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Abstract1

We consider the retarded potential boundary integral equation, arising from the 3D elastic (vector) wave equation problem,
endowed with a Dirichlet condition on the boundary and null initial conditions. For its numerical solution, we employ a weak1

formulation related to the energy of the system and we discretize it by a Galerkin-type boundary element method (BEM). This
approach, called energetic BEM, has been already applied in the context of time-domain acoustic (scalar) wave propagation
and it has revealed accurate and stable even on large time intervals of analysis. In particular, when standard (constant) shape2

functions for time discretization are employed, the double integration in time can be performed analytically. Then, one is left
with the task of evaluating double space integrals, whose integration domains are generally delimited by the wave fronts of
the primary and the secondary waves. Since the accurate computation of the integrals involved in the numerical scheme is
a key issue for the stability of the method, we propose an efficient evaluation strategy, based on the exact detection of the
integration domain. The presented numerical tests show the effectiveness of the proposed approach.
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1 Introduction13

The design of a suitable, efficient and accurate numerical14

method to solve elastodynamic problems is encountered in15

many academic and industrial applications. To cite a few16

examples: the development of a powerful forward engine in17

the framework of Full-Waveform Inversion (FWI) for the18

estimation of the elastic parameters in the underground; the19

study of fluid–structure interactions; the numerical solution20

of contact problems. Even if different directions exist, the use21

of a boundary integral equation (BIE) technique, whose dis-22

cretization is known as the boundary element method (BEM),23

is an appealing choice because it allows to handle problems24

defined on the exterior of bounded domains as easily as those25

defined in the interior, without the introduction of an artificial26

A. Aimi, L. Desiderio and C. Guardasoni: Members of the
INdAM-GNCS Research Group, Italy.

B L. Desiderio
luca.desiderio@unipr.it

1 Department of Mathematical, Physical and Computer
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boundary to truncate the computational domain. Further- 27

more, this technique requires the discretization only of the 28

domain boundaries, leading to a drastic reduction of the total 29

number of degrees of freedom of the problem. To simulate 30

elastic wave propagation, most BEMs assume time invariant 31

harmonic excitation so that the unknowns are time invariant 32

complex fields. Even if this analysis has been used for many 33

years by engineers, the transient behaviour witnessed in the 34

real world may only be recovered by calculation of many 35

frequency-domain models and inverse discrete Fourier trans- 36

form. Unfortunately, solving one frequency-domain BEM 37

equation in a 3D domain is computationally very costly, since 38

the resulting linear system is fully-populated, so that accel- 39

eration techniques have to be employed in order to obtain 40

accurate solutions in reasonable computational times. Most 41

of them are based on the compression of the system matrix 42

aiming at applying efficient direct or iterative solvers (see e.g. 43

hierarchical matrices [9, 16, 19] and fast multiple methods 44

[35]). 45

An alternative is to drop the time invariant assumption and 46

formulate the transient problems in the time-domain, which 47

is usually called Time-Domain BEMs (TD-BEMs). As well 48

summarized in [24, 30], the discretization of TD-BIEs by 49

collocation methods has some advantages in implementation 50
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due to its simplicity but gives rise to instability issues (see51

