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ABSTRACT

In this research, mechanical stress, static strain and deformation analyses of a cylindrical pressure vessel
subjected to mechanical loads are presented. The kinematic relations are developed based on higher-
order sinusoidal shear deformation theory. Thickness stretching formulation is accounted for more ac-
curate analysis. The total transverse deflection is divided into bending, shear and thickness stretching
parts in which the third term is responsible for change of deflection along the thickness direction. The
axisymmetric formulations are derived through principle of virtual work. A parametric study is pre-
sented to investigate variation of stress and strain components along the thickness and longitudinal
directions. To explore effect of thickness stretching model on the static results, a comparison between
the present results with the available results of literature is presented. As an important output, effect of
micro-scale parameter is studied on the static stress and strain distribution.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Analysis of pressure vessels have great importance in the
context of mechanical engineering because of their vast applica-
tions in various situations. The cylindrical shells are used in various
industrial applications such as chemical reactors, weapon in-
struments and aerospace technologies. Analysis of pressure vessels
are performed using the Newtonian and Lagrangian methods and
also using the technical codes proposed by important associations
[1]. The Newtonian methods are applied through plane elasticity
theory and are mostly valid for long cylindrical shells. The
Lagrangian methods based on principle of virtual work and Ham-
ilton’s principle are used for more generalized formulation of the
cylindrical shells with variable thickness and short length cylinder
with axial boundary conditions. There are some applications of
cylindrical shells in the various situations subjected to combination
of mechanical, thermal and electrical loads [1—6] A review on the
recent works is presented to justify significance of this paper.

Lori Dehsaraji et al. [7] formulated a higher-order thickness
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stretched piezoelectric nanoshell through Eringen nonlocal elas-
ticity theory and shear and normal deformation theory. Decom-
position of radial displacement into bending, shear and thickness
stretching portions was used for kinematic relations. Justification of
the results was performed through comparison with some lower
order theories and also 3D results. Rezaiee-Pajand et al. [8]
employed a higher order element including seven parameters to
study nonlinear analysis of various thickness shell of revolution.
Thickness stretching was accounted based on the employed
element through finite element formulation. Zhang et al. [9]
developed an experimental study on the fracture analysis of bitu-
minous coal. Qiu et al. [10] studied effect of thermal load on the
mechanical behavior of cylindrical shell as an energy storage.
Accounting concurrent geometric nonlinearity and thickness
stretched model was employed by Amabili [11] for large amplitude
vibration analysis of a doubly curved shell where all in-plane and
transverse nonlinear terms were included in the formulation. The
third-order thickness stretching formulation was used for analysis
of laminated shell. The results were compared with those higher-
order and refined theories that ignored thickness stretching. Lori
Dehsaraji et al. [12] developed a modified couple stress model for
electroelastic vibration analysis of cylindrical micro and nano shell
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subjected to electromechanical loading through Hamilton’s prin-
ciple and a thickness stretching modeling. Patel et al. [13] investi-
gated dynamic responses of elliptical shell made from functionally
graded materials through higher-order modeling considering
thickness stretching. To satisfy field consistency and avoid shear as
well as membrane locking, the finite element approach was used
for formulation. Ganapathi et al. [14] extended higher-order shear
deformation theory to dynamic responses of laminated thick cy-
lindrical shell with application in modeling the variation of the in/
out of plane displacement and sudden discontinuity in the slope.
Finite element method and time integration technique were
employed for numerical investigation of the problem. Simo et al.
[15] extended shell theory including finite thickness stretch as well
as initial variable thickness for analysis of the problems including
finite membrane strains, contact, delamination and concentrated
surface loads. The numerical results were presented to investigate
influence of thickness stretch on the responses of thin shell. Static,
dynamic and stability analyses of a composite laminated shell was
studied by Zenkour and Fares [16] based on Hamilton—Reissner's
mixed variational principle. Polit et al. [17] studied effect of gra-
phene nanoplatelets reinforcement and porosity on the static and
stability analyses of curved beam based on higher-order model
considering thickness stretching terms. Hamilton’s principle and
Navier’s technique were employed for derivation of motion equa-
tions and solution procedure. Effect of thermal and fatigue loading
was studied on the structural behavior of new materials and
structures [18,19].

