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Abstract: The goal of image-to-image translation (I2I) is to translate images from one domain to

another while maintaining the content representations. A popular method for I2I translation involves

the use of a reference image to guide the transformation process. However, most architectures fail to

maintain the input’s main characteristics and produce images that are too similar to the reference

during style transfer. In order to avoid this problem, we propose a novel architecture that is able

to perform source-coherent translation between multiple domains. Our goal is to preserve the

input details during I2I translation by weighting the style code obtained from the reference images

before applying it to the source image. Therefore, we choose to mask the reference images in an

unsupervised way before extracting the style from them. By doing so, the input characteristics are

better maintained while performing the style transfer. As a result, we also increase the diversity

in the generated images by extracting the style from the same reference. Additionally, adaptive

normalization layers, which are commonly used to inject styles into a model, are substituted with

an attention mechanism for the purpose of increasing the quality of the generated images. Several

experiments are performed on the CelebA-HQ and AFHQ datasets in order to prove the efficacy of

the proposed system. Quantitative results measured using the LPIPS and FID metrics demonstrate

the superiority of the proposed architecture compared to the state-of-the-art methods.

Keywords: deep learning; style transfer; image-to-image translation; generative adversarial networks

1. Introduction

Image-to-image translation (I2I) aims to generate an output image with a different
style while preserving the content information of the input [1]. More specifically, the goal
of I2I is to convert an image xA belonging to a source domain A into an image yB belonging
to a target domain B by preserving its intrinsic content belonging to the source domain and
modifying its extrinsic content by making it as similar as possible to that characterizing the
target domain.

A lot of frameworks that use generative models to perform I2I translation are emerging
in a variety of areas: from face editing [2] to style transfer [3] and the automotive field [4].
Focusing on style transfer, StarGANv2 [5] introduces an innovative approach. Specifically,
StarGANv2 incorporates a style encoder that is designed to extract the style characteristics
of an image, which is referred to as the reference image. Subsequently, the extracted style is
applied to the input image using a single generator that is able to perform image translation
across multiple domains. StarGANv2 also has a mapping network that is in charge of
generating styles for the generator from random noise. In their work, the creators of
StarGANv2 introduce diversity as the characteristic of each image within a domain to be
different, despite the images coming from the same domain. By this definition, the authors
show how the output changes as the reference changes, even if the images are picked
from the same domain. However, this architecture design tends to apply global changes
to the entire input image without preserving its intrinsic content representation. This can
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be described as a heavy form of reference-based style transfer, which can be seen in the
generated output images by extracting the style from the same reference. In such cases,
the output images tend to closely mirror the reference image, and the generated images
collapse to the reference image, as can be seen in Figure 1.
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Figure 1. Results generated using StarGANv2. It can be seen how the generated images lose the

intrinsic characteristics of the input like hair length or coat color and end up looking too similar to

the reference, resulting in a lack of diversity.

To address this limitation, we present a novel architecture that is able to perform
source-coherent I2I translation across multiple domains. Our solution involves adding a
segmentation layer before the style encoder: this layer computes segmentation masks that
are used to separate the subjects within the reference image and to select only the desired
part of the image. In this way, we can remove all of the unnecessary content in the reference,
like the background or out-of-domain parts. Ultimately, the style encoder extracts the style
only from the relevant part of the reference image, and the generator produces images with
the style of the reference image without collapsing to it.

Our network architecture takes inspiration from StarGANv2 [5], though it has some
fundamental changes; in particular, we change the style application by using cross attention
layers [6] and not adaptive instance normalization (AdaIN) [7]; then, we adapt the style
encoder by feeding it with both the image and its corresponding mask.

Moreover, a crucial aspect lies in the utilization of an unsupervised architecture for
extracting masks from reference images. Specifically, we choose to use the STEGO [8]
model, which is an architecture that can perform unsupervised semantic segmentation,
in order to produce masks. With STEGO, we produce binary images that are used in order
to separate information regarding where to extract the style code inside the style encoder.

To summarize, the main contributions of the proposed work are as follows:

• Innovative architecture for style transfer: We introduce a novel architecture that is able
to perform source-coherent I2I translation between multiple domains by preserving
input details and increasing diversity during generation.

