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SHARP AND FAST BOUNDS FOR THE CELIS-DENNIS-TAPIA1

PROBLEM*2

LUCA CONSOLINI\dagger AND MARCO LOCATELLI\dagger 

Abstract. In the Celis--Dennis--Tapia (CDT) problem a quadratic function is minimized over3
a region defined by two strictly convex quadratic constraints. In this paper we rederive a necessary4
and sufficient optimality condition for the exactness of the dual Lagrangian bound (equivalent to the5
Shor relaxation bound in this case). Starting from such a condition, we propose strengthening the6
dual Lagrangian bound by adding one or two linear cuts to the Lagrangian relaxation. Such cuts are7
obtained from supporting hyperplanes of one of the two constraints. Thus, they are redundant for8
the original problem, but they are not for the Lagrangian relaxation. The computational experiments9
show that the new bounds are effective and require limited computing times. In particular, one of the10
proposed bounds is able to solve all but one of the 212 hard instances of the CDT problem presented11
in [S. Burer and K. M. Anstreicher, \{ \setminus it SIAM J. Optim.\} , 23 (2013), pp. 432--451].12

Key words. CDT problem, dual Lagrangian bound, linear cuts13

MSC codes. 90C20, 90C22, 90C2614

DOI. 10.1137/21M144548X

1. Introduction. The Celis--Dennis--Tapia problem (CDT problem in what fol-15

lows) is defined as follows:16

(1.1)
p \star =min x\top Qx+ q\top x

x\top x\leq 1
x\top Ax+ a\top x\leq a0,

where Q,A\in \BbbR n\times n, q,a\in \BbbR n, a0 \in \BbbR , while A is assumed to be positive definite. We17

will denote by18

H = \{ x\in \BbbR n :x\top Ax+ a\top x\leq a0\} 

the ellipsoid defined by the second constraint, by \partial H its border, and by int(H) its19

interior. The CDT problem was originally proposed in [13] and has attracted a lot20

of attention in the last two decades. For some special cases a convex reformulation21

is available. For instance, in [26] it is shown that a semidefinite reformulation is22

possible when no linear terms are present, i.e., when q= a= 0. However, up to now23

no tractable convex reformulation of general CDT problems has been proposed in the24

literature. In spite of that, recently three different works [9, 14, 22] independently25

proved that the CDT problem is solvable in polynomial time. More precisely, in [14,26

22] polynomial solvability is proved by identifying all KKT points through the solution27

of a bivariate polynomial system with polynomials of degree at most 2n. The two28

unknowns are the Lagrange multipliers of the two quadratic constraints. Instead, in29

[9] an approach based on the solution of a sequence of feasibility problems for systems30

of quadratic inequalities is proposed. The systems are solved by a polynomial-time31
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2 LUCA CONSOLINI AND MARCO LOCATELLI

algorithm based on Barvinok's construction [6]. Though polynomial, all of these32

approaches are computationally demanding since the degree of the polynomial is quite33

large. Conditions guaranteeing that the classical Shor SDP relaxation or, equivalently34

in this case, the dual Lagrangian bound is exact, are discussed in [2, 7]. In particular,35

in [2] a necessary and sufficient condition is presented. It is shown that the lack of36

exactness is related to the existence of KKT points with the same Lagrange multipliers37

but two distinct primal solutions, both active at one of the two constraints but one38

violating and the other one fulfilling the other constraint. In [10] necessary and39

sufficient conditions for local and global optimality are discussed based on copositivity.40

In [11] an exactness condition is given for a copositive relaxation, also for the case41

with additional linear constraints. A trajectory following method to solve the CDT42

problem has been discussed in [26], while different branch-and-bound solvers are tested43

in [19].44

Recently, different papers proposed valid bounds for the CDT problem. In [12]45

the Shor relaxation bound is strengthened by adding all RLT constraints obtained by AQ146
supporting hyperplanes of the two ellipsoids. By fixing the supporting hyperplane for47

one ellipsoid, the RLT constraints obtained with all the supporting hyperplanes of the48

other can be condensed into a single SOC-RLT constraint. Varying the supporting hy- AQ249
perplane of the first ellipsoid gives rise to an infinite number of SOC-RLT constraints50

which, however, can be separated in polynomial time. The addition of these con-51

straints does not allow one to close the duality gap, but it is computationally shown52

that many instances which are not solved via the SDP bound, are solved with the53

addition of these SOC-RLT cuts. The authors generate 1000 random test instances54

for each n= 5,10,20, following a procedure described in [18] to generate trust-region55

problems with one local and nonglobal minimizer. The proposed bound based on56

SOC-RLT cuts allows for solving most instances except for 212 (38 for n = 5, 70 for57

n = 70, and 104 for n = 20). Such unsolved instances are considered as hard ones58

in subsequent works. In [25] lifted-RLT cuts are introduced and it is shown that the59

new constraints allow one to derive an exact bound for n= 2 but also to improve the60

bounds of [12] over the hard instances for n > 2. In [27] it is proved that the duality61

gap can be reduced to 0 by solving two subproblems with SOC constraints when the62

second constraint is the product of two linear functions and an exactness result is also63

provided for the case of problems with two variables. Due to its relations with the64

approach proposed in this work, we will further discuss the approach proposed in [27]65

at the end of section 3. In [3] cuts are introduced. These are Kronecker product con- AQ366
straints which generalize both the classical RLT constraints obtained from two linear67

inequality constraints, and the SOC-RLT constraints obtained from one linear inequal-68

ity constraint and a SOC constraint. Further hard instances from [12] are solved with69

the addition of these cuts. In the very recent paper [4] a branch and bound approach is70

proposed. The main feature of this approach is eigenvector branching, i.e., a branch-71

ing rule based on the use of the eigenvector corresponding to the maximal eigenvalue72

of X \star  - x \star x \star \top , where (X \star ,x \star ) is the optimal solution of an SDP relaxation.73

In this paper we investigate ways to strengthen the dual Lagrangian bound74

through the addition of one or two linear cuts. In particular, the paper is structured75

as follows. In section 2 we derive some theoretical results for a class of problems with76

two constraints which includes the CDT problem as a special case. We develop a bi-77

section technique to solve the dual Lagrangian relaxation for such class of problems.78

In the following sections we apply the results of section 2 to the CDT problem. In79

particular, in section 3 we introduce some results through which it will be possible80

to rederive the necessary and sufficient exactness condition discussed in [2] and we81
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discuss how to improve the dual bound for the CDT problem by the addition of a82

linear cut. Next, in sections 4 and 5 we discuss techniques to further improve the83

bound. More precisely, in section 4 we still present a bound based on the addition of84

a linear cut, but we develop a technique to locally adjust a given linear cut, while in85

section 5 we consider a bound based on the addition of two linear cuts. Finally, in86

section 6 we present some computational experiments which show that the newly pro-87

posed bounds, in particular those based on two linear cuts, are both computationally88

cheap and effective. In particular, one of the bounds will be able to solve all but one89

of the hard instances from [12]. We also investigate which are the most challenging90

instances for the proposed bounds and, as we will see, the difficulties are related to91

the existence of multiple solutions of Lagrangian relaxations.92

It is also worthwhile to highlight the contribution of this paper under another93

perspective. As previously discussed, while there is no known convex relaxation of94

the CDT problem, there are several problems, related to CDT, which do have exact95

SDP relaxations. These include the trust-region subproblem (TRS), the TRS with a96

single linear constraint (TRS1, see [12, 23]), and the TRS with two linear constraints,97

at least one of which is tight (TRS2eq, see [26]). This paper shows that such special98

cases, for which an exact convex relaxation exists, can be used to help solve the general99

CDT problem. Indeed, we first observe that the subproblems to be solved in section 3100

to improve the dual Lagrangian bound, obtained by adding a linear cut corresponding101

to a supporting hyperplane for the second ellipsoidal constraint, turn out to be TRS1102

problems. In section 4 we also discuss how to pick a ""good"" supporting hyperplane,103

i.e., one which leads to a good SDP relaxation and, in fact, we also provide a necessary104

and sufficient condition under which we can guarantee that the supporting hyperplane105

is the best one. Next, in section 5 we observe that the bound can be further improved106

by adding two linear cuts, one of which must be active, so that the subproblems to107

be solved in this case are TRS2eq problems.108

2. Lower bounds obtained from the Lagrangian relaxation. The CDT109

problem (1.1) is a specific instance of the following, more general, one:110

(2.1)
p \star =minx\in \BbbR n , f(x),

g(x)\leq 0,
h(x)\leq 0.

In this section, we discuss a class of lower bounds on the solution of problem (2.1)111

that can be obtained from its Lagrangian relaxation. In the next sections, we will112

apply these bounds to the specific case of the CDT problem (1.1). Throughout this113

and the following sections, we make the following assumptions.114

Assumption 2.1. In problem (2.1)115116

(a) g,h are continuous;117

(b) the set \{ x\in \BbbR n : g(x)\leq 0\} is bounded;118

(c) it holds that119

(2.2) h0 = min
x :g(x)\leq 0

h(x)< 0;

(d) the solution set of problem (2.1) without the last constraint, that is120

\=P = arg minx\in \BbbR n , f(x),
g(x)\leq 0,

is such that (\forall x\in \=P ) h(x)> 0.121
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Note that if the last condition in Assumption 2.1 is violated, we can find the122

solution of problem (2.1) by removing the last constraint and the relaxation discussed123

in this section is useless. Now, let G = \{ x \in \BbbR n : g(x) \leq 0\} and H = \{ x \in \BbbR n :124

h(x)\leq 0\} . Let X \supset H be a closed subset of \BbbR n and for \lambda \in \BbbR , with \lambda \geq 0, define the125

Lagrangian relaxation126

(2.3) pX(\lambda ) = min
x\in X\cap G

f(x) + \lambda h(x),

and the corresponding solution set127

PX(\lambda ) = arg min
x\in X\cap G

f(x) + \lambda h(x).

Note that PX(\lambda ) is compact, since G \cap X is nonempty (in view of part (c))128

of Assumption 2.1) and compact (in view of the compactness of G which follows129

from parts (a) and (b) of Assumption 2.1), and f + \lambda h is continuous. Due to well-130

known properties of the Lagrangian relaxation, we have that function pX is such that131

(\forall \lambda \geq 0) pX(\lambda )\leq p\ast , and is concave (it is the pointwise minimum of a set of functions132

linear in \lambda ). The best bound that can be obtained as the solution of (2.3) is given by133

(2.4) \=pX =max
\lambda \geq 0

pX(\lambda ),

and corresponds to the solution of the dual Lagrangian problem. Note that function134

pX depends on the choice of set X.135

Now, we recall that the supergradient of a function q :\BbbR \rightarrow \BbbR at x \in \BbbR is defined136

as137

\partial q(x) = \{ z \in \BbbR : (\forall y \in \BbbR ) q(y) - q(x)\leq z(y - x)\} .

Since pX is concave, for any \lambda \in \BbbR , the supergradient \partial pX(\lambda ) is nonempty.138

For A\subset \BbbR n define the following subset of \BbbR :139

h(A) = \{ h(x) : x\in A\} .

