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Abstract 

 

District Heating and Cooling networks have great potential for energy saving, efficient thermal 

energy distribution and renewable energy source integration. Currently, heating systems are managed 

on the basis of operator experience or by using adaptive controllers, however these solutions are not 

suitable when there are remarkable variations in boundary conditions. In this context, Model 

Predictive Control is a promising strategy as it optimizes control based on the prediction of the future 

behavior of system dynamics and disturbances by means of simplified models. This paper presents 

the development of a predictive controller based on a novel Dynamic Programming optimization 

algorithm and aimed to supply the thermal energy to entire buildings within district heating networks. 

The controller is exploited to operate the district heating network of a school complex in a simulation 

environment (i.e. Model-in-the-Loop). Each branch connected to the network is optimized by a 

dedicated controller according to a multi-agent strategy. The performance of the innovative controller 

is compared to the results obtained by using a conventional PID controller. Conservative results show 

that, with the innovative controller, a reduction in fuel consumption of up to more than 7 % is obtained 

together with up to 5 hours of avoided failures of the indoor comfort constraints, depending on the 

season. Overall, the Model-based Predictive Controller is able to fulfill comfort requirements 
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adequately while minimizing energy consumption. Moreover, the multi-agent approach allows these 

results to be extended to larger networks in future studies.  

 

Keywords: Model Predictive Control; Dynamic Programming; District Heating and Cooling network; 

identification; optimization. 

 

 

 

1. Introduction 

Heating is the largest single energy end-use within buildings. It currently accounts for 42 EJ/yr, i.e. 

36 % of the total building energy consumption [1]. Therefore, this large consumption must be taken 

as an opportunity to improve energy efficiency and to increase savings. A solution can be found from 

District Heating and Cooling networks (DHC) which, by distributing thermal energy to buildings 

(e.g. residential and commercial), give rise to synergies, such as gaining flexibility, increasing the 

share of renewable energy sources [2] and exploiting more energy efficient buildings [3].  

At present, however, the large variety of available energy sources has introduced new challenges such 

as the efficient allocation of the load and the management of these systems [4]. Moreover, the high 

variability of weather conditions and atmospheric instability due, for instance, to climate change 

requires innovative approaches that are able to optimize energy distribution. In fact, the application 

of Smart Technologies is paramount in achieving the key targets (i.e. greenhouse gas emission 

reduction, energy efficiency improvement and production from renewables) established by the 

European Commission [5]. 

With this in mind, one of the most promising smart control strategies for energy systems is Model 

Predictive Control (MPC) which, contrary to conventional approaches, is based on the prediction of 

the future behavior of the system and external conditions (Figure 1). Model Predictive Control is a 

family of control strategies that uses a dynamic model of the system to predict its behavior over a 

future time horizon, named the prediction horizon. The dynamic behavior of the system and the 
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forecast of the external disturbances are exploited to calculate the optimal control law by solving a 

constrained optimization problem that minimizes cost function. The prediction horizon is discretized 

in a certain number of time-steps. The output of the MPC is a sequence of control actions that shall 

be executed to obtain the optimal behavior of the system. However, only the first element of this 

control law, corresponding to the first time-step, is actually implemented in the real system. Then, 

the time horizon is moved one step forward (i.e. receding time horizon strategy), the system state 

variables are updated with the measurements of their current values and the whole calculation is 

repeated. This state update produces implicit feedback and reduces the influence of the uncertainty 

of disturbances and modeling approximations. 

 

Figure 1. Schematic representation of the concept of Model Predictive Control: solution to a constrained optimization 

problem, which considers the prediction of the future behavior of the system by a dynamic model and the future 

disturbances. The resulting optimal inputs are used to control the system until the optimization problem at the following 

time-step is solved.  

 

This control technique presents several advantages over other methods, such as [6]: 

• it needs limited knowledge of control because its concepts are very intuitive; 

• it can be used to control a large variety of processes; 

• it can deal with multivariable cases; 

• it introduces feed-forward control in a natural way to compensate for measurable disturbances. 

Nevertheless, it presents some drawbacks, the most significant of which is the higher computational 

effort for the derivation of the control law with respect to traditional control methods. This has limited 
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the MPC applications to the areas in which the processes to be controlled are slow enough to enable 

online optimization [7]. The further developments in computing power and in modeling and 

optimization techniques have fostered the diffusion of MPC techniques, but it has to be underlined 

that the limit still remains: a balance has to be found between the complexity of the model of the 

controlled system and the necessity to obtain an optimal (or, in some cases, only feasible) control law 

within the length of a time-step. In any case, the prediction errors due to the simplifications in the 

model development are corrected by updating the system states by means of the measurements 

collected at each time-step. For this reason, black-box models identified on measurements or 

simplified white- or gray-box models are preferred to detailed physics-based models. 

In this paper, an MPC controller is developed and analyzed. Detailed sensitivity analysis on the 

optimization algorithm parameters is performed in order to evaluate their influence on the algorithm 

accuracy and calculation time, which have to be suitable for MPC online implementation. Then, the 

MPC controller is tested through a Model-in the-Loop (MiL) platform. The case study is the thermal 

energy distribution grid of a school complex comprising two buildings and a boiler. A multi-agent 

approach is adopted for controlling the system. It consists of splitting the system into smaller 

subsystems optimized by dedicated agents. This allows the modular procedure to be verified, 

replicated and further implemented in more complex systems.  

 

2. Literature review 

Model Predictive Control is one of the most recent control strategies that has been widely used in 

industry. The method was first introduced in the last decades of the 20th century [8], gaining relevant 

success mainly in the chemical and oil industries, as it introduced the possibility of controlling and 

simultaneously optimizing multi-variable processes subject to constraints, which are typical of this 

field [9]. Since then, a large number of theoretical results has been produced through control theory-
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oriented research, providing a solid foundation for the technique concerning closed-loop stability 

[10], optimization algorithms [11], robustness and impact of stochastic disturbances [12]. 

In recent years, MPC has been applied in other fields such as: the control of Organic Rankine Cycles 

for the recovery of waste heat from the exhaust gases of automotive engines through a metaheuristic 

optimization algorithm [13] and through the comparison of two different MPC techniques [14]; solar 

thermal systems with borehole seasonal storage [15]; power control for domestic appliances [16]; 

hybrid transport refrigeration systems [17]; and radiant ceiling cooling systems through an 

experimental study [18]. These works show the benefits of MPC in terms of energy efficiency 

compared to classical methods and confirm that it is possible to address high variability in 

environmental and economic conditions.  

The application of MPC in complex energy systems is more recent. In a detailed review on optimized 

control systems for energy management of building environments [19], a large number of research 

works is analyzed and compared. The control systems in buildings, which allow indoor comfort 

conditions to be achieved, are divided into two main groups: 

• Conventional controllers, such as on/off switching controllers, proportional-integral-

derivative (PID) controllers and adaptive controllers. PIDs are closed-loop feedback 

controllers which do not have any direct knowledge of the system and produce poor 

performance when used alone [20]. Adaptive controllers, instead, are able to self-regulate and 

adapt to the variations of the external conditions based on measured system signals; 

• Intelligent controllers, such as learning methods (e.g. neural networks for the prediction of 

environmental parameters), model-based predictive control methods and agent-based control 

systems. 

It is reported that, although the very first MPC implementations in building environments are recent 

(i.e. 2011 [21]), predictive controllers are becoming the more frequent strategies employed. As a 

matter of fact, conventional techniques rely on the knowledge of the past behavior of the system and 

do not consider the prediction of future conditions, while predictive controllers might be able to 
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overcome this limit. The most common computational optimization methods used in building energy 

research are also summarized. It is concluded that predictive systems should be developed and 

coupled to efficient optimization algorithms as well as other artificial intelligence techniques in order 

to overcome the potentially high computational costs. For instance, Killian and Kozek [22] answer 

ten relevant questions concerning the current status of MPC in building control. The main benefits of 

MPC (i.e. consideration of system dynamics, prediction of the disturbances, constraint handling and 

conflicting optimization goals) are highlighted together with the main challenges of its 

implementation. Other studies focus on MPC in the building automation for energy flexibility and 

efficiency and conclude that it outperforms most of the classical control techniques. In particular, 

Afram and Janabi-Sharifi [23] review the advantages and disadvantages of conventional controllers, 

hard controllers, soft controllers and hybrid controllers for the heating, ventilation and air 

conditioning (HVAC) systems dedicated to single buildings without considering potential 

applications to distributed systems. In a study by Clauβ et al. [24], many papers that propose rule-

based and optimal control strategies of building HVAC systems are analyzed according to energy 

flexibility key performance indicators. In another work [25], a model of an MPC with a linear state-

space model is proposed for a single-zone residential application with a constant room temperature 

set for the whole year.  

However, MPC controllers for building energy applications are not easy to develop [26] due to the 

need for a model that predicts the future behavior of the system and is accurate and also suitable for 

real-time optimization [27]. Ascione et al. [28] implement a highly detailed building model in 

EnergyPlus  coupled with Matlab®, but the multi-objective optimization is performed daily by 

selecting a point on the Pareto front, which defines hourly values of the set-point temperatures for the 

building thermal zones. Similarly, Gholamibozanjani et al. [29] calculate the thermal demand offline 

by using EnergyPlus and an MPC which is dedicated to set-point tracking. In another study [30], the 

building model is based on an electrical equivalent (i.e. three resistances for each wall) for the heat 

transfer and moisture content but it is too detailed for real-time control. Moreover, it requires 
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information about the system that might not be directly available. Another approach involves machine 

learning techniques [31], such as artificial neural networks, to determine the indoor temperature and 

energy consumption of the building for given weather and occupancy conditions. This is combined 

with a genetic algorithm to optimize the temperature set-points [32]. The neural network is trained 

with simulation data but requires a parameter tuning procedure which is non-standard and highly 

problem-dependent. Furthermore, the algorithm is efficient only when the conditions comprised in 

the training dataset are verified and might not be reliable when highly variable external conditions 

occur.  

