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Abstract Physics‐informed neural networks (PINNs) are gaining attention as an alternative approach to
solve scientific problems governed by differential equations. This work aims at assessing the effectiveness of
PINNs to solve a set of partial differential equations for which this method has never been considered, namely
the augmented shallow water equations (SWEs) with topography. Differently from traditional SWEs, the bed
elevation is considered as an additional conserved variable, and therefore one more equation expressing the
fixed‐bed condition is included in the system. This approach allows the PINN model to leverage automatic
differentiation to compute the bed slopes by learning the topographical information during training. PINNs are
here tested for different one‐dimensional cases with non‐flat topography, and results are compared with
analytical solutions. Though some limitations can be highlighted, PINNs show a good accuracy for the depth
and velocity predictions even in the presence of non‐horizontal bottom. The solution of the augmented system of
SWEs can therefore be regarded as a suitable alternative strategy to deal with flows over complex topography
using PINNs, also in view of future extensions to realistic problems.

1. Introduction
The simulation of flood inundation events is an essential tool for practical purposes, such as hazard assessments,
design of mitigation measures, and flood forecasting. The different solution strategies developed in the past
decades are essentially based on the Shallow Water Equations (SWEs), which express the conservation of mass
and momentum of free‐surface flows (Teng et al., 2017). The long‐standing development of physics‐based nu-
merical methods have led to robust and accurate models that allow large‐scale applications with affordable
computational time thanks to high performance computing (e.g., Dazzi et al., 2021; Ming et al., 2020; Morales‐
Hernández et al., 2021; Vacondio et al., 2014) or advanced numerical techniques (e.g., Ferrari et al., 2019; Özgen
et al., 2016; Shamkhalchian & De Almeida, 2021; Zokagoa & Soulaïmani, 2018). However, the application of
physics‐based numerical model to specific problems such as data assimilation and inverse modeling requires
using complex schemes and entails a substantial growth of computational time (e.g., Annis et al., 2022; Ferrari
et al., 2018; Pujol et al., 2022; Todaro et al., 2019).

A completely different approach is the use of data‐driven methods for hydraulic applications (Bomers &
Hulscher, 2023; Mosavi et al., 2018), such as machine‐learning algorithms (e.g., neural networks). In this case, a
“black box” model can be developed to predict one or more output variables based on some input variables; a data
set of input‐output observations is required to “train” the model, that is, to optimize its internal parameters for
minimizing the mismatch between observed and predicted output data. Once the model is trained, new predictions
are very fast, hence these models are often proposed as real‐time forecasting tools. However, in the training
process, the physical laws governing the phenomenon are neglected, which entails the risk of obtaining
unphysical predictions.

Recently, research efforts have been dedicated to the enhancement of data‐driven methods by enforcing physical
constraints during the training process (e.g., Magiera et al., 2020), which helps avoiding unrealistic solutions and
improving the predictive accuracy. One of the most promising approaches that combines physics‐based and
machine‐learning strategies is the use of Physics‐Informed Neural Networks (PINNs) (Raissi et al., 2019) to solve
Partial Differential Equations (PDEs) directly. In PINNs, a neural network takes the independent variables (space,
time) as input and provides the dependent variables of the PDEs (e.g., pressure, depth, velocity, etc.) as output.
For a specific problem, instead of using only already‐known labeled input and output data, the neural network is
trained to compute a solution that fulfills the governing equations and is coherent with given initial and boundary
conditions. Practically, the approximated solution is found by minimizing a loss function that embeds the PDEs
residuals computed in few collocation points in the space‐time domain, in addition to the residuals computed for
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the given initial and boundary conditions. The model can then provide the solution at any other point of the
domain. The main advantages of this method include the needlessness of a computational grid (making PINNs a
“meshless” method, Bihlo & Popovych, 2022), the possibility of integrating sparse observations in the training
process (e.g., Secci et al., 2024), and the suitability for both direct and inverse modeling (Raissi et al., 2019).
Drawbacks include the large computational cost (which however can be relieved resorting to GPU computations)
and the difficulty in achieving high accuracy (Jagtap et al., 2020). Many versions of PINNs (including advanced
or modified schemes) are currently investigated for systems of PDEs in different scientific applications (e.g.,
Cuomo et al., 2022; Karniadakis et al., 2021; Vadyala et al., 2022), but special attention is dedicated to the so-
lution of Euler and Navier‐Stokes equations for fluid dynamics problems (e.g., Jagtap et al., 2022; Mao
et al., 2020; Strelow et al., 2023).

From a physical point of view, the SWEs are the depth‐averaged version of Navier‐Stokes equations assuming a
hydrostatic pressure distribution and, from a mathematical point of view, they form a hyperbolic system of PDEs.
Therefore, PINNs are expected to solve SWEs as well, and preliminary attempts in this regard can be found in
recent works (e.g., Leiteritz et al., 2021; Mahesh et al., 2022). Cedillo et al. (2022) focused their analysis on one‐
dimensional (1D) steady state flows, which lead to simplified governing equations, and presented an interesting
application of PINNs to the inverse problem of estimating the roughness coefficient. Li et al. (2023) solved two‐
dimensional (2D) dam‐break problems with PINNs, but partial analytical solutions were used as prior‐known data
to help training the network, and topography was not considered. Feng et al. (2023) proposed PINNs as a strategy
to solve the 1D SWEs and underlined the feasibility of data assimilation using in situ and remote‐sensing ob-
servations. Although some simplifications were assumed to account for complex river geometries (Cedillo
et al., 2022), these works have shown promising results. Even if it is recognized that PINNs cannot currently
replace classical numerical methods due to their lower efficiency and accuracy, some practical applications can be
envisaged, such as their use as sub‐grid models for the local refinement of the physics‐based solution in large‐
scale river models (Feng et al., 2023). Moreover, very recently, Qi et al. (2024) used PINNs to solve the 2D‐
SWEs and showed a promising application to a realistic river flood case with topography.

Compared to other types of PDEs in fluid dynamics, some specific problems should be handled when considering
SWEs. One is the possible presence of dry regions and the ensuing necessity of enforcing the depth‐positivity
condition to avoid unphysical solutions (depth ≥ 0). Another one is the presence of source terms in the PDEs
(mainly related to topography and friction) in case of real applications. While the friction source term is usually
expressed with empirical laws that depend on hydraulic variables (e.g., Chézy‐Manning formula) and is not
expected to be particularly challenging for PINNs, bed slope source terms should be treated more carefully. In
case of real topographies, the bottom elevation can be highly variable in space and include discontinuities that
largely affect the flow field. This latter issue has not been investigated in previous works, except for the recent
study by Qi et al. (2024).