For X \subset \BbbR n, define a (set-valued) function QX :\BbbR + \rightarrow \scrP (\BbbR ),140

(2.5) QX(\lambda ) = h(PX(\lambda ))

(\BbbR + denotes the set of nonnegative reals and \scrP (\BbbR ) is the power set of the set of real141

numbers). Also set hmin
X (\lambda ) = minQX(\lambda ) and hmax

X (\lambda ) = maxQX(\lambda ). The following142

proposition shows that function QX is monotone nonincreasing (see Definition 3.5.1143

of [5]) and upper semicontinuous (see Definition 1.4.1 of [5]). These two properties144

will play an important role in the computation of a lower bound for problem (2.1).145

Moreover, this proposition characterizes the supergradient of pX at each \lambda \geq 0. In the146

proof of the proposition we will make use of Berge's maximum theorem (see [8]). In147

particular, we will consider the slightly different formulation presented as the corollary148

to Theorem 3 on page 30 of [15].149

Corollary 2.1. Let the correspondence (i.e., the set-valued function) \beta of S150

into T be compact-valued and continuous, and let \phi : S \times T \rightarrow \BbbR be a continuous151

function. Then, we have the following:152

(a) The function z \mapsto \rightarrow m(z) :=max\{ \phi (z, y)| y \in \beta (z)\} is continuous.153

(b) The correspondence z \mapsto \rightarrow \{ y \in \beta (z)| \phi (z, y) =m(z)\} is nonempty and compact-154

valued and upper semicontinuous.155
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Proposition 2.2. For any X \subset \BbbR n,156

(i) QX is monotone non-increasing, that is if \lambda 1 \geq \lambda 2, y1 \in QX(\lambda 1), y2 \in QX(\lambda 2),157

then y1 \leq y2.158

(ii) QX is upper semicontinuous, that is, if QX(\lambda )\subset U , where U is an open subset159

of \BbbR , then there exists a neighborhood V of \lambda such that (\forall z \in V )QX(z)\subset U .160

(iii) \partial pX(\lambda ) = [minQX(\lambda ),maxQX(\lambda )].161

Proof. (i) Let x1,x2 \in \BbbR n be such that y1 = h(x1) and y2 = h(x2), then f(x1) +162

\lambda 1h(x1)\leq f(x2)+\lambda 1h(x2) and f(x2)+\lambda 2h(x2)\leq f(x1)+\lambda 2h(x1). By adding up the163

previous inequalities, it follows that (\lambda 1  - \lambda 2)(h(x1) - h(x2))\leq 0.164

(ii) Apply Corollary 2.1 with T = G \cap X, S = \BbbR +, constant function (\forall \lambda \in 165

S) \beta (\lambda ) =G\cap X, \phi (\lambda ,x) = - f(x) - \lambda \cdot h(x). Since \phi is continuous, set-valued function166

PX(\lambda ) = \{ x \in G \cap X : \phi (\lambda ,x) = maxy\in G\cap X \phi (\lambda ,y)\} is upper semicontinuous. Hence,167

also QX is upper semicontinuous, since it is obtained as the composition of PX with168

h, which is continuous (see Theorem 1' on page 113 of [8]).169

(iii) It is a consequence of Theorem 4.4.2 in [16], being G compact.170

The next proposition characterizes the optimal solution of the dual Lagrangian prob-171

lem (2.4).172

Proposition 2.3. Under Assumption 2.1, the optimal value of the dual La-173

grangian problem (2.4) is: (i) either attained at \lambda X = 0 in case \partial pX(0) \cap \BbbR  - \not = \emptyset ,174

where \BbbR  - denotes the set of nonpositive real numbers; (ii) or is attained at \lambda X > 0175

such that 0\in \partial pX(\lambda X). In the former case, \=pX = p \star holds.176

Proof. The proposition, apart from the last statement, is a direct consequence of177

the optimality conditions for the maximum of concave functions (see Theorem 1.1.1178

in Chapter 7 of [16]). To prove the last statement, namely that if (i) holds \=pX = p \star ,179

note that, if \partial pX(0)\cap \BbbR  - \not = \emptyset , then, in view of part (iii) of Proposition 2.2, hmin
X (0)\leq 0180

and, thus, there exists an optimal solution x \star of minx\in X\cap G f(x) such that h(x \star )\leq 0.181

This implies that x \star is also an optimal solution of the original problem (2.1), so that182

\=pX = p \star holds.183

The following property shows that it is always possible to find a sufficiently high184

value of \lambda such that PX(\lambda )\subset H, that is, the elements of PX(\lambda ) are feasible solutions185

of problem (2.1).186

Lemma 2.4. If187

(2.6) \lambda \geq \^\lambda =
maxx\in G\cap X f(x) - minx\in G\cap X f(x)

| h0| 
,

where h0 is defined in (2.2), then PX(\lambda )\subset H.188

Proof. By contradiction, assume that there exists x \in PX(\lambda ) such that h(x)> 0,189

and let x0 \in G\cap H be such that h(x0) = h0 < 0; then f(x)+\lambda h(x)\leq f(x0)+\lambda h(x0).190

Since h(x) > 0, it follows that \lambda \leq f(x0) - f(x)
| h(x0)| +h(x) <

max\bfx \in G\cap X f(x) - min\bfx \in G\cap X f(x)
| h(x0)| , which191

contradicts the assumption on \lambda .192

The following proposition shows that if 0 \in QX(\lambda ), then pX(\lambda ) is equal to the193

optimal value of problem (2.1).194

Proposition 2.5. Under Assumption 2.1, the following statements are equiva-195

lent for \lambda > 0:196

(i) 0\in QX(\lambda ),197

(ii) p\ast = pX(\lambda ) and there exists \=x\in arg minx\in G\cap H f(x) such that h(\=x) = 0.198
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Proof. (i) \Rightarrow (ii). Let \=x be such that h(\=x) \in QX(\lambda ) and h(\=x) = 0. Let x\ast be a199

solution of (2.1). Then, pX(\lambda ) = f(\=x)+\lambda h(\=x) = f(\=x)\leq f(x\ast )+\lambda h(x\ast )\leq f(x\ast ), hence200

pX(\lambda )\leq p\ast . Moreover, pX(\lambda ) = f(\=x)\geq minx\in G\cap H f(x) = p\ast .201

(ii) \Rightarrow (i). Assume that pX(\lambda ) = p\ast , and let x \in PX(\lambda ). Then, by (ii), f(x) +202

\lambda h(x) = f(\=x) = f(\=x) + \lambda h(\=x). It follows that \=x\in PX(\lambda ) and QX(\lambda )\ni h(\=x) = 0.203

Remark 2.6. If 0 \in QX(\lambda ), by point (iii) of Proposition 2.2, \partial pX(\lambda ) \ni 0, so that204

\lambda corresponds to a maximizer of the dual Lagrangian. Note that equation 0\in QX(\lambda )205

always admits a solution if QX is continuous. However, in the general case, QX is206

only upper semicontinuous. In this case, the value of \lambda for which \partial pX(\lambda )\ni 0 may not207

satisfy 0 \in QX(\lambda ). Thus, the optimal value of the dual Lagrangian (2.4) is not equal208

to the optimal value of (2.1) but it represents a lower bound of it.209

In order to evaluate a numerical solution algorithm, we define the following weak210

solution of (2.1).211

Definition 2.7. x is an \eta -solution of (2.1) if x\in G\cap H and f(x) - p\ast \leq \eta .212

The following proposition presents a bound on the error committed on the esti-213

mation of p\ast .214

Proposition 2.8. For any \lambda \geq 0 such that PX(\lambda ) \cap H \not = \emptyset , and for any x \in 215

PX(\lambda ) \cap H, it holds that f(x)  - p\ast \leq \lambda | h(x)| , i.e., x is an \eta -solution of problem of216

(2.1) with \eta = \lambda | h(x)| .217

Proof. Since x \in PX(\lambda ) and observing that x\ast \in G \cap X for any X \supset H, f(x) +218

\lambda h(x)\leq f(x\ast ) + \lambda h(x\ast )\leq f(x\ast ), from which f(x) - f(x\ast )\leq \lambda | h(x)| .219

Now we introduce Algorithm 2.1 which is based on a binary search through differ-220

ent \lambda values and is able to return the solution of the dual Lagrangian problem, i.e., the221

maximum of function pX(\lambda ) and, in some cases, even the solution of problem (2.1).222

The algorithm also returns a point z1(\lambda 
max)\in H and (possibly) a point z2(\lambda 

min) \not \in H.223

Note that according to Proposition 2.8, point z1(\lambda 
max) is an \eta -solution of problem224

(2.1) with \eta = \lambda | h(z1(\lambda max))| .225

The algorithm starts with an initial interval of \lambda values [\lambda min, \lambda max] = [0, \lambda \tti \ttn \tti \ttt ],226

where \lambda \tti \ttn \tti \ttt is a suitably large value and can be set equal to \^\lambda as defined in Lemma227

2.4. At each iteration the algorithm halves such interval by evaluating the set Q\lambda 
X228

at \lambda = (\lambda max + \lambda min)/2. Then, the algorithm sets- are \lambda min = \lambda , if hmin
X (\lambda ) > 0;229

\lambda max = \lambda if hmax
X (\lambda ) < 0. Instead, if 0 \in \partial pX(\lambda ) = [hmin

X (\lambda ), hmax
X (\lambda )], the algorithm230

sets \lambda max = \lambda min = \lambda and exits the loop.231

The following proposition characterizes Algorithm 2.1.232

Proposition 2.9. (i) Algorithm 2.1 terminates in a finite number of iterations:233

(ii) at each iteration \lambda min \leq \lambda X \leq \lambda max,234

(iii) at termination | \lambda max  - \lambda X | \leq \epsilon ,235

(iv) at each iteration, if \lambda min < \lambda X < \lambda max, then [hmax
X (\lambda max), hmin

X (\lambda min)] \supset 236

\partial pX(\lambda X),237

(v) point z1(\lambda 
max) \in PX(\lambda max) \cap H is an \eta -solution of (2.1) with \eta = \lambda max| 238

h(z1(\lambda 
max))| .239

Proof. (i) At each iteration the length of the interval [\lambda min, \lambda max] is halved. Hence,240

in a sufficient large number of iterations, the termination condition of the main loop241

will be satisfied.242

(ii) At the beginning of the algorithm we have that \lambda min \leq \lambda X \leq \lambda max. Every time243

\lambda min is updated, we set \lambda min = \lambda if condition hmin
X (\lambda )> 0 holds. Since hmin

X (\lambda X)\leq 0,244
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Algorithm 2.1 Binary search algorithm for the solution of the dual Lagrangian
problem for (1.1).
DualLagrangian(X, \lambda \tti \ttn \tti \ttt )
Set \lambda min = 0, \lambda max = \lambda \tti \ttn \tti \ttt 

while \lambda max  - \lambda min > \varepsilon do
Set \lambda = (\lambda max + \lambda min)/2
Solve problem (2.3), and let PX(\lambda ) be its set of optimal solutions
Compute the set QX(\lambda ) and the values hmin

X (\lambda ), hmax
X (\lambda )

if hmin
X (\lambda )> 0 then

Set \lambda min = \lambda 
else if hmax

X (\lambda )< 0 then
Set \lambda max = \lambda 

else
Set \lambda max = \lambda min = \lambda 

end if
end while
Set Lb= pX(\lambda max), and let z1(\lambda 

max) be some point in PX(\lambda max)\cap H and
z2(\lambda 

min) be some point (if any) in PX(\lambda min) \setminus H
return Lb,\lambda max,z1(\lambda 

max),z2(\lambda 
min)

by the monotonicity of function hmin
X , which is a consequence of the monotonicity of245

function QX , condition \lambda min \leq \lambda X is maintained. The same reasoning can be used to246

prove that \lambda max \geq \lambda X .247

(iii) It is a consequence of (ii) and the termination condition.248

(iv) \partial pX(\lambda X) = [hmin
X (\lambda X), hmax

X (\lambda X)] \subset [hmax
X (\lambda max), hmin

X (\lambda min)], due to point249

(ii) and the monotonicity of functions hmax
X and hmin

X , which is a consequence of the250

monotonicity of function QX .251

(v) It is a consequence of Proposition 2.8.252

The following property is a direct consequence of the upper semicontinuity of QX .253254

Proposition 2.10. Let X \supset H be such that supQX(\lambda ) < 0; then there exists a255

neighborhood U of \lambda such that (\forall \eta \in U) maxQX(\eta )< 0.256

As a consequence of the previous proposition, it is possible to improve the lower257

bound on problem (2.1), obtained as the solution of (2.3), by replacing set X with a258

different set Y \supset H fulfilling a given condition.259

Proposition 2.11. Let Y \supset H be such that maxQY (\lambda X) \leq 0 or, equivalently,260

PY (\lambda X) \setminus H = \emptyset , and assume that \=pX = pX(\lambda X)< p\ast . Then \=pY = pY (\lambda Y )> \=pX .261

Proof. Note that, by Proposition 2.3, \=pX = pX(\lambda X) < p\ast implies \lambda X > 0. Now,262

in case maxQY (\lambda X) = 0, then 0 \in QY (\lambda X) and, by Proposition 2.5, \=pY = p\ast > \=pX .263

Thus, we only consider the case maxQY (\lambda X)< 0. In such case, by Proposition 2.10,264

\lambda Y <\lambda X . If \lambda Y = 0, by Proposition 2.3 we have that \=pY = p\ast > \=pX and we are done.265

Otherwise, if \lambda Y > 0, again by Proposition 2.3 we have that 0\in [hmin
Y (\lambda Y ), h

max
Y (\lambda Y )],266

and, consequently, there exists y \in PY (\lambda Y ) such that h(y) \leq 0. Note that \=pY =267

f(y) + \lambda Y h(y). If h(y) = 0, then, by Proposition 2.5, pY (\lambda Y ) = p\ast , so that the thesis268

is satisfied in view of \=pX < p\ast . Otherwise, if h(y)< 0, let x \in \BbbR n be such that \=pX =269

f(x) + \lambda Xh(x). Then \=pX = f(x) + \lambda Xh(x)\leq f(y) + \lambda Xh(y)< f(y) + \lambda Y h(y) = \=pY ,270

where we used the facts that h(y)< 0 and that \lambda Y <\lambda X .271
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The following proposition deals with the special case of the previous result when272