e.g. [23, 34]), avoided by some variational approaches as well52

as by convolution quadrature methods [27], but these latter53

with some drawbacks highlighted in [13].54

Among the variational approaches, as the one theoretically55

analyzed in the milestone paper [14], a Galerkin TD-BEM56

for the discretization of the BIEs related to acoustic (scalar)57

wave propagation problems has been introduced in [2]. The58

proposed technique is based on a natural energy identity satis-59

fied by the solution of the corresponding differential problem,60

which leads to a space–time weak formulation of the BIEs61

with precise continuity and coerciveness properties (see [3]).62

Consequently, the integral problem can be discretized by63

unconditionally stable schemes with well-behaved stability64

constants even for large times [4]. The algebraic reformula-65

tion of the energetic BEM (EBEM) leads to a linear system66

whose matrix has a Toeplitz lower-triangular block structure,67

that allows the acceleration of the solution phase. As a direct68

consequence of the flexibility of the EBEM, a large body69

of literature has risen to witness its capabilities to simulate70

3D acoustic (see [5]) and 2D elastodynamic (see [8, 10–12])71

wave propagation in semi-infinite or infinite media. Further-72

more, we recall that the energetic space–time BIEs, hence the73

associated potential representations, have been also used to74

restrict the original partial differential equation (PDE) exte-75

rior acoustic problem to a bounded region of physical interest.76

Indeed, this approach has allowed to construct transparent (or77

non-reflecting) boundary conditions on the boundary of the78

chosen region and to retrive the solution of the original prob-79

lem in the new exterior bounded domain by using the Finite80

Element Method (see [6, 7]).81

In this paper, we extend the EBEM to 3D elastody-82

namic problems, showing the capabilities of the method of83

modelling a full wavefield rather than specific wave types84

and addressing various computational aspects of the pro-85

posed approximation method. In particular, we consider the86

Navier–Cauchy equation of motion, defined in bounded or87

unbounded domains external to 3D obstacles and endowed88

with a Dirichlet condition on the boundary and null ini-89

tial conditions. Such problems are reformulated in terms of90

a space–time weakly-singular BIE of the first kind, whose91

energetic full space–time discretization requires double inte-92

gration both in space and in time. Since a key ingredient93

for the success of the EBEM is the efficient and accurate94

evaluation of all the involved integrals, the selected formu-95

lation could be quite challenging in large scale applications.96

Nevertheless, if standard (constant) shape functions for time97

discretization are employed, the double integration in time98

can be performed analytically and one is left with the task of99

evaluating double space integrals, whose integration domains100

are generally delimited by the wave fronts of the primary and101

the secondary waves. In order to exactly detect this latter,102

and consequently to preserve the stability properties of the103

EBEM, we choose boundary meshes made by triangular ele- 104

ments with straight sides and we propose an ad-hoc numerical 105

integration scheme, tailored for the correct domain of inte- 106

gration. We remark that such a study has been presented in 107

[5] in the case of 3D acoustic (scalar) wave equation but a 108

straightforward generalization to elastic (vector) problems is 109

not possible, due to a more involved fundamental solution 110

and the presence of two wave fronts. 111

The paper is organized as follows: after presenting the 112

model problem in the next section, we recall its energetic 113

BIE weak formulation in Sect. 3. Then, we devote Sect. 4 to 114

detail the energetic BEM discretization, focusing on its alge- 115

braic reformulation and on the analysis of the time-integrated 116

kernels generating the matrix entries. In Sect. 5, we describe 117

the numerical and analytical strategies adopted for the dou- 118

ble space integrals at hand, with a specific attention devoted 119

to the representation of the wave fronts of the primary and 120

secondary waves. Numerical results validating the proposed 121

approach are illustrated and discussed in Sect. 6. Finally, 122

some conclusions are drawn in the last section. 123

2 Model problem 124

In the Euclidean space R3 equipped with a fixed orthonor- 125

mal Cartesian coordinates axes e1, e2, e3 with origin at O = 126

(0, 0, 0)�, let �l ⊂ R3 be a domain admitting a connected, 127

smooth and orientable closed boundary surface � = ∂�l . 128

In absence of body forces, we are interested in studying 129

the propagation of elastic waves in a homogeneous isotropic 130

elastic medium occupying �l . When the domain is a finite 131

volume the problem is interior with using the notation l = i . 132

Otherwise, it is set l = e and we study the exterior problem. 133

Moreover, let � = �i ∪ �e = R3 \ �. 134

In both �l , l = i, e, assuming small variations of the 135

(real-valued) displacement field u(x; t) = (u1, u2, u3)
� at 136

location x = (x1, x2, x3)
� ∈ �l and time t ∈ [0, T ], this 137

latter is defined by the following system: 138

�ü(x; t) − μ�u(x; t) − (λ + μ)∇∇ · u(x; t) = 0 139

(x; t) ∈ �l × [0, T ] (2.1a) 140

u(x; t) = g(x; t) 141

(x; t) ∈ � × [0, T ] (2.1b) 142

u(x; 0) = 0 143

x ∈ �l (2.1c) 144

u̇(x; 0) = 0 145

x ∈ �l (2.1d) 146

where � is the mass density, μ is the shear modulus and λ is 147

the Lamé parameter. These last two quantities are related to 148

the Poisson ratio ν by λ := 2μν(1−2ν)−1. Furthermore, the 149
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superposed dot indicates time differentiation, while ∇ and �150