Arefi et al. [20] employed two-variable sinusoidal shear defor-
mation theory for static bending analysis of a double curved shell
with accounting shear and normal deformation theory. Generalized
Hooke’s law was used to derive governing equations. After deri-
vation of the governing equations using principle of virtual work
and solution using the analytical method, it was shown that ac-
counting thickness stretching leads to a 4% improvement in the
results. Amabili et al. [21] developed a new nonlinear model for
nonlinear vibration characteristics of a shell made from hypere-
lastic material with incompressibility including nine parameters.
The model was applicable for analysis of a Neo-Hookean material
and biomechanics of soft tissues. Capability of the proposed model
was justified through comparison of the results with those results
without thickness stretching. Amabili [22] studied nonlinear forced
vibration analysis of laminated cylindrical shell using the new
higher-order shear deformation theory and Lagrange equations in
which a harmonic point excitation along the radial direction was
applied. Pseudo-arclength continuation method and bifurcation
analysis were used to derive governing equations of motion. The
accuracy of the proposed formulation was justified using reduction
of the formulation to von Kidrmdn formulation and Novozhilov
theory. Chu [23] studied large amplitude vibration analysis of thin
shell using a higher order shear deformable model and considering
nonlinear strain components. Merodioand Haughton [24] studied
bifurcation analysis of thick-walled cylindrical shell subjected to
Marfan’s syndrome. Bert and Birman [25] studied dynamic insta-
bility analysis of a cylindrical shell subjected to axial excitation
made from orthotropic material reinforced with different fibers.
Alsubari et al. [26] studied effect of humidity and thermal loads on
the static analysis of anisotropic shell using generalized plane strain
assumption and the Murakami zigzag function. There are some
important works for referring the basic relations of this work
[27—33,47—66].
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Ganapathi et al. [34] used a new higher-order displacement field
for dynamic responses of a thick multi-layered shell subjected to
thermal and mechanical loads. Kumar et al. [35] employed a higher-
order zigzag theory for finite element formulation of composite and
sandwich shell. The failure criteria have been examined for the
shell subjected to mechanical loadings. Ye et al. [36] combined a
higher-order shear deformation theory and a semi-analytical
method for formulation and numerical solution of a composite
laminated shell using three-dimensional theory of elasticity. Shar-
iyat and Eslami [37] studied dynamic buckling and postbuckling
analyses of imperfect cylindrical shell in thermal environment us-
ing 3D thermoelasticity relations. Loy and Lam [38] presented
higher-order dynamic formulation of a thick cylindrical shell based
on elastodynamic relations. Third-order shear deformation theory
was used in the framework of motion equations for free vibration
responses of a cylindrical shell by Saad et al. [39]. The accuracy of
the results was confirmed through comparison with finite element
results. Desai and Kant [40] studied effect of sinusoidal higher order
shear deformation theory on the bending behaviours of the cylin-
drical shell. Wavelet transform was used as a mathematical method
for analysis of the engineering processes and applications [41—43].
For better and more accurate modeling the shear strains along the
thickness direction, Bhimaraddi [44] used lower and higher order
shear deformation theories for dynamic analysis of the cylindrical
shells. McDaniel and Ginsberg [45] concurrently accounted higher-
order shear deformation theory and Ritz expansions for vibration
responses of the cylindrical shells. Hirano and Hirashima [46] used
infinite power series along the radial direction for three dimen-
sional dynamic analysis of a cylindrical shell based on a higher-
order model. There are some applications [47—53] of new mate-
rials and technologies in the mechanical engineering such as
reinforced materials.