Y \subset X.273

Proposition 2.12. Let X \supset Y \supset H be such that Y \cap (PX(\lambda X) \setminus H) = \emptyset , and274

assume that \=pX = pX(\lambda X)< p\ast . Then \=pY = pY (\lambda Y )> \=pX .275

Proof. Since hmin
X (\lambda X)< 0 we have that PX(\lambda X)\cap H \not = \emptyset and, consequently, since276

Y \supset H, also Y \cap PX(\lambda X) \not = \emptyset . Then, Y \subset X implies PY (\lambda X) = Y \cap PX(\lambda X). Moreover,277

if Y \cap (PX(\lambda X)\setminus H) = \emptyset , then the condition maxQY (\lambda X)\leq 0 is satisfied and the result278

follows from Proposition 2.11.279

Stated in another way, the previous propositions show that, in case the lower280

bound \=pX is not exact, we are able to improve (increase) it if we are able to replace281

set X with a new set Y which cuts away all members of PX(\lambda X) outside H.282

Remark 2.13. Up to now we have not discussed the difficulty of computing the283

values of function pX or, equivalently, the difficulty of solving problem (2.3). Such284

difficulty is strictly related to the specific problem (i.e., to the specific functions f, g,h),285

and also to the specific set X. In the next sections we apply the general theory286

developed in this section to the CDT problem. We show that for suitably defined sets287

X (defined by one or two linear cuts), the computation of function pX can be done288

efficiently, and, moreover, the corresponding lower bounds \=pX improve the standard289

dual Lagrangian bound, corresponding to the case X =\BbbR n.290

Remark 2.14. In principle one could also define a cutting algorithm where a291

sequence of sets \{ Xk\} is generated such that (i) Xk \supset Xk+1 \supset H for all k; (ii)292

Xk+1 \cap (PXk
(\lambda Xk

) \setminus H) = \emptyset ; (iii) \cap \infty 
k=1Xk =H. The corresponding sequence of lower293

bounds \{ \=pXk
\} is strictly increasing in view of Proposition 2.12, and converges to p\ast .294

However, the difficulty related to such an algorithm is that forcing (ii) may not be295

trivial and, moreover, as already commented in Remark 2.13, computing pXk
may be296

computationally demanding.297

The following algorithm, Algorithm 2.2, in principle, is able to always find an298

approximate solution of (2.1). The algorithm is based on an iterative reduction of299

set X, in order to eliminate its elements in which function h is positive. In practice,300

Algorithm 2.2 could be unimplementable. Indeed, it may require a large number of301

cuts on set X and each added cut may increase the complexity of the optimization302

problem that we need to solve to evaluate DualLagrangian. In section 4, we will see303

that, to refine the lower bound on the solution of the CDT problem, it is computa-304

tionally more convenient to adjust existing cuts instead of adding new ones. We stress305

that we will not actually use Algorithm 2.2 for the solution of the CDT problem. We306

present this algorithm just as a theoretical contribution.307

Proposition 2.15. Algorithm 2.2 terminates and \=x is such that h(\=x) \leq \eta 
\lambda \mathrm{m}\mathrm{a}\mathrm{x}308

and | \=f  - f\ast | \leq \eta .309

Proof. By contradiction, assume that the algorithm does not terminate. Let li310

be the value of \lambda min returned by the ith call to DualLagrangian. Sequence li is311

monotone nonincreasing; moreover, the domain of the sequence is a subset of finite312

cardinality of interval [0, \lambda \tti \ttn \tti \ttt ] (its maximum cardinality depends on \lambda \tti \ttn \tti \ttt and \epsilon ).313

Indeed, the termination condition of function DualLagrangian allows only for a314

finite number of divisions of the interval [0, \lambda \tti \ttn \tti \ttt ]. Hence, sequence li converges in315

a finite number of iterations to its limit l\infty = limi\rightarrow \infty li and there exists \=i \in \BbbN such316

that (\forall i \geq \=i) li = l\infty . By (iv) of Proposition 2.9, hmax(l\infty ) \geq 0 and, since the317
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Algorithm 2.2 Bound improvement through redefinition of set X.
1: Set X =\BbbR n

2: Set \lambda max = \lambda \tti \ttn \tti \ttt 

3: repeat
4: Let

[Lb,\lambda min, \lambda max,z1(\lambda 
max),z2(\lambda 

min), hmin
X , hmax

X ] =DualLagrangian(X,\lambda \tti \ttn \tti \ttt )
5: Set Z = \{ x\in PX(\lambda min) : h(x)> 0\} 
6: Redefine X = Y , where Y is such that X \supset Y \supset H and Z \cap Y = \emptyset .
7: until min\{ hmax

X (\lambda min), - hmin
X (\lambda max)\} \lambda max \leq \eta 

8: return \=x\in PX(\lambda min
X )\cup PX(\lambda max

X ) with | h(\=x)| \leq \eta , \=f = f(\=x).

algorithm does not terminate, hmax(l\infty ) \geq \eta . At the \=i + 1-iteration, the algorithm318

calls DualLagrangian(X, l\infty ), which returns the value \lambda min = l\infty . Anyway, at the319

previous iteration \=i, the elements PX(\lambda min) at which function h is positive had already320

been removed from X. This implies that DualLagrangian(X, l\infty ) cannot return the321

strictly positive value \lambda min = l\infty , leading to a contradiction. Hence, the algorithm322

terminates and the stated bounds hold because of the termination condition and by323

Proposition 2.8.324

3. Dual Lagrangian bound and a possible improvement. In this section,325

we apply the general properties presented in section 2 to the CDT problem (1.1). In326

fact, the CDT problem is a specific instance of (2.1) in which f(x) = x\top Qx+ q\top x,327

g(x) = x\top x - 1, h(x) = x\top Ax+ a\top x - a0.328

Note that the first two requirements of Assumption 2.1 are satisfied; in order to329

satisfy the third one we assume that330

(3.1) h0 = min
x : x\top x\leq 1

x\top Ax+ a\top x - a0 < 0,

i.e., the feasible region of (1.1) has a nonempty interior. Note that the assumption can331

be checked in polynomial time by the solution of a trust region problem. As before,332

we denote by X \subseteq \BbbR n a closed set such that X \supset H, i.e., it contains the ellipsoid333

defined by the second constraint. For each \lambda \geq 0, the Lagrangian relaxation (2.3)334

takes on the form335

(3.2)
pX(\lambda ) =minx\in X x\top (Q+ \lambda A)x+ (q+ \lambda a)\top x - \lambda a0

x\top x\leq 1.

If X =\BbbR n, this is the standard Lagrangian relaxation of problem (1.1) and it can be336

solved efficiently since it is a trust region problem. Following the notation of section337

2, let338

PX(\lambda ) = arg min
x\in X : x\top x\leq 1

x\top (Q+ \lambda A)x+ (q+ \lambda a)\top x

be the set of optimal solutions of (3.2). To apply Algorithm 2.1 to the CDT problem339

with X =\BbbR n, we need to characterize the set of optimal solutions P\BbbR n(\lambda ) of problem340

(3.2) with X =\BbbR n, which is a trust region problem. The set of optimal solutions of a341

trust region problem has been derived, e.g., in [1, 20, 21]. Here we briefly recall the342

different cases. For simplicity, let S\lambda =Q+ \lambda A and s\lambda = q+ \lambda a. We distinguish the343

following cases:344345
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Case 1 If S\lambda \succ O and
\bigm\| \bigm\|  - 1

2S
 - 1
\lambda s\lambda 

\bigm\| \bigm\| \leq 1, then  - 1
2S

 - 1
\lambda s\lambda is the unique optimal solution346

of (3.2);347

Case 2 Let uj be the orthonormal eigenvectors of matrix S\lambda , and let \gamma j be the cor-348

responding eigenvalues. Let \gamma min =minj \gamma j and J\lambda = arg minj \gamma j . For each \gamma 349

such that (\forall j) \gamma \not = \gamma j , let350

y(\gamma ) = y1(\gamma ) + y2(\gamma ),

where351

y1(\gamma ) = - 
\sum 
j \not \in J\lambda 

s\top \lambda uj

\gamma j  - \gamma 
uj , y2(\gamma ) = - 

\sum 
j\in J\lambda 

s\top \lambda uj

\gamma j  - \gamma 
uj .

Then, we have the following subcases.352353

Case 2.1 It holds that s\top \lambda uj \not = 0 for some j \in J\lambda . Then, there exists a unique354

\gamma \ast \in ( - \gamma min,+\infty ) such that \| y(\gamma \ast )\| = 1 and y(\gamma \ast ) is the unique355

optimal solution of (3.2).356

Case 2.2 It holds that s\top \lambda uj = 0 for all j \in J\lambda but \| y1(\gamma min)\| \geq 1. In this357

case there exists a unique \gamma \ast \in [ - \gamma min,+\infty ) such that \| y1(\gamma 
\ast )\| = 1358

and y1(\gamma 
\ast ) is the unique optimal solution of (3.2).359

Case 2.3 It holds that s\top \lambda uj = 0 for all j \in J\lambda and \| y1(\gamma min)\| < 1. In this360

case we have that P\BbbR n(\lambda ) is not a singleton and is made up by the361

following points:362

(3.3) P\BbbR n(\lambda ) =

\left\{   y1(\gamma min) +
\sum 
j\in J\lambda 

\xi juj :
\sum 
j\in J\lambda 

\xi 2j = 1 - \| y1(\gamma min)\| 2
\right\}   .

Thus, we recognize two further subcases.363364

Case 2.3.1 | J\lambda | = 1, in which case P\BbbR n(\lambda ) contains exactly two distinct365

points.366

Case 2.3.2 | J\lambda | \geq 2, in which case the set P\BbbR n(\lambda ) contains an infinite num-367

ber of points and is a connected set.368

Note that in Cases 2.3.1 and 2.3.2 we can compute the two values hmin
\BbbR n (\lambda ), hmax

\BbbR n (\lambda )369

by solving a trust region problem over the border of a | J\lambda | -dimensional ball. More370

precisely, we need to solve the following problems:371

(3.4)
min/max\bfitxi w(\bfitxi )\top Aw(\bfitxi ) + a\top w(\bfitxi ) - a0

\| w(\bfitxi )\| 2 = 1,

where w(\bfitxi ) = y1(\gamma min)+
\sum 

j\in J\lambda 
\xi juj . In these cases, where P\BbbR n(\lambda ) is not a singleton,372

we also set373

(3.5)
z1(\lambda ) =w(\bfitxi 1), \bfitxi 1 \in arg min\bfitxi : \| w(\bfitxi )\| =1w(\bfitxi )\top Aw(\bfitxi ) + a\top w(\bfitxi ) - a0,
z2(\lambda ) =w(\bfitxi 2), \bfitxi 2 \in arg max\bfitxi : \| w(\bfitxi )\| =1w(\bfitxi )\top Aw(\bfitxi ) + a\top w(\bfitxi ) - a0,

while in all other cases, when P\BbbR n(\lambda ) = \{ z \star (\lambda )\} is a singleton, we set374

(3.6) z1(\lambda ) = z2(\lambda ) = z \star (\lambda ).

The following statement is a direct consequence of Proposition 2.5.375

Proposition 3.1. In the CDT problem (1.1), if \lambda > 0 and376377

\bullet hmin
\BbbR n (\lambda ) = 0;378

\bullet or if hmax
\BbbR n (\lambda ) = 0;379

\bullet or hmin
\BbbR n (\lambda )< 0<hmax

\BbbR n (\lambda ) and | J\lambda | \geq 2 (i.e., we are in Ccase 2.3.2);380

then p\BbbR n(\lambda ) = p \star .381
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Proof. Since \{ hmin
\BbbR n (\lambda ), hmax

\BbbR n (\lambda )\} \in QX(\lambda ), in the first two cases 0 \in QX(\lambda ) and382

the thesis is a consequence of Proposition 2.5. If hmin
\BbbR n (\lambda )< 0<hmax

\BbbR n (\lambda ) and | J\lambda | \geq 2,383

we observed that P\BbbR n(\lambda ) is a connected set. Then, there exists x \star \in P\BbbR n(\lambda ) such384

that x \star \in \partial H. More precisely, x \star is a point along the curve in P\BbbR n(\lambda ) connecting385

points z1(\lambda ) and z2(\lambda ), defined in (3.5). Thus, the lower bound p\BbbR n(\lambda ) is equal to the386

optimal value of problem (1.1).387

Note that the first two conditions of Proposition 3.1 imply exactness of the bound388

also for generic regions X \supset H, while the last condition is specific to the case X =\BbbR n.389

The following result is related to the necessary and sufficient condition under which390

the dual Lagrangian bound is not exact discussed in [2].391

Proposition 3.2. In the CDT problem (1.1), p\BbbR n(\lambda \BbbR n) \not = p\ast if and only if \lambda \BbbR n >392

0, P\BbbR n(\lambda \BbbR n) contains exactly two points (Case 2.3.1), and 0\in (hmin
\BbbR n (\lambda \BbbR n), hmax

\BbbR n (\lambda \BbbR n)).393

Proof. First note that, in view of Proposition 2.3, the dual Lagrangian bound is394

always exact when \lambda \BbbR n = 0. When \lambda \BbbR n > 0, the result is a consequence of Proposition395

3.1 and the fact that for | J\lambda \BbbR n | = 1 it holds that Q\BbbR n(\lambda \BbbR n) = \{ hmin
\BbbR n (\lambda \BbbR n), hmax

\BbbR n (\lambda \BbbR n)\} \not \ni 396

0.397

Now, we introduce an example where p\BbbR n(\lambda \BbbR n) \not = p\ast , that is the dual Lagrangian398

bound is not exact, which will also be helpful in the following sections.399

Example 3.3. Let us consider the following example taken from [12]:400

Q=

\biggl( 
 - 4 1
1  - 2

\biggr) 
, A=

\biggl( 
3 0
0 1

\biggr) 
, q= (1 1) a= (0 0) , a0 = 2.