Other works take into account multi-energy production systems. For instance, Bianchini et al. [33] 

demonstrate an MPC procedure suitable for a large building in a realistic simulation framework. A 

zone thermal model is exploited for the building energy demand prediction but the focus of the control 

strategy is the building HVAC system. Additionally, Sangi et al. [34] propose the real-life 

implementation of an exergy-based MPC with a linear model which is limited to a building HVAC 

system. On the other hand, an MPC based on a Mixed Integer Linear Programming (MILP) algorithm 

for a stand-alone building energy system consisting of multiple energy production and storage devices 

is presented by Fux et al. [35]. The MPC problem, however, is solved once a day and the building 

energy demand is obtained by considering typical load profiles instead of a detailed prediction model 

of the building thermal behavior, which might affect the operation significantly. Hence, despite the 

improved performance of the multi-source energy system, this energy management approach is not 

suitable for applications in distributed energy networks. A promising study proposes a distributed 

MPC algorithm applied to a combined thermal and electrical building energy system [36] which, 

however, has a high computational cost. 

Despite the increasing interest that MPC is gaining in this context, however, implementation at district 

level (i.e. for the control of the energy supplied to a whole building) has not yet been sufficiently 

explored. Electrical distributed systems such as micro-grids [37] have received more attention 

compared to thermal networks. For instance, in a paper by Sultana et al.[38] a systematic review of 
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photo-voltaic and wind energy systems controlled by the MPC approach is presented but no other 

energy system is investigated.  

Another broad overview of the literature on control strategies for unlocking flexibility and enhancing 

energy efficiency in thermal networks shows the status of current research [39]. The need for 

advanced controllers that are able to face the challenges imposed by the growing share of renewable 

energy sources and climate variable conditions is highlighted. Among the cited advanced 

technologies, there are predictive controllers and multi-agent systems which might be suitable to meet 

the requirements of robustness, efficiency and scalability for the controller of a thermal distribution 

network. Some recent examples of the MPC approach applied to district heating networks are 

mentioned below. Verrilli et al. [40] propose a model predictive controller that calculates the optimal 

operation of a district heating system with thermal energy storage based on the minimization of the 

cost of power generation. Although the novelty of this study can be found in the exploitation of the 

receding horizon approach in optimally scheduling energy production from multiple sources, the 

demand that must be met is not calculated through a physics-based model but with data-mining 

methods. On the other hand, in a work by Vanhoudt et al. [41], the building load of a small-scale 

district heating network is represented through the thermal-electrical analogy while the grid 

components are fitted to supplier data. Moreover, the optimization of the management of the system 

is performed based on operational costs, while the minimization of the primary energy consumption 

instead might increase further energy saving. Another robust control strategy based on MPC for a 

solar district heating network is analyzed by Lennermo et al. [42], but their study does not include 

the demand side. Long et al. [43] propose instead a versatile optimization-based management 

approach for multi-source energy systems that exploits the graph theory for the system representation 

and MPC for its control. Nonetheless, the dynamics of the buildings is not included in the analysis. 

Therefore, to the best of the authors’ knowledge, there are no cases in which the optimization involves 

both the end-users, considered as dynamic physics-based models, and the distribution network in an 

integrated and unified approach. 
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The overview presented above underlines the necessity to conduct more research on the topic of MPC 

for district heating and cooling networks and complex energy systems, in order to fully explore its 

benefits and solve the current issues. In particular, there are three main drawbacks [22]: the need for 

(i) experts in the field of automatic control, (ii) modeling and (iii) controller design, especially for 

large and complex systems. These limits could be addressed by adopting a multi-agent technology, 

which allows a complex problem to be split into smaller subproblems that are solved by representative 

agents [19,44]. Hence, the development of a model-based predictive controller with an efficient 

optimization algorithm, which can be easily exploited to control generic thermal networks through a 

multi-agent strategy, might be helpful in reducing energy consumption for heating and cooling. 

The above-mentioned works take advantage of various optimization algorithms: from mathematical 

programming (e.g. MILP), which can be computationally non-efficient when non-linear systems are 

involved or may require the tuning of the cost function weights [30], to heuristic techniques, which 

are highly parameter-dependent and do not guarantee the achievement of the global optimum [45]. 

Dynamic Programming (DP), on the other hand, is a sequential optimization method that has an exact 

optimization character and is used to solve energy operation optimization [46] or sizing problems 

[47]. This is exploited by Favre and Peuportier [48] to study the control of a low-energy building 

heating system but it is not suitable for multiple end-users and it is considered too computationally 

heavy for implementation in real controllers. Thus, the further investigation proposed in this work is 

beneficial for understanding the feasibility of the DP for district energy problems. 

With reference to the limitations of the current status of scientific research outlined herein, the novelty 

of the contribution of this paper consists of: 

• A novel MPC specifically developed for district heating and cooling networks. The most MPC 

in the literature are dedicated to the HVAC systems of single buildings [23,24,33,34], while 

the distribution network and its potentialities are not explored. For instance, the influence of 

the dynamics of the distribution network (e.g. time delays, network thermal capacity) on the 

operation can be analyzed only by addressing the system in its entirety. In other cases, the 
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production units are optimized without considering the end-users in the analysis [42,43]. In 

this work, the distribution and utilization units are coupled in a unified optimization 

framework and the MPC controls the distribution network by supplying the heat to the 

buildings by means of the building substation heat exchangers.  

• A deterministic building model that does not require specific knowledge about the system (e.g. 

building configuration and properties) and is, therefore, readily extendable to the multiple 

end-users of a network. The typical models in the literature either are extremely detailed (e.g. 

thermal demand calculated offline [29]) or require a large dataset to be trained (e.g. artificial 

neural networks [31,32,40]). In this work, the model (i) represents the physical evolution of 

the building, (ii) can be identified with a small amount of data and (iii) is suitable for real-

time optimal control. 

• A novel DP algorithm that is computationally faster than those existing in the literature. 

Contrary to other works, in which the algorithm operates a daily calculation for scheduling 

due to the high complexity of the model [28–30,35], this approach allows the control actions 

to be updated every time-step (e.g. fifteen minutes) and, thus, is suitable for online 

optimization. In addition, the exploitation of this class of algorithms for energy application is 

still lacking in the literature.  

• A multi-agent strategy suitable for the application of the controller in large distribution 

networks and different layouts in a modular way without (i) altering the system model or (ii) 

increasing the computational effort, which is often the cause for inapplicability in the existing 

literature studies.  

• The possibility to replicate this controller according to a fractal approach (e.g. internal 

distribution of a single building, block of buildings, districts, etc), since the model has a 

general nature and, therefore, the problem can be extended to different scales.  
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3. Methods 

In this paper, an MPC controller with a new optimization algorithm is developed and its performance 

is tested through an MiL platform and compared to that of a classical PID.  

The sequence of operations followed in the controller development phase is represented in the block 

diagram in Figure 2 and illustrated in the following. In the first block, an optimization algorithm 

based on Dynamic Programming is developed and the algorithm parameters are analyzed through 

thorough sensitivity analysis. Then, a simplified dynamic system model for MPC implementation 

(i.e. MPC-model) is built and identified. The previously developed components are assembled in the 

MPC controller which aims to control real networks.  

 

Figure 2. Block diagram of the method for the development of the innovative controller. 

 

This section reports firstly the development of all the software components of the controller (i.e. 

models and algorithms), and secondly the development of the MiL application, which is used to test 

the control strategies in a simulation environment. In this way, the comparison can be performed in 

virtually equivalent boundary conditions and the controller development phase does not affect the 

operation of the real system. 
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3.1 Model Predictive Control development 

As explained in Section 1 and represented in Figure 1, Model-based Predictive Controllers are 

composed of: (i) a simplified dynamic model of the system, called the MPC-model, (ii) an 

optimization algorithm which solves the optimization problem and returns the optimal control 

trajectory, and (iii) a controller. The implementation of these elements in the Matlab® environment is 

discussed below. 

 

3.1.1 System model  

The system under consideration is the thermal distribution network of a school complex comprising 

two buildings (i.e. a school and a sports hall) and a boiler. Further applications will be possible starting 

from this test case. The most time-consuming part of the MPC implementation is generally the 

development of a suitable building model for control and operation, as a standard procedure does not 

exist, and each case should be evaluated separately [22]. 

When dealing with modeling heating distribution in buildings, different approaches can be used 

according to the characteristic scale on which the problem is investigated: 

• on a micro-scale (e.g. when rooms or portions of buildings are of concern) a lot of information 

about the system (e.g. wall characteristics, glazed surface size and orientation) and about the 

disturbances (e.g. external temperatures, number and behavior of the occupants, other internal 

heat gain sources) can be accurately collected. Therefore, a dynamic detailed model of the 

system can be developed, which takes into consideration the building envelope characteristics 

and the forecast of internal gains and irradiance [25,30]; 

• on a macro-scale (e.g. when districts are of concern) less information is available for the 

characterization of the system. Dynamics, when considered, is limited to the main branches 

of the network [49] or to the storages [50] and users are mainly considered as stationary. 

Therefore, building heat demands are previously estimated through an historical data analysis 
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and then aggregated by means of statistical elaborations that consider contemporaneity factors 

[51]; 

• on a meso-scale, as is the case of this paper in which a network feeding blocks of buildings is 

considered, each building should be considered as a whole, therefore heat exchange and 

capacity properties are lumped together. Moreover, occupancy and the state of the glazed 

surfaces are difficult to estimate with an adequate accuracy for a whole building. Nevertheless, 

the building demand profile can be evaluated through a model that considers the influence of 

the main disturbance (e.g. external temperature).  

The micro-scale problem is not addressed with a statistical approach, as historical data are rarely 

available in such detail or the instrumentation of small portions of buildings (zones) could be 

infeasible. On the other hand, in the macro-scale problem the detailed dynamics of the end-users can 

hardly be included due to the computational complexity of the system, that would become 

impracticable. The meso-scale problem, instead, makes it possible to benefit from the advantages of 

both the historical data, if available, and the knowledge of the physical system. 

