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Abstract—The main goal of the paper is to fully explore the
capability of the ‘No Motion No Integration’ (NMNI) technique
for the optimization of Euler angles in orientation tracking. The
gyroscope is the critical component in the Inertial Measurement
Unit for angle detection in Industry 4.0. An upgraded NMNI
model is introduced to remove the drift of the gyroscope
significantly for the advanced measurement approach for roll,
pitch, and yaw. A model of threshold update is implemented
into the NMNI algorithm to compensate for the increased
offset of temperature. This pre-processing method is applied to
the Madgwick filter and Mahony filter to acquire the optimal
performance. The experiments were carried out by using a low-
cost platform equipped with Micro-Electro-Mechanical system
sensors. A pan-tilt unit with high accurate positioning was used
to move the sensors and obtain a reference angle during both
static and dynamic experiments. A substantial improvement
was clearly demonstrated after the optimization process. The
measurements of Euler angles have minimized noise and tracks
around the reference points properly. The results show strong
competition from both fusion filters where the fused Mahony
accomplishes more stable less variation in roll and pitch, but the
fused Madgwick shows more precision in heading/yaw estimation.

Index Terms—Sensor Fusion, Micro Electro Mechanical Sys-
tem (MEMS), Inertial Measurement Unit (IMU), Heading, Orien-
tation, Madgwick filter, Mahony filter, Accelerometer, Gyroscope,
Magnetometer.

I. INTRODUCTION

The advancing technology for orientation tracking [1]–[3]
has been developing dramatically for the wide-range applica-
tion in the Industry 4.0, especially in automation [4], [5] and
industrial safety [6]–[8]. Micro Electro Mechanical System
(MEMS) gyroscope [9]–[12] with angular rate contributes
multi-function tasks in the angle measurement such as noise
removal for accelerometer or distortion compensation for
magnetometer [13]–[15].

Roll, pitch, and yaw are the three positioning parameters, as
illustrated in Fig. 1, which has suffered many challenges from
drift, noise, and accuracy demand. There are some popular
algorithms of sensor fusion which has positively obtained an
excellent quality of angle detection like Madgwick and Ma-
hony [16]–[18]. Both filters work on the converted quaternion
based on gyroscope data and get drift compensation from
the accelerometer and magnetometer. However, the negative
impact of noise on the accelerometer and iron distortion on

the magnetometer reduces result quality considerably. Hence,
the No Motion No Integration (NMNI) technique brings the
best characteristic out of gyroscope since no single portion of
drift can occur on gyroscope when the sensor is stationary.
This pre-processing method worked successfully as described
in [19]; its stability overcomes the traditional Madgwick in
heading estimation. No transient happens in the proposed
system. Continue to that success; this project applies the
NMNI algorithm to roll and pitch to observe whether this
technique can optimize the tracking ability in inclination
conditions. Moreover, a threshold update model is added to
the NMNI system for long-term performance where the sensor
temperature becomes higher, causing an increase of offset in
the gyroscope.

The effectiveness of new fusion filters is verified by high
precise reference, located by PTU-C46 (Pan Tilt Unit). In the
previous work, the static test and dynamic test on heading
estimation already clarified how the NMNI technique improves
the Madgwick filter to diminish the drift and acquire a better
angle. In this extensive work, the NMNI filter is fused with
Mahony also then the comparison between both filter fusion
is analyzed in detail. The Mahony computes the error by cross
multiplying the measured and the estimated vectors to correct
the gyroscope bias by the integral and proportional adjustable
gains. Madgwick uses a gradient descent-based algorithm with
an adjustable parameter divergent rate to correct the error.

Fig. 1. Attitude example: roll, pitch and yaw angles on a helicopter. Picture
taken from http://www.techmodelproducts.com/tandem sw.htm

http://www.techmodelproducts.com/tandem_sw.htm


Each filter has its advantage and drawback respect to another
filter. Therefore, numerous test was carried out to make a
completed observation of filters. The static test was executed
with a range from 10° to 90°; a comprehensive characterization
of the start-up state, when the sensor stays at 0°, was executed.
In addition to the dynamic test, a mixed motion test was used
by combining static and dynamic behavior. Besides the setup
for heading/yaw like before, an additional robust test bench
was constructed on PTU for roll and pitch to be suitable with
this device and attain the most precise angle tracking.