Such an instance has optimal value  - 4 attained at points
\Bigl( \surd 

2
2 , - 

\surd 
2
2

\Bigr) 
and

\Bigl( 
 - 

\surd 
2
2 ,

\surd 
2
2

\Bigr) 
.401

The maximizer of p\BbbR 2(\lambda ) is \lambda \BbbR 2 = 1 for which we have402

hmin
\BbbR 2 \approx  - 0.66< 0< 0.66\approx hmax

\BbbR 2 ,

and, moreover, | J\lambda \BbbR 2
| = 1, so that we have exactly two optimal solutions of (3.2),403

one violating the second constraint, namely z2(\lambda \BbbR 2) = ( - 0.911,0.4114), point x1 in404

Figure 1, displayed as \circ , the other in int(H), point z1 in Figure 1, displayed as \times .405

The lower bound is p\BbbR 2(1) = - 4.25, which is not exact.406

Now, let us assume that the dual Lagrangian bound is not exact, i.e., as previously407

stated in Proposition 3.2408

0\in 
\bigl( 
hmin
\BbbR n (\lambda \BbbR n), hmax

\BbbR n (\lambda \BbbR n)
\bigr) 
, | J\lambda \BbbR n | = 1.

Recall that, by Proposition 3.2, in this case, there exists a single point z1(\lambda \BbbR n) \in 409

P\BbbR n(\lambda \BbbR n)\cap H (actually z1(\lambda \BbbR n)\in int(H)), and a single point z2(\lambda \BbbR n)\in P\BbbR n(\lambda \BbbR n)\setminus H.410

Now we show that the dual Lagrangian bound can be strictly improved through the411

addition of a linear cut. We first observe that the optimal value of problem (1.1) does412

not change if we add constraints which are implied by the second one.413

In the following proposition, we define a projection \Pi A,a : \BbbR n \setminus H \rightarrow \partial H that414

maps x \not \in H to the element of \partial H located on the segment that joins x to the center415

of the ellipsoid H (given by \bfitalpha = - 1
2A

 - 1a).416

Proposition 3.4. For x \not \in H, set \Pi A,a(x) =
\sqrt{} 

 - h(\bfitalpha )
h(x) - h(\bfitalpha ) (x  - \bfitalpha ) + \bfitalpha , where417

\bfitalpha = - 1
2A

 - 1a is the center of the ellipsoid. Then h(\Pi A,a(x)) = 0.418
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Fig. 1. Optimal solutions of the dual Lagrangian bound outside H (x1) and in int(H) (z1),
denoted by \circ and \times , respectively. The continuous red curve is the border of the unit ball, while the
dotted blue curve is the border of the ellipsoid H. (Figure in color online.)

Proof. Note that (\forall \beta \in \BbbR ) h(\beta (x  - \bfitalpha ) + \bfitalpha )  - h(\bfitalpha ) = \beta 2(h(x)  - h(\bfitalpha )) (it is a419

consequence of the fact that function h is quadratic and it can be verified by direct420

substitution). Then h(\Pi A,a(x)) = h
\Bigl( \sqrt{} 

 - h(\bfitalpha )
h(x) - h(\bfitalpha ) (x - \bfitalpha ) +\bfitalpha 

\Bigr) 
=  - h(\bfitalpha )

h(x) - h(\bfitalpha ) (h(x)  - 421

h(\bfitalpha )) + h(\bfitalpha ) = 0.422

Given any \=x\in \BbbR n, it holds, by convexity, that423

x\top Ax+ a\top x\geq \=x\top A\=x+ a\top \=x+ (2A\=x+ a)\top (x - \=x).

Thus, the following linear constraint is implied by the second constraint in (1.1):424

(3.7) (2A\=x+ a)\top x - \=x\top A\=x\leq a0,

and, consequently, it can be added to problem (1.1) without modifying its feasible425

region. In particular, if \=x\in \partial H, being \=xTA\=x+ aT \=x= a0, the linear constraint is426

(3.8) (2A\=x+ a)\top (x - \=x)\leq 0.

Due to the redundancy of the linear constraint for problem (1.1), we can define, for a427

given \=x\in \partial H, the new Lagrangian problem428

(3.9)
pX(\lambda ) =minx x\top (Q+ \lambda A)x+ (q+ \lambda a)\top x - \lambda a0

x\top x\leq 1
(2A\=x+ a)\top (x - \=x)\leq 0,

where429

(3.10) X =\Omega \=x = \{ x : (2A\=x+ a)\top (x - \=x)\leq 0\} \supset H.
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If we set \=x = \Pi A,a(z2(\lambda \BbbR n)), i.e., \=x is the projection over \partial H of the single point in430

P\BbbR n(\lambda \BbbR n) \setminus H, then \BbbR n \supset X \supset H and, moreover, X \cap (P\BbbR n(\lambda \BbbR n) \setminus H) = \emptyset , so that,431

by Proposition 2.12, \=pX > \=p\BbbR n . Then, if we run again Algorithm 2.1 with input432

X = \Omega \=x defined in (3.10) and \lambda \tti \ttn \tti \ttt = \lambda \BbbR n (or \lambda \tti \ttn \tti \ttt = \lambda max
\BbbR n ), we are able to improve433

strictly the dual Lagrangian bound. Note that problem (3.9), needed to compute434

function p\Omega \=\bfx , can be solved in polynomial time according to the results proved in435

[12, 23]. But we also discuss an alternative way to solve problem (3.9), based on the436

solution of a trust region problem. For \lambda = \lambda \BbbR n , after the addition of the linear cut,437

a unique optimal solution exists, lying in int(H) and, consequently, in int(\Omega \=x), since438

also the linear constraint in (3.9) is not active at it, being H a subset of the region AQ4439
defined by the linear cut. By continuity, for \lambda values smaller than but close to \lambda \BbbR n ,440

the unique optimal solution of (3.9) also lies in int(H), i.e., P\Omega \=\bfx (\lambda ) = \{ z1(\lambda )\} with441

z1(\lambda ) \in int(H). Thus, such optimal solution must be a local and nonglobal optimal442

solution of the trust region problem (3.2) with X =\BbbR n. Indeed, the globally optimal443

solutions of this trust region problem always violate the second constraint in (1.1) for444

all \lambda < \lambda \BbbR n . Now, for all \lambda \in [0, \lambda \BbbR n), we first check whether a local and nonglobal445

optimal solution of problem (3.2) with X =\BbbR n exists by exploiting the necessary and446

sufficient condition stated in [24]. Also recall that, if it exists, the local and nonglobal447

minimizer is unique. If it does not exist, then we set f1 =+\infty . Otherwise, if it exists,448

we denote it by z1(\lambda ). If z1(\lambda ) \not \in \Omega \=x, then we set again f1 =+\infty , otherwise we denote449

by f1 the value of the objective function of (3.9) evaluated at z1(\lambda ). If some globally450

optimal solution of the trust region problem (3.2) with X =\BbbR n belongs to \Omega \=x\setminus H, then451

it is also a solution of (3.9) and we set f2 equal to the optimal value of this problem.452

Note that in this case f2 < f1, since f1 is the function value at a local and nonglobal453

solution of the trust region problem. Then, Algorithm 2.1 sets \lambda min = \lambda . Instead,454

if all globally optimal solutions of the trust region problem do not belong to \Omega \=x, we455

proceed as follows. We consider the best feasible solutions of problem (3.9) for which456

the linear constraint is imposed to be active. The resulting problem is converted into457

a trust region problem, after the change of variable x= \=x+Vz, where V \in \BbbR n\times (n - 1)458

is a matrix whose columns form a basis for the null space of vector 2A\=x + a. The459

resulting (trust region) problem is460

(3.11)
minw\in \BbbR n - 1 w\top V\top (Q+ \lambda A)Vw+

\bigl[ 
2\=x\top (Q+ \lambda A)V+ (q+ \lambda a)\top 

\bigr] 
w+ \ell (\=x, \lambda )

\| \=x+Vw\| 2 \leq 1,

where \ell (\=x, \lambda ) = \=x\top (Q + \lambda A)\=x + (q + \lambda a)\top \=x  - \lambda a0 is constant with respect to the461

vector of variables w. Let W  \star (\lambda ) be the set of optimal solutions of problem (3.11)462

and463

P  \star 
1 (\lambda ) = \{ \=x+Vw \star : w \star \in W  \star (\lambda )\} .

Note that the set W  \star (\lambda ) can be computed through the procedure presented in section464

3 with the different cases (namely, Cases 1, 2.1, 2.2, 2.3.1, 2.3.2) after rewriting it as a465

classical trust region problem. Moreover, let f2 <+\infty be the optimal value of problem466

(3.11). Now, after comparing f1 and f2, we are able to define the set P\Omega \=\bfx (\lambda ) of optimal467

solutions for problem (3.9). More precisely, if f2 > f1, then P\Omega \=\bfx (\lambda ) = \{ z1(\lambda )\} , i.e.,468

z1(\lambda ) is the unique optimal solution of problem (3.9). In this case469

hmin
\Omega \=\bfx 

(\lambda ) = hmax
\Omega \=\bfx 

(\lambda ) = z1(\lambda )
\top Az1(\lambda ) + a\top z1(\lambda ) - a0.

Instead, if f2 < f1, which always holds, e.g., if f1 =+\infty , then P\Omega \=\bfx (\lambda ) = P  \star 
1 (\lambda ). Since470

all points in P  \star 
1 (\lambda ) lie over a supporting hyperplane of H, we must have that471
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hmin
\Omega \=\bfx 

(\lambda ) = min
x\in P \star 

1 (\lambda )
x\top Ax+ a\top x - a0 \geq 0,

and equality holds only if \=x\in P  \star 
1 (\lambda ). In the latter case, the bound is exact, otherwise472

Algorithm 2.1 sets \lambda min = \lambda . Finally, if f1 = f2, then P\Omega \=\bfx (\lambda ) = P  \star 
1 (\lambda ) \cup \{ z1(\lambda )\} and473

in this case 0 \in [hmin
\Omega \=\bfx 

(\lambda ), hmax
\Omega \=\bfx 

(\lambda )] and the algorithms exits the loop. The following474

result is a straightforward consequence of Proposition 2.12.475

Proposition 3.5. Algorithm 2.1 with \varepsilon = 0 will stop after a finite number of476

iterations or will converge to some \lambda \Omega \=\bfx <\lambda \BbbR n with a new lower bound \=p\Omega \=\bfx > \=p\BbbR n .477

Proof. Strict inequalities hold in view of Proposition 2.12 with X = \BbbR n and478

Y =\Omega \=x, since, as already observed, \Omega \=x \cap (P\BbbR n(\lambda \BbbR n) \setminus H) = \emptyset .479

If the final bound is not exact, i.e., \=p\Omega \=\bfx = p\Omega \=\bfx (\lambda \Omega \=\bfx )< p \star , at \lambda \Omega \=\bfx we have f1 = f2 and480

P\Omega \=\bfx (\lambda \Omega \=\bfx ) contains multiple optimal solutions, in particular, one in int(H) and the481

other(s) outside H, more precisely on \partial \Omega \=x \setminus H. We illustrate all this on Example 3.3.482

483

Example 3.6. The optimal solution of (3.2) with X = \BbbR n for \lambda \BbbR n = 1 which484

violates the second constraint is z2(\lambda \BbbR n) = ( - 0.911,0.4114). The lower bound is485

p\BbbR n(1) =  - 4.25. After the addition of the linear inequality (3.7) obtained with \=x =486