In mesh‐based methods for SWEs (e.g., finite volumes (FV)), bed elevations are provided for each computational
cell in the domain among the input data; then, usually, various discretization techniques are applied to evaluate the
bed slope source term during the computations (e.g., Aureli et al., 2008; Liang & Marche, 2009; Murillo &
García‐Navarro, 2010). Another approach sometimes adopted by FV methods is the re‐writing of SWEs as an
augmented or generalized PDE system (i.e., with the addition of a fictitious equation stating that the bottom
elevation, treated as an additional variable, is constant in time) and the development of ad‐hoc augmented solvers
(e.g., Bernetti et al., 2008; Cozzolino et al., 2011; Dumbser & Balsara, 2016; Rosatti & Begnudelli, 2010). This
method is less common than standard source term discretization techniques because, even if it is more accurate
and robust near bottom discontinuities, it entails greater mathematical complexity and longer computational
times. In PINNs, the strategies to account for source terms can be quite different. In general, constants and other
data appearing in the equations (e.g., roughness coefficients) are usually provided as a set of additional input
parameters, which can be accessed during PINN training to evaluate PDE residuals (Qi et al., 2024). Focusing on
the bed slope source term, however, it should be considered that topography is usually composed of spatially
variable bed elevation values; therefore, it is necessary to implement an efficient way to evaluate the local bed
slope in the source term for each collocation point where PDE residuals are computed, starting from the corre-
sponding bed elevation at the given spatial coordinate. A possible strategy is the pre‐processing of bed elevation
gradients with traditional numerical methods (e.g., finite differences, as in Qi et al. (2024)). In this work, a
completely alternative approach is explored, which is inspired by the idea of system augmentation of FVmethods.
In short, the bed elevation is here treated as an additional output variable that the PINN model is trained to predict
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and that is provided together with other initial conditions; moreover, a physical constraint stating its stationarity
(time derivative equal to zero) is added to the loss function. In this way, PINNs can leverage automatic differ-
entiation to avoid pre‐processing steps and compute the bed slope source term directly within the same network
that handles the other variables, and somehow “learn” the topographical information during training. Practically,
this approach corresponds to setting up a PINN model that solves the augmented system of SWEs instead of the
standard SWEs.

Accordingly, this work aims at assessing the effectiveness of PINNs in solving the SWEs with topography
adopting the augmented formulation. As a first attempt of applying PINNs in this context, the analysis is restricted
to the one‐dimensional (1D) case (one spatial variable only) and to synthetic topographies with no friction.
Although this may appear a simplification, a few test cases that are quite challenging for classical numerical
methods fall in this category and are included in the paper (e.g., Riemann problem on a bottom step; oscillating
planar surface on a parabolic basin). The availability of analytical solutions for these tests is fundamental to
perform a rigorous validation. Finally, the potentiality of PINNs to embed sparse observations in addition to
physical constraints is shown for one of the tests without analytical solution.

The paper is structured as follows. The governing equations, the PINNmethod, the test cases, and the model setup
are described in Section 2. Results are presented in Section 3, while Sections 4 and 5 are dedicated to discussion
and conclusions, respectively.

2. Methods
2.1. Augmented System of Shallow Water Equations (SWEs)

The 1D augmented system of SWEs can be expressed as follows:

∂h
∂t
+
∂uh
∂x

= 0 (1a)

∂uh
∂t

+
∂
∂x
(u2h +

1
2
gh2) + gh

∂z
∂x
+ ghSf = 0 (1b)

∂z
∂t
= 0 (1c)

where x is the spatial coordinate, t is the time, h is the water depth, u is the velocity, z is the bed elevation (above
datum), g is the acceleration due to gravity, and Sf is the friction slope (expressed for example with the Chézy‐
Manning formula). In the following test cases, a frictionless bottom is assumed (Sf = 0). Equations 1a and 1b
represent the standard SWEs where z appears only in the bed slope source term (third term in Equation 1b), while
Equation 1c is the “fictitious” equation expressing the fixed‐bed condition that is added to the system to include z
as an additional conserved variable. For a detailed treatment of the mathematical properties of the augmented
system and of the solution strategies with traditional numerical techniques, which are beyond the scope of this
paper, the reader is referred to the literature (e.g., Bernetti et al., 2008; Cozzolino et al., 2011; Dumbser &
Balsara, 2016; Rosatti & Begnudelli, 2010).

2.2. Physics‐Informed Neural Networks (PINNs)

2.2.1. Introduction to PINNs

In this Section, the general idea of PINNs is explained. Let us consider a generic physical problem, defined for
time coordinate t ∈ [t0, tf] and space coordinate x ∈ [x0, xf], which is governed by a system of neq PDEs with nvar
dependent variables (indicated by U), and with given initial conditions ICs (i.e., known variables for t = t0 and
x ∈ [x0, xf]) and boundary conditions BCs (i.e., prescribed variables/functions at x= x0 and at x= xf for t ∈ [t0, tf]).
Each PDE in the system can be expressed as fj(x, t, U) = 0 with j = 1, …, neq, where fi contains differential
operators, and all terms are on the LHS. Notice that a 1D problem (only x as spatial coordinate) is considered here
for the sake of simplicity, but PINNs are also applicable to multi‐dimensional problems.
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The PINNmodel is essentially a feed‐forward deep neural network (DNN) that is built and trained to approximate
the solution of the above problem. The independent variables (x, t) are fed to the input layer of the network,
processed by neurons in the hidden layers, and finally the output layer provides a prediction Û of the dependent
variables. The trainable parameters of the model (i.e., the weights and biases of each neuron) can be collectively
indicated by θ. In summary, the PINN model (generically indicated by FPINN) can be expressed as
Û = FPINN(x, t, θ) . For more detailed explanations about the architecture of DNNs, the reader is referred to the
wide literature on the topic (e.g., Haykin, 2009).

The training phase of a DNN consists of the optimization of parameters θ by minimizing a suitable loss function
that penalizes deviations of the predicted values Û from the true solution U. Training of DNNs is based on the
back‐propagation algorithm (Haykin, 2009) and can be performed using different optimizers, such as stochastic
gradient descent or Adam (Kingma & Ba, 2014). The main difference that distinguishes PINNs from standard
DNNs is the loss function L, which here embeds the physical constraints coming from the PDEs, ICs, and BCs,
and can be expressed as follows:

L =∑neq
j=1 (wPDE, jLPDE, j) + wICLIC + wBCLBC (2)

where wPDE, wIC, and wBC are weights used to balance the relative importance of the different loss terms LPDE, j,
LIC, and LBC:

LPDE, j =
1

Nint
∑

Nint
i=1 [fj ( xi, ti, Û(xi, ti, θ))]

2
(3a)

LIC =
1

Nic
∑

nvar
k=1∑

Nic

i=1 [Ûk (xi, t0, θ) − Uk (xi, t0)]
2

(3b)

LBC =
1

Nbc
∑

nvar
k=1{∑

Nbc

i=1[Ûk (x0, ti, θ) − Uk (x0, ti)]
2
+∑

Nbc

i=1[Ûk ( xf , ti, θ) − Uk ( xf , ti)]
2
} (3c)

In particular, the lossLPDE, j penalizes the residuals of the jth governing equation (i.e., deviations from zero, which
indicate that the physical law is not respected), computed in Nint collocation points inside the space‐time domain,
while the loss terms LIC and LBC penalize deviations from the prescribed values of initial and boundary con-
ditions, computed on a discrete set of points Nic and Nbc. Notice that Equation 3c can be easily modified to
consider prescribed functions for the boundary values (possibly including differential operators), instead of
prescribed variables. As regards the collocation points, their location is usually random, although recent works
suggest that the solution accuracy might improve if points are clustered close to high‐gradient regions (e.g., Mao
et al., 2020). A schematic illustration of collocation points in the space‐time domain is shown in Figure 1a, while
Figure 1b schematizes the PINN model with the input/output variables considered in this work (see
Section 2.2.2).

Figure 1. Sketch of (a) collocation points in the space‐time domain, and (b) PINN model.
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The PDE residuals evaluation requires partial derivatives to be computed. For this task, PINNs leverage the
automatic differentiation (AD) technique (Baydin et al., 2018), which basically applies the chain rule to evaluate
the derivatives of composite functions, interpreted as a combination of elementary operations for which the
derivative is known. In PINNs, AD is exploited to compute the temporal and spatial derivatives of variables and
functions that appear within the PDEs (i.e., the derivatives with respect to the input values x, t) directly in the
computational graph. Compared to numerical differentiation, AD is not affected by truncation or discretization
errors and produces exact derivatives up to finite‐precision error.