• Semantic style separation: The model utilizes an unsupervised segmentation archi-
tecture to produce masks in order to localize the style only for specific subjects of the
images and to remove useless areas like backgrounds or out-of-domain details. By this
weighing of the reference images, the model is able to focus only on the relevant parts
and to better understand the characteristics of the image styles, resulting in more
accurate style codes compared to the ones generated by state-of-art architectures.

• Transferring styles using cross attention: The proposed architecture also shows
how attention mechanisms—more specifically, cross attention layers—are able to
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improve the quality of style transfers compared to commonly used adaptive instance
normalization layers.

2. Related Work

Image-to-image translation: Image-to-image translation was first introduced by [9] as
the task of translating one possible representation of a scene into another given sufficient
training data. Pix2Pix [10] was the first attempt to use GANs—in particular, conditional
GANs (CGANs)—in order to translate an image from the source domain to the target
domain and vice versa with paired datasets. Later, CycleGAN [3] improved Pix2Pix
performance by removing the requirement of paired datasets and suggested a method for
I2I translation on unpaired datasets by employing a cycle consistency loss that guarantees
that an image should accurately replicate the source image when it is translated to the
target domain and then reversed. MUNIT [11] was one of the first attempts to enhance
the diversity of the generated images by feeding the generator with a style code that is
randomly sampled from Gaussian noise. Later, MSGAN [12] tried to improve the diversity
of generated images by maximizing the ratio of the distance of two images in the image
space with respect to the distance of their corresponding latent code in the latent space.
StarGAN [13] reached better performance in terms of both diversity and quality by using
only a single generator to train between multiple domains. StarGANv2 [5] later improved
the StarGAN architecture by introducing a style encoder that is in charge of learning
new styles from images and then uses this style code in order to condition the output.
Nevertheless, all of the cited architectures tend to share the same limitation of lack of
diversity when using the same reference.

Diffusion probabilistic models (DPMs) [14] have recently showed impressive results
in the generative field. Despite this, DPMs are still not at the same level as GANs for
I2I translation problems. Architectures like ControlNet [15], BBDM [16], and Palette [17]
show good results for primitive forms of I2I, but they lack the capacity to perform I2I
from multiple domains. For this reason, in this paper, we chose to adapt the StarGANv2
architecture to perform our task.

Style transfer: Style transfer is a way to perform I2I translation by generating a sample
with the same content as the input image but with another style. In this way, we can
translate images between multiple domains and preserve the intrinsic characteristics of
the input. One of the first application used conditional GAN [18] in order to perform style
transfer, but it was based on a slow optimization process that iteratively updates the image
to minimize the content and style losses. Later, adaptive instance normalization (AdaIN) [7]
became the state-of-the-art in style transfer applications. AdaIN enables fast, arbitrary
style transfers in real-time without being limited to a specific set of styles, as in previous
works. Recently, transformers [19] have exhibited impressive results in NLP, and a lot of
transformer-based architectures have been used across a multitude of vision-related tasks.
In particular, the StyTr2 [20] and latent diffusion [6] models have highlighted the power
of transformers and cross attention layers when used to transfer styles from multimodal
references like text, class labels, or images. For this reason, we selected cross attention layers
in order to apply the domain style to the generated input. Additionally, recent approaches
have leveraged the capability of latent diffusion to perform style transfer between pictures
and paintings [21,22].

One of the main challenges during style transfer is to identify only the regions from
which to extrapolate the style and to remove unnecessary regions like the background
or other parts of the image. Ref. [23] introduced an attention layer in order to select
the area from which to apply the style during I2I translation. Ref. [24] proposed cycle-
consistent attention loss in order to train the model to apply changes in the same areas
during translation and reconstruction by using a residual block activation map. Recently,
SEAN [25] demonstrated that by using a mask that represents only the relevant area of
the image, it is possible to perform an average pooling operation on the extracted features
inside the style encoder and to produce more accurate style codes. Following a similar idea,
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we propose to modify the StarGANv2 style encoder by introducing mask multiplication
and pooling.