The paper is organized as follows: a brief description of
Madgwick and Mahony are presented under no magnetometer
mode, then the extended NMNI algorithms and its threshold
update model are demonstrated. In the last section of this
paper, test bench and result analysis are reported.

II. SENSOR FUSION ALGORITHMS

Before starting with a brief review of the Madgwick and
Mahony filters, there is the need to define some fundamental
quantities and sensors, measurement models.

The sensors used in Inertial Measurement Units (IMU) for
orientation estimation and tracking are accelerometer, gyro-
scope, and magnetometer; the term MIMU (Magnetometer
Inertial Measurement Unit) is used to distinguish between
IMU with the three-axis magnetometer and the other platforms
with only accelerometer and gyroscope. All three sensors are
generally made with MEMS because of the low cost, reduced
dimensions, low power consumption, but in particular for the
simplicity, and they are integrated on PCBs (Printed Circuit
Board) and in electronic devices in general. These sensors are
differently affected by noise and measurement errors.

The magnetometer measures the magnetic field surrounding
the device. This device is used to determine the heading of a
moving object, cars, vehicles, ships, unmanned aerial vehicles,
and even submarines. The measured field is highly affected by
constant errors such as hard iron, soft iron, null shift errors,
non-orthogonality, and scale factor errors and by time-varying
errors caused by nearby fields produced by wires carrying high
currents and electronics devices. The complexity and random-
ness of these errors require the development, implementation,
and utilization of extended and time-consuming calibration
procedures, error modeling and error compensation algorithms
[20]–[22] to obtain high accuracy heading estimation. These
algorithms are complex and require both time and power to be
executed in embedded devices. In several industrial fields, such
as robotic applications and high current motors, the magnetic
fields generated by currents are strong enough to make the
use of a magnetometer for the heading estimation impossible.
In other cases, the heading evaluation does not represent a
requirement. When this sensor is removed from the sensor
fusion algorithm, a decrease in accuracy is obtained, and
other tactics need to be applied to overcome this performance
degradation.

The gyroscope measures the rate of change of the angle
around the three axes of the sensing device. The measure of

the gyroscope can be expressed as in (1) where wx, wy and
wz are the angular rate measured on each axis of the device.

w = (wx, wy, wz) (1)

The measure of the gyroscope could be directly integrated to
obtain an attitude estimation. This is not applicable because
of the measurement errors of the gyroscope itself. The mea-
surement is subject to a bias error, that models the gyroscope
measure derivative by a random walk noise and an additive
white noise.

The accelerometer measures the acceleration, which is
composed of the sum of the gravity acceleration and body
acceleration. The accelerometer measure can be expressed as
in (2)

a = (ax, ay, az) (2)

As for the gyroscope, the measure made by the three-axial
accelerometer is formed by the measurements on the three
axes. The measurement is affected by additive white noise
and a bias error modeled with Gauss-Markov noise.

A. Attitude representation and notation

The attitude represents the orientation of a body in the
space. As can be seen in Fig. 1, using Euler angles, it is
possible to define the following three quantities:

• the roll angle (φ), the rotation around the x-axis of the
vehicle

• the pitch angle (θ) representing the rotation around a
rotation around the y-axis

• the yaw angle (ψ) that corresponds to the rotation around
the z-axis

Instead of Euler angles, quaternions are used for calculation
of attitude filters. This representation form overcomes the
problem of gimbal-lock and ambiguous representation of the
Euler angles. A quaternion can be written as a vector with
four elements (3).

q = (q0, q1, q2, q3) (3)

Unit quaternions, all quaternions with a unit norm, can
represent the attitude of a body. The definition of transforma-
tion goes beyond the scope of this article; more information
about quaternions and Euler angles and rotation sequences
can be found in [23], [24]. It is important to note that it is
always possible to move from quaternion representation to
Euler representation and vice-versa by using (4), (5) and (6).

φ = arctan
q0q1 + q2q3

q20 − q21 − q22 + q23
(4)

θ = arcsin 2(q1q3 − q0q2) (5)

ψ = arctan
q1q2 + q0q3

1/2− q22 − q23
(6)

Notations of this paper are summarized in Table I.



