determine the significance of the observed fold change in the real
data, we calculate the proportion of random labelings where the fold
change is equal to or greater than the observed value. This proportion
represents the 𝑝-value of the region. A lower 𝑝-value indicates that the
observed fold change is less likely to occur by random chance alone,
suggesting that the region may have a significant association with the
categories being studied.

More precisely, we modify the original category assignment 𝛾 to a
new function 𝛾𝑖, where the assignments in 𝛾𝑖 are a permutation of the
assignments in 𝛾. Thus, the total number of subjects assigned to each
category, given two categories 𝑐1 and 𝑐2, is maintained from 𝛾 to 𝛾𝑖.

Let S𝑐1 and S𝑐2 be the subsets obtained according to the category
assignments in 𝛾. To obtain 𝛾𝑖, we iteratively modify 𝛾 for a total of
|S𝑐1∪S𝑐2|

2 iterations. We refer to 𝛾 𝑡𝑖 as the version of 𝛾𝑖 at iteration 𝑡, where
0
𝑖 is an exact equal to 𝛾. For each iteration 𝑡 > 0, we select two subjects
1 and 𝑠2 such that 𝛾0𝑖 (𝑠1) ≠ 𝛾0𝑖 (𝑠2). We create 𝛾 𝑡𝑖 by swapping |S𝑐1∪S𝑐2|

2
imes the assignments of the selected 𝑠1 and 𝑠2, i.e., 𝛾 𝑡𝑖 (𝑠1) = 𝛾0𝑖 (𝑠2),
𝑡
𝑖 (𝑠2) = 𝛾0𝑖 (𝑠1), and 𝛾 𝑡𝑖 (𝑠𝑖) = 𝛾0𝑖 (𝑠𝑖) for 𝑠𝑖 ∈ S ⧵ {𝑠1, 𝑠2}. The 𝑝-value of a
egion 𝑔 is then determined by calculating the percentage of random
abelings for which the fold change of the region equals or exceeds
𝐶𝑐1 ,𝑐2 (𝑔). Regions that have a 𝑝-value less than 0.05 are considered

elevant for discriminating between subjects who belong to category 𝑐1
rom subjects who belong to category 𝑐2.
4

A flowchart summarizing the methodology is provided in Fig. 1.
Algorithm 2 Procedure for recognizing regions that differentiate
between two phenotype categories using allele spectra.
1: procedure RecognizeRegions(G, S, 𝛾, 𝜌, 𝜓, 𝑐1, 𝑐2)
2: Ĝ ← {∅}
3: S𝑐1 ← {𝑠 ∈ S ∶ 𝛾(𝑠) = 𝑐1}
4: S𝑐2 ← {𝑠 ∈ S ∶ 𝛾(𝑠) = 𝑐2}
5: 𝑐𝑜𝑢𝑛𝑡← 0
6: for each 𝑔 ∈ G do
7: 𝐹𝐶 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝐶(𝑔,S, 𝛾, 𝜌, 𝜓, 𝑐1, 𝑐2)
8: for 𝑖𝑡𝑒𝑟 ← 1 to 1000 do
9: 𝛾 ′ ← 𝛾 ⊳ Gets a copy of 𝛾

10: for 𝑖← 1 to |S𝑐1∪S𝑐2|
2 do

1: 𝑠1 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑜𝑛𝑒(S𝑐1)
2: 𝑠2 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦_𝑠𝑒𝑙𝑒𝑐𝑡_𝑜𝑛𝑒(S𝑐2)
3: 𝛾 ′(𝑠1) ← 𝑐2
4: 𝛾 ′(𝑠2) ← 𝑐1
5: end for
6: 𝐹𝐶𝑖𝑡𝑒𝑟 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝐶(𝑔,S, 𝛾 ′, 𝜌, 𝜓, 𝑐1, 𝑐2)
7: if 𝐹𝐶𝑖𝑡𝑒𝑟 ≥ 𝐹𝐶 then
8: 𝑐𝑜𝑢𝑛𝑡← 𝑐𝑜𝑢𝑛𝑡 + 1
9: end if
0: end for
1: if 𝑐𝑜𝑢𝑛𝑡∕1000 ≤ 0.05 then
2: Ĝ ← Ĝ ∪ {𝑔}
3: end if
4: end for
5: return Ĝ
6: end procedure