One of the main advantages of PINNs is the possibility of adding different constraints to the loss function,
depending on the problem at hand. The most notable example is the inclusion of sparse observations, if available,
to condition the training process and obtain more reliable predictions. To this purpose, Equation 2 can be enriched
with a loss term Lobs, characterized by its own loss weight wobs, which penalizes deviations from observed data at
specific points (Nobs) in the space‐time domain for which measurements of the output variables are available.

It should be stressed that, whenever initial and/or boundary conditions are modified (or the spatio‐temporal
domain is extended), the PINN model needs to be trained again since it is not transferrable. For this reason,
the PINN training can be considered similar to running a simulation with an alternative numerical method for the
solution of the physics‐based PDEs.

2.2.2. The PINN Model Used for the Augmented SWEs

The previous Section provided an overview of a generic PINN model, while this Section describes the specific
features of the PINN model here adopted to solve the augmented 1D‐SWEs (Equation 1).

In this work, the model is created in Python using NVIDIA Modulus framework (NVIDIA, 2022), previously
known as SimNET (Hennigh et al., 2021), which builds on the Pytorch package. It has the advantage of being
optimized for GPUs, therefore reducing the computational time for training. Compared to other PINN frame-
works that adopt the summation of residuals (Equation 3), Modulus adopts an integral formulation of losses,
which is then discretized using Monte Carlo integration (Hennigh et al., 2021).

In this PINNmodel for augmented SWEs, the input variables are space x and time t, while the output variables are
water depth h, velocity u, and bed elevation z (Figure 1b). The domain is t ∈ [t0, tf] and x ∈ [x0, xf]. Given that z is a
function of x in the computational graph, the bed slope in the source term (∂z/∂x) can be automatically evaluated
with AD during training.

The initial conditions are set by providing the known values of the three dependent variables along x (in a subset
of NIC points) at t = t0, thus including the topographical information in the z variable. Upstream and downstream
boundary conditions are set along t (in a subset of NBC points) at x= x0 and at x= xf. Notice that time‐varying BCs
are not considered in the current test cases (listed in Section 2.3), and that all test cases adopt prescribed values on
the boundaries except one (steady‐state flow), for which the value of the derivatives is also imposed (see
Section 2.4).

In addition to the loss terms related to ICs, BCs, and the three PDEs, two additional constraints are added to
enforce depth positivity (h ≥ 0) everywhere, and null velocity where the bed is dry. To this end, two new
equations that include the Heaviside step function are used:

fh pos = h − h ·Heaviside(h + ϵ) (4a)

fu dry = u − u ·Heaviside(h + ϵ) (4b)

where ϵ is a small threshold set equal to 10− 12. These conditions are automatically fulfilled at wet locations. These
constraints are evaluated at the same collocation points used for the PDEs residuals, thus generating two addi-
tional loss terms:

Lh pos =
1

Nint
∑

Nint
i=1 [fh pos ( xi, ti, Û(xi, ti, θ) )]

2
(5a)
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Lu dry =
1

Nint
∑

Nint
i=1 [fu dry ( xi, ti, Û(xi, ti, θ))]

2
(5b)

This strategy has no influence in wet regions, but makes the PINNmodel significantly penalize negative depths in
dry regions, even if it may slightly complicate the training process because it also requires mass and momentum
conservation to be fulfilled in these regions. However, in this way, the PINN model is allowed to learn the
distribution of wet/dry regions (which are not known a priori) during training. Note that alternative approaches,
such as setting the loss to zero when depth is negative (Qi et al., 2024) or using the logarithm as an output variable
(Strelow et al., 2023), have been recently proposed to deal with non‐negative variables such as depth and pressure.

As regards the loss weights, different values, indicated bywmm andwz fixed, are assigned to the loss of the first two
equations of the SWE system (mass and momentum conservation) and to the loss of the “fixed bed” equation,
respectively. Moreover, a loss weight wh pos is assigned to the depth‐positivity conditions (Equation 5). Finally,
as regards the initial and boundary conditions, a loss weight wz is dedicated to the residuals of z, higher than the
loss weights wIC and wBC adopted for the residuals of h and u on ICs and BCs, respectively. The assignment of
different weights to different loss terms guarantees more flexibility in the model setup depending on the test case.
In particular, for augmented SWEs, the deviations from the fixed‐bed condition and from the initial bed elevations
can be penalized harder than other residuals, in order to ensure that the bed elevation is correctly learned from ICs
and does not evolve in time. In summary, the loss is computed as follows:

L = wmm (LPDE,mass + LPDE,mom) + wz fixedLPDE, z fixed + wICLIC, h, u + wBCLBC, h, u + wz (LIC, z + LBC, z)

+ wh pos (Lh pos + Lu dry) (6)

Finally, for tests with data assimilation, the loss function of Equation 6 includes an additional term wobsLobs that
penalizes deviations from observed data available at a discrete number of x − t points.

The setup of model hyperparameters is discussed in Section 2.4.

2.3. Test Cases

Different test cases are considered for assessing the model accuracy, which are summarized in Table 1. All cases
are frictionless. In the following equations, water depths h, bed elevations z and spatial coordinates x are
expressed in m, temporal coordinates t in s, and velocities u in m/s.

2.3.1. Topography

Four types of topography are analyzed in this work, for which both still‐water tests and steady‐ or unsteady‐flow
tests are defined. The topographies will be graphically depicted in the figures of Section 3 alongside the results.

Table 1
List of Test Cases

Test name Bottom Flow Exact solution Spatial domain (m) Temporal domain (s) Description

SW1 Flat Static Yes − 6 ≤ x ≤ 6 0 ≤ t ≤ 1 Still water on a flat bed

SW2 Bump Static Yes − 10 ≤ x ≤ 10 0 ≤ t ≤ 10 Still water on a bump

SW3 Step Static Yes − 6 ≤ x ≤ 6 0 ≤ t ≤ 1 Still water on a bottom step

SW4 Parabola Static Yes − 2 ≤ x ≤ 2 0 ≤ t ≤ 1 Still water on a parabolic bed

SF1 Bump Steady Yes − 10 ≤ x ≤ 10 0 ≤ t ≤ 100 Subcritical flow over bump

UF1 Flat Unsteady No* − 6 ≤ x ≤ 6 0 ≤ t ≤ 1 Small perturbation case

UF2 Flat Unsteady Yes − 6 ≤ x ≤ 6 0 ≤ t ≤ 1 Dam break

UF3 Step Unsteady Yes − 6 ≤ x ≤ 6 0 ≤ t ≤ 1 Dam break with step

UF4 Parabola Unsteady Yes − 2 ≤ x ≤ 2 0 ≤ t ≤ 2.006 Thacker 1D

Note. *A reference solution was obtained from a finite‐volume solver with very high resolution.
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The first one is the simple flat bottom with equation z(x) = 0.

Then, the flat bottom with a bump in the middle (e.g., Delestre et al., 2013) is considered, where the bed elevation
is described by the following equation:

z(x) =
⎧⎨

⎩

0.2 − 0.05x2 if − 2< x < 2

0 elsewhere
(7)

Another challenging topography is the case of the positive bottom step, with the following expression for bed
elevation:

z(x) =
⎧⎪⎪⎨

⎪⎪⎩

0 if x < 0

1 if x ≥ 0
(8)

The last topography is for the 1D Thacker problem (Delestre et al., 2013), where the bed elevation is a parabola
with equation:

z(x) = h0[(
x
a
)
2
− 1] (9)

where h0 = 0.5 and a = 1.

2.3.2. Still‐Water Tests

A set of four still‐water tests (SW1‐SW4) is first considered in order to check the ability of the PINN‐SWE to
replicate the maintenance of a static solution in time. Temporal and spatial domains are specified in Table 1. For
validation, the results of PINN‐SWEs for test cases SW1‐SW4 are compared with the analytical solution, that is,
the preservation of the still‐water condition (set as ICs) in time. Notice that, for all cases, BCs are the constant
values of depth and velocity at the upstream and downstream end of the domain.