TABLE I
NOTATIONS USED IN THIS PAPER FOR THE NMNI ALGORITHM

Notation Meaning
ω[k] Gyroscope sample at discrete time k

ωx[k], ωy [k], ωz [k] Gyroscope values on x, y, z axis
respectively

ωbias Gyroscope bias value
ωth Gyroscope threshold value
ω̂[k] Gyroscope measures after bias

correction
ω?[k] Angular velocity from NMNI filter
φ, θ, ψ Body attitude: roll, pitch and yaw

angles

B. Madgwick Filter

The Madgwick filter is an Attitude and Heading Reference
System (AHRS) algorithm, described clearly in [25], [26]. It
uses the measured acceleration and magnetic field to correct
for gyroscopic drift [27]. For the purpose of comparing perfor-
mances with the proposed method, the Madgwick algorithms
and its implementation will be briefly illustrated.

This sensor fusion technique is based on two estimates
of the orientation: the angular velocity (gyroscope) with its
previous orientation estimate and another on gradient descent-
based algorithm for orientation estimate respect to gravity.
This is a useful tool to fuse the accelerometer, gyroscope,
and magnetometer every update step based on the quaternion
[28]–[30].

The gyroscope measures the angular rate ωx, ωy, ωz (in
rads−1), respect to the x, y, z axes of the sensor frame,
represented in sω in the quaternion form.

sω = [0, ωx, ωy, ωz] (7)

Given S
E q̂ as the vector describing the estimated orientation

of earth frame relative to the sensor frame in the term of
quaternion it can be expressed as in (8).

S
E q̂ = [q0, q1, q2, q3] (8)

The derivative of the quaternion in (8) is S
E q̇ (9), it describes

the rate of change of orientation of the earth frame relative to
the sensor frame, used as calculation of the quaternion product
between S

E q̂ and the gyroscope measures Sω .

S
E q̇ =

1

2
S
E q̂ ⊗ sω (9)

The orientation of the earth frame relative to the sensor
frame at time t is defined as S

E q̇ω,t while ωS,t represents the
angular rate at time t.

Given S
E q̇t−1 as the estimate of S

Eqω,t at time t − 1, the
quaternion qω,t and its derivative q̇ω,t can be calculated as in
(10) and (11).

S
Eqω,t = S

E q̂t−1 + S
E q̇ω,t∆t (10)

S
E q̇ω,t = 1

2
S
E q̂t−1 ⊗ sω,t (11)

The accelerometer and magnetometer reading values are
represented in quaternion space as in (12) and (13).

sa = [0, ax, ay, az] (12)
sm = [0, mx, my, mz] (13)

The Madgwick calculation can be divided into four main
steps, described below, supposing continuous-time t.

Step 1 - The first step is the calculation of rate of change
δq. The variation of the quaternion is calculated using its
estimation, as in (14).

δq =
1

2
S
E q̇ ⊗ sω =

=
1

2


−q1ωx − q2ωx − q3ωz

q0ωx + q2ωz − q3ωy

q0ωy − q1ωz + q3ωx

q0ωz + q1ωy − q2ωx

 (14)

Step 2 - A corrective step computation δq based on
gradient descent algorithm is performed. Two reference
vectors Ea and Em, respectively for acceleration and
magnetic field, are used to correct the deviation of the
algorithm. The acceleration reference vector is defined in
(15).

Ea = [0, 0, 0, g] (15)

where g is the acceleration due to gravity (g =
9.8 m s−2). Instead, if there are no magnetic deviations,
then the magnetic reference vector Em can be calculated
as described in [31], [32]. The correction is calculated
thanks to the Jacobian matrix Jt of the function Ft (16)
that calculates the error of the projection of rotation
on the reference acceleration vector Ea and magnetic
reference vector Em at time t given the acquired value
of acceleration sa,t and magnetic field sm,t.

Ft =

[
S
Eq
−1
t−1 ⊗ Ea,t ⊗ S

Eqt−1 − sa,t
S
Eq
−1
t−1 ⊗ Em,t ⊗ S

Eqt−1 − sm,t

]
I (16)

δs =
JT
t Ft

‖JT
t Ft‖

(17)

Step 3 - The quaternion change rate δq can be corrected
with δs, calculated in (17), and integrated as follows.