\Pi A,a(z2(\lambda \BbbR n)), equal to the projection of z2(\lambda \BbbR n) over the boundary of the second487

constraint, we can run again Algorithm 2.1 with X = \Omega \=x and we get to \lambda \Omega \=\bfx \approx 0.726488

and p\Omega \=\bfx (\lambda \Omega \=\bfx ) \approx  - 4.097, which improves the previous lower bound. In Figure 2 we489

show the linear cut and the two new optimal solutions outside H and in int(H) (x2490

and z2, respectively) obtained at \lambda \Omega \=\bfx . In the same figure we also display the previous491

pair of optimal solutions in order to show the progress of the algorithm.492

It is worthwhile to discuss at this point the relations between the approach pro-493

posed in this work and the one proposed in [27], where the classical SDP relaxation494

-1 -0.5 0 0.5 1

-1
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-0.4

-0.2
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0.8

1

Fig. 2. First linear cut and the two optimal solutions lying outside H (x2) and in int(H) (z2),
denoted by \circ and \times , respectively.
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of problem (1.1) is considered. Both approaches stem from the necessary and suf-495

ficient condition under which the dual Lagrangian bound is not exact discussed in496

[2], namely the existence of two distinct optimal solutions, one belonging to int(H)497

and the other outside H. In both cases it is observed that, in order to improve the498

bound, it is necessary to separate such optimal solutions. But the way the separation499

is carried on in the two approaches is different. Following the terminology employed500

in Integer Programming, in [27] the separation is performed through a branching op-501

eration, while in this work it is performed through the addition of a cutting plane.502

Indeed, in [27] first, a hyperplane wTx = v separating the two optimal solutions is503

introduced; then, two distinct subproblems are solved, one by adding the inequality504

wTx \leq v (converted into an SOCP constraint) to the SDP relaxation, the other by505

adding the inequality wTx \geq v to the SDP relaxation; finally, the new bound is set506

equal to the minimum of the bounds over the two subregions into which the original507

feasible region has been split. Note that one of the two subregions may be empty, in508

which case its corresponding lower bound is set equal to +\infty and the linear inequality509

is a separating hyperplane between H and the optimal solution outside H. In this510

paper the separation is performed through the addition of a linear cut and a single511

subproblem is solved. Moreover, in [27] it is observed that one could search for an512

``optimal'` hyperplane separating the two optimal solutions, namely one which leads513

to the best possible bound. In that paper such a hyperplane is derived in the special514

case when the function h is the product of two affine functions and an exactness result515

is also provided for the case of problems with two variables, but the question about516

how to characterize an '`optimal`' affine function is left open in the general case. In517

the next section we will be able to provide a necessary and sufficient condition for a518

linear cut to be the one delivering the best bound (Proposition 4.2). Based on this519

condition, we will also be able to propose a procedure to improve the bound by local520

adjustments of the linear cut. Finally, in this paper we will also show in section 5521

that the bound can be further improved through the addition of a second linear cut,522

possibly followed by a local adjustment of the two linear cuts. The experiments in523

section 6 will show that the bound obtained by the addition of two linear cuts is quite524

a good one, allowing one to solve all except one of the 212 hardest instances intro-525

duced in [12]. As a final remark, we observe that the approach presented in [27] and526

the one discussed in this paper could actually be combined by performing a branching527

operation (as in [27]) followed by the addition of a linear cut (as in this work) in each528

branch. Borrowing again from the terminology of Integer Programming, this can be529

viewed as a branch-and-cut approach.530

4. Improving the bound by local adjustments of the linear cut. In the531

previous section we proposed to set \=x equal to the projection over \partial H of z2(\lambda \BbbR n), the532

optimal solution of problem (3.2) with X =\BbbR n lying outside H. However, this point533

can be improved by some local adjustment. We first give a necessary and sufficient534

condition under which the current point \=x cannot be improved. The proof will also535

suggest how to improve the point (and the bound) when the condition is not fulfilled.536

Let537

(4.1) r(w,x) = (2Aw+a)\top (x - w)+w\top Aw+a\top w - a0 = (2Aw+a)\top x - w\top Aw - a0

be the linearization of the ellipsoid constraint at w. Note that constraint (3.7) can be538

written as r(\=x,x)\leq 0. Also note that for each x, r is a concave function with respect539

to w. Next, we set540



16 LUCA CONSOLINI AND MARCO LOCATELLI

p(\lambda ,w) = p\Omega \bfw (\lambda ),

in order to highlight the dependency of the bound not only on \lambda but also on w. Then,541

in order to maximize the lower bound, we need to solve the following problem:542

max
\lambda \geq 0, w

p(\lambda ,w).

As before, we denote by P\Omega \bfw (\lambda ) the optimal set of problem (3.9) with \=x=w, while we543

denote by P 1
\Omega \bfw 

(\lambda ) = P\Omega \bfw (\lambda )\setminus int(H) the set of optimal solutions of the same problem544

lying outside the interior of the ellipsoid H. We will need the following lemma.545

Lemma 4.1. Set-valued functions w ; P\Omega \bfw (\lambda ) and w ; P 1
\Omega \bfw 

(\lambda ) are upper semi-546

continuous for any \lambda \geq 0.547

Proof. Upper semicontinuity of w ; P\Omega \bfw (\lambda ) follows from the maximum theorem548

(see, for instance, Theorem 1.4.16 of [5]), while upper semicontinuity of w ; P 1
\Omega \bfw 

(\lambda )549

follows from the fact that P 1
\Omega \bfw 

(\lambda ) is obtained by intersecting the upper semicontinuous550

function w ; P\Omega \bfw (\lambda ) with the compact set \{ x : \| x\| \leq 1\} \setminus int(H) (see, for instance,551

Proposition 1.4.9 of [5]).552

Now, the following proposition characterizes the maxima of p.553

Proposition 4.2. Let (\lambda \ast ,w\ast ) be such that w\ast \in \partial H, \lambda \ast > 0, 0 \in (hmin
\Omega \bfw \ast (\lambda 

\ast ),554

hmax
\Omega \bfw \ast (\lambda 

\ast )), and 0 \not \in Q\Omega \bfw \ast (\lambda 
\ast ). Assume also that (\forall v \in P 1

\Omega \bfw \ast (\lambda 
\ast )) r(w\ast ,v) = 0. Then,555

the following statements are equivalent:556

(i) (\lambda \ast ,w\ast ) = argmax(\lambda \geq 0,w)p(\lambda ,w).557

(ii) (\forall w \in \BbbR n) P 1
\Omega \bfw 

(\lambda \ast ) \not = \emptyset .558

(iii)559

(4.2) (\forall d\in \BbbR n) (\exists v \in P 1
\Omega \bfw \ast (\lambda 

\ast )) :  - d\top Ad+ 2d\top A(v - w\ast )\leq 0.

Proof. Before proving the result we make some remarks. First, note that 0 \in 560

(hmin
\Omega \bfw \ast (\lambda 

\ast ), hmax
\Omega \bfw \ast (\lambda 

\ast )) implies that \lambda \ast = \lambda \Omega \bfw \ast . Moreover, since 0 \not \in Q\Omega \bfw \ast (\lambda 
\ast ) and561

\lambda \ast > 0, by Propositions 2.3 and 2.5, p\Omega \bfw \ast (\lambda 
\ast ) < p\ast (i.e., the bound is not exact). If562

the bound were exact, the current pair (w\ast , \lambda \ast ) would obviously be optimal. Also563

note that hmin
\Omega \bfw \ast (\lambda 

\ast ) < 0 < hmax
\Omega \bfw \ast (\lambda 

\ast ) implies that P 1
\Omega \bfw \ast (\lambda 

\ast ) \not = \emptyset . Finally, condition564

(\forall v \in P 1
\Omega \bfw \ast (\lambda 

\ast )) r(w\ast ,v) = 0 means that P 1
\Omega \bfw \ast (\lambda 

\ast ) \subset \partial \Omega w\ast , which, according to565

the discussion about the optimal solutions of problem (3.9), holds true provided that566

z2(\lambda \BbbR n) \not \in \Omega w\ast .567

(i) \rightarrow (ii) By contradiction, let w be such that P 1
\Omega \bfw 

(\lambda \ast ) = \emptyset . Then, P\Omega \bfw (\lambda 
\ast )\subset int(H).568

Therefore, function \lambda ; p\Omega \bfw (\lambda ) is strictly decreasing at \lambda \ast . As a consequence,569

there exists 0 \leq \=\lambda < \lambda \ast such that p(\=\lambda ,w) = p\Omega \bfw (
\=\lambda ) > p\Omega \bfw (\lambda 

\ast ) = p(\lambda \ast ,w). More-570

over, p(\lambda \ast ,w\ast ) = p(\lambda \ast ,w). Indeed, since 0 \in (hmin
\Omega \bfw \ast (\lambda 

\ast ), hmax
\Omega \bfw \ast (\lambda 

\ast )), we have that571

hmin
\Omega \bfw \ast (\lambda 

\ast ) < 0, so that P\Omega \bfw \ast (\lambda 
\ast ) \cap int(H) is not empty and is equal to P\Omega \bfw (\lambda 

\ast ).572

Hence, p(\=\lambda ,w)> p(\lambda \ast ,w\ast ), which contradicts (i).573

(ii) \rightarrow (iii) By contradiction, let us assume that there exists d\in \BbbR n such that574

(4.3) (\forall v \in P 1
\Omega \bfw \ast (\lambda 

\ast ))  - d\top Ad+ 2d\top A(v - w\ast )> 0.

By continuity of the left-hand side of the inequality in (4.3) with respect to v, there575

exists a neighborhood B1 of P 1
\Omega \bfw \ast (\lambda 

\ast ) such that576

(\forall v \in B1)  - d\top Ad+ 2d\top A(v - w\ast )> 0,
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which implies that577

(4.4) (\forall v \in B1) 2d
\top A(v - w\ast )> 0.

By upper semicontinuity of set-valued function w ; P 1
\Omega \bfw 

(\lambda \ast ) (see Lemma 4.1),578

there exists a neighborhood B2 of w\ast such that (\forall w \in B2) P
1
\Omega \bfw 

(\lambda \ast )\subset B1. Let \=\eta > 0579

be such that w\ast + \=\eta d \in B2 and consider function \rho : [0, \=\eta ] \times \BbbR n \rightarrow \BbbR , \rho (\eta ,v) =580

r(w\ast + \eta d,v). Then, by definition of r in (4.1),581

\rho (\eta ,v) = - \eta 2d\top Ad+ 2\eta d\top A(v - w\ast ) + \rho (0,v).

By (4.4), (\forall v \in B1) \partial \eta \rho (0,v)> 0, where \partial \eta denotes the partial derivative with respect582

to \eta . By continuity of \rho , there exists a continous function \^\eta :B1 \rightarrow (0, \=\eta ] such that583

(4.5) (\forall v \in B1, \eta \in (0, \^\eta (v)]) \rho (\eta ,v)>\rho (0,v).

Hence, since B1 is a compact set and \^\eta is continuous and strictly positive, setting584

\~\eta = minv\in B1
\^\eta (v), it follows that (\forall \eta \in [0, \~\eta ]) P 1

\Omega \bfw \ast +\eta \bfd 
(\lambda \ast ) \subseteq P 1

\Omega \bfw \ast (\lambda 
\ast ). Moreover,585

since, by assumption, (\forall v \in P 1
\Omega \bfw \ast (\lambda 

\ast )) r(w\ast ,v) = 0,586

(\forall v \in P 1
\Omega \bfw \ast (\lambda 

\ast )) \rho (0,v) = 0.

Hence, (4.5) implies that587

(4.6) (\forall v \in P 1
\Omega \bfw \ast (\lambda 

\ast )) \rho (\~\eta ,v)> 0.