The first test (SW1) is characterized by a horizontal bed and by a constant water depth h(x) = 1 m and a null
velocity u(x) = 0.

Then, the three types of non‐horizontal bottom are analyzed. First (SW2), the bump topography (Equation 7) is
selected, with initial conditions h(x) + z(x) = 0.5 m and u(x) = 0.

Case SW3 concerns still water on a positive bottom step (Equation 8), with initial conditions h(x)+ z(x)= 2m and
u(x) = 0.

Finally, still water in a parabolic basin (Equation 9) is considered for case SW4. The initial conditions are
h(x) + z(x) = 0 (only where h > 0, i.e., − 1 ≤ x ≤ 1) and u(x) = 0.

2.3.3. Steady and Unsteady Flow Tests

One steady flow example (SF1) is considered next, taken from a very common test case for validating numerical
models, that is, the simulation of the steady flow over a bump (Equation 7). A constant specific discharge
qu = 4.42 m

2/s at the upstream section and water depth hd = 2 m at the downstream outlet are set as boundary
conditions. Initial conditions are h(x)+ z(x)= 2 m and u(x)= qu /h(x). The steady state is checked at t= 100 s. The
analytical solution for the water depth h(x) can be obtained by solving the following equation (Delestre
et al., 2013):

h(x)3 + [z(x) −
q2u
2gh2d

− hd] h(x)2 +
q2u
2g
= 0 (10)
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whereas the velocity can be simply computed as u(x) = qu /h(x).

The four examples of unsteady flows (UF1‐UF4) specified in Table 1 are then considered. For all cases, BCs are
constant values of depth and velocity, equal to those provided by initial conditions, at the inlet and outlet of the
domain.

The first case (UF1) concerns the propagation of a small perturbation on a horizontal frictionless bottom. Initial
conditions are:

h(x) = 0.8 + 0.2 exp(−
x2

0.4
) and u(x) = 0 (11)

The solution of this problem cannot be determined analytically; therefore, a reference solution, considered ac-
curate enough for validation purposes, was obtained from a very high‐resolution simulation performed using a
standard FV numerical scheme with a HLL approximate Riemann solver (Toro, 2001). The domain was dis-
cretized with cells of size 0.01 m, and the Courant number was set equal to 0.8. Case UF1 is also selected to
provide an example concerning the assimilation of sparse observations into the PINN model training. To this end,
a limited number of depth values extracted from the FV solution at random spatial locations and at the final time
(t = 1 s) are used to represent “observed data” for the analyses. Velocity observations are not included, because
measurements of this variable are seldom available in the practice.

Case UF2 is a classic dam‐break problem on a horizontal bed with initial conditions:

h(x) = {
2 if x < 0

1 if x ≥ 0
and u(x) = 0 (12)

for which the analytical solution can be obtained from an exact Riemann solver (Toro, 2001).

Moving on to non‐flat topography, the next test case (UF3) is a dam‐break problem on a positive bottom step
(Equation 8), whose analytical solution was retrieved from the literature (Rougier, 2022). Initial conditions are:

h(x) = {
3 if x < 0

1 if x ≥ 0
and u(x) = 0 (13)

Finally, another challenging test case (UF4), often used for the validation of numerical models, is considered,
namely the 1D Thacker problem (Thacker, 1981) concerning the oscillation of a planar surface on a parabolic
basin (Equation 9) without friction. The analytical solution is:

h(x, t) = max(0; − h0[
1
a2
(x + 0.5 cos(ωt))2 − 1]) (14a)

u(x, t) = 0.5ω sin(ωt) where h(x, t)> 0 (14b)

where ω =
̅̅̅̅̅̅̅̅̅̅
2gh0

√
/a, and h0 and a are defined as in Equation 9. The initial conditions can be obtained from

Equation 14 by setting t= 0. The temporal domain is extended up to one period (T= 2π/ω), that is, approximately
2.006 s.

2.4. Model Setup

A fully connected neural network is adopted for all tests, including 7 hidden layers with 300 neurons each, while
the activation function is tanh. The optimization algorithm is Adam, and the learning rate decays exponentially
from 10− 3 to 10− 6 after 30’000 epochs. The following values are assigned to the loss weights: wmm = 1;
wz fixed = 100; wIC = 10; wBC = 1; wz = 100; wh pos = 10. Moreover, the collocation points are randomly
distributed, and their number is as follows: Nint = 1,000; Nic = 200; Nbc = 200 (100 for each boundary). Notice
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that the choice of using a random distribution of collocations points avoids the necessity of pre‐defining the
locations of points in the space‐time domain, making PINN a completely meshless method.

This configuration (defined “base” in the following) was derived from a preliminary grid‐search optimization of
the hyperparameters based on case UF2, which is described in detail of the Supporting Information S1 (Text S1).
In particular, it should be underlined that increasing the order of magnitude of loss weights wz and wz fixed, related
to the topographical constraints, is useful to improve the accuracy of results. The grid‐search procedure is quite
burdensome; therefore, the same hyperparameters were at first applied to all the other test cases. Then, if un-
satisfactory results were obtained for specific test cases, modifications were made to the hyperparameter
configuration by trial‐and‐error. In particular, the following tests required additional fine‐tuning:

• Test SF1. For this case, the ICs are just a starting point to reach the steady state. Therefore, their importance on
the total loss is reduced by setting wIC = 1. The weights wz fixed and wz are also reduced to 10, and the number
of collocation points and epochs is doubled to increase the accuracy (Nint = 2,000, Nic = 400, Nbc = 200 for
each boundary; 60’000 epochs). Moreover, the BCs are modified by setting the conditions uh= qu and ∂uh

∂x = 0
upstream, and h = hd and ∂h∂x = 0 downstream, and the BC losses are modified accordingly.

• Test UF4. A much larger number of collocation points is required (Nint = 12’000, Nic = 2,500, Nbc = 1,000,
with 500 for each boundary). Moreover, the wz and wz fixed are reduced to 10, and the learning rate is set to
decay from 10− 3 to 10− 5 after 60’000 epochs.

As anticipated in the previous Section, test UF1 is also used to provide an example of assimilation of sparse
observations. Observed water depths are extracted from the FV reference solution at the final time t = 1 s and at
Nobs random spatial coordinates along x. With the purpose of representing a case for which only very few ob-
servations are available, the value of Nobs is set to 10. The loss weight wobs can be set to higher or lower values
according to the uncertainty associated with measured data. These considerations are beyond the scope of this
paper. In this example, given the limited number of observations, the value wobs = 10 is assumed. These tests are
performed in the following two configurations:

• OBS_A: the hyperparameters are set as in the case UF1 without observations (“base” configuration);
• OBS_B: the number of collocation points and epochs is halved compared to the “base” configuration.

2.5. Error Metrics

For all tests and configurations, the PINN model is trained with the full data set of unlabeled collocation points
(Nint) along with the labeled points of ICs and BCs (Nic, Nbc), and the loss to minimize is reported in Equation 6.
Once the model is trained, its predictive accuracy must be evaluated: this analysis is performed by comparing the
PINN predictions with the true values obtained from the analytical solution at selected points in the space‐time
domain (not used for training the PINN models).

To this end, the output variables are inferred from each trained PINNmodel at points (x, t) where x is a vector ofN
equally spaced spatial coordinates that are used to discretize the spatial domain [x0, xf], and t is a pre‐defined time
coordinate. Evaluating the solution at this subset of points corresponds to extracting the longitudinal profile of
each output variable at a selected time, thus providing results in a form that can be easily compared with analytical
or numerical solutions. For all test cases, N is assumed equal to 1,000. For still water and steady flow cases, the
longitudinal profiles are analyzed at the final time (t = tf), while for unsteady flow cases the errors are evaluated
for the longitudinal profiles at five selected times (t = 0, 0.25tf, 0.5tf, 0.75tf, tf) to show the temporal evolution of
the phenomenon.