Investigating related works on the recent published papers of
cylindrical shells in various environments and using various theo-
retical formulation and kinetic relations has been performed in the
literature survey. It is deduced that stress and deformation analysis
of higher-order shear deformable cylindrical pressure vessels are
important for more accurate analysis of the shells and should be
accounted in new works. The importance of shear stress is
confirmed in this paper specially at both ends. Two-variable sinu-
soidal shear deformation theory is used for description of kinematic
relations and the principle of virtual work is used for derivation of
the governing equations of motion.

2. Thickness stretching included formulation

An axisymmetric pressurized cylindrical pressure vessel is
formulated in this section based on higher-order sinusoidal shear
deformation theory and accounting thickness stretching. Based on
the axisymmetric model, two axial uy and radial w, displacements
are assumed in the framework of higher-order shear deformation
theory accounting thickness stretching term are assumed as
[65,66].

(1)
Wz =Wy +Wws +g(2)

in which, f(z) =z — h/wsin(rz /h) and g(z) = 1— f'(z). Further-
more, Wy, ws,x are bending, shear and stretching parts of
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transverse deflection, respectively. Using the kinematic relations in
the cylindrical coordinate system, the strain components are
derived as [65,66].

Coux dug 0w, 02w
Exx = X ox ox2 f(2) a2
w, w, V4
€69 = TZ Tb - +&X
N (2)
w.
£z = TZZ =g'@)x
o aux aWZ 1 aWS
Txz = az X ={1-f% )} +g(z

The behavioural relations are derived as [7,9,12]

1-9 o ¥ 0
T E 0 1-9 o 0
agp \ _
0z (CA-20)1+0) | 9 0 1-9 O
Txz 1-2¢
0 0 0 5
Exx
R
€7z
Txz

(3)

where, normal (shear) stress and strain components are denoted
with ;;(7xz) and e;(v;). Furthermore, E, + are Young’s modulus and
Poisson’s ratio, respectively.

w, r(z)
\—x u

>

Strain energy variation of a cylindrical shell is expressed as

[26—30,61,62,67].
o ddug 9% ows
5U_JJJ[0 (ax @)% )

X1X2Z
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62 6Wb
ox2
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Through definition of resultant components, we will have the
strain energy in the updated form as

+0gp

26

Defence Technology 20 (2023) 24—33

oU= Zﬂj |: an(suO Mxxa 6Wb Sxxa ows + N@g(swb + Ngg(SWs

) )
+Sp0X + Szz0x + Nz WS 4 S0 ;‘] dx

(5)
where the resultant components are defined as [7,9,12,67]:
{Nxz, Mxx, Sxx} = Jarx{1vzvf(Z)}dzv {Ngg,Spo}

z

|ow1.8@1d2.5,, = [tz
z z
(NS} = [rr ({1~ (2)}.8() )z
z
Integration by part leads to

2
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(7)

0x2 0x

The resultant components are defined in terms of displacement
functions as
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where the integration constants are computed in Appendix A.
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The external work due to internal and external pressures and an

outer Pasternak’s foundation is computed as follows
[34—36,40—42].

oW =27 J [ Pi5WZZ7% — P05W2:+h/2 — Ff5W2:+h/2 dzdx (9)

Substitution of transverse displacement into above relations
leads to

oW = zfc”[(P,» Py — Ff)éwb + <Pl- —Py— Ff)éws]dzdx

(10)
The governing equations are derived as
ONxx
oug : — =
Mo T
éWb:— *Pi—Po—Ff
, (1)
0“Sxx  ONxz
(3W5 = axz — ox +N69:P,‘—P0—Ff
asxz

Finally, the governing equations in terms of primary functions
are developed as

S 821 N 0w, owp 03w W
0:—&1 X2 02 Y% Pa—- ax 23 % o X
931 g o%w, a%w,,
Wp: —p7—=+ @o1— + + +K
b £7 03 £21 ax P87 o —(P10+ 922 p) > 02
62
+(@19+KW)WS*(<@11+8012)6X + (920 + 924)Xx=Pi = Po
S a>ugp U 0w, p 0w,
Ws : — 13 63+50216x+8014 7 (P16 + 00 +K) ax2+

e
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2

ou 0 Wy
0x : (934 + 927) 75— (928 + @35)W+

+(926+ 930+ 031+ 933)x=0

3. Numerical results

Numerical solution procedure is explained in this section for
simply-supported boundary conditions. The solution of governing
equations is expressed based on trigonometric functions as