2.2. Test dataset

The data used in this manuscript was obtained from both The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) project (http://
adni.loni.usc.edu) and the Parkinson’s Progression Markers Initiative
(PPMI) project (http://www.ppmi-info.org, accessed November 19,
2019). The ADNI was launched in 2003 as a public–private partnership,
led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). The ADNI project includes various
types of data, including MRI and PET images, genetics, cognitive
tests, cerebrospinal fluid (CSF), and blood biomarkers for the study
and prediction of the Alzheimer’s disease. Specifically, our focus is
on identifying genomic regions whose sets of SNPs collectively may
contribute to the disease. Coordinates of the regions to take into
account are provided by the GENCODE project2 (v36lift37). In addition
to the ADNI cohorts, we analyzed data from the PPMI project to further
evaluate the versatility of our methodology. The PPMI project collects
comprehensive data to study Parkinson’s disease, including clinical
assessments, imaging, and biospecimen data. In both the analysis we
considered the complete set of ADNI cohorts, which includes ADNI1,
ADNI2/GO, and ADNI3, as well as the PPMI cohort. The individuals
in the ADNI cohorts are classified into three categories: affected (AD),
not affected (CN), and mild cognitive impairment (MCI). The MCI
category encompasses individuals who exhibit symptoms similar to
those of Alzheimer’s disease but do not exhibit a strong hallmark
phenotype. In some cases, individuals with MCI may revert to normal
conditions [33]. While the individuals in the PPMI cohort are classified
into two categories: affected (PD) and not affected (CN).

2 https://www.gencodegenes.org
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Fig. 1. Flowchart of the DiGAS methodology. The process starts with single-variant (SNP) data in PLINK format and a set of genomic regions 𝐺. SNPs are assigned to genomic
regions 𝑔 ∈ 𝐺 based on their location in the reference genome. The set of individuals 𝑆 is divided into subsets 𝑆𝑐 by phenotype category 𝑐. The generalized allele spectrum 𝜂𝑐 (𝑔) is
calculated for each region and phenotype categories, followed by computing the fold change between the generalized allele spectrum of each pair of phenotype categories. Finally,
statistically significant differentially altered regions are identified via permutation test.
Table 3
Number of European subjects (divided by categories) used as input for each ADNI
cohort. Total number of subjects, independently from their ancestry, is also reported.

CN MCI AD European subjects Total subjects

ADNI1 197 339 168 704 757
ADNI2/GO 233 385 118 736 793
ADNI3 226 59 17 302 327

Table 4
Number of European subjects (divided by categories) used as input for the PPMI cohort.
Total number of subjects, independently from their ancestry, is also reported.

CN PD European subjects Total subjects

PPMI 162 362 524 560

Table 5
Total number of SNPs for each cohort and number of SNPs filtered by Quality Control
(QC) procedures.

Original data After QC

ADNI1 620.668 525.216
ADNI2/GO 730.525 591.481
ADNI3 759.993 303.150
PPMI 457.171 267.607

We filtered out all the individuals with no European ancestry.
Statistics regarding the subjects extracted from ADNI and PPMI are
reported in Tables 3 and 4 .

Quality control (QC) procedures were conducted on the data from
each ADNI and PPMI cohort using PLINK 1.9 [34], which is a com-
prehensive toolset for whole-genome association analysis. These QC
procedures involved filtering SNPs and subjects based on the following
specific criteria: (i) Missing Data Filter (𝑔𝑒𝑛𝑜 > 0.2): SNPs with a high
proportion of missing data, where more than 20% of the data was miss-
ing, were excluded from the analysis. (ii) Individual Missingness Filter
(𝑚𝑖𝑛𝑑 > 0.1): SNPs were filtered based on individual missingness, where
SNPs with more than 10% of individuals having missing genotype data
were excluded.(iii) Minor Allele Frequency Filter (𝑀𝐴𝐹 > 0.05): SNPs
with a minor allele frequency below 5% were removed. This filter
helps to ensure that the analysis focuses on common genetic varia-
tions. (iv) Hardy-Weinberg Equilibrium Filter (ℎ𝑤𝑒 > 1e−06): SNPs
showing significant deviations from the Hardy-Weinberg equilibrium
were excluded. Hardy-Weinberg equilibrium represents the expected
frequencies of genotypes in a population, and deviations from this
equilibrium may indicate potential genotyping errors or other issues.