δq′ = δq − βδs (18)
q̇ = δq′ (19)
qt = qt−1 + δq′∆t (20)

In (18) β is the divergence rate, a parameter that can
be defined experimentally, based on the consideration in
[19].

Without a magnetometer, the Madgwick filter cannot provide
a proper result of yaw because of the large drift from the
gyroscope [25].



C. Mahony filter

The main idea behind the Mahony filter is to correct the
rotation vector Sω with a correction vector, which is provided
by a Proportional Integral (PI) controller [33]. The error vector
e driving the PI controller is determined by the equation (21),
where a is the accelerometer vector and d is the direction of
the gravity vector as given by the estimated attitude.

e = a× d (21)

Naming Ki and Kp as the integral and proportional ad-
justable gains, respectively, the Mahony algorithm can be
divided into the following steps.

Step 1 - Estimation of gravity vector d from quaternion

d = 2

 q1q3 − q0q2
q0q1 + q2q3

q0
2 + q3

2 − 1/2

 (22)

Step 2 - Error vector calculation

e = a× d (23)

Step 3 - Integrative vector calculation

In = In−1 + eKi∆t (24)

Step 4 - Proportional vector

ω
′

= ω +KpIn (25)

Step 5 - Integrate rate of change.

qn = qn−1 + q̇∆t (26)

Generally, increasing Kp will improve the system response
to noise. However, if the Kp is too large, the process variable
will begin to oscillate, causing unstable control. The integral
component sums the error term over time. The result is that
even a small error term will cause the integral component to
increase slowly. The effect of the integral response is to drive
the steady-state error to zero. Small values of Ki are used for
small error term. If Ki is too large, the integral action saturates
the controller; without the controller driving the error signal
toward zero. In the last case, the system will be out of control.

III. ‘NO MOTION NO INTEGRATION’ ALGORITHM

In order to compensate for bias instability, after the gyro-
scope is powered on, the MEMS gyroscope is in a stationary
position, N samples are collected in an array W , and then av-
eraged as the turn-on zero-rate level ωbias. All the subsequent
gyroscope readings can then subtract this turn-on zero-rate
level as signed integers.

ωbias =
1

N

N∑
i=0

ωi (27)

Memory
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Fig. 2. Overview of NMNI algorithm.

All the subsequent gyroscope readings ω[k] must be then
subtracted with turn-on zero-rate level defined in (27):

ω̂[k] = ω[k]− ωbias (28)

Once the initial bias is calculated, all the subsequent values
will be appropriately integrated. After the initial phase, when
the sensor stops its motion, the gyro data will be considered
zero due to the NMNI filter. In Fig. 2, a block diagram
representation of the whole NMNI algorithm is reported. This
figure shows the idea of no integration portion added to the
measuring value when the sensor finishes its movement.

A. NMNI technique

The gyroscope can be used to calculate the attitude angles
yaw, pitch, and roll by integrating the angular rate from the
x, y, z axis measurements ωx, ωy, ωz . Due to the temperature
change, measurement noise, and drift problem, MEMS gyro-
scope readings will vary considerably even if the gyroscope
stays at rest. Due to integration, the obtained results drift away
from the range of real angle estimation. In the bad cases, the
computed result can drift down of about 50° after 30 seconds
[34].

For that reason, the idea of NMNI is carried out. No
rotational rate is integrated to the orientation angle without



dynamic motion and only allows the integration process to
continue when the sensor receives the next motion. Thus,
a threshold must be established for the system realization
whether the sensor is stopped or moved.

During the start-up phase, supposing that the body and the
device are not subject to any motion, three arrays of a pre-fixed
number of samples are filled with the absolute value of the
measurements among the x, y, z axis. This phase is essential
for the threshold setup; if the static condition is not met during
start-up, the sample collection shifts in time. This process is
done by controlling the acquired values and comparing them
with a limit value ωmax defined, the first time the algorithm
is run, as a user constant then it automatically updates with
the threshold update model. The NMNI algorithm calculates
the threshold value ωxth

, ωyth
, ωzth as the maximum between

the absolute value of the acquired samples ωx[i], ωy[i], ωz[i]
as in ((29), (30), (31)).