0w
+ (919 + Kw)Wp + po—7 —
ox*

0“Wg
(925 + 932)Wp — (920 + 936 + S039)W+ (925 + $32)Ws

27

0w
(Kw + 919)Wp + &015?45— (P16 + 023+ @37 +Kp)—axz
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Table 1
Comparison between the dimensionless transverse deflection W between present
results and those results of Refs. [31—33].

S=R/h  Soedel [32] Khdeiretal. [33] Nwojia and Ani [31] Present
100 0.0019 0.0019 0.0019 0.00195
20 0.0206 0.0212 0.0214 0.0215
10 0.0301 0.0334 0.034 0.0342
4 0.0629 0.0616 0.0629 0.0632

') Ucos(Amx)

Wy, Wy sin(Amx)

=224 we (13)
Ws nom | Wsin(Amx)
X Xsin(Amx)

in which An = . Two dimensional results including stresses,
strains and displacements are explored along the radial and axial
directions.

A validation through comparison of the present results with
those results available in literature is presented. Listed in Table 1 is
comparison between the dimensionless transverse deflection of
the present results and those results of Refs. [31-33]. A good
agreement between present results with literature results is
observed.

The results including displacements, strains and stresses com-
ponents are plotted along the axial and axial and radial directions.
The results are presented for two different geometries of cylindrical

0
— (5 + 506)6)( 0

4 2
0w
(910+ 923 +Kp) axzs

4 2w,

+ (920 + 924)x =P = Po

2 62

- 5040@

(12)

shell. The first case is a long cylindrical shell: R=1m,L =5 m,
t = 0.05 m and the second case is a short cylindrical shell: R =1 m,
L=2m,t=01m.

Axial displacement is shown in Fig. 1 along the radial and axial
directions for a pressurized cylindrical pressure vessel. The results
of Fig. 1(a) and Fig. 1(b) are presented for R = 1 m, L = 5 m,
t=0.02mandR=1m,L=2m,t=0.1 mrespectively. It is observed
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0.006

0.002 -

(b)

Fig. 1. Changes of axial displacement u along the radial and axial directions: () R=1m,L=5m,t=0.05m; (b)) R=1m,L=2m, t =01 m.

that for a long cylindrical pressure vessel, the axial displacement is
approximately unchanged along the thickness direction. Unlike this
case, the results of figure b are computed for a short and thick shell
in which the radial displacement is changed along the thickness
direction. It is confirmed that the higher-order shear deformation

0.08
0.06

= 0.04

0.02

0 /!
002 501
-0.01 ¢ 3
2 0.01 0025 4

(@)

theory and thickness stretching leads to an efficient result for short
and thick shells.

Shown in Fig. 2(a), Fig. 2(b) are two dimensional changes of
radial displacements along the thickness and axial directions for
cylindrical pressure vessel. The results are presented for two

0.020 1
0.015
= 0.010

0.005

(b)

Fig. 2. Changes of transverse deflection w along the radial and axial directions: (a) R=1m,L=5m,t=0.05m; (b)R=1m,L=2m, ¢t =01 m.
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(b)

Fig. 3. Changes of axial strain &y along the radial and axial directions: (a) R=1m,L=5m,t=0.05m; (b)) R=1m,L=2m, t=0.1 m.
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geometric cases. A significant decrease in the radial displacement is
observed for a short length cylindrical shell R =1 m, L = 2 m,
t = 0.1 mrespect to along shellR=1m,L=5m, t =0.05 m.
Two-dimensional variation of axial strain ey along the radial and
axial directions is presented in Fig. 3(a), Fig. 3(b) for a pressurized

0.00006
0.00004
0.00002

S ol
-0.00002
-0.00004
-0.00006

02
~0.01 0 00l goas

(2)