The error metrics here used are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE),
defined as follows:

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

N
i=1( ĥi − hi)

2
√

(15a)

MAE =
1
N
∑

N
i=1

⃒
⃒ĥi − hi

⃒
⃒ (15b)
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where N is the discrete number of values used to evaluate the error, ĥ and h refer to the predicted and true value of
the generic variable for a given (x, t) point (here the depth h, but analogous expressions can be written for the
velocity u or the bed elevation z). The metrics are here computed for the longitudinal profile of each output
variable.

3. Results
In this Section, results of PINNs for augmented SWEs (PINN‐augmSWE) are presented. Sections 3.1–3.3 report
the results for all the test cases listed in Table 1. Sections 3.4 and 3.5 show the comparison with the results
obtained from PINNs solving non‐augmented SWEs and from FV schemes, for one test case. Section 3.6 is
dedicated to an example of data assimilation. As anticipated, results are not represented in the space‐time domain,
but the output variables (depth, velocity, bed elevation) are predicted in terms of longitudinal profiles at a pre‐
defined time t. Notice that the bed elevation z is also inferred by the PINN model.

For all cases, training process was performed with a NVIDIA A100 GPU device. Training times were in the order
of 7–8 min for tests with “base” configuration (Nint = 1,000).

3.1. Still Water Tests

The results of test cases SW1‐SW4 are reported in this Section. For all cases, the profiles are extracted at t = t f
(final time), and the preservation of the lake‐at‐rest condition is checked. Values of RMSE and MAE computed
for the N points along the profiles are reported in Table 2.

For test SW1 (still water on a horizontal bottom), PINNs proposed in this paper can predict the depth profile
(Figure 2a) with MAE and RMSE values as low as 2.2E− 4 and 2.6E− 4, respectively (Table 2). The velocity
errors are up to one order of magnitude greater (1E− 3) at some locations (Figure 2b), but the RMSE and MAE
remain in the order of 6E− 4. Finally, the horizontal bed elevation profile is predicted more accurately (Figure 2c),
with RMSE and MAE in the order of 1E− 5. In general, the slight deviations from the exact solution do not show
any significant trend, that is, neither systematic under‐ or over‐estimation, nor localization of large errors at
specific spatial coordinates.

Table 2
Still‐Water and Steady‐Flow Tests

Test name MAE h (m) RMSE h (m) MAE u (m) RMSE u (m) MAE z (m) RMSE z (m)

SW1 2.2E− 04 2.6E− 04 6.1E− 04 6.9E− 04 3.9E− 05 5.2E− 05

SW2 3.9E− 03 5.7E− 03 5.2E− 03 5.9E− 03 3.2E− 03 5.2E− 03

SW3 5.9E− 04 2.9E− 03 9.2E− 04 1.2E− 03 3.6E− 04 2.8E− 03

SW4 3.2E− 03 4.7E− 03 4.1E− 03 4.9E− 03 1.4E− 03 1.8E− 03

SF1 5.1E− 03 1.0E− 02 6.3E− 03 1.3E− 02 1.4E− 03 1.8E− 03

Note. Error metrics (MAE and RMSE) of PINN‐augmSWE results compared to the analytical solution, for depth, velocity
and bed elevation profiles extracted at the final time.

Figure 2. Case SW1: depth, velocity, bed, and water surface elevation profiles at the final time. Comparison between analytical solution and PINN‐augmSWE results.
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Moving to tests with non‐horizontal bottom, Figure 3 shows the profiles for case SW2 (still water on a horizontal
bottom with a bump). The error metrics (RMSE andMAE) of depth, velocity and bed elevation are all in the order
of 1E− 3 (Table 2). However, profiles show that PINN results are affected by larger errors close to the slope
changes (just upstream and downstream of the bump), where the depth is locally overestimated (Figure 3a) and
the bed elevation is locally underestimated (Figure 3c). However, their summation (water surface elevation) is
approximately correct (Figure 3d) and the velocity profile is not locally affected (Figure 3b).

A similar problem can be observed in Figure 4, concerning case SW3 (still water on a bottom step). While no
significant deviations can be observed in the portions of the channel with horizontal bottom, depth is slightly
overestimated just upstream of the step and underestimated just downstream (Figure 4a), while the bed elevation
locally shows an opposite trend (Figure 4c) and, therefore, the water surface elevation is correctly predicted
(Figure 4d). Overall, RMSEs and MAEs are still close to 1E− 3 (Table 2).

Finally, results for case SW4 (still water on a parabolic bottom), which presents dry regions, are summarized in
Figure 5. Despite the constraints on depth positivity, some slightly negative depth values (Figure 5a) and non‐null
velocity values in dry regions (Figure 5b) are present in the PINN solution. However, the errors computed for the
wet and dry regions separately are all comparably low and similar to the errors for the full profile (MAE remains
in the order of 1E− 3 for depth and velocity). Overall, the error metrics are in line with the other tests (Table 2). In
particular, the largest error on the bed elevation is in the order of 1E− 3 (Figure 5c).

3.2. Steady Flow Test

Case SF1 (steady flow on a bottom with bump) is treated as an unsteady problem, starting from prescribed initial
conditions and checking that, at the final time, the steady state is achieved. Therefore, the profiles are extracted
only at t = t f (final time), ignoring the transient phase.

Results are summarized in Figure 6 and Table 2. The depth and bed elevation profiles show the same issue already
observed in case SW2 just upstream and downstream of the bump (Figures 6a–6c). Moreover, the depth is
captured with a slight inaccuracy on the top of the bump (underestimation), where the velocity is overestimated
(Figure 6b). The MAE of all these profiles (Table 2) is characterized by the same order of magnitude of still water

Figure 3. Case SW2: depth, velocity, bed, and water surface elevation profiles at the final time. Comparison between analytical solution and PINN‐augmSWE results.

Figure 4. Case SW3: depth, velocity, bed, and water surface elevation profiles at the final time. Comparison between analytical solution and PINN‐augmSWE results.
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test SW2 (1E− 3), while the RMSE values are slightly larger, but overall the PINN model is able to capture the
steady‐state condition with RMSE in the order of 1E− 2.

3.3. Unsteady Flow Test

For unsteady flow tests, profiles are extracted at different times (t = 0, 0.25tf, 0.5tf, 0.75tf, tf) to show the temporal
evolution of the phenomenon. Error metrics (MAE and RMSE) computed for the points along these profiles for all
tests are reported in Table 3, together with their mean value, while the graphical representation is limited to the
initial, middle and final times, except for case UF4 for which all five profiles are depicted.

The first two tests (UF1 and UF2) concern flow on horizontal bottom. Results of case UF1 (propagation of a small
amplitude wave) are shown in Figure 7. Initial conditions (t = 0) are captured accurately, with RMSEs between
the orders of 1E− 3 and 1E− 4 (Table 3). PINNs capture the subsequent temporal evolution of the phenomenon,
characterized by two symmetrical waves propagating upstream and downstream with opposite velocities. The
solution accuracy for depth and velocity seems to slightly degrade as time increases (Table 3), but the symmetry
of the problem is well predicted.