Unsupervised semantic segmentation: Semantic segmentation aims to discover and
localize the semantically meaningful categories present in an image. Typically, Mask
R-CNN [26] or YOLO [27] are used in order to produce segmentation from an image,
but they require labeled datasets, which is not always feasible and, in any case, is not
scalable. Recently, several works have introduced semantic segmentation systems that
can learn from weaker forms of labels such as classes, tags, bounding boxes, scribbles,
or point annotations. The IIC system [28] focuses on maximizing the mutual information
of patch-level cluster assignments between an image and its augmentations. It operates as
an implicit clustering method, with the network directly predicting the (soft) clustering
assignment for each pixel-level feature vector [8,28,29]. PiCIE [29] enhances the semantic
segmentation outcomes achieved by IIC by leveraging invariance to photometric effects
and equivariance to geometric transformations as an inductive bias. In PiCIE, the network
aims to minimize the distances between features subjected to different transformations.
The distance metric is determined through an in-the-loop k-means clustering process [8,29].
Conversely, STEGO [8] achieves impressive results in semantic segmentation without any
kind of labeled dataset. STEGO shows that unsupervised deep network features have
correlation patterns that are largely consistent with true semantic labels and uses these
patterns to categorize every pixel of the image. Based on its valuable characteristics, STEGO
is a perfect candidate for our purposes, and it represents the state-of-the-art in unsupervised
semantic segmentation.

3. Proposed System

In the next sections, the proposed model, which is able to perform source-coherent
translation by preventing the results from collapsing to the references, is described.

3.1. Network Architecture

As stated above, the network architecture of our system follows that of StarGANv2
and is composed of a generator G, a discriminator D, a style encoder E, and a mapping net-
work M (see Figure 2). The style code strg can be generated both from images by using the
style encoder or from random noise z by using the mapping network. During generation,
the generator G takes both the source image xsrc and the style code strg and generates the
output xtrg = G(xsrc, strg). In finer detail, G is designed as an encoder–decoder architecture
featuring four downsampling residual blocks and four upsampling residual blocks, but it
uses cross attention layers (instead of adaptive instance normalization layers) to apply
the style. The discriminator D serves the role of evaluating which domain the generated
samples belong to. D follows the StarGANv2 implementation and is a multitask discrimi-
nator that consists of multiple output branches. Finally, the style encoder E is a CNN with
two residual blocks as feature extractors and an average pooling layer for the area covered
by the mask, while M is an MLP that is in charge of generating style codes from noise.

Generating Styles from References

As previously stated, our style encoder is heavily modified compared to the one
introduced by StarGANv2. In fact, we took inspiration from the SEAN style encoder [25]
and adapted it to our goal. First, only two, instead of six, downsampling layers are used,
following the implementation reported in [30], because we do not need shape information
inside our style code. Then, we multiply the extracted features with the precomputed
mask that is computed from the segmentation map obtained using STEGO (see Section 3.3).
This allows us to delete information that irrelevant to the style computation, such as the
background. Finally, an average pooling layer followed by a fully connected layer for each
domain are applied (see Figure 3a).
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Figure 2. Overview of the proposed system. The generator takes the input image xsrc and applies

the style code, which is computed using reference (xre f ) and its correspondent mask (mre f ) or using

random noise (z), with cross attention layers. Finally, the result xtrg passes through the discriminator.
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Figure 3. Overview of the style encoder architecture. (a) Comparison between the StarGANv2 style

encoder (left) and the proposed style encoder (right). Different from StarGANv2, we utilize a mask

for computing the style code. (b) Overview of the cross attention layers utilized for style transfer. We

compute cross attention using extracted features from the input image as the query vector and the

style code as the key and value vectors.

3.2. Transferring Style with Cross Attention

In order to apply style to the image, we use cross attention layers instead of AdaIN
during the decoding phase of the generator. As shown in Figure 3b, we first extract features
from source image xsrc and style code strg extracted from xre f . Subsequently, the features
extracted from the source image are normalized using layer normalization, and then
for every cross attention, the style code is injected as follows:

Att(x, s) = So f tmax
(

Q·KT
√

d

)

· V

where Q is the projection of the features extracted from xsrc, K, V are projections of the style
code strg, and d is the dimension of a single attention head. Finally, the resulting tensors are
normalized with layer normalization and are linearly transformed with a feedforward layer.
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3.3. Extracting Masks with STEGO

For the purpose of maintaining the network as fully unsupervised, the unsupervised
semantic segmentation architecture STEGO is employed for extracting masks from the
reference image before extracting the style from it. As described in [8], features f are first
extracted from the reference image using the DiNo [31] feature extractor, then a STEGO
segmentation head is devoted to extracting a non-linear projection and to learning patterns
inside the image. Finally, the results are clustered and refined with a conditional random
field (CRF) layer [32].