Being P 1
\Omega \bfw \ast +\~\eta \bfd 

(\lambda \ast )\subseteq P 1
\Omega \bfw \ast (\lambda 

\ast ), (4.6) implies that P 1
\Omega \bfw \ast +\~\eta \bfd 

(\lambda \ast ) = \emptyset , which contradicts588

(ii).589

(iii) \rightarrow (i) By contradiction, there exists a couple (\=\lambda , \=w) such that p(\=\lambda , \=w)> p(\lambda \ast ,w\ast ).590

In particular, we can take \=\lambda = \lambda \Omega \=\bfw . In case \=\lambda = 0, by assumption \=\lambda < \lambda \ast . Now we591

show that the same inequality holds true also when \=\lambda > 0. If \=\lambda > 0, then \=\lambda = \lambda \Omega \=\bfw 592

implies that 0 \in [hmin
\Omega \=\bfw 

(\=\lambda ), hmax
\Omega \=\bfw 

(\=\lambda )]. Since, by assumption, 0 \in (hmin
\Omega \bfw \ast (\lambda 

\ast ), hmax
\Omega \bfw \ast (\lambda 

\ast )),593

we have that both P\Omega \=\bfw (
\=\lambda ) \cap H \not = \emptyset and P\Omega \bfw \ast (\lambda 

\ast ) \cap H \not = \emptyset (i.e., the minimum values594

p(\lambda \ast ,w\ast ) and p(\=\lambda , \=w) are both attained in H). Hence, p(\=\lambda , \=w) > p(\lambda \ast ,w\ast ) implies595

that \=\lambda < \lambda \ast . Indeed, let us assume that \=\lambda \geq \lambda \ast and let z\in P\Omega \bfw \ast (\lambda 
\ast )\cap H. Then,596

p(\lambda \ast ,w\ast ) = z\top Qz+ q\top z+ \lambda \ast (z\top Qz+ q\top z - a0)

\geq z\top Qz+ q\top z+ \=\lambda (z\top Qz+ q\top z - a0)\geq p(\=\lambda , \=w),

which is a contradiction. Then, function p(\lambda \ast , \=w) must be decreasing at \lambda \ast or, equiv-597

alently, P\Omega \=\bfw (\lambda 
\ast ) \subset int(H) and P\Omega \=\bfw (\lambda 

\ast ) \not = \emptyset . Since hmin
\Omega \bfw \ast (\lambda 

\ast ) < 0, then P\Omega \=\bfw (\lambda 
\ast )598

and P\Omega \bfw \ast (\lambda 
\ast ) have a common nonempty intersection within H and, consequently,599

p(\lambda \ast , \=w) = p(\lambda \ast ,w\ast ) holds. This implies that P 1
\Omega \bfw \ast (\lambda 

\ast ) \cap \Omega \=w = \emptyset . Indeed, assume600

there exists v \in P 1
\Omega \bfw \ast (\lambda 

\ast )\cap \Omega \=w. Note that v \not \in int(H) and, since P 1
\Omega \=\bfw 

(\lambda \ast )\subset P\Omega \=\bfw (\lambda 
\ast ),601

v would also belong to P\Omega \=\bfw (\lambda 
\ast ) which, however, contradicts P\Omega \=\bfw (\lambda 

\ast )\subset int(H).602

Condition P 1
\Omega \bfw \ast (\lambda 

\ast )\cap \Omega \=w = \emptyset is equivalent to603

(\forall v \in P 1
\Omega \bfw \ast (\lambda 

\ast )) r( \=w,v)> 0.

Note that, by assumption, v \in P 1
\Omega \bfw \ast (\lambda 

\ast ) implies v \in \partial \Omega w\ast . Moreover,604

r( \=w,v) = r(( \=w - w\ast ) +w\ast ,v) = - ( \=w - w\ast )\top A( \=w - w\ast )

+2( \=w - w\ast )\top A(v - w\ast ) + r(w\ast ,v)> 0.
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Beingw\ast \in \partial H and v \in \partial \Omega w\ast , we have that r(w\ast ,v) = 0. Then, by taking d= \=w - w\ast ,605

(iii) is contradicted.606

Given the current point \=x with \lambda \Omega \=\bfx > 0, the question now is either to find a direction607

d fulfilling608

(4.7) (\forall v \in P  \star 
1 (\lambda \Omega \=\bfx ))  - d\top Ad+ 2d\top A(v - \=x)> 0

or to establish that it does not exist. In case it does not exist,609

p(\=x, \lambda \Omega \=\bfx ) = max
\lambda \geq 0, w

p(\lambda ,w).

Otherwise, direction (d, - 1) is an increasing direction for function p. We discuss610

different cases depending on the cardinality of P  \star 
1 (\lambda \Omega \=\bfx ) (see the cases discussed in611

section 3 for the trust region problem).612

4.1. | \bfitP \star 
1 (\bfitlambda \Omega \=\bfitx )| = 1. In this case, let \bfitv be the unique point in P  \star 

1 (\lambda \Omega \=\bfx ). Then613

we need to solve the following convex optimization problem:614

max
d\in \BbbR n

 - d\top Ad+ 2d\top A(v - \=x),

whose optimal solution is d = v - \=x and its optimal value is (v - \=x)\top A(v - \=x) > 0.615

Therefore, if | P  \star 
1 (\lambda \Omega \=\bfx )| = 1, we are always able to locally adjust the current point \=x616

in such a way that the bound can be improved.617

4.2. | \bfitP \star 
1 (\bfitlambda \Omega \=\bfitx )| = 2. In this case, let \bfitv 1 and \bfitv 2 be the two optimal points in618

P  \star 
1 (\lambda \Omega \=\bfitx ). Then, we need to solve the following optimization problem:619

(4.8) max
\bfitd \in \BbbR n

min\{  - \bfitd \top \bfitA \bfitd + 2\bfitd \top \bfitA (\bfitv 1  - \=\bfitx ), - \bfitd \top \bfitA \bfitd + 2\bfitd \top \bfitA (\bfitv 2  - \=\bfitx )\} ,

or, equivalently620

max v

v\leq  - \bfitd \top \bfitA \bfitd + 2\bfitd \top \bfitA (\bfitv 1  - \=\bfitx )

v\leq  - \bfitd \top \bfitA \bfitd + 2\bfitd \top \bfitA (\bfitv 2  - \=\bfitx ).

This is a convex optimization problem, whose solution can be obtained in closed form.621

Indeed, by imposing the KKT conditions, it can be seen that the optimal solution has622

the following form:623

(4.9) d= \beta (v1  - \=x) + (1 - \beta )(v2  - \=x), \beta \in [0,1].

Now, let624

a= (v1  - \=x)\top A(v1  - \=x)> 0,
b= (v2  - \=x)\top A(v2  - \=x)> 0,
c= (v1  - \=x)\top A(v2  - \=x).

By replacing (4.9) in the objective function of (4.8), we have that (4.8) can be rewritten625

as626

max
\beta \in [0,1]

min
\bigl\{ 
( - \beta 2 + 2\beta )a - (1 - \beta )2b+ 2(1 - \beta )2c, - \beta 2a+ (1 - \beta 2)b+ 2\beta 2c

\bigr\} 
.
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The optimal solution of this problem is627

\beta  \star =

\left\{     
0 if b\leq c,

1 if a\leq c,
b - c

a+b - 2c otherwise.

Then, the optimal value is628 \left\{     
b if b\leq c,

a if a\leq c,
ab - c2

a+b - 2c otherwise.

We notice that a, b > 0,629

a+ b - 2c= (v1  - v2)
\top A(v1  - v2)> 0,

and, by the Cauchy--Schwarz inequality,630

ab - 2c2 \geq 0,

and equality holds if and only if (v1  - \=x) and (v2  - \=x) are linearly dependent. Thus,631

the optimal value of (4.8) is always strictly positive unless the two vectors (v1  - \=x)632

and (v2  - \=x) lie along the same direction. More precisely, the optimal value is null633

only if the two vectors have the same direction but opposite sign. Indeed, let634

v1  - \=x= \gamma (v2  - \=x).

Then, we have b= \gamma 2a and c= \gamma a. If \gamma is positive, then either b\leq c (if \gamma \leq 1), or a\leq c635

(if \gamma \geq 1) occurs, so that the optimal value is equal to a or b and is, thus, positive. If636

(v1  - \=x) is not a negative multiple of (v2  - \=x), we are able to locally adjust \=x along637

direction638

d= \beta  \star (v1  - \=x) + (1 - \beta  \star )(v2  - \=x).

4.3. \bfitP \star 
1 (\bfitlambda \Omega \=\bfx ) is an infinite connected set. In this case we need to solve the639

following optimization problem:640

(4.10) max
d\in \BbbR n

min
v\in P \star 

1 (\lambda \Omega \=\bfx )
 - d\top Ad+ 2d\top A(v - \=x).

An improving direction exists if and only if the optimal value of this problem is641

strictly positive (note that the optimal value is always nonnegative since the inner642

minimization problem has optimal value 0 for d = 0). We first remark that the643

problem is convex. Indeed, for each fixed v, we have a concave function with respect644

to d, and the minimum of an infinite set of concave functions is itself a concave645

function (to be maximized, so that the problem is convex). The inner minimization646

problem can be solved in closed form. After removing the terms which do not depend647

on v, the inner problem to be solved is648

min
v\in P \star 

1 (\lambda \Omega \=\bfx )
2d\top Av.

According to Case 2.3.2 in section 3, P  \star 
1 (\lambda \Omega \=\bfx ) can be written as in (3.3) and the649

minimization problem can be reduced to the computation of the minimum of a linear650

function over the unit sphere:651
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min
\bfitxi \in \BbbR q : \| \bfitxi \| 2=1

\=c(d)\top \bfitxi ,

where \=c(d) is some linear function of d and q \geq 2 is the multiplicity of the minimum652

eigenvalue of the matrix V\top (Q+\lambda A)V, corresponding to the Hessian of the objective653

function of problem (3.11). The optimal solution of this problem is654

\bfitxi  \star = - 
\=c(d)

\| \=c(d)\| 
,

while the optimal value is  - \| \=c(d)\| .655

4.4. An algorithm for the refinement of the bound. Let \=x and \lambda \BbbR n be656

defined as in section 3. We propose Algorithm 4.1 for a bound based on successive657

local adjustments of the linear cut. In line 2, Algorithm 2.1 is run with input X =\Omega \=x658

and \lambda \BbbR n . Note that with a slight abuse here we are assuming that the algorithm659

returns \lambda \Omega \=\bfx and the related points z1 and z2, while in practice close approximations660

of these quantities are returned, namely \lambda max, z1(\lambda 
max), and z2(\lambda 

min). In line 3, z is661

initialized with the input point \=x itself and the direction d \star , following the discussion662

in section 4.1, is set equal to the difference between z2(\lambda \Omega \=\bfx ), the point outside H663

returned by Algorithm 2.1, and \=x. The outer while loop of the algorithm (lines 4--664

20) is repeated until the bound is improved by at least a tolerance value tol. Inside665

this loop, in line 5 the initial step size \eta = 1 is set and a new incumbent y \in \partial H666

is computed. The inner while loop (lines 7--15) computes the step size: until the667

optimal value of problem (3.9) with \=x = y and \lambda = \lambda \Omega \bfz , denoted by opt, is lower668

than the current lower bound Lb, we need to decrease the step size and recompute a669

new incumbent y (lines 10--11). If the step size falls below a given tolerance value,670

we exit the inner loop and also the outer one. Otherwise, we have identified a new671

valid incumbent and we set to 1 the exit flag stop for the inner loop (line 13), so672

that, later on, a new linear inequality (3.7) with \=x = y will be computed. Then, at673

line 17 we run Algorithm 2.1 with input X = \Omega y and \lambda \Omega \bfz . Finally, in line 18, we674

update point z and the direction d \star . We remark that at each iteration z2(\lambda \Omega \bfz ) is675

one optimal solution of the current subproblem (3.9) with \lambda = \lambda \Omega \bfz lying outside H676

and at which the linear cut of the subproblem is active, i.e., z2(\lambda \Omega \bfz ) \in P  \star 
1 (\lambda \Omega \bfz ). As677

seen in section 4.1, if | P  \star 
1 (\lambda \Omega \bfz )| = 1, i.e., z2(\lambda \Omega \bfz ) is the unique optimal solution of the678

current subproblem (3.9) with \lambda = \lambda \Omega \bfz lying outside H, then, in view of Proposition679

2.11, the local adjustment employed in Algorithm 4.1 is guaranteed to improve the680

bound. However, as seen in sections 4.2 and 4.3, if P  \star 
1 (\lambda \Omega \bfz ) contains more than one681

point, than the proposed local adjustment is not guaranteed to improve the bound.682

Sections 4.2 and 4.3 suggest how to define perturbing directions which still allow683

one to improve the bound, in case they exist. However, as we will see through the684

computational experiments, Algorithm 4.1 turns out to be time-consuming, and it685

is more convenient to improve the bound by adding a further linear cut, as we do686

in section 5, rather than further locally adjusting the current linear cut. In order to687

clarify this point, we can make a comparison with Integer Linear Programming (ILP).688

In ILP problems, once a linear relaxation is solved, a valid cut removes one optimal689

solution of the relaxation. If the optimal solution is unique, then after the addition690

of the valid cut, the bound improves. But if the linear relaxation has got multiple691

solutions, then the valid cut is not guaranteed to remove all of them and, thus, the692

bound may not improve. It is possible to try to strengthen the valid cut in such a way
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Algorithm 4.1 Bound improvement through a local adjustment of the linear cut.
Input: \=x, \lambda \BbbR n