The dam‐break test (case UF2), whose results are depicted in Figure 8, starts from a condition with a sharp
discontinuity in the depth profile at t = 0, which is slightly smoothed in the PINNs' predictions. Moreover, the
largest errors in the initial velocity and bed elevation profiles can be observed at the same location. For t > 0, a
rarefaction wave moves upstream, and a shock wave propagates downstream. This behavior is predicted correctly
by the PINN model, although the wave profiles are smoother than the analytical solution. Differently from case
UF1, however, the solution accuracy (MAE, RMSE) does not change in time, remaining in the order of 1E− 2 for
depth and close to 1E− 1 for velocity (Table 3), while the bed elevation is captured more accurately (MAE in the
order of 1E− 4).

Case UF3 (dam‐break over a bottom step) is the first unsteady problem with a non‐horizontal bottom, and its
results are shown in Figure 9. The PINN‐augmSWE model correctly captures the main features of the solution,
that is, not only the rarefaction wave propagating upstream and the shock wave moving downstream, but also the

Figure 5. Case SW4: depth, velocity, bed elevation error, and bed and water surface elevation profiles at the final time. Comparison between analytical solution and
PINN‐augmSWE results.

Figure 6. Case SF1: depth, velocity, bed, and water surface elevation profiles at the final time. Comparison between analytical solution and PINN‐augmSWE results.
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contact discontinuity at the step location, typical of this type of flows. However, near these solution disconti-
nuities, PINN results are either smoothed (shock and rarefaction waves) or display local spikes (contact wave).
Error metrics for depth and velocity are comparable to those obtained for case UF2 (Table 3), suggesting that the
main source of inaccuracy is the highly transient nature of the phenomena, rather than the presence of a non‐
horizontal bottom.

Finally, Figure 10 shows the results of case UF4 (Thacker's test of an oscillating planar surface on a parabolic
bottom), which also entails wetting‐and‐drying processes. The overall prediction of this very complex flow is
correct for all variables. Depth profiles have a higher accuracy for t= 0.25T and t= 0.75T (when the water surface
elevation is horizontal), while velocity profiles are more accurate for t = 0.5T and t = T (at flow reversals when
velocity is null), as revealed by RMSE values reported in Table 3. Errors related to negative depths and non‐null
velocities in dry regions are negligible compared to errors related to the complex oscillating behavior of water in
this test. For example, the MAE of water depth profiles computed separately for the dry region remains in the
order of 1E− 4 for the five considered times, that is, 1‐2 orders of magnitude lower than the MAE for depth in the
wet region. This indicates that the depth‐positivity loss terms in Equation 5 are correctly constraining the solution
in the dry region, allowing only minor discrepancies.

3.4. Comparison With PINNs Solving Non‐Augmented SWEs

This Section provides an example of comparison between the results of PINN‐augmSWEs and of a PINN model
solving the (simpler) homogeneous SWEs (without the bed‐slope source term). The purpose of this analysis is to

Table 3
Unsteady‐Flow Tests

Test name Time MAE h (m) RMSE h (m) MAE u (m) RMSE u (m) MAE z (m) RMSE z (m)

UF1 0 2.0E− 03 3.0E− 03 4.6E− 04 5.9E− 04 9.8E− 05 1.4E− 04

0.25 1.8E− 03 2.3E− 03 8.3E− 03 1.2E− 02 8.5E− 05 1.2E− 04

0.5 3.1E− 03 4.4E− 03 1.1E− 02 1.5E− 02 6.8E− 05 9.6E− 05

0.75 3.7E− 03 5.7E− 03 1.4E− 02 2.0E− 02 6.6E− 05 9.2E− 05

1 4.9E− 03 7.2E− 03 1.5E− 02 2.4E− 02 6.3E− 05 8.8E− 05

Mean 3.1E− 03 4.5E− 03 9.8E− 03 1.4E− 02 7.6E− 05 1.1E− 04

UF2 0 1.2E− 02 4.0E− 02 4.0E− 03 1.1E− 02 9.0E− 04 2.1E− 03

0.25 1.7E− 02 3.4E− 02 4.7E− 02 9.8E− 02 9.4E− 04 2.1E− 03

0.5 1.9E− 02 3.5E− 02 5.3E− 02 1.0E− 01 9.3E− 04 2.0E− 03

0.75 1.9E− 02 3.4E− 02 5.2E− 02 9.6E− 02 8.9E− 04 2.0E− 03

1 2.0E− 02 3.3E− 02 5.1E− 02 9.0E− 02 9.1E− 04 2.0E− 03

Mean 1.8E− 02 3.5E− 02 4.2E− 02 7.9E− 02 9.1E− 04 2.0E− 03

UF3 0 1.5E− 02 4.7E− 02 5.0E− 03 1.3E− 02 1.6E− 03 5.9E− 03

0.25 1.9E− 02 4.0E− 02 5.2E− 02 1.1E− 01 1.8E− 03 7.2E− 03

0.5 2.2E− 02 4.1E− 02 5.9E− 02 1.1E− 01 2.0E− 03 7.7E− 03

0.75 2.3E− 02 4.1E− 02 5.7E− 02 1.1E− 01 2.0E− 03 8.2E− 03

1 2.3E− 02 3.9E− 02 5.2E− 02 1.0E− 01 2.1E− 03 8.7E− 03

Mean 2.0E− 02 4.2E− 02 4.5E− 02 8.9E− 02 1.9E− 03 7.6E− 03

UF4 0 7.7E− 04 1.1E− 03 2.6E− 04 4.3E− 04 1.0E− 03 1.2E− 03

0.25 T 3.6E− 03 7.6E− 03 4.6E− 02 1.0E− 01 1.7E− 03 2.1E− 03

0.5 T 1.0E− 02 1.6E− 02 3.4E− 02 5.3E− 02 1.9E− 03 2.4E− 03

0.75 T 6.1E− 03 1.0E− 02 8.5E− 02 1.7E− 01 2.0E− 03 2.5E− 03

T 7.5E− 03 1.5E− 02 5.7E− 02 8.5E− 02 2.0E− 03 2.6E− 03

Mean 5.7E− 03 1.0E− 02 4.5E− 02 8.1E− 02 1.7E− 03 2.2E− 03

Note. Error metrics (MAE and RMSE) of PINN‐augmSWE results compared to the analytical solution, for depth, velocity
and bed elevation profiles extracted at five different times and the mean value.
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evaluate whether the prediction accuracy of flow variables (depth and velocity) decreases due to the necessity of
predicting the additional variable (bed elevation) when using augmented SWEs. For the comparison, only the
simplest form of topography is considered (flat bottom), because in this case the adoption of the SWEs without
topography and without the fictitious fixed‐bed equation (Equation 1c) would be sufficient to obtain the solution.
Therefore, case UF2 (dam‐break over flat bottom) is selected, and for this simple test case a second PINN model
to solve non‐augmented SWEs is setup, in which only depth and velocity are predicted as output variables, and its
solution is compared with the results previously obtained for the augmented SWEs. For the sake of simplicity, the
same hyperparameters of Section 2.4 are used (except wz fixed and wz).

Figure 11 shows the depth and velocity profiles at the final time obtained from the two PINN models (augmented
and non‐augmented SWEs), which suggest that they are characterized by a similar accuracy in predicting the flow
variables. The RMSE values of the PINN model without topography are 2.7E− 2 and 7.3E− 2 for depth and
velocity profiles, respectively, which are close to the accuracy obtained for the same profiles when the augmented
SWEs are solved (3.3E− 2 and 9.0E− 2, see Table 3).

3.5. Comparison With Finite‐Volume Methods

In this Section, the accuracy of PINNs is compared to the one guaranteed by a FV numerical method for one of the
unsteady test cases (UF2). To this purpose, the simulation of test UF2 is performed using a first‐order FV scheme
in which fluxes are computed using the HLL approximate Riemann solver (Toro, 2001), and the spatial domain is
discretized with either 100 or 1,000 computational cells.