Only the semantic cluster of the style that needs to be transferred is selected, and the
others are set to zero in the segmentation mask. More specifically, the selected semantic
cluster/class is the one corresponding to the main subject of the image (e.g., animals in the
AFHQ dataset [5] and persons in the CelebA-HQ dataset [33]).

3.4. Training and Losses

In order to train the proposed model, we choose to maintain the training phase of
StarGANv2 without any changes. Therefore, the total loss is composed of four losses:

• The adversarial loss is used to learn the generation of realistic results:

Ladv = Esrc[log Dsrc(xsrc)] +Etrg

[

log
(

1 − Dtrg

(

G
(

xsrc, strg

)))]

where xsrc ∈ X is the input image, and G(·) is the generator and takes xsrc and strg,
which is the style code extracted from the reference image xre f .

• The style reconstruction loss is introduced in order to prevent the generator G from
ignoring the style strg during the generation phase:

Lsty = Esrc,trg

[∥

∥strg − E
(

xtrg

)∥

∥

]

where E
(

xtrg

)

is the style code extracted from the generated image.
• The style diversification loss is used to differentiate the styles generated from two

different images:
Ldiv = Esrc,trg1,trg2

[∥

∥xtrg1
− xtrg2

∥

∥

]

• The cycle consistency loss maintains the domain-invariant characteristics of the gener-
ated image, like the pose and shape:

Lcyc = Esrc,trg

[∥

∥xsrc − G
(

xtrg, s̃src

)∥

∥

]

where s̃src is the estimated style code extracted from the input.

The final loss is, therefore, as follows:

min
G,M,E

max
D

Ladv + λstyLsty − λdivLdiv + λcycLcyc

It is worth noting that during training, a reference image and random noise are used
alternatively for generating the style code through the mapping network.

4. Experimental Results

This section reports details about the experimental results: both qualitative and
quantitative.

4.1. Selected Baseline

Since our work is an extension of StarGANv2, we decided not to compare the results
that we produce with those of other architectures, following the comparison in [30]. In fact,
our work can be seen as an improved version of StarGANv2, with the objective of showing
how to leverage the mistakes made by StarGANv2 and how to improve that network by
adding our masked style encoder. As discussed, StarGANv2 style transfer is limited in
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terms of diversity and tends to generate images with the same style applied; on the contrary,
we show a proper way to perform style transfer without losing diversity. Moreover, it is
quite difficult to compare our architecture with others since, when considering diffusion
models, for example, the style transfer is a totally different task and cannot be compared to
our architecture. All of the hyperparameters and training strategies are the ones proposed
in the original paper for StarGANv2.

4.2. Datasets

We tested our model on two datasets: CelebA-HQ, composed of 30 k images [33], and
AFHQ, composed of 16 k images [5]. CelebA-HQ is organized in two domains (male and
female), and AFHQ is organized in three domains (cat, dog, and wildlife animal). Binary
masks are extracted using STEGO pretrained on COCOstuff [34] by selecting the “person”
and “animal” attributes in order to identify the subjects of the images for the two datasets.
No other information is employed during training or inference. We resize all images to
256 × 256 and all masks to 64 × 64 during training.

4.3. Implementation Details

During all the experiments, we train the network for 100 k iterations and we use
Adam [35] as the optimizer. Learning rates of 10−4 for G, D, and E and 10−6 for M are used.
Training took about 1 day using a single NVIDIA A100 GPU, which is the same amount of
time as StarGANv2, proving that our approach does not add complexity in the training.
For CelebA-HQ training, we weigh every loss equally; on the contrary, for AFHQ, we set
λdiv to 2, while λcyc and λsty are 1, following the implementation in [5], in order to make an
equal comparison with StarGANv2 and to show that the results obtained are better because
of the architecture and not because of these hyperparameters.