Table 5 provides information on the SNPs that were filtered out after
applying these QC procedures. Regarding subjects, no individuals were
filtered out based on QC measures. This means that all individuals in
the ADNI and PPMI cohorts were retained for further analysis after the
QC procedures.
5

2.3. Evaluation methodology

We used a set of classification algorithms, such as linear discrim-
inant analysis (LDA) [35], support-vector machine (SVM) [36] (lin-
ear and polynomial), decision tree [37] and k-nearest neighbors (k-
NN) [38] to evaluate the ability of the proposed methodology in
selecting regions that are useful for distinguishing subject’s categories.
The goal of the classification is to build a model that, after a learning
phase, correctly assigns a category to a given subject.

For this evaluation, we applied a 10-fold cross-validation [39]. This
approach splits the original cohort into 10 subsets maintaining the
initial proportions among the categories of subjects. Each subset is
used in turn as the validation set, while the remaining nine subsets are
combined to form the training set. The process is repeated ten times,
ensuring that each subset is used exactly once as the validation data.

After the training phase, the resultant model is queried by using
records belonging to the test set. A test set individual that is correctly
recognized as belonging to a given category 𝐶 by the model is con-
sidered a true positive (TP) for such a category. On the contrary, a
false positive (FP) record is labeled as 𝐶 by the model but, in reality,
it does not belong to 𝐶. Similarly, true negatives (TN) are records that
are correctly classified as non-𝐶, and false negatives (FN) are records
that are wrongly classified as not belonging to 𝐶.

Accuracy is defined as the fraction of records that are correctly
classified with respect to the entire test set. The F1 score combines
precision and recall statistics into a metric via harmonic mean. Pre-
cision informs about the fraction of records that are correctly classified
as belonging to 𝐶 with respect to the total number of records that
are classified as 𝐶 by the model. Recall gives the fraction of records
belonging to 𝐶 that are correctly classified with respect to the total
size of 𝐶.

All the given metrics are in the range of [0, 1] such that the higher
the value, the better the performance of the given model is. Moreover,
for binary classification, precision and recall are related to the given
category that is taken into account. On the contrary, the value of
accuracy is the same independently for the investigated category.

3. Results

DiGAS methodology was evaluated by assessing its accuracy with
respect to SKAT [15], in identifying groups of SNPs effective in clas-
sifying individuals. Given an ADNI cohort (see Section 2.2 for details
regarding the composition of the ADNI dataset), we employed a 10-
fold cross-validation approach splitting the dataset into 10 equal parts,
using 9 parts for training and 1 part for validation and rotating this
process so that each part is used as the validation set once. This ensures
that each subset of the data is used for both training and validation,
providing a robust evaluation of the model’s performance.

This means that, if the ADNI1 cohort has 197∕704 = 28% CN
subjects, 48% MCI and 23% AD, such percentages are preserved in both
the training and the validation sets.

SNP sets are the features of our classification model. Thus, the goal
is to recognize the SNP sets which make a distinction between the
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Fig. 2. Accuracy metrics on ADNI1 using 10-fold cross-validation for each evaluated classification algorithm and each genomic region.
categories and to do so, we grouped SNPs by the following genomic
regions:

• Exons: each exon is considered a distinct region, not linked to the
exons of the same gene. Exons may belong to any type of gene,
protein-coding or not.

• Protein-coding exons: namely exons that belong to genes known
to code for proteins.

• Upstream exon regions: for each exon we extracted 5k nucleotides
preceding the exon, excluding the exon itself.

• Exons+upstream: for each exon, we included the exon plus the
upstream 5K nucleotides region.

• Genes: the complete genomic sequence of each gene, including
exons and introns.

• Genes+upstream+downstream: we extract the upstream and the
downstream regions, for 20 Kb each, along with the gene se-
quence, as used in [15].

Coordinates of such genomic elements were extracted from public
databases described in Section 2.2 and the belonging of a SNP to a given
region is calculated via the 𝑙𝑜𝑐 function described in Section 2.1. All the
6

experiments were performed over the GrCh38 version of the human
genome. Since ADNI1 is originally defined over previous versions of
the human genome, we used the tool UCSC LiftOver [40,41] to convert
such coordinates into coordinates over the GrCh38 genome.

We applied the methodology described in Section 2.1 to identify
significant regions, considering a 𝑝-value cut-off of 0.05 (evaluated
by fold-change). In this process, the three categories, 𝐶𝑁 , 𝐴𝐷 and
𝑀𝐶𝐼 , were evaluated separately. Then, we merged the regions that
resulted significant for 𝐴𝐷 and 𝑀𝐶𝐼 into a single set of regions and
for this reason, in what follows, ill subjects are also referred to as
the joint category 𝐴𝐷∕𝑀𝐶𝐼 . For each cross-validation, the resultant
performance metrics were calculated by running 1,000 iterations, and
by computing the mean and the standard deviation of the results.