Figure 7. Case UF1: depth, velocity, bed, and water surface elevation profiles at three different times. Comparison between reference solution and PINN‐augmSWE
results.
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Figure 12 compares the numerical results of these simulations with the analytical solution and with the PINN
model's predictions at the final time. With the coarser resolution (100 cells), the RMSE values for depth and
velocity (around 3E− 2 and 8E− 2, respectively) are similar to the PINN ones, although the FV solution appears
slightly more accurate at the intermediate state and near the shock. When the resolution is increased, FV results
are much closer to the analytical solution (RMSE values around 9E− 3 and 2E− 2 for depth and velocity,
respectively), and the accuracy could have been further improved by using a higher‐order scheme. Finally, as
regards the order of magnitude of computational times, the FV simulation with 100 cells took only 0.05 s to run,
while the one with 1,000 cells took 4.3 s using a serial implementation on CPU (Intel® Xeon®W‐2223 Processor).

3.6. Example of Data Assimilation

In this Section, the PINN model's suitability to include sparse observations is tested considering case UF1 (small
perturbation test case). Results are compared for two model setups (base “A” and with halved collocation points
“B,” see Section 2.4) for PINNs trained both without data assimilation (NoOBS_A and NoOBS_B) and with data
assimilation (OBS_A and OBS_B). Notice that case NoOBS_A corresponds to case UF1 in Section 3.3.

Table 4 summarizes the accuracy of PINN‐augmSWE for these four cases, quantified by means of the RMSE
values for the profiles of the three variables at the final time, which are also represented and compared in
Figure 13 (only depth and velocity, since bed elevation is characterized by very low errors). Results suggest that
the integration of sparse observations is useful to increase the accuracy in both configurations A and B. When the
training is performed with a number of collocation points that is already large enough to obtain a fair accuracy, a

Figure 8. Case UF2: depth, velocity, bed, and water surface elevation profiles at three different times. Comparison between analytical solution and PINN‐augmSWE
results.
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slight decrease of RMSE values is observed (see NoOBS_A vs. OBS_A), while a more evident improvement in
accuracy is obtained if training is performed with halved collocation points (see OBS_B vs. NoOBS_B).

Table 4 also reports the dimensionless values of training times for all these cases (w.r.t. NoOBS_A, which takes
8.9 min to train). The integration of sparse observations has almost no influence on the training time compared to
the case without data assimilation, when the same hyperparameter configuration is used. Although limited to this
specific test case, the inclusion of sparse observations revealed to be useful to obtain more accurate results using a
reduced number of collocation points, which entailed a shorter computational time for the training process.

4. Discussion
In this work, a strategy of solving the augmented SWEs to model free‐surface flow over non‐flat topography is
proposed. For PINNs, this choice leads to the estimation of one additional output variable (bed elevation z), which
does not change in time and is actually known a priori. Despite introducing seemingly unnecessary complexity to
the model and not being strictly required by the problem, this strategy is used as a workaround to leverage
automatic differentiation to compute the bed slope (∂z/∂x), which appears in the source term of the momentum
equation and is therefore fundamental to compute the PDE residuals. The proposed approach allows the PINN
model to embed its computation in the training process, during which PINNs learn how the bed elevation is
spatially distributed from the IC constraint, and that the bed is fixed thanks to the additional constraint of null time

Figure 9. Case UF3: depth, velocity, bed, and water surface elevation profiles at three different times. Comparison between analytical solution and PINN‐augmSWE
results.
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Figure 10. Case UF4: depth, velocity, bed elevation error, and bed and water surface elevation profiles at different times. Comparison between analytical solution and
PINN‐augmSWE results.
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derivative of z. Results here presented show that the bed elevation is actually learned with good accuracy by the
PINN‐augmSWE model for different topographies.

The main advantage of this approach is the use of automatic differentiation to approximate bed slopes within the
same network used to compute other variables. In this way, the proposed approach avoids training a separate
network to obtain the bed elevation gradients, which would require additional hyperparameters optimization.
Moreover, compared to another simple approach to compute gradients, that is, resorting to a pre‐processing step
with standard numerical techniques (e.g., finite differences, as done by Qi et al. (2024)) and then solving the non‐
augmented SWEs with PINNs, the strategy here proposed does not require the definition of a mesh resolution to
approximate gradients. Both these approaches can be considered alternative strategies to deal with topography in
PINN models for the SWEs.

However, some disadvantages of the approach proposed in this paper should also be mentioned. First, the ne-
cessity of predicting the topography may induce additional errors in the solution for other variables. Moreover, the
definition of an additional hyperparameter (i.e., the loss weight for the fixed‐bed condition) is required. These
issues are discussed in the following.

In order to check if the addition of the bed elevation as an output variable has an influence on the accuracy of the
other flow variables prediction, an additional comparison between two PINNmodels solving augmented and non‐
augmented SWEs was performed considering the flat‐bottom test UF2 (see Section 3.4). Overall, this analysis
shows that the use of augmented SWEs to deal with topography, despite their larger complexity, does not
significantly reduce the accuracy obtainable from PINN models compared to standard SWEs. Additionally, in
Section 3.3 it was shown that the accuracy obtained for cases UF2 and UF3 as regards the flow variables was
similar, indicating that the inclusion of topography using the augmentation of SWEs had a similar effect on the
solution of flows over flat beds and over a bottom step. Even if limited to simple test cases, these results suggest

Figure 11. Case UF2: depth and velocity profiles at the final time. Comparison between analytical solution and PINN results
with augmented SWEs (with topography) and with standard SWEs (no topography).

Figure 12. Case UF2: depth and velocity profiles at the final time. Comparison between analytical solution, PINN‐augmSWE
results, and FV results with 100 and 1,000 computational cells.
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that this approach can be considered an alternative viable way to deal with
flows over non‐flat topography when using PINNs as a solution method.
Comparisons with alternative approaches for test cases with non‐flat bottom,
which could lead to more generalizable conclusions, are left to future
developments.

The results presented in the previous Section, however, showed that, for non‐
horizontal bottom, some discrepancies from the exact solution could be
observed especially near abrupt discontinuities in the topography (e.g., just
upstream/downstream of the bump for cases SW1 and SF1, and near the step
for case SW3). Opposite trends were observed in the prediction of the water
depth and bed elevation (one is underestimated and the other is overestimated,
or vice versa), while their summation is less affected by these local errors.
However, predicting the water surface elevation (h + z) as an output variable

directly would not lead to better results. Indeed, it was verified that, if the SWEs are re‐formulated using the water
surface elevation instead of the water depth as an output variable (as in Vacondio et al., 2014), for case UF3 (dam‐
break over bottom step) the PINN model provides very similar results to those shown in Figure 9 (not shown here
for the sake of conciseness). Quantitatively, the RMSE values at the final time for this PINN configuration with
h + z as an output variable are very close to what reported in Table 3, with values of 4E− 2, 1E− 1, and 9E− 3 for
depth, velocity, and bed elevation profiles, respectively. Therefore, either water surface elevation or depth can be
used alternatively as output variables, depending on the type of data that are required for each application and/or
that are possibly available for data assimilation.