This is further confirmed by a comprehensive review of the recent efforts on building modeling 

methods for optimal control applications, which summarizes the three main model types that are 

typically implemented [52]:  

• white-box models are based on detailed dynamic equations but their construction and solution 

process can be extremely time-consuming; 

• black-box models are statistical models that require large datasets and long training periods. 

Their performance is acceptable when limited to the operating conditions they are trained for; 

• gray-box models adopt a simplified description of the system but maintain a physical meaning 

of the parameters [53]. 

The third type seems to be advantageous for the application proposed in this work. As a matter of 

fact, the physics-based approach can efficiently simulate real system dynamics since it is based on 

conservation equations. Furthermore, a reduced-order gray-box model guarantees lower 
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computational effort, compared to more complex models. This is necessary for MPC online 

optimization, since the model has to be called a large number of times.  

The simplified building model that is embedded in the MPC controller is derived from the building 

dynamic energy balance equation that describes the evolution of the internal temperature 𝑇 [53] and 

is reported in Eq. (1): 

𝑑𝑇

𝑑𝑡
= −𝑎 ∙ (𝑇 − 𝑇ext) + 𝑏 ∙ �̇� (1) 

where 𝑇ext is the external ambient temperature and �̇� is the thermal power supplied to the building 

substation heat exchanger and, then, distributed to the space heaters. The heat exchange through the 

walls to the external environment and the thermal power from the heating system influence the 

internal building temperature evolution through the coefficients 𝑎 and 𝑏, respectively. These 

coefficients take into account the building heat capacity as reported by Gambarotta et al. [53]. As the 

MPC-model parameters 𝑎 and 𝑏 are unknown, an identification procedure has to be carried out from 

real building data. Forced ventilation is absent and air infiltrations are neglected. Moreover, internal 

and solar gains are not included in the MPC-model of Eq. (1) due to the need to adopt the previously 

highlighted simplifications. More details on this choice can be found in Section 3.1.2. 

A schematic representation of the distribution pipeline for each end-user with the relevant pipe 

sections highlighted is given in Figure 3. The purpose of the simplified representation of this part of 

the system is to give an immediate view of the nomenclature (equations and variables) used in the 

following. The thermal power given to the building is expressed as the variation in water enthalpy 

through the building substation heat exchanger as in Eq. (2): 

�̇� = �̇� ∙ 𝑐 ∙ (𝑇S − 𝑇R,SP)  (2) 

where �̇� is the water mass flow rate, 𝑐 is the water specific heat capacity, 𝑇S and 𝑇R,SP are the supply 

(i.e. to the heat exchanger) and return (i.e. from the heat exchanger) water temperature, respectively. 

The return water temperature 𝑇R,SP is a boundary condition for this simplified model, according to 

the assumption that it is regulated by the substation heat exchanger controller. Hence, it is set at a 
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given set-point value. The thermal power is transferred from the boiler to the building substation heat 

exchanger through the distribution pipes, which are located underground. A mixing valve recirculates 

a part of the return water to regulate the mixing temperature. 

 

Figure 3. Schematic representation of the distribution pipeline for each building. Pipe sections are defined as follows: 

boiler: boiler; mix: mixing; S: supply; R: return. 

 

Hence, the actual supply temperature 𝑇S can be calculated by starting from the mixing temperature 

𝑇mix,SP and considering the heat losses of the supply pipe �̇�loss,S, as in Eqs. (3) and (4). The heat 

losses of the return pipe �̇�loss,R are given by Eq. (5): 

𝑇S = 𝑇mix,SP −
�̇�loss,S

�̇� ∙ 𝑐
  (3) 

�̇�loss,S = 𝑈𝐴 ∙ (𝑇mix,SP − 𝑇soil) (4) 

�̇�loss,R = 𝑈𝐴 ∙ (𝑇R,SP − 𝑇soil) (5) 

where 𝑈𝐴 is the overall heat transfer coefficient, including the heat transfer surface, from the water 

in the pipes to the soil. The heat losses are calculated with respect to the highest temperatures, i.e. 

𝑇mix,SP for the supply pipe and 𝑇R,SP for the return pipe, in order to have a conservative estimation.  

The internal building temperature 𝑇 is the system state and controlled variable of each building. The 

water mass flow rate �̇� and the set-point for the mixing temperature 𝑇mix,SP are the manipulated 

variables of each building (i.e. inputs). 
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The boiler power is given by Eq. (6), which considers the sum of the heat transferred to the building 

substation heat exchangers of the network from Eq. (2) and the heat losses of the supply and return 

pipe from Eqs. (4) and (5): 

𝑃boiler = ∑[�̇� ∙ 𝑐 ∙ (𝑇S − 𝑇R,SP) +  �̇�loss,S + �̇�loss,R]
1

𝜂boiler
 (6) 

where 𝜂boiler is the boiler efficiency, which is subject to a linear correction with the actual load with 

respect to the nominal efficiency.  

The pump power is proportional with a constant coefficient 𝑘 to the cube power of the water mass 

flow rate as in Eq. (7), which is derived from the expression of the distributed pressure losses through 

the pipes (i.e. Darcy-Weisbach equation). 

𝑃pump = ∑ [
8𝑓𝐿

𝜋2𝜌2𝐷5
∙

1

𝜂pump
∙ �̇�3] = ∑ 𝑘 ∙ �̇�3 (7) 

where 𝑓 is the friction factor, 𝐿 is the pipe length, 𝜌 is the water density, 𝐷 is the pipe diameter and 

𝜂pump is the pump efficiency.  

 

3.1.2 Forecasting of external data 

Predictive controllers take advantage of their capability to optimally operate the system relying on 

the forecast of the disturbances throughout the prediction horizon. When dealing with real 

applications, the external ambient temperature, which is the main disturbance, can be collected by 

querying real-time weather forecast databases. In this work, this database is created through a 

piecewise function that reasonably builds the temperature profile using the maximum and minimum 

temperatures of the current day, the minimum temperature of the following day and the sunrise and 

sunset hours [54].  

Solar radiation and internal gains due to the building occupancy are other disturbances of these 

systems. However, when dealing with a whole building it is not possible to have an accurate 

estimation of the contribution of building occupation and radiation, since the former depends on the 
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actual number of occupants and the latter depends on the shading of each single glazed surface. In 

the MPC-model described in Section 3.1.1, these contributions can be added, if available, but are not 

strictly required. In this application, they are also neglected to show the feasibility and robustness of 

the controller even when less knowledge about the system is obtainable, since the simplicity of the 

model is an advantage when extending this study to large networks. This assumption is commonly 

made in many other studies in the literature, where DHC networks are involved [51].  

 

3.1.3 Optimization algorithm 

Within the MPC framework, an optimization problem has to be solved at each time-step (i.e. 

minimization/maximization of the cost function). Therefore, an optimization algorithm that combines 

low computational time with feasible accuracy had to be chosen. The Dynamic Programming 

algorithm is selected since it has an exact and inherently dynamic optimization character, as reported 

in Section 2.  

The Dynamic Programming algorithm is based on Bellmann’s principle of optimality which states 

that the tail of an optimal trajectory of an optimization problem is still optimal for the tail subproblem. 

According to this concept, the time scale and the whole state-space of an optimization problem are 

discretized and the global problem is divided into smaller subproblems that are solved recursively by 

proceeding backward in the time scale. During this time-backward calculation, for each step of the 

algorithm (i.e. subproblem) the state function and the related value of the cost function are evaluated 

for each feasible combination of the state and input grids. At each time-step, the inputs that minimize 

the cumulative cost, from the current step to the end of the prediction horizon, for each feasible state 

are stored in the memory. The procedure covers the entire prediction horizon and allows the dynamics 

of the system to be included in the optimization. Hence, this iterative calculation returns an optimal 

control map which is then exploited to identify the optimal control sequence through a forward 

calculation that starts from the initial condition.  
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In Sundström and Guzzella’s research [55], a Matlab® function, which solves generic DP problems 

with up to five state variables, has been proposed and is widely used in several applications (e.g. 

[56]). In this work, a novel and simpler function based on the same concept is developed in Matlab® 

and is designed to more efficiently handle the presented application and other problems with the same 

structure, i.e. one state (e.g. internal building temperature), two inputs (e.g. water mass flow rate and 

boiler temperature) and the disturbances (e.g. external temperature). This approach significantly 

simplifies multi-agent implementation, as the application of the controller to the different buildings 

can be operated in a modular way easily by changing each building model data and parameters. The 

novel function takes approximately one quarter of the time requested in [55] to solve the same 

optimization problem and allows a variable-step state/input discretization (e.g. local grid refinement).  

As the DP algorithm requires the discretization of the state and input grids, the MPC-model of the 

energy system in this application is obtained by discretizing Eq. (1). The discretized state equation at 

the k-th time-step (i.e. ∆𝑡) is represented in Eq. (8): 

𝑇k+1 − 𝑇k

∆𝑡
= −𝑎 ∙ (𝑇k − 𝑇ext) + 𝑏 ∙ �̇� (8) 

By renaming the state 𝑇 with 𝑥, the input �̇� with 𝑢1, the input 𝑇mix,SP with 𝑢2 and the disturbances 

𝑇ext and 𝑇soil with 𝑑1 and 𝑑2, respectively, and by considering Eqs. (2–5), Eq. (9) is obtained: 

𝑥k+1 = (1 − ∆𝑡 ∙ 𝑎)𝑥k + ∆𝑡 ∙ 𝑎 ∙ 𝑑1,k + ∆𝑡 ∙ 𝑏 ∙ (𝑐𝑢1,k𝑢2,k − 𝑈𝐴(𝑢2,k − 𝑑2,k) − 𝑐𝑢1,k𝑇R,SP) (9) 

The input grid is created according to the lower and upper constraints of the input variables. The state 

grid is discretized according to the state boundary values. The steps of the input and state grids are 

algorithm parameters that can be set according to the sensitivity analysis described in Section 4.  