ωxth
= max

i
{|ωx[1]|, |ωx[2]|, ..., |ωx[i]|} (29)

ωyth
= max

i
{|ωy[1]|, |ωy[2]|, ..., |ωy[i]|} (30)

ωzth = max
i
{|ωz[1]|, |ωz[2]|, ..., |ωz[i]|} (31)

The threshold values Xth, Yth, Zth become the boundary
between static and dynamic circumstances. Besides the thresh-
old values, a maximum value is extracted from the three
vectors; this value is called ωgy . Also a global threshold value,
ωth, is obtained as the maximum between the three values
(32).

ωth = max {ωxth
, ωyth

, ωzth} (32)

This value becames the overall bundary between the static and
dynamic conditions. The principle works on the comparison
between real-time measured ω[k] and threshold value ωth:

• |ω̂x[k]| > ωxth
,→ roll is in rotation

• |ω̂y[k]| > ωyth
,→ pitch is in the dynamic rotation

• |ω̂z[k]| > ωzth ,→ yaw is in the dynamic rotation
• |ω̂[k]| ≤ ωth → sensor is in the static case

At this point, the challenge is about the variation of gy-
roscope characteristics due to external factors like thermal
change caused by temperature [35]. Therefore, the ωzth must
be updated in the real-time term instead of measuring during
a fixed period, as described in part III-B of this section.

B. Implementation

The implementation of the ‘No Motion No Integration’
algorithm, shortly NMNI, can be divided into two parts.

1) The first part used to calculate sensor offset ωbias like
an early mention, which can be seen as an array of N
elements (optional number of samples).

2) The second part aimed to collect ωth and acquisition
ω̂[k] at the current time; this second array has a size of
W .

These two parts correspond to the parts in which the array
structure, stored in memory, is divided. The overall reserved
size of the acquisition array will be:

Array Size >= W +N (33)

This size must be multiplied by three, for the number of axis
involved in the calculation. Depending on the desired average
time, the array size needs to be extended by the user: the
greater the array size for a longer time, the gyroscope has to
be at stationary. If the array size is too small, the system will
be lack data to calculate ωth.

For instance, considering the z axis, the ωzth value is
stored at index 11 of the array, while the 12th element always
indicates the current value of ωzth ; the same applies for the
other axes, too. With this technique, the real-time comparison
is instituted between |ω̂z[k]| and ωzth .

C. Threshold Update

To guarantee the system’s stability, each time the system is
detected to be in a stationary position, a new threshold value is
calculated and stored. If the new gyroscope acquisition has the
absolute value (abs) higher than the current threshold, it will
become the new threshold. This upgrade is necessary for long-
term performance when sensor temperature increases, which
causes the rise of gyroscope offset. However, to avoid the
noise, the threshold only updated in the case of difference
between abs of angular rate and the current threshold is
smaller than angular rate sensitivity (ARS), which is up to
the specifications of each gyroscope. The slowest motion
leads to the variation of the least significant bit (LSB) and
1 LSB ≈ ARS. At stationary point, if |ω̂[k]| > ωth and
|ω̂[k]| − ωth < ARS then ωth = |ω̂[k]|.

At this point, the suggested approach appears to incorporate
standard procedure of removing the initial gyro bias (ignoring
the Earth rotation), and an adaptive threshold filter applied to
gyroscope measurements before integration that prevents any
single drift portion from accumulation.

D. NMNI integration with Madgwick or Mahony filters

The NMNI is a preprocessing techique and can be applied
to a attitude and heading reference estimation algorithm like
Mahony or Madgwick in order to obtain device or body ori-
entation. As depicted in Fig. 3, before entering the Madgwick
or Mahony filter, the gyroscope data pass through the NMNI
filter.

• ω̂[k] > ωth the sensor is in motion: ω?
x, ω

?
y , ω

?
z come in

the Madgwick or Mahony filter normally.
• ω̂[k] ≤ ωth the sensor is stationary: ω?

x, ω
?
y , ω

?
z assumes

a zero value before entering the desired filter.

This fusion technique overcomes the dynamic integration
problem on the slope of the NMNI filter and the random drift
of the Madgwick or Mahony filter without a magnetometer.
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Fig. 3. Chain diagram of the fusion between Madgwick or Mahony and the NMNI filter.