A challenging issue about setting up a PINNmodel is the definition of the hyperparameters for training. While for
traditional solution methods there is usually a numerical or physical reason behind the setup of model parameters
(e.g., spatial resolution, time step size, etc.), for PINNs well‐defined criteria are not available (Chuang &
Barba, 2022), and users must rely mostly on trial‐and‐error or grid‐search procedures to identify the set of
hyperparameters that provide the most accurate results. As mentioned in Section 2.4, the grid‐search approach
was used in this paper to define the number of neurons and layers in the DNN and the number of collocation points
for test UF2. Analyzing the outcomes of this procedure (Figure S1 in Supporting Information S1) reveals that, for
this test, the RMSE values for selected profiles of depth and velocity can increase up to 30%–40% compared to the
“best” configuration if different hyperparameters are selected, and that increasing the number of layers and
collocation points was observed to be slightly more beneficial than increasing the number of neurons. However,
these results were case‐specific, and additional fine‐tuning was necessary for other tests. When dealing specif-
ically with augmented SWEs, it should be considered that additional hyperparameters concerning the loss weight
of topographical constraints must be defined, and the accuracy of results can be influenced by their value (Figure
S2 in Supporting Information S1); thus, special attention should be dedicated to the selection of these parameters.
In particular, it is here suggested that a value 1‐2 orders of magnitude larger than the PDE loss weight should be
adopted for wz and wz_fixed, in order to allow PINNs to correctly learn the spatial distribution of bed elevations and
improve the prediction accuracy of other variables.

Table 4
Case UF1 With/Without Data Assimilation

Test name RMSE h (m) RMSE u (m) RMSE z (m) Training time (− )

NoOBS_A 7.2E− 03 2.4E− 02 8.8E− 05 1

NoOBS_B 1.5E− 02 4.8E− 02 9.9E− 04 0.48

OBS_A 5.0E− 03 1.8E− 02 1.5E− 04 1.01

OBS_B 9.6E− 03 3.2E− 02 8.7E− 04 0.45

Note. Error metrics (RMSE) of PINN‐augmSWE results compared to the
analytical solution, for depth, velocity and bed elevation profiles extracted at
the final time (t = 1 s). Training times (made non‐dimensional w.r.t. test
“NoOBS_A,” which takes 8.9 min) are also reported.

Figure 13. Case UF1: profiles of depth and velocity at t = 1 s. Comparison between reference solution and PINN‐augmSWE
results with and without data assimilation (for configurations A and B).
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Some authors in the recent literature have suggested that PINNs may not be expected to reach the same accuracy
of standard numerical methods (Mao et al., 2020). The results shown in this work, even if limited to a specific test
case (UF2), confirm this issue as regards the comparison between PINN and FV (Section 3.5). Indeed, for this test,
the PINN solution is even slightly less accurate than a FV solution obtained with a rather coarse resolution.
Different strategies to improve the accuracy of PINNs are currently investigated in the literature. One notable
example is the use of a non‐random distribution of collocation points, that is, a distribution in which points are
clustered more densely near high‐gradient regions in the space‐time domain, while a coarser distribution is used in
smoother regions (Mao et al., 2020). This strategy may be particularly helpful to increase the accuracy near shock
waves. However, in this preliminary study, specific analyses for augmented SWEs were not performed in this
regard (e.g., the identification of the most effective type of clustering criterion that should be used near topo-
graphical discontinuities) and are left to future works. Note that alternative strategies for defining collocation
points, such as adopting a uniform distribution in the space‐time domain (Qi et al., 2024), are also possible and
may foster the use of different types of DL architectures for PINNs, such as Convolutional Neural Networks (Qi
et al., 2024), to obtain more accurate results.

Another drawback of PINNs, also identified in previous works (Chuang & Barba, 2022; Jagtap et al., 2020), is the
fact that usually they are not competitive with standard numerical models from a computational point of view. In
this work, training times were in the order of a few minutes, despite the exploitation of a powerful GPU device,
while the FV simulations took only a handful of seconds even using a serial implementation. Clearly, runtimes
depend on many model parameters (e.g., the number of neurons, layers, and collocation points for PINNs; the grid
resolution and numerical scheme for FV), not to mention the influence of the hardware used to perform com-
putations and of the different parallelization strategies that can be adopted in the code implementation. A rigorous
comparison between PINNs and conventional numerical methods, such as the evaluation of the speed‐accuracy
tradeoff suggested in some works (e.g., Chuang & Barba, 2022; Qi et al., 2024), is beyond the scope of this work
and is left to future analyses. Here, the specific test performed (UF2) shows that, compared to PINNs, the FV
method may yield more accurate results in a shorter time and without requiring burdensome hyperparameter
optimization. When dealing with standard forward problems, further research is still needed for PINNs to become
competitive with state‐of‐the‐art numerical methods such as FV.

Despite these possible limitations, PINNs are actively investigated in different scientific fields due to other ad-
vantages, such as their suitability to model inverse and parametrized problems and to exploit data assimilation of
sparse observations to enhance the solution accuracy, as discussed in the Introduction. In this work, these types of
problems for which PINNs can be more suitable than traditional numerical methods were not treated in detail,
because the primary objective was to test the PINNs' potential applicability to solve SWEs with topography, and
more in‐depth analyses are left to future works. However, in order to show an example of the potential of PINNs
in this context, a problem with data assimilation was presented (Section 3.6). PINNs were trained with/without
including sparse observations for test UF1 (small perturbation wave), and the comparison of results showed that
the PINN model was capable of easily integrating the observations into the training process with almost no in-
crease in the computational time. For this specific test, the results obtained with data assimilation were more
accurate than the ones obtained from physical constraints only, especially when a lower number of collocation
points was used. The assimilation of only one type of data was analyzed here, that is, the “measured” depth values
at 10 random locations and at a specified time (obtained from the FV reference solution for this synthetic test
case), which in a real application could correspond to some observations obtained from an aerial/satellite image.
Other kinds of observed data can be available in the practice and can be used for data assimilation, for example,
time series of recorded water levels at specific locations (gauge stations) or data from post‐flood surveys (high
watermarks), while in situ velocity measurements are less common, except at the laboratory scale.

It should be underlined that, before moving to realistic test cases, additional analyses concerning problems with
friction and time‐variable boundary conditions should be performed. Future developments include the extension
of PINN‐SWEs to two‐dimensional flows and its application to realistic topographies, as recently done by Qi
et al. (2024) for a river flood case, and to the case of PINNs being used for sub‐grid solution refinement.
Moreover, the equation expressing the fixed‐bed condition could be substituted by the Exner equation, which
governs the bed elevation changes of movable beds in combination with some sediment transport closure formula.
This could expand the potential applications of the PINN‐based models to movable‐bed problems. Notice that this
latter possible extension also represents an advantage of the proposed approach for dealing with topography
compared with alternative strategies (i.e., pre‐processing of bed elevation gradients).
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5. Conclusions
This work aimed at assessing the applicability of PINNs as a solution method for free‐surface flow problems over
non‐flat bottom. In particular, the strategy of using PINNs to solve the augmented system of SWEs with
topography was tested as an alternative way to deal with spatially variable topography during the training process
by leveraging automatic differentiation to compute the bed slope source term. Results showed that this approach
guarantees sufficiently accurate predictions for different synthetic test cases involving complex topographies.
First, by considering still water test cases with different topographies, it was shown that, even if the preservation
of the still water condition was not perfectly satisfied, PINNs were able to predict an accurate enough solution for
these tests. Then, it was checked that the PINNs solution led to the correct steady‐flow state even in the presence
of a non‐flat bottom. Finally, the results of the unsteady tests revealed that PINNs were capable of simulating
highly unsteady flows over horizontal and non‐horizontal bottom with an acceptable accuracy. Moreover, the
suitability of PINNs for data assimilation problems was shown for one test case.

Despite the fact that some limitations can be identified, addressing the specific challenges of solving SWEs with
PINNs (e.g., topography) is worthy of investigation, as it may contribute to enhance PINNs' applicability to
realistic cases. This work represent a step in this direction, but further research is needed for PINNs to become
competitive with state‐of‐the‐art numerical methods such as FV in terms of efficiency and accuracy.

Data Availability Statement
The source code used to perform all the tests reported in the paper is available on Zenodo (Dazzi, 2024).
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