The cost function for each time-step in Eq. (10) is assumed as the total energy consumption, consisting 

of the sum of the boiler energy and the pump energy (see Eqs. (6–7) respectively): 

𝑐𝑜𝑠𝑡 = (𝑃boiler + 𝑃pump) ∙ ∆𝑡 + 𝜑 (10) 

When the building is occupied, the internal temperature is constrained according to the lower and 

upper limits established by the contracts for service-sector buildings. Otherwise, the building 
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temperature is not constrained. The penalty factor φ is therefore added to the cost function associated 

with the unacceptable state values in order to force compliance with the constraints. The DP algorithm 

linearly increases the penalty factor as the distance from the state constraints increases, until the 

maximum penalty value is reached.  

 

3.1.4 Time delays 

It is necessary to consider pipe dynamics in the simulation and optimization of DHC networks [57]. 

As a matter of fact, the thermal energy that is generated at the production sites is distributed to the 

utilization sites that can be significantly far away, especially in large networks, and the time delay 

between production and effective supply to buildings might affect the operation and control of the 

system. Moreover, the thermal capacity of distribution pipes could be exploited as thermal storage by 

adopting different management strategies. Various studies in the literature present thermo-hydraulic 

pipe models (e.g. the plug-flow method) that are typically used in detailed dynamic simulations [58].  

However, MPC implementation requires a simplified model that can be used to predict the future 

behavior of the system at each time-step. Furthermore, the pipe dynamics would require the 

introduction of an additional system state variable, however, this is not in line with the structure of 

the DP algorithm.  

In this work, the MPC-model considers the time delays by introducing a factor ∆𝑡d, for each 

calculation. This is defined as the ratio between the pipe length and the current speed (calculated from 

the current mass flow rate), and represents the delay with which the water mass flow reaches the 

building. The DP algorithm gives the optimal mixing temperature. In the current time-step, however, 

the temperature of the water that actually reaches the building remains at the same temperature as the 

previous time-step for a time interval equal to ∆𝑡d. Hence, the optimal mixing temperature is 

increased in order to send the same amount of energy required for the current time-step, as in  

Eq. (11): 
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𝑇new =
𝑇DP ∙ ∆𝑡 − 𝑇previous ∙ ∆𝑡d

∆𝑡 − ∆𝑡d
 (11) 

where 𝑇new, 𝑇DP and 𝑇previous are the new input, the optimal DP input and the previous time-step 

input, respectively.  

This solution guarantees that the model structure is maintained and that the energy requirements of 

the users are respected. Equation (11) is valid when ∆𝑡d  < ∆𝑡, which represents the condition of the 

case study of this work. In other cases, different strategies can be adopted to consider time delays.  

 

3.2 Model-in-the-loop platform 

This section reports the description of the architecture of the MiL application platform, which is used 

to test different control strategies in a simulation environment. The MiL is a testing technique for 

control units in the development phase, in which they are emulated by specific models: hence, a model 

of the control device controls a model of the system in a virtual environment. The MiL approach 

allows methodologies to be tested and sensitivity analysis to be performed without involving the real 

system which could be unavailable due to the non-heating season or the need to respect building 

comfort conditions.  

In order to simulate real building behavior, a detailed continuous-time dynamic model of the system, 

named the MiL-model, is used.  

As introduced in Section 3.1.4, the distribution system dynamics cannot be neglected. Therefore, the 

MiL-model of each utilization site comprises the building model and the distribution network thermal 

model. The distribution network includes, for each end-user, the supply pipe, substation heat 

exchanger, return pipe and three-port recirculation valve, as in Figure 3.  

The pipe model is built with a lumped parameter approach, according to which it is assumed that the 

water mass inside the pipe is at the same temperature (𝑇pipe,S for the supply, 𝑇pipe,R for the return). It 

is possible to write the thermal energy balance of the supply pipe as in Eq. (12a), where the inflowing 
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fluid is at the mixing temperature while the outflowing fluid (i.e. water sent to the building substation 

heat exchanger) is at the supply pipe temperature 𝑇pipe,S. 

The building MiL-model is based on Eq. (1). In this case, the contributions of solar irradiance �̇�irr 

and thermal power from building occupation �̇�occ are assumed to be known, as this model aims to 

simulate the actual behavior of the real system. Hence, they are imposed as disturbances to obtain 

Eq. (12b). Similarly to the supply side, the thermal energy balance of the return pipe is expressed in 

Eq. (12c), where the inflowing fluid is at the actual return temperature from the building substation 

heat exchanger 𝑇R while the outflowing fluid (i.e. water sent to the return collector and then to the 

boiler) is at the return pipe temperature 𝑇pipe,R. A system of three ordinary differential equations is 

obtained:  

𝑑𝑇pipe,S

𝑑𝑡
=

1

𝑀𝑐
∙ [�̇� ∙ 𝑐 ∙ (𝑇mix − 𝑇pipe,S) − 𝑈𝐴 ∙ (𝑇pipe,S − 𝑇soil)] 

(12a) 

𝑑𝑇

𝑑𝑡
= −�̃� ∙ (𝑇 − �̂�ext) + �̃� ∙ [�̇� ∙ 𝑐 ∙ (𝑇pipe,S − 𝑇R) + �̇�irr + �̇�occ] (12b) 

𝑑𝑇pipe,R

𝑑𝑡
=

1

𝑀𝑐
∙ [�̇� ∙ 𝑐 ∙ (𝑇R − 𝑇pipe,R) − 𝑈𝐴 ∙ (𝑇pipe,R − 𝑇soil)] (12c) 

where 𝑀 is the mass of the water contained in the pipe and �̃� and �̃� are the performance coefficients 

of the real building. The external temperature profile �̂�ext described previously is randomly altered in 

order to account for weather variability.  

Unlike the MPC-model described in Section 3.1.1, the actual temperature of the return water from 

the substation heat exchanger 𝑇R is calculated by means of the thermal energy balance of the 

substation heat exchanger as in Eq. (13), in which the heat is entirely transferred from the water in 

the primary side (i.e. distribution network) to the water in the secondary side (i.e. distribution to the 

building space heaters):  

�̇� ∙ 𝑐 ∙ (𝑇pipe,S − 𝑇R) = �̇�sec ∙ 𝑐 ∙ ∆𝑇sec (13) 

where �̇�sec and ∆𝑇sec are the water mass flow rate and temperature difference, respectively, on the 

secondary side of the substation heat exchanger. It is assumed that, given the design temperature 
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difference on the secondary side, a proportional feedback controller varies the water mass flow rate 

on the secondary side in order to maintain the set-point return temperature on the primary side 𝑇R,SP. 

The proportional law is given in Eq. (14): 

�̇�sec = 𝐾p,sec(𝑇R − 𝑇R,SP) (13) 

where 𝐾p,sec is the proportionality constant. Hence, considering Eqs. (13) and (14), it is possible to 

obtain 𝑇R through Eq. (15): 

𝑇R =
�̇�𝑇pipe,S + 𝐾p,sec𝑇R,SP∆𝑇sec

�̇� + 𝐾p,sec∆𝑇sec
 

(15) 

Proceeding on the return side of the distribution network, a feed-forward controller regulates the mass 

flow rate that is recirculated from the return to the supply pipe by means of the three-port valve 

(Figure 3) in order to maintain the mixing temperature indicated by the MPC. The recirculated mass 

flow rate �̇�rec is expressed by Eq. (16): 

�̇�rec =
𝑇boiler,SP − 𝑇mix

𝑇boiler,SP − 𝑇R,SP
∙ �̇� 

(16) 

where 𝑇boiler,SP is the set-point for the water that exits the boiler, chosen as the maximum of the 

optimal mixing temperature calculated by the MPC controllers of the end-users connected to the 

network. Indeed, the boiler controller keeps this maximum desired water temperature, while the water 

temperature effectively sent to each end-user is kept by regulating the recirculated mass flow rate, as 

explained previously.  

The returning mass flows from each end-user are mixed in the return collector and conveyed back to 

the boiler. Therefore, the boiler mass flow rate �̇�boiler and return temperature 𝑇boiler,R are evaluated 

through the mass and energy balance equations of the return collector according to Eqs. (17): 

�̇�boiler = ∑(�̇�i − �̇�rec,i)

i

 
(17a) 

𝑇boiler,R = ∑
(�̇�i − �̇�rec,i)𝑇pipe,R,i

�̇�boiler
i

 
(17b) 
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The thermal model of the distribution network also includes the boiler, which is a standard boiler 

powered by natural gas. It is controlled by regulating the fuel mass flow rate �̇�f in order to guarantee 

the set-point 𝑇boiler,SP according to the feedback proportionality law in Eq. (18): 

�̇�f = 𝐾p,f(𝑇boiler,SP − 𝑇boiler) (18) 

where 𝐾p,f is the proportionality constant and 𝑇boiler is the actual temperature of the fluid exiting the 

boiler. The latter can be calculated by combining Eq. (18) with Eqs. (19), which represent the thermal 

power �̇�boiler of the boiler and its efficiency 𝜂boiler: 

�̇�boiler = �̇�f ∙ 𝐿𝐻𝑉 ∙ 𝜂boiler = �̇�boiler ∙ 𝑐 ∙ (𝑇boiler − 𝑇boiler,R) (19a) 

𝜂boiler =
�̇�boiler − �̇�min

�̇�nom − �̇�min

(𝜂nom − 𝜂min) + 𝜂min (19b) 

where LHV is the fuel lower heating value, �̇�nom, �̇�min, 𝜂nom and 𝜂min are the nominal and minimum 

power and the nominal and minimum efficiency, respectively, according to the linear correction with 

the actual boiler load. In light of these equations, the actual boiler temperature is obtained by Eq. 

(20): 

𝑇boiler =
�̇�boiler ∙ 𝑐 ∙ 𝑇boiler,R + 𝐾p,f ∙ 𝐿𝐻𝑉 ∙ 𝜂boiler ∙ 𝑇boiler,SP

�̇�boiler ∙ 𝑐 + 𝐾p,f ∙ 𝐿𝐻𝑉 ∙ 𝜂boiler
 

(20) 

Since the calculations of the actual boiler temperature and thermal power are coupled, Eqs. (19) and 

(20) are solved through an iteration loop embedded in the global MiL-model. 