Fig. 2 shows the accuracy values of DiGAS and SKAT on the ADNI1
cohort varying the genomic regions and the type of classifier. For
each type of region considered, DiGAS always outperforms SKAT in
particular using SVM classifiers. Regardless of the genomic region,
decision tree classifiers yield the lowest accuracy for both methods.
SKAT reaches a maximum accuracy of 0.79 when exons or protein-
coding exons are used as the basis for training an SVM linear classifier,
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Fig. 3. F1 score metrics on ADNI1 using 10-fold cross-validation for each evaluated classification algorithm and each genomic region.
but in general SKAT accuracy is mostly below 0.75. On the contrary,
DiGAS is able to break the barrier of 0.75 in multiple configurations.
The best accuracy value of 0.95 is obtained when upstream exon
regions are taken into account alone or in combination with exons and
by using an SVM classifier.

Similar results are shown for the F1 score for the ADNI1 cohort in
Fig. 3. SKAT reaches a maximum F1 score of 0.79 via exons or protein-
coding exons, while DiGAS obtains up to a 0.94 of F1 score on both
upstream exon regions and exon+upstream.

Figs. 4 and 5 report accuracy and F1 score values for the ADNI2 co-
hort, reflecting performance trends similar to ADNI1. Maximum values
of accuracy are 0.93 (exons+upstream and upstream exon regions) and
0.79 (exons) for DiGAS and SKAT, respectively. Maximum F1 scores are
0.92 (exons+upstream and upstream exon regions) and 0.73 (exons) for
DiGAS and SKAT, respectively.

Figs. 6 and 7 show results obtained on the ADNI3 cohort. Accuracy
values follow similar trends obtained by testing the methodologies on
ADNI1 and ADNI2 however, DiGAS and SKAT reduce their performance
considering the F1 score. The difference with previous cohorts is due
to the limited number of 𝐴𝐷∕𝑀𝐶𝐼 subjects included in the dataset.
ADNI3 cohort is an ongoing project for which fewer ill subjects are
7

yet reported. F1 scores for the 𝐴𝐷∕𝑀𝐶𝐼 group suffer such a lack
of data that does not affect accuracy because such a measure takes
into account both 𝐶𝑁 and 𝐴𝐷∕𝑀𝐶𝐼 groups. However, it has to be
noticed that DiGAS is still able to reach an F1 score of 0.93 when
exons+upstream regions are combined with the kNN classifier, and
exon regions produce a maximum value of 0.92 when SVM linear and
kNN classifiers are employed. Moreover, DiGAS crosses the barrier of
0.70 in several configurations. On the contrary, SKAT reaches an F1
score greater the 0.70 only in five configurations, being the best one
equal to 0.72 by combining exon regions with the SVM linear classifier
or upstream exon regions with the kNN linear classifier. These results
demonstrate DiGAS’s robustness with limited data. In general, the SVM
linear classifier is the best choice to work with the DiGAS methodology,
but the kNN approach can be taken into account in the presence of a
dataset with a category containing a limited number of subjects.

We note that exons, and in particular not only protein-coding exons,
combined with upstream regions yield the best classification results.
Alzheimer’s disease is a complex disease which involves many genes
and, presumably, their regulatory elements [42,43] and such elements
are often placed in upstream gene regions. However, our analysis
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Fig. 4. Accuracy metrics on ADNI2 using 10-fold cross-validation for each evaluated classification algorithm and each genomic region.
shows that regulatory regions of genes are important as well as up-
stream exon regions. It is known that too much information may
reduce classifiers’ performance, especially when such overabundant
data does not relate to the recognition problem that is taken into
account. Low performance on genes and their combined regions sug-
gests the significance of upstream exon regions and inter-/intra-genic
regulatory elements in Alzheimer’s disease. Upstream regions alone
produce results comparable to their combination with exons, indicating
overlapping information. Pure exon regions are outperformed by their
combination with upstream regions.