4.4. Evaluation Metrics

In order to evaluate our model, we use the Frechét inception distance (FID) [36] for image
quality and the learned perceptual image patch similarity (LPIPS) [37] to measure diversity in
the generated results. More specifically, the FID metric measures the distance between two
distributions, and in our case, it is used in order to measure the distances between generated
images, e.g., generated cat images and the test set that contains real images, i.e., real cat images.
So intuitively, a low value of FID means that two distributions are similar. Indeed, given two
Gaussian distributions (m, C) and (mw, Cw), the FID is computed as follows:

d2((m, C), (mw, Cw)) = ||m − mw||22 + Tr(C + Cw − 2(CCw)
1
2 )

The learned perceptual image patch similarity (LPIPS) calculates the perceptual similarity
between two images. The LPIPS essentially computes the similarity between the activations
of two image patches for some pre-defined and pre-trained network. This measure has been
shown to match human perception well. A low LPIPS score means that image patches are
perceptually similar. Indeed, given two patches x and x0, their distance is computed as follow:

d(x, x0) = ∑
l

1
HlWl

∑
h,w

||wl ⊙ (ŷl
hw − ŷl

0hw)||22

where ŷl
hw and ŷl

0hw are the stacked features extracted from the patches. These features are
normalized, and the distance between them is modulated by a learned weight vector wl

that adjusts the contributions of different feature channels [37].
Since the main contribution of our model is to perform source-coherent translation,

which aims to improve diversity for images generated with the same reference, the evalua-
tion is designed as follows:

• Firstly, we randomly select one image for every domain as reference;
• Secondly, given a set of source images, we generate samples with those reference images;
• Thirdly, we compute the FID and LPIPS (with consecutive pairs of images);
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• Finally, we repeat this evaluation phase 10 times in order to remove randomness from
the results.

It is worth emphasizing that we decided to not use the StarGANv2 FID algorithm,
which calculates the FID by using ten references for each domain, because we want to
improve the diversity of the results generated from a single reference. Therefore, the FID
is computed with only one reference per domain in order to evaluate the quality of the
images generated with our method.

4.5. Discussion

Depending on the dataset, different styles are transferred. For CelebA-HQ, male2female
and female2male were chosen. For the AFHQ dataset, we transferred cat-dog2wildlife and
wildlife2cat-dog. As can be seen from Figure 4, the proposed architecture can perform I2I
translation between multiple domains similar to StarGANv2, but it gains the capability to
preserve the intrinsic characteristics of the input during translation. Looking at the CelebA-HQ
results, the proposed architecture maintains the input facial attributes but applies changes to
the gender and hair color, which are taken from the reference images. In the AFHQ results,
our method maintains the same expression and better preserves fur color during translation,
but it changes the class of the animal. We introduced our work with the claim that it increases
the diversity in the results generated using the same reference. This is shown clearly in
Figures 5 and 6, where the results are compared with the ones obtained using StarGANv2.
From these examples, it is evident that StarGANv2 tends to collapse to the reference image
and loses the majority of the intrinsic attributes of the input except for the poses in AFHQ and
the expressions in CelebA-HQ. In contrast, our results maintain many more of the original
details, such as fur colors in AFHQ and ages and hair styles in CelebA-HQ. This leads to more
diversity and variety in the generated images and to less reference-based generation.

Source
Reference

Source
Reference

Source
Reference

Source
Reference

Figure 4. Main results obtained with our architecture. We can see how the results are indistinguishable

from real images and how they maintain the intrinsic characteristics of the input, like the expression,

age, or fur color.

More specifically, StarGANv2 seems to capture attributes from the reference, like hair
color and length in Figure 5, and apply them to the input in a rigid scheme that does
not maintain the input attributes. On the contrary, the proposed method, in addition to
understanding what the main details are from the reference, also considers the details from
the input image before applying the transformation. This leads, for instance, to a higher
variety of hair lengths rather than a prefixed hair length, like with StarGANv2. This is
also visible in Figure 6, where StarGANv2 produces the same animal with different poses.
Our method, on the contrary, better understands the input characteristics and generates
different breeds of dog/cat/wildlife animals based on the input breed.
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Figure 5. Comparison between StarGANv2 (first rows) and our architecture (second rows) on

CelebA-HQ dataset.

Figure 6. Comparison between StarGANv2 (first rows) and our architecture (second rows) on

AFHQ dataset.
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All the previous considerations are also valid when the style code strg is sampled from ran-
dom noise by using the mapping network M. This is presented in Figure 7, where our architecture
produces various and more source-coherent results than the ones generated by StarGANv2.