denote the nabla and the Laplace operators, respectively.151

In the above problem, Eq. (2.1a) is known as Navier–Cauchy152

equation of motion, Eq. (2.1b) represents a boundary condi-153

tion of Dirichlet type with datum g(x; t) and Eqs. (2.1c) and154

(2.1d) are the quiescent initial conditions, that specify the155

value of u(x; t) and u̇(x; t) at the first time of interest t = 0.156

Elastodynamics waves are characterized by primary and sec-157

ondary velocities, defined by c2
P := (λ + 2μ)�−1, c2

S :=158

μ�−1 and related, respectively, to the so-called primary or159

pressure waves (P-waves in short) and secondary or shear160

waves (S-waves in short). Since for any real materials −1 <161

ν < 0.5, it’s easy to verify that cP > cS, that is P-waves162

travel faster than S-waves.163

In what follows, we denote by σ [u](x; t) and ε[u](x; t) the164

second order stress and strain tensors, respectively. The latter165

is defined by the constitutive law of the linear elastic model,166

i.e.167

ε[u](x; t) = 1

2

[
∇u(x; t) + ∇u(x; t)�

]
(2.2)168

and it is related to the stress tensor through the Hooke’s law169

σ [u](x; t) = C : ε[u](x; t), (2.3)170

in which the symbol “:” denotes the double tensor inner prod-171

uct and C is the fourth order relaxation tensor, whose com-172

ponents are given by Ck�
i j := λδi jδk� + μ

(
δikδ j� + δi�δ jk

)
173

for i, j, k, � = 1, 2, 3 (δi j being the Kronecker symbol).174

Furthermore, the traction vector p = (p1, p2, p3)
� along �175

can be defined through the stress tensor as:176

p(x; t) := σ [u](x; t) · n, (2.4)177

where n denotes the unit normal vector to the boundary point-178

ing outside the domain �l .179

3 Energetic TD-BIE weak formulation180

It is well known that, starting from the Somigliana identity181

(see [15]) written for both �i and �e, the solution of the182

initial boundary value problem (2.1) can be represented as183

single-layer potential (see [18]), i.e.184

u(x; t) :=
t∫

0

∫

�

G(x, y; t, τ )w(y; τ)d�ydτ,185

x ∈ �l and t ∈ [0, T ], (3.1)186

where w = (w1, w2, w3)
� is a suitable density field to187

be determined in the same functional space of the traction188

field p. Furthermore, the second-order tensor G satisfies the189

Green’s identity in relation to Navier–Cauchy operator in the 190

left hand side of Equation (2.1a). Hence, it is the fundamental 191

solution of the equation 192

�ü(x; t) − μ�u(x; t) 193

−(λ + μ)∇∇ · u(x; t) = δ(x − y)δ(t − τ)I, (3.2) 194

where I stands for the 3-by-3 identity tensor, and it represents 195

the response at the observation point x and observation time t 196

due to a unit magnitude load, modelled by the Dirac distribu- 197

tion δ(·) and acting at the source point y and emission time τ . 198

Since the coefficients in (2.1a) are independent of space and 199

time, the components of the tensor G depend on the argu- 200

ments x, y, t, τ only through the differences r := x − y and 201

t − τ , i.e. for i, j = 1, 2, 3 (see [15]) 202

Gi j (x, y; t, τ ) := 1

4π�c2
P

rir j

r3 δ

(
t − τ − r

cP

)

+ 1

4π�c2
S

(
δi j

r
− rir j

r3

)
δ

(
t − τ − r

cS

)

− 1

4π�

(
δi j

r3 − rir j

r5

)
(t − τ)

[
H

(
t − τ − r

cP

)
− H

(
t − τ − r

cS

)]
,

(3.3) 203

where ri is the i-th component of r, the distance r := |x − y| 204

is the euclidean norm of r and H(·) is the Heaviside func- 205

tion. We remark that the expression (3.3) can be recast in the 206

following form: 207

Gi j (x, y; t, τ ) = rir j

r2 GP(x, y; t, τ )

+
(
δi j − rir j

r2

)
GS(x, y; t, τ )

−
(
δi j − 3

rir j

r2

) [
G̃P(x, y; t, τ )