To further evaluate the versatility and effectiveness of DiGAS, we
conducted additional experiments using the Parkinson’s Progression
Markers Initiative (PPMI) dataset. Fig. 8 shows the F1 score values
of DiGAS and SKAT on the PPMI cohort across the different genomic
regions and classifier types. DiGAS consistently outperforms SKAT,
particularly when using SVM classifiers. The highest F1 score achieved
by DiGAS is 0.83 using genes+upstream+downstream regions, whereas
8

SKAT’s highest F1 score is 0.80 using the same genomic regions. Unlike
the results observed with the ADNI cohorts, in the PPMI dataset, the F1
score tends to increase as the size of the genomic region increases, from
exons to entire genes. This improvement is particularly noticeable when
including the upstream and downstream regions of the genes.

We also evaluated the computational resources required for run-
ning DiGAS, including memory and processing power. The results are
shown in Fig. 9. DiGAS demonstrates significantly better performance
compared to SKAT in terms of computational time and memory usage,
especially when dealing with distinct and smaller genomic regions. As
the regions decrease in number and the number of SNPs per region
increases, SKAT performance becomes comparable to DiGAS, particu-
larly regarding execution time. Overall, these results demonstrate that
DiGAS is superior to SKAT across different phenotypic conditions and
datasets, and that the SVM classifier consistently provides the best
results.

Finally, we performed 10 leave-one-out and k-folding tests to iden-
tify core genes significant in all DiGAS iterations. For each iteration,
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Fig. 5. F1 score metrics on ADNI2 using 10-fold cross-validation for each evaluated classification algorithm and each genomic region.
in the leave-one-out test we randomly select a subject, while in the
k-folding test, we randomly extract 90% of subjects maintaining per-
centages among phenotype categories. Fig. 10 shows results on ADNI1
cohort where red points are the core genes and blue points are genes
not significant in at least one iteration. The results show that as the
𝑝-value decreases, DiGAS obtains a set of genes that does not vary if
subjects are removed from the input dataset.

Fig. 11 shows that DiGAS maintains superior performance with
respect to SKAT both in accuracy and F1 score even using only k-folding
core genes to classify Alzheimer’s disease subjects.

4. Conclusion

We propose DiGAS, a novel methodology for the identification of
SNP sets associated with a specific phenotype condition that compre-
hensively and simultaneously analyzes the entire set of SNPs within
genomic regions. Taking advantage of the introduction of the gener-
alized allele spectrum descriptor and identifying sets of features based
on allele frequency differences, DiGAS enhances the accuracy of genetic
signal attribution to specific genomic regions, overcoming limitations
9

inherent in SNP-level analyses commonly employed by other methods,
which assigns a significance score to each individual SNP before group-
ing them into SNP sets. Tests conducted on well-established datasets
related to Alzheimer’s disease and Parkinson’s disease, respectively
collected from ADNI and PPMI, show that the tool consistently outper-
forms SKAT in computational efficiency and in identifying predictive
genomic features for individuals classification. Moreover, DiGAS does
not make annotations on genes or patients and it is designed to be
independent of ethnic background, ensuring that the analysis is not
influenced by the ethnic composition of the datasets. The tool is highly
distributable and designed to be easily integrated within bioinformat-
ics pipelines. Although DiGAS demonstrates promising performance
in the identification of genomic regions associated with a specific
phenotype, several limitations and challenges need to be considered.
As competitor methods, DiGAS accuracy is heavily dependent on the
quality and quantity of the input genomic data and incomplete or low-
quality datasets can affect the reliability of the results. Additionally, the
identification of significant SNP-sets does not provide direct biological
insights and further functional studies are required to interpret the
biological relevance of the findings.
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Fig. 6. Accuracy metrics on ADNI3 using 10-fold cross-validation for each evaluated classification algorithm and each genomic region.
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Fig. 8. F1 score metrics on PPMI using 10-fold cross-validation for each evaluated classification algorithm and each genomic region.
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Fig. 9. Comparison of computational resources required by DiGAS and SKAT for different genomic regions in the PPMI dataset. The left plot represents elapsed time, and the
right plot represents memory usage for both methods across various genomic region sizes.

Fig. 10. Leave-one-out and k-folding test results on ADNI1 cohort. Each point refers to a gene and its 𝑝-value. Genes are ranked on the 𝑥-axis according to their 𝑝-value (y-axis).
Red genes, also called core genes, are significant in all tests, otherwise, they are colored as blue.
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Fig. 11. Accuracy and F1 score metrics on ADNI1 using 10-fold cross-validation for each classification algorithm, and by using genes as the genomic region.
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