The system of differential equations (12), which describe the dynamic behavior of the main 

components of each branch of a DHC system (i.e. building and pipes), are solved through a Matlab® 

Ordinary Differential Equation solver. The MiL-model runs continuously for the desired time span 

and is controlled by a model of the controller. Two different controllers are implemented and 

compared: (i) a state-of-the-art PID controller [53], the set-point of which comes into effect at an 

arbitrary point in time prior to occupation of the building (three hours) and (ii) the MPC controller 

described above. In the latter case, the optimal inputs calculated by the MPC controller of each 

end-user are given to the MiL-model as the mass flow rate �̇� and the mixing temperature 𝑇mix. 
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4 Sensitivity analysis 

The DP algorithm that solves the constrained optimization problems at each time-step of the MPC 

implementation has been described in Section 3.1.3. However, the DP algorithm requires the 

discretization of the state and input grids and the choice of the parameters might affect the algorithm 

performance. Therefore, detailed sensitivity analysis of the characteristic parameters of the algorithm 

is presented in this section. 

The lower and upper constraints of the input grid are established in the data definition phase and they 

typically represent the physical boundaries of the input signals (i.e. minimum and maximum mass 

flow rate and minimum and maximum mixing temperature). Similarly, the state grid boundary values 

define a plausible range of variation in the internal building temperature, which is set between 0 °C 

and 30 °C in this application. The time-step is 15 min, which is reasonable for thermal energy 

applications. The time horizon is three days.  

The sensitivity analysis is conducted by varying the state grid steps (i.e. ∆𝑥) and the input grid steps 

(i.e. ∆𝑢1 and ∆𝑢2) independently and by comparing the performance of the algorithm according to 

some key performance indicators, which are selected as follows: 

• Computational time for a single DP algorithm calculation; 

• Predicted global energy consumption over the time horizon of a single DP algorithm 

calculation; 

• The number of time-steps in which the compliance with the temperature constraints is not 

realized (i.e. failures); 

• The number of time-steps in which the required temperature is reached in advance, since 

reaching the required comfort conditions some hours before the building is occupied would 

represent a loss of energy.  

It is necessary to choose the algorithm parameters that gives the best trade-off between a low 

computational time and feasible accuracy (e.g. low predicted energy consumption, low energy loss). 
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Figure 4 represents the normalized energy consumption (with respect to the minimum) obtained for 

a single run of the DP algorithm with a prediction horizon of three days, for different values of ∆𝑢1 

and ∆𝑢2. Each plane refers to a different value of ∆𝑥. The figure shows that the influence of the input 

discretization on the global energy consumption is lower than the influence of the state discretization. 

In fact, the algorithm results in terms of energy consumption do not vary significantly for a given 

state grid step. Hence, it is possible to choose feasible values of the input grid steps and focus on the 

sensitivity analysis of the state grid step. 

 

Figure 4. Predicted normalized energy consumption for different values of input grid steps. Each plane refers to a different 

value of the state grid step, from ∆x = 0.05 °C to ∆x = 1 °C. 

 

Figure 5 represents the calculation time of one algorithm run for different input grid step settings. 

Since the computational time of an intermediate value of the input grid step can be considered 

acceptable for the online implementation of the MPC and, at the same time, the algorithm results are 

not significantly affected, it is reasonable to assume ∆𝑢1 = 0.5 kg/s and ∆𝑢2 = 0.5 °C to proceed with 

the analysis. 
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Figure 5. Computational time with varying state grid steps ∆x for selected input grid step values ∆u1 and ∆u2. 

 

Figure 6 shows the variation of the last three key performance indicators (i.e. predicted global energy 

consumption, number of failures and number of time-steps in advance) with the state grid step ∆𝑥. 

The predicted energy consumption, normalized with respect to the minimum value obtained (Figure 

6a), increases significantly with ∆𝑥. A finer state mesh allows the algorithm to evaluate the cost of 

each feasible state and select the optimal trajectory more precisely. As a matter of fact, linear 

interpolation is applied for the states between the grid points and this may lead to approximation 

uncertainties, since the state dependence on inputs and disturbances is not linear.  

Furthermore, a lower value of ∆𝑥 guarantees that internal building temperature requirements are 

satisfied (i.e. no failures) and the energy losses are minimized (i.e. temperature is not reached several 

hours before the building is occupied).  



27 
 

(a) (b) 

 

(c) 

Figure 6. Results of the sensitivity analysis on the state grid step ∆x: normalized predicted energy consumption (a), 

maximum advance of required temperature achievement in time-steps (b), number of time-steps in which the required 

temperature achievement fails (c). All results are obtained with ∆u1 = 0.5 kg/s and  

∆u2 = 0.5 °C. 

 

A state grid step equal to 0.4 °C leads to a large number of failures in the fulfillment of the required 

temperature for numerical reasons (Figure 6c). Indeed, that value results (i) in the comfort conditions 

being reached exactly at the requested time (i.e. maximum advance equal to zero) but also (ii) in the 

indoor temperature being maintained at a value which is slightly lower than the lower boundary 

during the maintenance phase. The algorithm returns optimal input values that are not able to keep 
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the state above the lower limit. This happens because the intrinsic discretization nature of the 

algorithm leads to the need to interpolate the values between the grid points, therefore producing 

numerical errors. In this case, the linear interpolation gives rise to the large number of failures 

corresponding to the state grid step of 0.4 °C. Higher values of ∆𝑥, on the other hand, allow the 

fulfillment of the required building conditions several time-steps (i.e. hours) before it is occupied 

with consequent energy waste (Figure 6b). Thus, it is possible to conclude that ∆𝑥 values lower than 

0.4 °C are acceptable for the accuracy of the algorithm and can therefore be considered for the MPC 

implementation.  

This can be further confirmed by taking one building from the case study described in Section 5 as 

an example. Figure 7 represents the optimal behavior of the sports hall temperature as calculated by 

the algorithm with different values of ∆𝑥. By choosing a step equal to 0.05 °C or 0.1 °C, it is possible 

to keep the building temperature at around 20 °C only when required. 

 

Figure 7. Optimal state (i.e. building temperature) trajectories over the prediction horizon calculated by one DP algorithm 

run with different state grid steps (sports hall). 
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5. Results and discussion 

In this section, the MPC controller developed in Sections 3 and 4 is tested and compared to a state-

of-the-art PID controller. In the conventional control approach, the water temperature is set at the 

maximum value and the PID regulates the water mass flow rate in order to reach the predefined set-

point (i.e. building temperature). 

After the description of the case study, the MPC-model is identified by means of simulation data and 

the results of the system MiL control are presented.  

 

5.1 Case study description 

The case study that was chosen to test this approach is a school complex in Northern Italy, depicted 

in Figure 8. A boiler supplies the thermal energy required by the sports hall and the school. A pipeline 

and a pump are dedicated to each building. The distribution pipes branch from the supply collector 

and, after supplying hot water to the buildings, go back to the return collector. The notation of the 

relevant sections of the pipes is referred to the MiL-model description in Section 3.2. 

 

Figure 8. Schematic representation of the case study of the MPC control: a school complex located in Northern Italy. The 

underlined sections of the pipes are related to the model described in Section 3.2. mix: mixing; pipe: pipe; R: return. 
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As the MPC controller has been developed for a single-state system (e.g. a single building), a multi-

agent approach is applied. Each branch of the system, characterized by a single building and dedicated 

distribution pipe, is controlled by its own MPC controller, which returns the optimal values of the 

water mass flow rate and supply temperature for the current time-step. The water mass flow rate is 

then regulated through the pump. As far as the supply temperature is concerned, the highest supply 

temperature returned by the MPC controllers is used to set the boiler. The actual water temperature 

of each building is then regulated by the mixing valve which recirculates part of the return cold water.  

Due to the internal temperature requirements, the lower and upper state constraints are assumed as 

19.5 °C and 20.5 °C, respectively, when the building is occupied. The return water temperature has 

to be regulated by the substation heat exchanger controllers and its set-point 𝑇R,SP is set to 60 °C. To 

this extent, the design temperature difference of the fluid in the secondary side of the heat exchanger 

∆𝑇sec is set to 10 °C. The relevant parameters of the case study described above are summarized in 

Table 1. 

The multi-agent architecture allows this control approach to be extended to more complex networks 

by installing the MPC controller in the other branches of the system in a modular fashion.  

 

5.2 Identification of the Model Predictive Control-model 

The MPC-model described in Section 3.1.1 has to be identified through the identification procedure. 

Identification is a methodology that builds the mathematical models of a system starting from input 

and output datasets.  

In this application, these data are generated by running the MiL-model controlled by the PID for a 

simulation time of several days. The simulations make it possible to obtain sequences of (i) building 

internal temperature data, (ii) inputs defined by the PID and (iii) the imposed external temperature. 

These data are obtained with a sampling period of 15 minutes. Random components are added to both 

the internal and external temperatures to simulate measurement uncertainty. These data are divided 

into a training set for identification of the MPC-model parameters and a test set for validation. 
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Table 1. System parameters of the case study. 

Parameter Sports hall School 

Water mass flow rate (0 to 8) kg/s (0 to 12) kg/s 

Supply temperature (70 to 80) °C (70 to 80) °C 

Pipe length 100 m 50 m 

Pipe diameter 100 mm 125 mm 

Insulation thickness 100 mm 50 mm 

Insulation conductivity 0.05 W/(m K) 0.05 W/(m K) 

Friction factor 0.017 0.017 

Pump efficiency 0.8 0.8 

Number of occupants 50 400 

Individual thermal power 120 W 80 W 

Window surface 110 m2 100 m2 

Coefficient �̃� 7.28 · 10-6 s-1 3.50 · 10-6 s-1 

Coefficient �̃� 7.53 · 10-7 °C/kJ 9.08 · 10-7 °C/kJ 

MPC prediction horizon 3 days 3 days 

MPC time-step width 15 min 15 min 

Parameter Boiler 

Nominal power 1700 kW 

Minimum power 170 kW 

Nominal efficiency 0.91 

Minimum efficiency 0.85 

LHV (natural gas) 47100 kJ/kg 
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The training set and the specified model structure are inputs of the identification problem. This 

consists of estimating the parameters of the model by solving a non-linear least-squares problem, 

which operates the minimization of the squared error between the model prediction and the dataset.  