−G̃S(x, y; t, τ )
]
,

(3.4) 208

in which 209

G∗(x, y; t, τ ) := 1

4π�c2∗r
δ 210

(
t − τ − r

c∗

)
with ∗ = P, S (3.5) 211

is the fundamental solution for the 3D scalar wave equation, 212

while G̃∗(x, y; t, τ ) is defined by 213

G̃∗(x, y; t, τ ) := 1

4π�r3 214

(t − τ)H

(
t − τ − r

c∗

)
with ∗ = P, S. (3.6) 215
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From (3.1), with a limiting process that makes a point x ∈216

�l tending to a point x ∈ � and exploiting the Dirichlet217

boundary condition, we can obtain a system of three TD-218

BIEs:219

t∫

0

∫

�

G(x, y; t, τ )w(y; τ)d�ydτ = g(x; t),220

(x; t) ∈ � × [0, T ]. (3.7)221

For s ∈ [−1, 1], let Hs(�) denote the usual fractional222

order Sobolev space, with H0(�) = L2(�), and Hs(�) =223

(Hs(�))3. Referring to [10, 17, 30] for what concerns224

the following functional spaces, introducing the space–225

time integral operator V : L2
(
[0, T ]; H−1/2

(�)
)

→226

H1
(
[0, T ]; H

1/2
(�)
)

such that:227

V [w] (x; t) :=
t∫

0

∫

�

G(x, y; t, τ )w(y; τ)d�ydτ,228

(x; t) ∈ � × [0, T ], (3.8)229

the TD-BIEs (3.7) can be written with the compact notation230

V [w] (x; t) = g(x; t),231

(x; t) ∈ � × [0, T ]. (3.9)232

The above BIE will be set in the so-called energetic weak233

form. With this aim, following what has been proven in234

[11] for 2D elastodynamics, which can be straightforwardy235

extended to 3D space dimension, we introduce the energy236

of the Navier–Cauchy equation (2.1a), which is defined as237

follows:238

K(t; u) := 1

2

∫

�

� |u̇(x; t)|2 dx239

+1

2

∫

�

σ [u](x; t) : ε[u](x; t)dx (3.10)240

and we remark that the solution u of problem (2.1) satisfies241

the following energy identity242

K(T ; u) =
T∫

0

∫

�

w�(x; t)u̇(x; t)d�xdt . (3.11)243

which can be obtained multiplying equation (2.1a) by u̇ and244

integrating by parts over � × [0, T ].245

Having introduced the bilinear formAK : L2
(
[0, T ]; H−1/2

(�)
)
×246

L2
(
[0, T ]; H−1/2

(�)
)

→ R defined by 247

AK(w, v) :=
T∫

0

∫

�

v�(x; t)
∂

∂t
V[w](x; t)d�xdt, (3.12) 248

the space–time energetic weak formulation of the TD-BIEs 249

(3.9) reads as follows 250

find the density function w ∈ L2
(
[0, T ]; H−1/2

(�)
)

such 251

that: 252

AK(w, v) =
T∫

0

∫

�

v�(x; t)ġ(x; t)d�xdt 253

∀v ∈ L2
(
[0, T ]; H−1/2

(�)
)

. (3.13) 254

Note that AK is defined as a quadruple integral, double in 255

space and double in time. 256

The above weak BIEs system is the core of the entire 257

method: its numerical resolution generates an approximation 258

of vector field w that can be used in the representation formula 259

(3.1), recovering in a post-processing phase the behaviour of 260

the displacement u at each point of the space domain and at 261

each time instant. 262

4 Galerkin BEM discretization 263

For the discretization phase, we consider a uniform decompo- 264

sition of the time interval [0, T ] with time step �t := T /N�t , 265

N�t being a positive integer, generated by N�t + 1 instants: 266

tn := n�t , n = 0, . . . , N�t (4.1) 267

and we choose temporally piecewise constant shape func- 268

tions, although higher degree shape functions can be used. 269

Note that, for this particular choice, the shape functions, 270

denoted by v̄n(t), are defined as: 271

v̄n(t) := H(t − tn) − H(t − tn+1), 272

n = 0, . . . , N�t − 1. (4.2) 273

For the space discretization, we introduce on � an admis- 274

sible triangulation T�x(�) := {E1, . . . , EM�x
} constituted 275

by M�x flat triangular elements. The index �x denotes the 276

mesh size. We also assume that ∪M�x
i=1 Ei coincides with � if 277

the boundary is polygonal, or it is a suitable approximation 278

of �, otherwise. The functional background compels one to 279

choose spatially shape functions whose components belong 280
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to L2(�). Hence, we consider piecewise constant basis func-281