1: Set Lbold = - \infty 
2: Let [Lb,\lambda \Omega \=\bfx ,z1(\lambda \Omega \=\bfx ),z2(\lambda \Omega \=\bfx )] =DualLagrangian(\Omega \=x, \lambda \BbbR n)
3: Set z= \=x and d \star = z2(\lambda \Omega \=\bfx ) - \=x
4: while Lb - Lbold > tol do
5: Set Lbold =Lb, \eta = 1 and y=\Pi A,a(z+ d \star )\in \partial H
6: Set stop= 0
7: while stop= 0 and \eta > \varepsilon do
8: Solve problem (3.9) with \=x= y and \lambda = \lambda \Omega \bfz , and let opt be its optimal

value
9: if opt < Lb then
10: Set \eta = \eta /2
11: Set y=\Pi A,a(z+ \eta d \star )\in \partial H
12: else
13: Set stop= 1
14: end if
15: end while
16: if stop= 1 then
17: Let [Lb,\lambda \Omega \bfy ,z1(\lambda \Omega \bfy ),z2(\lambda \Omega \bfy )] =DualLagrangian(\Omega y, \lambda \Omega \bfz )
18: Set z= y, d \star = z2(\lambda \Omega \bfy ) - z
19: end if
20: end while
21: return Lb

that all optimal solutions of the linear relaxations are removed. But, more commonly,693

new linear cuts are added.694

Now we apply Algorithm 4.1 to our example.695

Example 4.3. We have that z is initialized with ( - 0.7901,0.3565) and Lb with696

 - 4.0971. During the execution of Algorithm 4.1, z and Lb are updated as indicated697

in Table 1.698

Interestingly, the best bound obtained in the example is exactly the one obtained699

for the same problem by the approach proposed in [12], based on the addition of700

SOC-RLT constraints. Figure 3 displays the situation at the last iteration of Algorithm701

4.1. Problem (3.9) has three optimal solutions, one in int(H) and two outside H. The702

Table 1
Iterations of Algorithm 4.1 over the example.

Iteration z Lb

1 ( - 0.7204,0.6658)  - 4.0850

2 ( - 0.7742,0.4493)  - 4.0638

3 ( - 0.7481,0.5665)  - 4.0477

4 ( - 0.7607,0.5136)  - 4.0416

5 ( - 0.7556,0.5361)  - 4.0378

6 ( - 0.7571,0.5296)  - 4.0364

7 ( - 0.7568,0.5309)  - 4.0362
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Fig. 3. Final linear cut after running Algorithm 4.1. Problem (3.9) has three optimal solutions,
one in int(H) and two outside H. The latter solutions are opposite to each other with respect to the
final vector z.

two optimal solutions outside H are opposite to each other with respect to the final703

vector z, so that, as discussed in section 4.2, no further local adjustment is possible704

to improve the bound in this case.705

5. Bound improvement through the addition of a further linear cut.706

Another possible way to improve the bound is by adding a further linear cut to (3.9).707

Let \=x and \lambda \BbbR n be defined as in section 3. In line 2 of Algorithm 4.1, we compute708

[Lb,\lambda \Omega \=\bfx ,z1(\lambda \Omega \=\bfx ),z2(\lambda \Omega \=\bfx )] = DualLagrangian(\Omega \=x, \lambda \BbbR n), and, later on, we try to709

locally adjust \=x. Rather than doing that, we can add a further linear cut, cutting710

z2(\lambda \Omega \=\bfx ) \not \in H away. In particular, we add the one obtained through the projection over711

\partial H of z2(\lambda \Omega \=\bfx ). Let \~x=\Pi A,a(z2(\lambda \Omega \=\bfx ))\in \partial H be such projection. Then, we define the712

following problem:713

(5.1)

minx x\top (Q+ \lambda A)x+ (q+ \lambda a)\top x - \lambda a0
x\top x\leq 1
(2A\=x+ a)\top (x - \=x)\leq 0
(2A\~x+ a)\top (x - \~x)\leq 0,

which is equivalent to problem (3.2) where714

X =\Omega \=x \cap \Omega \~x = \{ x : (2A\=x+ a)\top (x - \=x)\leq 0, (2A\~x+ a)\top (x - \~x)\leq 0\} \supset H.

A convex reformulation as the one proposed in [12, 23] for problem (3.9) is not available715

in this case (unless the two linear inequalities do not intersect in the interior of the716

unit ball). But in this case the alternative procedure discussed in section 3 turns out717

to be useful. As before, for each value \lambda in the while loop of Algorithm 2.1 we can first718

check whether a local and nonglobal optimal solution of problem (3.2) with X = \BbbR n719

exists, by exploiting the necessary and sufficient condition stated in [24]. If it exists,720
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and belongs to \Omega \=x\cap \Omega \~x, we denote it by z1(\lambda ). Next, we need to compute the optimal721

value of (5.1) when at least one of the two linear constraints is active, i.e., we need to722

solve the following problem:723

(5.2)

minx x\top (Q+ \lambda A)x+ (q+ \lambda a)\top x - \lambda a0
x\top x\leq 1
(2A\=x+ a)\top (x - \=x)\leq 0
(2A\~x+ a)\top (x - \~x)\leq 0\bigl[ 
(2A\=x+ a)\top (x - \=x)

\bigr] \bigl[ 
(2A\~x+ a)\top (x - \~x)

\bigr] 
= 0.

A convex reformulation of this problem has been proposed in [26]. Alternatively, one724

can solve two distinct problems, each imposing that one of the two linear inequalities725

is active. Each of these problems can be converted into a trust region problem with726

an additional linear inequality, which can be solved in polynomial time through the727

already mentioned convex reformulation proposed in [12, 23]. Thus, we compute the728

set P  \star 
1 (\lambda ) \subseteq \partial \Omega \=x \cap \Omega \~x of optimal solutions of (5.1) for which the first linear cut is729

active, and then the set P  \star 
2 (\lambda ) \subseteq \Omega \=x \cap \partial \Omega \~x of optimal solutions of (5.1) for which730

the second linear cut is active. Finally, the optimal values of these problems are731

compared with the value of the local and nonglobal minimizer (if it exists) in order732

to identify the set PX(\lambda ) of optimal solutions of (5.1). At this point we are able to733

compute hmin
X (\lambda ), hmax

X (\lambda ) and update \lambda min and \lambda max accordingly. If for some \lambda we734

have that z1(\lambda ) \in PX(\lambda ) and PX(\lambda ) \cap [P  \star 
1 (\lambda ) \cup P  \star 

2 (\lambda )] \not = \emptyset , i.e., problem (5.1) has735

an optimal solution in int(H) and (at least) one optimal solution outside H, then736

0\in [hmin
X (\lambda ), hmax

X (\lambda )] and Algorithm 2.1 stops. We illustrate all this on Example 3.3.737738

Example 5.1. We add a second linear cut obtained through the projection over739

\partial H of the optimal solution of problem (3.9) with \lambda \Omega \=\bfx = 0.726 outside H. This leads740

to a further improvement with \lambda \Omega \=\bfx \cap \Omega \~\bfx 
\approx 0.39 and p\Omega \=\bfx \cap \Omega \~\bfx 

(\lambda \Omega \=\bfx \cap \Omega \~\bfx 
) \approx  - 4.005, which741

almost closes the gap. In Figure 4 we show the two linear cuts and the two new optimal742
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Fig. 4. Two linear cuts and the two optimal solutions outside H (x3) and in int(H) (z3),
denoted by \circ and \times , respectively.
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solutions, one outsideH and one belonging to int(H) (x3 and z3, respectively). Again,743

we also report the previous pairs of optimal solutions in order to show the progress.744

Now, assume that the returned bound is not exact. Also in this case \=x and \~x can be745

locally adjusted. One can combine the techniques presented in section 4 and in the746

current section, by using a technique similar to the one described in the former section747

to improve the pair of points \=x and \~x. In particular, at \lambda \Omega \~\bfx \cap \Omega \=\bfx we have one optimal748

solution of problem 5.1 belonging to int(H), namely the local and nonglobal optimal749

solution of problem (3.2) with X =\BbbR n, and at least another one outside H. We denote750

the latter by v and we observe that at least one of the two linear cuts is active at this751

point, i.e., either v \in \partial \Omega \=x or v \in \partial \Omega \~x (or both). Then, if only the first cut is active at752

v, we update \=x as follows: \=x\prime =\Pi A,a(\=x+\eta (v - \=x)) for a sufficiently small \eta value, while753

\~x\prime = \~x. If only the second cut is active, we update \~x as follows: \~x\prime =\Pi A,a(\~x+\eta (v - \~x))754

for a sufficiently small \eta value, while \=x\prime = \=x. Finally, if both are active we select one755

of the two cuts and perturb it. After the perturbation, we run again Algorithm 2.1756

with input X = \Omega 
\=x
\prime \cap \Omega 

\~x
\prime and \lambda \Omega \~\bfx \cap \Omega \=\bfx , and we repeat this procedure until there is757

a significant reduction of the bound. Note, however, that it might happen that no758

improvement is possible. In case | P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = 1 and P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) = \emptyset (similar759

for | P  \star 
2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = 1 and P  \star 

1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) = \emptyset ), then the proposed perturbation \=x\prime =760

\Pi A,a(\=x+ \eta (v - \=x)) for \eta sufficiently small allows improvement of the bound. Indeed,761

in such cases the local adjustment is able to cut the unique solution outside H away.762

In order to illustrate other different cases we employ Figures 5a--5c. As usual, in these763

figures the point in int(H) is denoted by \times , while the others (outside H) are denoted764

by \circ . If | P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = | P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = 1 and P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) \cap P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) = \emptyset (see765

Figure 5a), or | P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = 2, | P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = 1, and P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )\cap P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) \not = \emptyset 766

(see Figure 5b), then it is not possible to remove all the solutions outside H by767

perturbing a single linear cut. Indeed, in both cases the perturbation of a single768

linear cut is able to remove just one of the two optimal solutions outside H. But it is769

possible to remove both by perturbing both linear cuts. Instead, Figure 5c illustrates770

a case where | P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = | P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx )| = 2 and P  \star 
1 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) \cap P  \star 

2 (\lambda \Omega \~\bfx \cap \Omega \=\bfx ) \not = \emptyset .771

In this case even the perturbation of both linear cuts is unable to remove all three772

solutions outside H. The only way to remove all three solutions outside H is through773

the addition of a further linear cut, but, of course, this leads to a more complex774

problem with one trust region constraint and three linear inequalities.775

Example 5.2. In our example, this refinement is finally able to close the gap776

and return the exact optimal value  - 4. In Figure 6 we report the result of the first777

perturbation of the linear cuts. Since only the second linear cut is active at x3, in778

this case the second linear cut is slightly perturbed and becomes equivalent to the779

tangent to H at the optimal solution ( - 
\surd 
2/2,

\surd 
2/2) of the original problem (1.1). It780

is interesting to note that the new optimal solution outside H, indicated by x4, lies781

in a different region with respect to the previous ones and is further from \partial H with782

respect to x2 and x3 (the reduction of \lambda reduces the penalization of points outside783

H). Such a solution is cut by the new linear inequality, obtained by a (not so small)784

perturbation of the first linear cut, displayed in Figure 7, together with the two new785

optimal solutions (x5 and z5), now corresponding to the two optimal solutions of786

problem (1.1).787

6. Computational experiments. In this section we report the computational788

results for the proposed bounds over the set of hard instances selected from the random789

ones generated in [12] and inspired by [18]. More precisely, in [12] 1000 random790
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(a) Three optimal solutions, none with both linear cuts
active.
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(b) Three optimal solutions, one with both linear cuts
active.
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(c) Four optimal solutions.

Fig. 5.
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Fig. 6. Perturbation of the second linear cut and the two new optimal solutions outside H
(x4) and in int(H) (z4), denoted by \circ and \times , respectively.
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Fig. 7. Perturbation of the first linear cut and the two optimal solutions outside H (x5) and
in int(H) (z5), denoted by \circ and \times , respectively.

instances were generated for each size n= 5,10,20. Some of these instances have been791

declared hard ones, namely those for which the bound obtained by adding SOC-RLT792

constraints was not exact. In particular, these are 38 instances with n= 5, 70 instances793

with n= 10, and 104 instances with n= 20. Such instances have been made available794

in GAMS, AMPL, and COCOUNT formats in [19]. We tested our bounds on such instances.795
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All tests have been performed on an Intel Core i7 running at 1.8GHz with 16GB of796

RAM. All bounds have been coded in MATLAB.797

We computed the following bounds:798799

\bullet LbDual, the dual Lagrangian bound computed through Algorithm 2.1 with800

input X =\BbbR n;801

\bullet LbOneCut, the bound obtained by adding a single linear cut and computed802

through Algorithm 2.1 with input X =\Omega \=x;803

\bullet LbOneAdj, the bound obtained by local adjustments of the added linear cut804

as indicated in Algorithm 4.1;805

\bullet LbTwoCut, the bound obtained by adding two linear cuts;806

\bullet LbTwoAdj, the bound obtained by adjusting the two linear cuts.807

According to what was done in [3, 12, 25], an instance is considered to be '`solved'`808

when the relative gap between the lower bound, say LB, and the upper bound, say809

UB, is not larger than 10 - 4, i.e.,810

UB  - LB

| UB| 
\leq 10 - 4.