By comparing the newly-identified gray-box model with the test set values, the reliability of the 

procedure can be evaluated. Once the MPC-model has been identified, it is possible to couple it with 

the DP optimization algorithm to constitute the predictive controller (Figure 2). 

The set of real building input and output data is obtained by the simulation of fourteen days during 

the winter season. The test set is chosen as the last two days.  

Figure 9 shows the temperature predicted by the model identified with two different training sets 

compared to the real temperature (i.e. original dataset) of the sports hall, which is taken as an example. 

The results highlight that the identification performed on a relatively short training set (e.g. 0.25 days) 

provides a model which does not adequately fit the measurements. This happens because the heating 

up and cooling down building dynamics are not sufficiently represented by the training set and cannot 

be highlighted.  

 

Figure 9. Comparison between identification results with two different training sets and real temperature data (sports 

hall). 
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Figure 10 shows the Root Mean Squared Error (RMSE) between predicted data and the measurements 

with varying training set lengths. Acceptable results are obtained with at least one-day-long datasets, 

provided that they cover typical weekday operation (i.e. with building heating and cooling transients). 

Similar conclusions can be drawn as far as the school is concerned. 

The MPC-model building coefficients 𝑎 and 𝑏 chosen for controlling the sports hall and the school 

are obtained with training sets of five and six days, respectively, as they gave the lowest RMSE. The 

values of the coefficients are reported in Table 2. 

 

Figure 10. Root Mean Squared Error for different training set lengths (sports hall). 

 

Table 2. MPC-model building performance coefficients obtained through the identification procedure. 

Building  a [s-1] b [°C kJ-1] 

Sports hall 6.9626 · 10-6 7.7983 · 10-7 

School 2.9535 · 10-6 1.0719 · 10-6 
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5.3 System control results and comparison 

The system described in Section 5.1 is simulated for one week of the winter season through the MiL 

platform. The state-of-the-art PID controller and the MPC controller developed above are tested in 

the same conditions and the results are compared.  

The model for the MPC controller implementation was identified in Section 5.2 while the 

optimization algorithm parameters were chosen through the sensitivity analysis in Section 4. The best 

trade-off between algorithm result accuracy and computational time is obtained by selecting  

∆𝑢1 = 0.5 kg/s, ∆𝑢2 = 0.5 °C and ∆𝑥 = 0.1 °C. The prediction horizon of three days allows the dynamic 

behavior of the entire distribution network to be considered in the optimization, even when the 

weekend, or other days in which the buildings are not occupied, are involved. With these parameters, 

the DP algorithm calculation time is around 2 s with a standard laptop and, therefore, is suitable for 

the MPC controller online implementation for an energy network. 

The comparison between the control performance of the PID and the MPC is shown in Figure 11 for 

the sports hall and Figure 12 for the school. It is possible to notice that the PID is not always able to 

guarantee the required internal temperature defined by the constraints (e.g. sports hall). Furthermore, 

in other conditions (e.g. school), the temperature is reached several hours before the building is 

actually occupied, causing non-necessary energy loss. Hence, this approach guarantees neither 

fulfillment of the desired comfort conditions nor energy minimization. This happens because a 

classical controller is based on a predefined rule and is not able to cope with the variation of the 

external conditions.  

On the other hand, MPC assures compliance with the constraints while optimizing energy 

consumption. Moreover, MPC proves to be particularly effective with considerable variations in 

weather conditions that seem likely to happen due to climate change. 
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Figure 11. Model-in-the-Loop system operation of the sports hall with PID control (a) and MPC (b). 

 

Figure 12. Model-in-the-Loop system operation of the school with PID control (a) and MPC (b). 
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The two buildings behave differently due to the different values of the performance coefficients. The 

coefficient ã affects the heat exchange through the walls while b̃ influences the contribution of the 

thermal power transferred to the building. The higher the coefficient ã, the greater the thermal loss to 

the outside. At the same time, the lower the coefficient b̃, the slower the heating process.  

This is the case of the sports hall which, compared to the school, has a higher ã and a lower b̃ and, 

therefore, reaches a lower temperature when it is not occupied (i.e. cooling down process). Hence, 

the heating up of the sports hall has to start earlier than that of the school, especially after the weekend.  

The temperatures of the main water flows of the network are represented in Figure 13. In particular, 

the boiler temperature and return temperature track the set-points established by the MPC and set as 

a design parameter, respectively. Therefore, the assumption of the return temperature considered 

equal to the set-point parameter in the MPC-model is justified and produces reliable results. 

Moreover, the behavior of the pipe temperatures demonstrates the potential influence of the heat 

capacity of the water in the pipes. In the graph of each building (the sports hall in Figure 13a and the 

school in Figure 13b), the temperature values are not plotted when the related mass flow rate is equal 

to zero, since they lose significance. Nonetheless, it is possible to notice that the temperature of the 

water mass inside the pipes decreases due to the heat losses and the actual supply temperature to the 

substation heat exchanger is subjected to a heating transient. A more detailed pipe model might give 

a better insight into this phenomenon.  

The supply temperatures as well as the related mass flow rates also vary according to the optimal 

inputs calculated by the controller. This is further noticed in Figure 14, which shows the water mass 

flow rate for both buildings during two representative days of the simulation. It is possible to state 

that, at the beginning of each day, the school requires only an initial maximum heating up, due to its 

higher heat capacity and maximum water mass flow rate. The sports hall, on the other hand, needs 

more water mass flow rate fluctuations in order to maintain the internal temperature. A predictive 

control method allows these results to be easily achieved. 
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Figure 13. Temperatures of the water exiting the boiler and the supply and return water: (a) sports hall and (b) school. 

 

Figure 14. Mass flow rate of the water sent to the sports hall and the school during two representative days of the 

simulation. 
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As far as the primary energy consumption is concerned, the cumulated fuel mass used to power the 

boiler over the simulation horizon with the conventional controller and with the MPC controller is 

shown in Figure 15. In the latter case, a part of the fuel is saved until the weekend, during which the 

energy consumption of the conventional case is lower due to the fact that the building temperature 

required for the comfort of the occupants is not reached in time, as clarified by Figure 12. In the end, 

the fuel consumption is almost equal in the two cases, but the PID controller does not fulfill the 

constraints established by the contracts. This shows the superiority of the MPC controller and pledges 

a significant reduction in fuel consumption, when thermal comfort is kept. 

 

Figure 15. Cumulated fuel mass over the simulation period. 

 

This primary energy saving is demonstrated in Table 3, which summarizes the results of the 

simulations for a week in January, a week in March and a week in November with different degrees 

of time advance for the activation of the PID set-points (the base case discussed above considers the 

activation three hours prior to the occupation of the buildings). For each case, the table reports (i) the 

percentage energy saving obtained with the MPC controller compared to the base case and (ii) the 
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failures (in hours) in meeting the internal temperature constraints that are avoided by using the MPC 

controller instead of the PID approach in the same conditions. It should be underlined that in some 

conditions the energy saving percentage is relatively low (e.g. week of January with three-hour time 

advance). However, as is clear from Table 3, this comes together with a significant time in which the 

constraint failures are avoided. For this reason, when the avoided failure time is higher than zero, the 

estimation of the energy saving percentage is conservative.  

Hence, the MPC shows its ability to reduce the energy consumption while keeping the temperature 

constraints at different periods of the year with variable boundary conditions. This reduction is mainly 

due to two factors. Firstly, the MPC is able to convey to the end-users the necessary thermal energy 

exactly when it is needed, according to the boundary conditions. This is particularly convenient in 

DHCs, in which the characteristics of the connected buildings – and, therefore, the heating transients 

– are substantially diverse and a pre-defined rule is not able to consider this fact.  

 

Table 3. Results of the primary energy saving obtained with the MPC controller compared to the PID controller (with 

different time schedules) in different simulations. 

Simulation PID time advance [h] Energy saving [%] Avoided failures [h] 

January 

3 0.32 5.25 

4 0.71 3.29 

5 2.56 2.44 

March 

3 2.21 4.17 

4 3.13 2.88 

5 4.81 1.88 

November 

3 4.55 1.22 

4 6.99 0 

5 7.28 0 
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Secondly, the MPC tends to maintain the building temperature close to the lower constraints avoiding 

unnecessary energy losses. If the lower value of the tolerance band (e.g. 19.5 °C) established as a 

hard constraint by the contract were applied as a set-point of the PID controller, those requirements 

would hardly be met due to the PID errors. 

To conclude, the innovative MPC controller proposed in this work was tested with satisfactory results 

on two buildings of different types and at different distances from the heat production site. This opens 

up the possibility to further demonstrate the approach and extend these results to different buildings 

and larger systems. 

 

6. Conclusions 

The current global energy scenario enables a significant reduction in energy consumption if efficiency 

in buildings and district heating and cooling networks is addressed.  

In this work, a novel Model Predictive Controller based on a Dynamic Programming algorithm was 

developed and tested on a small-scale heat distribution network of a school complex in northern Italy 

through a Model-in-the-Loop platform. Firstly, detailed sensitivity analysis led to the selection of the 

most suitable parameters of the optimization algorithm. Secondly, the gray-box model embedded in 

the Model Predictive Controller was identified by means of an input-output dataset obtained by 

emulating the real system during the winter season. Another sensitivity analysis on the training set 

length made it possible to state that five-day-long datasets give acceptable fitting results. 

Subsequently, the operation of the district heating system was simulated in an Model-in-the-Loop to 

test the new controller and compare its results to those obtained with a classical PID controller. The 

system was controlled through a multi-agent approach by applying the Model Predictive Controller 

to each branch connected to a building in the network.  

As expected, Model Predictive Control outperforms the PID with respect to both building comfort 

requirements and primary energy saving, regardless of the building type and the distribution pipe 
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length. Conservative results show a reduction in fuel consumption up to more than 7 %, depending 

on the season, obtained without altering the network configuration. For instance, in a week of January 

the energy saving is lower but this comes together with more than five hours of avoided failures of 

the comfort requirements compared to the conventional strategy. Hence, Model Predictive Control 

emerges as one of the most promising control strategies to be tackled in the attempt to reduce energy 

consumption and carbon emissions.  