Fig. 6. Changes of shear strain v,, along the radial and axial directions:

Defence Technology 20 (2023) 24—33

cylindrical shell for two geometries. A decrease in axial strain ey is
observed for a thick and short cylindrical shell. The maximum
values of axial strain are observed at middle length of cylindrical
shell due maximum bending moment at same section. Fig. 4,
Fig. 5(a), Fig. 5(b) show two dimensional variation of radial ¢, and

3x107¢
2x10°¢
1x107¢

-1x10-¢
-2x1076

-3x10¢

1.0 0.02

0.5 z
x 0
(b)

0.0020 1
0.0015

0.0010

0.0005

1.0
5 08T
(b)

0.00003
0.00002 |

0.00001

-0.00001

-0.00002

-0.00003

-0.04
04 002 o 1.5
9 002g0s,

(b

(@QQR=1m,L=5m,t=005m; (b)R=1m,L=2m,t=01m.
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circumferential e strain components along the radial and axial
directions. The results show that the radial strain is zero at both

Fig. 6(a), Fig. 6(b) along the radial and axial directions. It is
ends of cylindrical shell as well as middle surface.

confirmed that the shear strain is zero at top and bottom surfaces.

This condition has been justified using the proposed shear defor-
Two dimensional variation of shear strain is presented in mation theory.

(b)

g,
._.Nw.:;u]ox\]oo\o

o
g
=)
.

(b)

0.0015

0.0010

0.0005

-0.0005

-0.0010

-0.0015

-0.02 — 2
-0.01 o 001 002 . 4 x
4

002 (o4 20

(a) (b)

Fig. 9. Changes of non-dimensionless shear stress 7x; along the radial and axial directions: (a) R=1m,L=5m,t=0.05m; (b)R=1m,L=2m, t =01 m.
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Shown in Fig. 7(a), Fig. 7(b) are two dimensional variation of
non-dimensional axial stress along the radial and axial directions. It
is observed that the maximum stresses are occurred at the middle
of the shell and the top and bottom surfaces. Existence of maximum
normal stress at middle length of the shell is due to maximum
bending moment at same section.

Shown in Fig. 8(a), Fig. 8(b) are changes of non-dimensional
circumferential stress @; along the radial and axial directions for
both long and short cylindrical shells. The maximum circumfer-
ential stress is occurred at the middle length of the shell where the
maximum deflection is occurred. Small change of circumferential
stress is observed along the thickness direction.

Shown in Fig. 9(a), Fig. 9(b) are changes of non-dimensionless
shear stress 7x; along the radial and axial directions for both long
and short cylindrical shells. It is observed that the shear stress is
zero at top and bottom surfaces. Furthermore, the maximum shear
stress is occurred at the middle surface.

4. Conclusions

Higher-order shear deformable model and thickness stretching
formulation are employed in this research for mechanical stress,
strain and deformation analyses of a cylindrical pressure vessel
subjected to mechanical loads resting on Pasternak’s foundation.
The transverse deflection of the shell is assumed as the combina-
tion of bending, shear and stretching functions, in which the last
term is responsible for variation of deflection along the thickness
direction. After derivation of the governing equations through the
principle of virtual work, the analytical solution is developed for
stress and strain analyses. The mechanical stress, strain and

Defence Technology 20 (2023) 24—33

deformation are presented along the length and thickness di-
rections for two long and short cylindrical shells. A sinusoidal shape
function is used for exact and accurate modeling of the shear stress
along the thickness direction. The main results of this paper are
classified as follows:

e The changes of results along the thickness direction indicates
that there is no significant changes for all stress and strain
components except shear stress and strain the are changed
significantly.

e The results show that the transverse shear stress and strains are
satisfied zero stress conditions at top and bottom surfaces.

e The results indicate that the main stress is hoop stress that
should be accounted in design procedure.

e Based on the outputs, it is concluded that the shear strain and
stress become very important for short cylindrical shells.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.dt.2022.07.003.
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