IV. EXPERIMENTAL RESULTS ANALYSIS

The sensor involved in acquiring data for the experiments
is the LSM9DS1 from STMicroelectronics. This device is a
system-in-package featuring a tri-axial digital linear acceler-
ation sensor with 16 bit resolution and selectable full-range
scale from ±2 g to ±16 g, a 3D digital angular rate sensor
with 16 bit resolution and a full range scale of ±245 dps,
±500 dps and ±2000 dps the device also includes a 16 bit
tri-axial magnetic sensor with selectable full-scale range of
±4 gauss, ±8 gauss, ±12 gauss and ±16 gauss [36].

The implementation of the algorithms has been made on
an ARM Cortex-M4 based microcontroller STM32F401RE
by STMicroelectronics [37], [38]. This device provides 96 kB
of RAM and 512 kB of embedded programmable FLASH
memory; the clock frequency is up to 84 MHz. The MCU
is mounted on its development board ST NUCLEO-F401RE
[39], [40], for easy accessibility to all the required connections.

The sensor is mounted on the STEVAL-MKI159V1 adapter
board [36] and connected to the MCU development via an
Inter-Integrated Circuit (I2C) communication line. A Pan-Tilt
Unit Controller (PTU-C46), with a resolution 0.051° per step,
provides fast and accurate positioning of sensors that were ma-
nipulated to verify the algorithm performance. The LSM9DS1
mounted on PTU-C for tracking this device orientation. For the
evaluation of roll and pitch, the setup is modified, and PTU is
mounted on the laboratory table vertically, as shown in Fig. 4.
LSM9DS1 sensor assembled on a Printed Circuit Board with
the support of a long cable to handle the controlled motion
comfortably without any restrained problem.

The test bench reported in Fig. 4 is formed by the following
components:

1) NUCLEO-F401RE Board
2) LSM9DS1 Sensor mounted on a Printed Circuit Board
3) Counterweight for balance
4) AC/DC Power Supply
5) RS232 cable
6) PTU-C Controller
7) PTU-C46 Pan Tilt Unit
8) Heavy duty clamps

The Output Data Rate (ODR) of the accelerometer and
gyroscope was set at 119 Hz, equivalent to 0.008 s of the
time period, to achieve a stable transferring signal between
the sensor and the computer. Also, the magnetometer ODR
is 80 Hz, about 0.0125 s of the period. Hence, the system
acquisition carried out at 119 Hz for the filter without mag-
netometer and at 80 Hz vice versa. After many simulations
with adjustable parameters, the best value of each algorithm
factor for the experiment was chosen, taken into account the
effective compromise among all Euler angles as follow:

• Madgwick: β = 0.40.
• Mahony: Kp = 0.7; Ki = 0.002
• ARS = 0.00875 deg/s

Fig. 4. Photograph of the test bench used for orientation measurement.



A. Filter behavior analysis and characterization

In the first part, the NMNI filter’s function was examined on
the yaw measurement, calculated by Madgwick and Mahony
without a magnetometer. The sensor was kept at a stationary
point approximately 0° for a minute to observe the drift of the
result as well as the behavior of the algorithm.

As shown in Fig. 5, the yaw drift of Madgwick is very fast,
and when it reached the −180°, it flips to 180° just after less
than a minute. Due to the uncontrollable drift, the Madgwick
algorithm without a magnetometer cannot be used for yaw
estimation [16]. Therefore, to restraint this drift, the NMNI
algorithm is the right solution as the first filter of gyroscope
data before arriving Madgwick filter. As a result, the yaw is
under control, indicating the appropriate behavior when the
sensor is fixed at a position. The Madgwick filter performance
was clearly improved after the fusion filter; the yaw value is
maintained regularly at the stationary point, as shown in Table
II. After optimization, the variation is minimized apparently
and shows stable behavior.

Fig. 5. Madgwick filter, without magnetometer, static drift before and after
fusion.