It should be remembered that the controller developed in this work represents an upper boundary for 

the control of these systems, since it assumes the ideal forecast of the external conditions. However, 

it can be extremely useful as a benchmark for comparison with other strategies. Moreover, robust 

control, which considers the uncertainties in the disturbance variables, is a potential future 

development. Further studies and applications of the proposed approach will focus on larger thermal 

networks. Lastly, future developments will concentrate on demonstrating how this innovative control 

approach can be implemented in real distribution networks.  

  



42 
 

References 

[1] International Energy Agency official website. Energy Efficiency: Heating 

https://www.iea.org/topics/energyefficiency/buildings/heating/ [accessed on 16/09/2019]. 

[2] Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, Mathiesen BV. 4th 

Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy 

systems. Energy 2014;68:1–11. https://doi.org/10.1016/j.energy.2014.02.089  

[3] Lake A, Rezaie B, Beyerlein S. Review of district heating and cooling systems for a sustainable 

future. Renewable and Sustainable Energy Reviews 2017;67:417–25. 

https://doi.org/10.1016/j.rser.2016.09.061  

[4] Li Y, Rezgui Y, Zhu H. District heating and cooling optimization and enhancement – Towards 

integration of renewables, storage and smart grid. Renewable and Sustainable Energy Reviews 

2017;72:281–94. https://doi.org/10.1016/j.rser.2017.01.061  

[5] Clean energy for all Europeans. Publication Office of the European Union 2019. 

https://doi.org/10.2833/21366  

[6] Camacho EF, Bordons C. 1999. Model Predictive Control. Springer-Verlag London Limited. 

ISBN 3540762418. 

[7] Grüne L, Pannek J. 2011. Nonlinear Model Predictive Control – Theory and Algorithms. 

Springer-Verlag London Limited. ISBN 9780857295002. 

[8] Morari M, Lee JH. Model predictive control: past, present and future. Computers and Chemical 

Engineering 1999;23:667–682. https://doi.org/10.1016/S0098-1354(98)00301-9  

[9] Rawlings JB. Tutorial overview of model predictive control. IEEE Control Systems Magazine 

2000;20:38–52. https://doi.org/10.1109/37.845037  

[10] Ellis M, Durand H, Christofides PD. A tutorial review of economic model predictive control 

methods. Journal of Process Control 2014;24:1156–78. 

https://doi.org/10.1016/j.jprocont.2014.03.010  

https://www.iea.org/topics/energyefficiency/buildings/heating/
https://doi.org/10.1016/j.energy.2014.02.089
https://doi.org/10.1016/j.rser.2016.09.061
https://doi.org/10.1016/j.rser.2017.01.061
https://doi.org/10.2833/21366
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1109/37.845037
https://doi.org/10.1016/j.jprocont.2014.03.010


43 
 

[11] Mayne DQ. Model predictive control: Recent developments and future promise. Automatica 

2014;50:2967–86. https://doi.org/10.1016/j.automatica.2014.10.128  

[12] Heirung TAN, Paulson JA, O’Leary J, Mesbah A. Stochastic model predictive control – How 

does it work? Computers and Chemical Engineering 2018;114:158–70. 

https://doi.org/10.1016/j.compchemeng.2017.10.026  

[13] Crialesi Esposito M, Pompini N, Gambarotta A, Chandrasekaran V, Zhou J, Canova M. 

Nonlinear Model Predictive Control of an Organic Rankine Cycle for Exhaust Waste Heat 

Recovery in Automotive Engines. IFAC-PapersOnLine 2015;48:411–8. 

https://doi.org/10.1016/j.ifacol.2015.10.059  

[14] Liu X, Yebi A, Anschel P, Shutty J, Xu B, Hoffman M, Onori S. Model Predictive Control of 

an Organic Rankine Cycle System. Energy Procedia 2017;129:184–92. 

https://doi.org/10.1016/j.egypro.2017.09.109  

[15] Xu Q, Dubljevic S. Model predictive control of solar thermal system with borehole seasonal 

storage. Computers and Chemical Engineering 2017;101:59–72. 

https://doi.org/10.1016/j.compchemeng.2017.02.023  

[16] Rodrigues EMG, Godina R, Pouresmaeil E, Ferreira JR, Catalão JPS. Domestic appliances 

energy optimization with model predictive control. Energy Conversion and Management 

2017;142:402–13. https://doi.org/10.1016/j.enconman.2017.03.061  

[17] Shafiei SE, Alleyne A. Model predictive control of hybrid thermal energy systems in transport 

refrigeration. Applied Thermal Engineering 2015;82:264–80. 

https://doi.org/10.1016/j.applthermaleng.2015.02.053  

[18] Zhang D, Huang X, Gao D, Cui X, Cai N. Experimental study on control performance 

comparison between model predictive control and proportion-integral-derivative control for radiant 

ceiling cooling integrated with underfloor ventilation system. Applied Thermal Engineering 

2018;143:130–6. https://doi.org/10.1016/j.applthermaleng.2018.07.046  

https://doi.org/10.1016/j.automatica.2014.10.128
https://doi.org/10.1016/j.compchemeng.2017.10.026
https://doi.org/10.1016/j.ifacol.2015.10.059
https://doi.org/10.1016/j.egypro.2017.09.109
https://doi.org/10.1016/j.compchemeng.2017.02.023
https://doi.org/10.1016/j.enconman.2017.03.061
https://doi.org/10.1016/j.applthermaleng.2015.02.053
https://doi.org/10.1016/j.applthermaleng.2018.07.046


44 
 

[19] Shaikh P, Nor NBM, Nallagownden P, Elamvazuthi I, Ibrahim T. A review on optimized 

control systems for building energy and comfort management of smart sustainable buildings. 

Renewable and Sustainable Energy Reviews 2014;34:409–29. 

https://doi.org/10.1016/j.rser.2014.03.027  

[20] Li Y, Ang KH, Chong GCY. PID control system analysis and design. IEEE Control Systems 

Magazine 2006;26:32–41. https://doi.org/10.1109/MCS.2006.1580152  

[21] Prívara S, Široký J, Ferkl L, Cigler J. Model predictive control of a building heating system: 

The first experience. Energy and Buildings 2011;43:564–72. 

https://doi.org/10.1016/j.enbuild.2010.10.022  

[22] Killian M, Kozek M. Ten questions concerning model predictive control for energy efficient 

buildings. Building and Environment 2016;105:403–12. 

https://doi.org/10.1016/j.buildenv.2016.05.034  

[23] Afram A, Janabi-Sharifi F. Theory and applications of HVAC control systems – A review of 

model predictive control (MPC). Building and Environment 2014;72:343–55. 

https://doi.org/10.1016/j.buildenv.2013.11.016  

[24] Clauβ J, Finck C, Vogler-Finck P, Beagon P. Control strategies for building energy systems to 

unlock demand side flexibility – a review. IBPSA Building Simulation Conference 2017, San 

Francisco, USA, August 7–9, 2017. http://www.ibpsa.org/proceedings/BS2017/BS2017_462.pdf  

[25] Bosschaerts W, Van Renterghem T, Hasan OA, Limam K. Development of a model based 

predictive control system for heating buildings. Energy Procedia 2017;112:519–28. 

https://doi.org/10.1016/j.egypro.2017.03.1110  

[26] Zong Y, Böning GM, Mirra Santos R, You S, Hu J, Han X. Challenges of implementing 

economic model predictive control strategy for buildings interacting with smart energy systems. 

Applied Thermal Engineering 2017;114:1476–86. 

https://doi.org/10.1016/j.applthermaleng.2016.11.141  

https://doi.org/10.1016/j.rser.2014.03.027
https://doi.org/10.1109/MCS.2006.1580152
https://www.sciencedirect.com/science/article/pii/S0378778810003749?via%3Dihub#!
https://doi.org/10.1016/j.enbuild.2010.10.022
https://doi.org/10.1016/j.buildenv.2016.05.034
https://doi.org/10.1016/j.buildenv.2013.11.016
http://www.ibpsa.org/proceedings/BS2017/BS2017_462.pdf
https://doi.org/10.1016/j.egypro.2017.03.1110
https://doi.org/10.1016/j.applthermaleng.2016.11.141


45 
 

[27] Prívara S, Cigler J, Váňa Z, Oldewurtel F, Sagerschnig C, Žáčeková E. Building modeling as a 

crucial part for building predictive control. Energy and Buildings 2013;56:8–22. 

https://doi.org/10.1016/j.enbuild.2012.10.024  

[28] Ascione F, Bianco N, De Stasio C, Mauro GM, Vanoli GP. Simulation-based model predictive 

control by the multi-objective optimization of building energy performance and thermal comfort. 