We set UB equal to the lowest value obtained by running, after the addition of the811

first linear cut, two local searches for the original problem (1.1), one from the optimal812

solution z1(\lambda \Omega \=\bfx )\in int(H) of (3.9) returned at the end of Algorithm 2.1, and the other813

from an optimal solution of the same problem outside H. In Tables 2--4 we report the814

average and maximum relative gaps for each bound, and the average and maximum815

computing times for n = 5,10,20, respectively. In the last line of the tables we also816

report the same values for the SOC-RLT bound presented in [12], computed by Mosek.1817

Note that the average gap is taken only over the instances which were not solved (in818

the sense specified above) by a given bound. Moreover, the average computing time819

for bound LbTwoAdj is computed only over the instances (87 overall, as we will see)820

which are not solved by bound LbTwoCut.821

We remark that the bound LbTwoCut is computed by adding the first cut as in822

bound LbOneCut, i.e., the supporting hyperplane at \=x\in \partial H, and then adding a further823

linear cut through the projection of an optimal solution outsideH obtained when com-824

puting bound LbOneCut, i.e., point z2(\lambda min) returned by procedure DualLagrangian825

with input X = \Omega \=x. We could as well choose the adjusted cut computed by bound826

LbOneAdj as the first cut for bound LbTwoCut, but we observed that with this choice827

no improvement over LbOneAdj is obtained. This is related to what already observed828

Table 2
Average and maximum relative gaps and computing times (in seconds) for the instances with

n= 5.

Bound Average relative gap (\%) Max relative gap (\%) Average time Max time

\ttL \ttb \ttD \ttu \tta \ttl 0.90 \% 2.97 \% 0.013 0.015

\ttL \ttb \ttO \ttn \tte \ttC \ttu \ttt 0.31 \% 1.27 \% 0.035 0.040

\ttL \ttb \ttO \ttn \tte \ttA \ttd \ttj 0.130 \% 0.548 \% 0.266 0.388

\ttL \ttb \ttT \ttw \tto \ttC \ttu \ttt 0.07 \% 0.21 \% 0.089 0.108

\ttL \ttb \ttT \ttw \tto \ttA \ttd \ttj 0 \% 0 \% 0.146 0.281

\ttS \ttO \ttC -\ttR \ttL \ttT 0.131 \% 0.548 \% 1.435 2.080

1The authors are very grateful to Professor Samuel Burer for providing the MATLAB code for
the computation of the \ttS \ttO \ttC -\ttR \ttL \ttT bound.
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Table 3
Average and maximum relative gaps and computing times (in seconds) for the instances with

n= 10.

Bound Average relative gap (\%) Max relative gap (\%) Average time Max time

\ttL \ttb \ttD \ttu \tta \ttl 0.41 \% 1.57 \% 0.014 0.022

\ttL \ttb \ttO \ttn \tte \ttC \ttu \ttt 0.14 \% 0.81 \% 0.039 0.057

\ttL \ttb \ttO \ttn \tte \ttA \ttd \ttj 0.073 \% 0.478 \% 0.339 0.574

\ttL \ttb \ttT \ttw \tto \ttC \ttu \ttt 0.05 \% 0.24 \% 0.101 0.173

\ttL \ttb \ttT \ttw \tto \ttA \ttd \ttj 0 \% 0 \% 0.197 0.670

\ttS \ttO \ttC -\ttR \ttL \ttT 0.073 \% 0.474\% 1.228 2.898

Table 4
Average and maximum relative gaps and computing times (in seconds) for the instances with

n= 20.

Bound Average relative gap (\%) Max relative gap (\%) Average time Max time

\ttL \ttb \ttD \ttu \tta \ttl 0.20 \% 0.59 \% 0.019 0.027

\ttL \ttb \ttO \ttn \tte \ttC \ttu \ttt 0.08 \% 0.29 \% 0.057 0.079

\ttL \ttb \ttO \ttn \tte \ttA \ttd \ttj 0.054 \% 0.166 \% 0.539 0.926

\ttL \ttb \ttT \ttw \tto \ttC \ttu \ttt 0.03 \% 0.09 \% 0.148 0.199

\ttL \ttb \ttT \ttw \tto \ttA \ttd \ttj 0.05 \% 0.05 \% 0.350 1.574

\ttS \ttO \ttC -\ttR \ttL \ttT 0.053 \% 0.166\% 2.266 3.983

in Figure 3: bound LbOneAdj cannot be improved any more when there are (at least)829

two optimal solutions outside H (besides the one in int(H)). Thus, the second cut830

is able to remove one of such optimal solutions but not the other, so that the bound831

cannot be improved. Similarly, for bound LbTwoAdj the two initial cuts are the ones832

computed for bound LbTwoCut.833

For what concerns the computing times, we observe that these are lower than834

those reported in [25] for the bound obtained by adding lifted-RLT cuts (around835

92s for an instance with n = 20). They are also lower than those reported in [3]836

for the bound obtained by adding KSOC cuts (up to 2s for n = 20 instances). For837

the sake of correctness, we point out that the computing times reported in those838

papers have been obtained with different processors. However, such processors have839

comparable performance with respect to the one employed for the computational840

experiments in this paper. In general, the proposed bounds are very cheap. Only841

for two instances with n = 20, LbTwoAdj required times above 1s (around 1.5s in842

both cases). Usually the computing times are (largely) below 1s. Both the dual843

Lagrangian bound and the bound obtained by a single linear cut are pretty cheap but844

with poorer performance in terms of relative gap. The bound obtained by Algorithm845

4.1 with a local adjustment of the linear cut is better than the two previous ones in846

terms of gap but is also more expensive (although still cheap). The bound LbTwoCut847

offers a good combination between quality and cheap computing time. But a more848

careful choice of the two linear cuts, through a local adjustment, improves the quality849

without compromising the computing times. This is confirmed by the results reported850

for LbTwoAdj. Although this bound is more expensive than the others, the additional851

search for adjusted linear cuts further increases the quality of the bound. In Table 5852

we report the number of solved instances for LbTwoCut and LbTwoAdj. According to853

what was reported in [3], the total number of unsolved instances out of the 212 hard854



SHARP AND FAST BOUNDS FOR CDT 29

Table 5
Number of solved instances for the bounds LbTwoCut and LbTwoAdj.

Bound n= 5 (out of 38) n= 10 (out of 70) n= 20 (out of 104)

\ttL \ttb \ttT \ttw \tto \ttC \ttu \ttt 14 41 70

\ttL \ttb \ttT \ttw \tto \ttA \ttd \ttj 38 70 103

Table 6
Minimum, average, and maximum PercDiff values, where PercDiff is defined in (6.1).

n Minimum Average Maximum

5  - 0.0020\% 0.0009 \% 0.0058 \%

10  - 0.0046 \%  - 0.0001 \% 0.0024 \%

20  - 0.0022 \%  - 0.0003 \% 0.0004 \%

instances is equal to the following: 133 for the bound proposed in [25] (18 with n= 5,855

49 with n= 10, and 66 with n= 20); 85 for the bound proposed in [3] (18 with n= 5,856

22 with n = 10, and 45 with n = 20); 56 by considering the best bound between the857

one in [25] and the one in [3] (10 with n = 5, 15 with n = 10, and 31 with n = 20).858

For bound LbTwoCut the total number of unsolved instances reduces to 87 (24, 29,859

and 34 for n = 5, n = 10, and n = 20, respectively). Finally, for bound LbTwoAdj860

we have the remarkable outcome that there is just one unsolved instance (namely,861

instance\.20\.628). For the sake of correctness, we should warn that the value UB in [3,862

25] is not computed by running two local searches as done in this paper. It is instead863

computed from the final solution of the relaxed problem, so that it could be slightly864

worse and justify the larger number of unsolved instances. All the same, the quality865

of the proposed bounds appears to be quite good.866

We still need to compare our bounds with the SOC-RLT bound (last line in Ta-867

bles 2--4). In terms of computing times we notice that both the average and the868

maximum computing times of the SOC-RLT bound are larger than those of all the pro-869

posed bounds. But we believe that the most interesting observation is that, in terms870

of average and maximum gap, the SOC-RLT bound is almost identical to the LbOneAdj871

bound. In order to better investigate the relation between the two bounds, in Table 6872

we report the minimum, average, and maximum percentages difference between the873

two bounds, i.e., the quantity874

(6.1) PercDiff = 100 \ast LbOneAdj - SOC - RLT

| LbOneAdj| 
\%.

We notice that the difference is sometimes positive and sometimes negative, suggesting875

that none of the two bounds dominate the other. But the differences are also so small876

(below the tolerance value under which an instance is declared to be `'solved`' by a877

given bound) that they could also be numerical differences due to the tolerance values878

employed in the solvers. We believe that an interesting question for future research879

is to establish whether these two bounds are, in fact, equivalent, which would lead to880

a new interpretation of the SOC-RLT bound proposed in [12].881

6.1. Investigating the hardest instance. As a final experiment, we investi-882

gate the behavior of bound LbTwoAdj over the hardest instance with n= 20, the one883
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for which the relative error is above 10 - 4. For this instance, at the last iteration884

we recorded the following objective function values, corresponding to values of local885

minimizers of problem (5.1), which certainly include the global minimizer(s) of such886

a problem:887888

\bullet the value at the optimal solution of problem (5.1) belonging to int(H);889

\bullet the value at a globally optimal solution of the trust region problem obtained890

by fixing in problem (5.1) the first linear cut to an equality, in case such891

solution fulfills the second linear cut, or, alternatively, the value at the local892

and nonglobal solution of the same problem, in case such solution exists and893

fulfills the second linear cut (if the global minimizer does not fulfill the second894

linear cut and the local and nonglobal minimizer does not exist or does not895

fulfill the second linear cut, then the value is left undefined);896

\bullet the same value as above but after fixing the second linear cut to an equality897

in problem (5.1);898

\bullet the value at a globally optimal solution of the trust region problem obtained899

by fixing both cuts to equalities in problem (5.1).900

Note that two of the four values must be equal. In particular, one of the two901

equal values is always the first one, attained in int(H). But for the hardest instance902

we observed that all four values are very close to each other and all of them are lower903

than the UB value. Thus, it appears that for this instance a situation like the one904

displayed in Figure 5c occurs. In this case even the perturbation of both linear cuts905

is unable to remove all of the three solutions outside H.906

7. Conclusions. In this paper we discussed the CDT problem. First, we derived907

some theoretical results for a class of problems which includes the CDT problem as908

a special case. Then, from the theory developed for such class, we have rederived a909

necessary and sufficient condition for the exactness of the Shor relaxation and of the910

equivalent dual Lagrangian bound for the CDT problem. The condition is based on911

the existence of multiple solutions for a Lagrangian relaxation. Based on such con-912

dition, we proposed to strengthen the dual Lagrangian bound by adding one or two913

linear cuts. These cuts are based on supporting hyperplanes of one of the two qua-914

dratic constraints, and they are, thus, redundant for the original CDT problem (1.1).915

However, the cuts are not redundant for the Lagrangian relaxation and their addition916

allows one to improve the bound. We ran different computational experiments over917

the 212 hard test instances selected from the three thousand ones randomly gener-918

ated in [12], reporting gaps and computing times. We have shown that the bounds919

are computationally cheap and are quite effective. In particular, one of them, based920

on the addition of two linear cuts, is able to solve all but one of the hard instances.921

We have also investigated more in detail such hardest instance for which the bound922

is not exact (though quite close to the optimal value). An interesting topic for fu-923

ture research could be that of establishing the relations between the bounds proposed924

in this work and those presented in the recent literature (in particular, as already925

mentioned, it would be interesting to establish whether bound LbOneAdj is equivalent926

to the SOC-RLT bound introduced in [12]). Moreover, it would also be interesting to927

develop procedures which are able to generate CDT instances for which the bound928

LbTwoAdj is unable to return the optimal value. Finally, it would be interesting to929

see if the results presented in this work could be extended to QP problems with more AQ5930
than two constraints. Some preliminary studies, which will appear elsewhere, show931

that for such problems it is sometimes possible to improve the dual Lagrangian bound932

with the addition of a linear cut, but it may be hard to identify it and it is not even933

guaranteed to exist.934
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