St
ar
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v2

O
ur
s

Source

Cat Dog

Figure 7. Comparison between StarGANv2 (first rows) and our architecture (second rows) on AFHQ

dataset for results generated using random noise as the reference.

In order to support our claim, we also show how our method produces similar results
when similar reference images are employed, as shown in Figure 8. This can be seen as a
positive effect due to our source-coherent method that does not ignore input attributes.

Results

Source

Figure 8. Similar inputs generate similar outputs due to the fact that we preserve input characteristics

during translation.

Quantitative Results

The above considerations are reflected in the quantitative results reported in Table 1.
The proposed architecture significantly improves the LPIPS results for both datasets. Further-
more, the FID results highlight how our architecture produces much higher-quality images.

Table 1. Quantitative comparison between StarGANv2 and our architecture. For our architecture, we

also include a model with AdaIN instead of the cross attention layers.

Architecture AFHQ CelebA-HQ
FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

StarGANv2 [2] 104.86 0.457 81.175 0.365
Ours (AdaIN) 76.15 0.523 57.67 0.420

Ours 67.72 0.517 54.12 0.425

As shown in Table 2, we also compute the FID using the StarGANv2 algorithm on
CelebA-HQ, and we obtain opposite results. This is due to how the FID works (this is also
explained in Section 4.4): given the alignment of the StarGANv2 generated images with the
reference image shown in the qualitative results, the FID computed as in the StarGANv2
original paper is natively lower. Indeed, the FID tends to measure the difference between two
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distributions, and since the images generated by StarGANv2 have less diversity than the ones
generated by our architecture, the FID score in this case is better for the StarGANv2 results.
Nevertheless, in Section 4.4, we justified how is not fair to compute the FID in this way in
order to consider the diversity in generated images. However, this comes at the cost of more
limitations for StarGANv2 with respect to our architecture, such as losing input characteristics,
a lack of diversity in generated results, and the results collapsing to the reference images.

Table 2. Quantitative comparison between StarGANv2 and our architecture using StarGANv2

FID algorithm.

Architecture CelebA-HQ
FID ↓

StarGANv2 [2] 29.88
Ours (AdaIN) 32.94

Ours 30.99

4.6. Ablation

Finally, we perform ablation studies to find the optimal configuration for our architecture.
First, we try to transfer the style using AdaIN and not cross attention layers. As shown in
Table 1 and Figure 9, using AdaIN leads to slightly better results compared to StarGANv2 in
terms of diversity, but the network still does not maintain the input characteristics like our
final configuration. Additionally, we also tested employing two or three downsampling layers
inside our style encoder, as can be seen in the second and third rows in Figure 9. Indeed,
the configuration with three downsampling layers tends to collapse more to the reference
than the one with two downsampling layer, as can be seen from the fur style. Furthermore,
by comparing these results with the ones produced by the final architecture, it is evident that
the cross attention layers improve the quality of the generated results and better maintain the
input characteristics. Finally, the results generated without masks are reported in the fourth row,
proving that masks are necessary to identify major input information like fur color and ear pose.
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Figure 9. Differences between results generated with different architectures: the first row shows

StarGANv2, the second row shows our style encoder and AdaIN for style transfer, the third row

shows the same architecture as before but with 3 downsampling layers inside the style encoder, the

fourth row shows cross attention layers for style transfer but without masks and with 3 downsampling

layers in the style encoder, and the final row shows the proposed architecture.



Appl. Sci. 2024, 14, 7876 12 of 13

5. Conclusions

For the task of I2I translation, StarGANv2 has shown limitations in preserving input
details during translation. Additionally, StarGANv2 is not able to generate diverse samples
when using the same reference image. For these reasons, this paper proposes a novel
architecture for source-coherent image-to-image translation that preserves input charac-
teristics and increases diversity in the generated results. More specifically, the reference
images are masked in order for the model to focus only on the relevant information, and
the styles extracted from these images are injected into the model using cross attention
layers. By doing so, we manage to improve both the quantitative and qualitative results.

Future works could focus on improving the results generated by using two different
references and only one source, since our method, by preserving the intrinsic characteristics
of the input, tends to produce similar results when the same source image is utilized.
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