TABLE II
MADGWICK DRIFT WITHOUT MAGNETOMETER BEFORE AND AFTER

FUSED WITH NMNI ALGORITHM UNDER STATIC CONDITION

Yaw drift Before Fusion After Fusion
min 5.9° 0.010°
max 179.9° 0.064°
mean 39.8° 0.041°

std. dev. 111° 0.007°

The same progress carried out as fused Madgwick, the filter
fusion with the NMNI upgrades the performance of Mahony
yaw considerably. As illustrated in Fig. 6, Mahony yaw drifts
down approximately 1 dps, and it only behaves in the right
way after fusion at the static point.

For the case of fused Madgwick and fused Mahony, the
small variation still occurs on heading estimation due to
the acceleration components. As observed results from Table

Fig. 6. Mahony static drift (no magnetometer) before and after fusion.

TABLE III
MAHONY DRIFT BEFORE AND AFTER FUSED WITH NMNI ALGORITHM

UNDER STATIC CONDITION

Yaw drift Before Fusion After Fusion
min 5.3° 0.170°
max 57.9° 0.202°
mean 31.4° 0.175°

std. dev. 15.0° 0.031°

II and Table III, the NMNI works more effectively on the
Madgwick filter with less fluctuation of the signal.

Fig. 7 and Fig. 8 shows the behavior of roll and pitch before
and after applying the NMNI pre-processing technique. The
signal is more stable with narrow variation in the fused filters.
The fused Mahony filter keeps the signal smoother than the
Fused Madgwick filter with an extremely small value of drift.

Fig. 7. Madgwick Roll and Pitch at zero-starting point.

With reference to Fig. 7 and Fig. 8 the result analysis of roll
and pitch are reported in Tables IV and V, respectively. Roll is
the parameter which is more influenced by drift than pitch in
both cases. Thanks to the support of the fusion process, these



TABLE IV
MADGWICK ROLL AND PITCH BEFORE AND AFTER FUSED WITH NMNI

ALGORITHM UNDER STATIC CONDITION

Abs Drift Parameters Stand alone Fused
Roll Pitch Roll Pitch

min 0.13° 0.01° −0.01° 0.002°
max 2.13° 2.07° 0.51° 0.329°
mean 1.68° 0.99° 0.12° 0.068°

std. dev. 0.30° 0.38° 0.10° 0.071°

Fig. 8. Mahony Roll and Pitch at zero-starting point.

two Euler angles accomplish optimized drift with Standard
Deviation (Std. Dev) only less than 0.11° for the Madgwick
filter and 0.02° for the Mahony filter.

B. Static Tests

For the static test, the PTU is controlled from 0° to 90°
with a different step of 10°, all acquired samples for a minute
were extracted from each angle to calculate the Root Mean
Square Error (RMSE). Fig. 9 shows the performances of two
fused filters at Euler angles of 50°. Like in the static case,
less drift occurs on the roll and pitch of Mahony filter, respect
to Madgwick filter. About yaw estimation, the Mahony filter
demonstrates a less effective tracking with error more than
0.232° while Madgwick yaw is closer to the reference angle
of 50°.

Fig. 9. Euler angles tracking at 50°.

TABLE V
MAHONY ROLL AND PITCH BEFORE AND AFTER FUSED WITH NMNI

ALGORITHM UNDER STATIC CONDITION

Abs Drift Parameters Stand alone Fused
Roll Pitch Roll Pitch

min 0.002° 0.004° 0.024° 0.003°
max 0.923° 0.210° 0.088° 0.062°
mean 0.099° 0.026° 0.057° 0.020°

std. dev. 0.040° 0.022° 0.009° 0.013°

A similar process was carried out to other considerable
angles. Generally, a larger angle conducts higher RMSE as a
result of Table VI. Both fused Madgwick and fused Mahony
show a convincing result. The fused Mahony filter accom-
plishes better performance in the roll and pitch, but the fused
Madgwick achieves more stable in yaw measurement with
maximum RMSE only less than 0.4°.