Energy and Buildings 2016;111:131–44. https://doi.org/10.1016/j.enbuild.2015.11.033  

[29] Gholamibozanjani G, Tarragona J, de Gracia A, Fernández C, Cabeza LF, Farid MM. Model 

predictive control strategy applied to different types of building for space heating. Applied Energy 

2018;231:959–71. https://doi.org/10.1016/j.apenergy.2018.09.181  

[30] Salakij S, Yu N, Paolucci S, Antsaklis P. Model-Based Predictive Control for building energy 

management. I:Energy modeling and optimal control. Energy and Buildings 2016;133:345–58. 

https://doi.org/10.1016/j.enbuild.2016.09.044  

[31] Johansson C, Bergkvist M, Geysen D, De Somer O, Lavesson N, Vanhoudt D. Operational 

Demand Forecasting In District Heating Systems Using Ensembles Of Online Machine Learning 

Algorithms. Energy Procedia 2017;116:201-216. https://doi.org/10.1016/j.egypro.2017.05.068 

[32] Reynolds J, Rezgui Y, Kwan A, Piriou S. A zone-level, building energy optimisation 

combining an artificial neural network, a genetic algorithm, and model predictive control. Energy 

2018;151:729–39. https://doi.org/10.1016/j.energy.2018.03.113  

[33] Bianchini G, Casini M, Pepe D, Vicino A, Zanvettor GG. An integrated model predictive 

control approach for optimal HVAC and energy storage operation in large-scale buildings. Applied 

Energy 2019;240:327–40. https://doi.org/10.1016/j.apenergy.2019.01.187  

[34] Sangi R, Kümpel A, Müller D. Real-life implementation of a linear model predictive control in 

a building energy system. Journal of Building Engineering 2019;22:451–63. 

https://doi.org/10.1016/j.jobe.2019.01.002  

https://doi.org/10.1016/j.enbuild.2012.10.024
https://doi.org/10.1016/j.enbuild.2015.11.033
https://doi.org/10.1016/j.apenergy.2018.09.181
https://doi.org/10.1016/j.enbuild.2016.09.044
https://doi.org/10.1016/j.egypro.2017.05.068
https://doi.org/10.1016/j.energy.2018.03.113
https://doi.org/10.1016/j.apenergy.2019.01.187
https://doi.org/10.1016/j.jobe.2019.01.002


46 
 

[35] Fux SF, Benz MJ, Guzzella L. Economic and environmental aspects of the component sizing 

for a stand-alone building energy system: A case study. Renewable Energy 2013;55:438–47. 

https://doi.org/10.1016/j.renene.2012.12.034  

[36] Kuboth S, Heberle F, König-Haagen A, Brüggemann D. Economic model predictive control of 

combined thermal and electric residential building energy systems. Applied Energy 2019;240:372–

85. https://doi.org/10.1016/j.apenergy.2019.01.097  

[37] Parisio A, Rikos E, Glielmo L. A Model Predictive Control Approach to Microgrid Operation 

Optimization. IEEE Transactions on Control Systems Technology 2014;22:1813-1827. 

https://doi.org/10.1109/TCST.2013.2295737  

[38] Sultana WR, Sahoo SK, Sukchai S, Yamuna S, Venkatesh D. A review on state of art 

development of model predictive control for renewable energy applications. Renewable and 

Sustainable Energy Reviews 2017;76:391-406. https://doi.org/10.1016/j.rser.2017.03.058  

[39] Vandermeulen A, Van der Heijde B, Helsen L. Controlling district heating and cooling 

networks to unlock flexibility: A review. Energy 2018;151:103-115. 

https://doi.org/10.1016/j.energy.2018.03.034  

[40] Verrilli F, Srinivasan S, Gambino G, Canelli M, Himanka M, Del Vecchio C, Sasso M, 

Glielmo L. Model Predictive Control-Based Optimal Operations of District Heating System With 

Thermal Energy Storage and Flexible Loads. IEEE Transactions on Automation Science and 

Engineering 2017;14:547-557. https://doi.org/10.1109/TASE.2016.2618948  

[41] Vanhoudt D, Claessens BJ, Salenbien R, Desmedt J. An active control strategy for district 

heating networks and the effect of different thermal energy storage configurations. Energy and 

Buildings 2018;158:1317–27. https://doi.org/10.1016/j.enbuild.2017.11.018  

[42] Lennermo G, Lauenburg P, Werner S. Control of decentralised solar district heating. Solar 

Energy 2019;179:307–15. https://doi.org/10.1016/j.solener.2018.12.080  

https://doi.org/10.1016/j.renene.2012.12.034
https://doi.org/10.1016/j.apenergy.2019.01.097
https://doi.org/10.1109/TCST.2013.2295737
https://doi.org/10.1016/j.rser.2017.03.058
https://doi.org/10.1016/j.energy.2018.03.034
https://doi.org/10.1109/TASE.2016.2618948
https://doi.org/10.1016/j.enbuild.2017.11.018
https://doi.org/10.1016/j.solener.2018.12.080


47 
 

[43] Long S, Marjanovic O, Parisio A. Generalised control-oriented modelling framework for 

multi-energy systems. Applied Energy 2019;235:320–31. 

https://doi.org/10.1016/j.apenergy.2018.10.074  

[44] Dounis AI, Caraiscos C. Advanced control systems engineering for energy and comfort 

management in a building environment—A review. Renewable and Sustainable Energy Reviews 

2009;13:1246-1261. https://doi.org/10.1016/j.rser.2008.09.015  

[45] Sameti M, Haghighat F. Optimization approaches in district heating and cooling thermal 

network. Energy and Buildings 2017;140:121–30. https://doi.org/10.1016/j.enbuild.2017.01.062  

[46] Kuang J, Zhang C, Sun B. Stochastic dynamic solution for off-design operation optimization of 

combined cooling, heating, and power systems with energy storage. Applied Thermal Engineering 

2019;160:113967. https://doi.org/10.1016/j.applthermaleng.2019.114356  

[47] Bahlawan H, Morini M, Pinelli M, Spina PR. Dynamic programming based methodology for 

the optimization of the sizing and operation of hybrid energy plants. Applied Thermal Engineering 

2019;160:113967. https://doi.org/10.1016/j.applthermaleng.2019.113967  

[48] Favre B, Peuportier B. Application of dynamic programming to study load shifting in 

buildings. Energy and Buildings 2014;82:57–64. https://doi.org/10.1016/j.enbuild.2014.07.018  

[49] Guelpa E, Marincioni L, Capone M, Deputato S, Verda V. Thermal load prediction district in 

district heating systems. Energy 2019;176:693–703. https://doi.org/10.1016/j.energy.2019.04.021  

[50] Hammer A, Sejkora C, Kienberger T. Increasing district heating networks efficiency by means 

of temperature-flexible operation. Sustainable Energy, Grids and Networks 2018;16:393–404. 

https://doi.org/10.1016/j.segan.2018.11.001  

[51] Guelpa E, Deputato S, Verda V. Thermal request optimization in district heating networks 

using a clustering approach. Applied Energy 2018;228:608–17. 

https://doi.org/10.1016/j.apenergy.2018.06.041  

[52] Li X, Wen J. Review of building energy modeling for control and operation. Renewable and 

Sustainable Energy Reviews 2014; 37:517-537. https://doi.org/10.1016/j.rser.2014.05.056  

https://doi.org/10.1016/j.apenergy.2018.10.074
https://doi.org/10.1016/j.rser.2008.09.015
https://doi.org/10.1016/j.enbuild.2017.01.062
https://doi.org/10.1016/j.applthermaleng.2019.114356
https://doi.org/10.1016/j.applthermaleng.2019.113967
https://doi.org/10.1016/j.enbuild.2014.07.018
https://doi.org/10.1016/j.energy.2019.04.021
https://doi.org/10.1016/j.segan.2018.11.001
https://doi.org/10.1016/j.apenergy.2018.06.041
https://doi.org/10.1016/j.rser.2014.05.056


48 
 

[53] Gambarotta A, Morini M, Rossi M, Stonfer M. A library for the simulation of smart energy 

systems: the case of the Campus of the University of Parma. Energy Procedia 2017;105:1776–81. 

https://doi.org/10.1016/j.egypro.2017.03.514  

[54] Cesaraccio C, Spano D, Duce P, Snyder RL. An improved model for determining degree-day 

values from daily temperature data. International Journal of Biometeorology 2001;45:161–9. 

https://doi.org/10.1007/s004840100104  

[55] Sundström O, Guzzella L. A Generic Dynamic Programming Matlab Function. Control 

Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE, pp.1625-30, 8-10 July 2009. 

https://doi.org/10.1109/CCA.2009.5281131  

[56] Dainese C, Faè M, Gambarotta A, Morini M, Premoli M, Randazzo G, Rossi M, Rovati M, 

Saletti C. Development and application of a Predictive Controller to a mini district heating network 

fed by a biomass boiler. Energy Procedia 2019;159:48-53. 

https://doi.org/10.1016/j.egypro.2018.12.016  

[57] Van der Heijde B, Fuchs M, Ribas Tugores C, Schweiger G, Sartor K, Basciotti D, Müller D, 

Nytsch-Geusen C, Wetter M, Helsen L. Dynamic equation-based thermo-hydraulic pipe model for 

district heating and cooling systems. Energy Conversion and Management 2017;151:158-169. 

https://doi.org/10.1016/j.enconman.2017.08.072  

[58] Dénarié A, Aprile M, Motta M. Heat transmission over long pipes: New model for fast and 

accurate district heating simulations. Energy 2019;166:267-276. 

https://doi.org/10.1016/j.energy.2018.09.186  

 

  

https://doi.org/10.1016/j.egypro.2017.03.514
https://doi.org/10.1007/s004840100104
https://doi.org/10.1109/CCA.2009.5281131
https://doi.org/10.1016/j.egypro.2018.12.016
https://doi.org/10.1016/j.enconman.2017.08.072
https://doi.org/10.1016/j.energy.2018.09.186


49 
 

Nomenclature 

a  first building performance coefficient [s-1] 

b  second building performance coefficient [°C kJ-1] 

c  water specific heat capacity [kJ kg-1 K-1] 

cost  cost function [kJ] 

d  system disturbance 

D  pipe diameter [m] 

f  pipe friction factor [-] 

Kp  coefficient of proportionality of the controller 

k  coefficient of proportionality of the pump power [m2 kg-2] 

L  pipe length [m] 

LHV  fuel lower heating value [kJ kg-1] 

M  water mass inside the pipe [kg] 

�̇�  water mass flow rate [kg s-1] 

P  power [kW] 

�̇�  thermal power [kW] 

T  temperature [°C] 
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Δt  time-step [s] 

Δtd  time delay factor [s] 

x  system state 
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Subscripts 

boiler  boiler 

DP  Dynamic Programming optimal input 

ext  external 
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loss  loss 
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new  new input 

nom  nominal 

occ  building occupation 

pipe  pipe 
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pump  pump 

R  return 

rec  recirculated 

S  supply 

sec  secondary side of the building substation heat exchanger 

soil  soil 

SP  set-point 

Acronyms 

DHC  District Heating and Cooling 

DP  Dynamic Programming 
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RMSE  Root Mean Squared Error 
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