TABLE VI
STATIC TESTS RMSE ANALYSIS OF FUSED MADGWICK AND MAHONY

FILTERS

Reference Madgwick RMSE Mahony RMSE
Roll Pitch Yaw Roll Pitch Yaw

10° 0.112° 0.167° 0.082° 0.099° 0.051° 0.100°
20° 0.155° 0.137° 0.079° 0.156° 0.082° 0.124°
30° 0.247° 0.201° 0.105° 0.133° 0.117° 0.133°
40° 0.201° 0.198° 0.126° 0.184° 0.159° 0.135°
50° 0.184° 0.233° 0.177° 0.152° 0.117° 0.231°
60° 0.340° 0.211° 0.281° 0.271° 0.273° 0.342°
70° 0.290° 0.269° 0.346° 0.267° 0.258° 0.511°
80° 0.258° 0.331° 0.379° 0.311° 0.259° 0.378°
90° 0.351° 0.322° 0.381° 0.279° 0.270° 0.527°

C. Dynamic Test

For the test of the dynamic test, the device PTU-C was
moved from 0° to 90° back and forth for a minute like
described in the previous article [19].

Fig. 10. Test reference for dynamic case.

Each time the PTU-C reaches the edged points: 0° or 90°,
this device is in stillness in an extremely short period of time
due to inertia, which is the resistance of a physical object
to change in its direction of motion. This period is very
critical because even just a small drift portion occurs at this



moment, the errors would accumulate and yield the incorrect
measurement. Therefore, the NMNI filter must be exact to
eliminate these drift portions. The PTU-C rotates ten turns
back and forth at velocity 45 dps as demonstrated in Fig. 10.
RMSE calculates the data evaluation in Table VII. Under this
stressful test, the fused Madgwick filter has a stable result
among roll, pitch, and yaw. All these parameters only have
RMSE around 0.4°, while the fused Mahony conducts more
error at heading estimation, but it still shows its potential
accuracy in orientation tracking.

TABLE VII
RMS ERROR OF THE DYNAMIC TEST ON FUSED MADGWICK AND

MAHONY

Euler Angle Fused Madgwick Fused Mahony
Roll 0.403° 0.355°
Pitch 0.370° 0.401°
Yaw 0.402° 0.589°

The test of mixed motion, Fig. 11 includes both static and
dynamic behavior. Each cycle has a shape of a trapezoid.
Similar to the previous test, the PTU moves from 0° to 90°
but instead of returning to 0° immediately, the device holds at
90° for 3 s before going down. At this point, the cumulative
error to consider will be evaluated in the completed way.

Fig. 11. Test reference for mixed motion test case.

Table VIII indicates the good tracking capability of two
fused filters. In this test, filters have a longer static where the
threshold can update more easily and do not have to suffer the
collision frequently. Each time PTU reaches 90°, if it must
return to 0°, it will generate a vibration to mimic dynamic
continuous motion.

TABLE VIII
RMS ERROR UNDER MIXED MOTION ON FUSED MADGWICK AND

MAHONY

Euler Angle Fused Madgwick Fused Mahony
Roll 0.275° 0.214°
Pitch 0.302° 0.209°
Yaw 0.202° 0.207°

D. Temperature behavior

To observe the behavior of the oriental angles during the
temperature variation a smart experiment was carried out on
the Earth frame. The temperature of the sensor was increased
in the range of 25 °C to 40 °C with the help of heat air flux.
The temperature was measured with the embedded tempera-
ture sensor in LSM9DS1 module. For each temperature step,
50 samples were extracted for the mean value calculation.

As shown in the Fig. 12, the orientation value of the fused
Mahony filter and the fused Madgiwck filter have high stability
under the temperature change. The maximum fluctuation of the
fused Madgwick filter is only about 0.080° at 40 °C. On the
other hand, the Mahony filter demonstrates better immunity
in temperature variation with smaller alterations in all Euler
angles.

Fig. 12. Test reference for temperature variations.

V. CONCLUSION

In this paper, the development of a filter algorithm with
the optimization of the NMNI technique is reported. The
experimental results verify the significant improvement of
Mahony and Madgwick filter in orientation tracking thanks to
the proposed pre-processing model. The fused Madgwick is
strongly recommended for heading and yaw estimation, while
the fused Mahony can track roll and pitch at closer reference
angles with less drift and high precision.

The real-time measurement has been completed so far via
tests of static-dynamic-mixed motion. Both filters, when fused
with the NMNI technique, have a good command of detecting
the inclination as well as heading with narrow errors and high
stability during operation. The variation due to temperature are
kept at minimum level. The NMNI technique is a promising
collaborator with other sensor fusions methods via effective-
ness maximization for the gyroscope.
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