tions vm(x), m = 1, . . . , M�x related to T�x(�). Thus, the282

approximate solution of (3.13) is expressed as:283

w(x; t) 	 w̃(x; t):=
N�t −1∑

n=0

v̄n(t)
M�x∑
m=1

α(n)
m vm(x)284

with α(n)
m :=

(
α

(n)
m,1, α

(n)
m,2, α

(n)
m,3

)�
(4.3)285

and the test functions are replaced by286

v(x; t) = vm̃(x)v̄ñ(t)e, (4.4)287

where e := e1 + e2 + e3 = (1, 1, 1)�. The Galerkin BEM288

discretization coming from the energetic weak formulation289

(3.13) produces the linear system290

EEEα = β, (4.5)291

where the matrix EEE has a block lower triangular Toeplitz292

structure, since its elements depend on the difference �ñ,n :=293

tñ − tn , and in particular they vanish if tñ < tn . Since we deal294

with 3D elastodynamic problems, if we denote by EEE
(�) the295

block obtained when �ñ,n = ��t , � = 0, . . . , N�t − 1, we296

remark that each pair of spatial indices m̃, m = 1, . . . , M�x297

does not define a single entry of EEE
(�) but rather a 3 × 3 sub-298

block EEE
(�)

m̃,m . Thus, each block EEE
(�) of the matrix EEE requires299

O
(
(3M�x)

2
)

memory and computation time. Furthermore,300

the evaluation of a single entry of EEE
(�)

m̃,m is expensive, because301

we have to address the issue of computing quadruple inte-302

grals:303

(
EEE

(�)

m̃,m

)
i j

304

=
T∫

0

∫

�

∂

∂t

⎛
⎝

t∫

0

∫

�

Gi j (x, y; t, τ )vm(y)v̄n(τ )d�ydτ

⎞
⎠305

vm̃(x)v̄ñ(t)d�xdt306

= −
T∫

0

∫

�

⎛
⎝

t∫

0

∫

�

Gi j (x, y; t, τ )vm(y)v̄n(τ )d�ydτ

⎞
⎠307

vm̃(x) ˙̄vñ(t)d�xdt (4.6)308

but, after a double analytic integration in the time variables,309

we obtain:310

E
(�)

m̃,m = − 1

4π�

1∑
η,η̃=0

(−1)η+η̃

∫

Em̃

∫

Em

G(x, y;�ñ+η̃,n+η) 311

vm(y)vm̃(x)d�yd�x. (4.7) 312

In the above relationship, the components of the time- 313

integrated kernel G are given by 314

Gi j (x, y;�ñ,n) = 1

c2
P

rir j

r3 H

(
�ñ,n − r

cP

)

+ 1

c2
S

(
δi j

r
− rir j

r3

)
H

(
�ñ,n − r

cS

)
− 1

2

(
δi j

r3 − rir j

r5

)

[(
�2

ñ,n − r2

c2
P

)
H

(
�ñ,n − r

cP

)

−
(

�2
ñ,n − r2

c2
S

)
H

(
�ñ,n − r

cS

)]

(4.8) 315

where the Heaviside functions represent the wave front prop- 316

agation and their contribution is 0 or 1. If r < cS�ñ,n < 317

cP�ñ,n , then (4.8) reduces to 318

Gi j (x, y;�ñ,n) 319

= 1

2

(
rir j

r3

c2
P − c2

S

c2
Pc2

S

+ δi j

r

c2
P + c2

S

c2
Pc2

S

)
(4.9) 320

and we observe a space singularity of type O(1/r ) as r → 0, 321

which is typical of weakly singular kernels related to 3D ellip- 322

tic problems. Moreover, when 0 < cS�ñ,n < r < cP�ñ,n , 323

(4.8) is no longer singular and becomes 324

Gi j (x, y;�ñ,n) 325

= 1

2

(
1

c2
P

δi j

r
− 1

c2
P

rir j

r3 − δi j

r3 �2
ñ,n + 3

rir j

r5
�2

ñ,n

)
. 326

(4.10) 327

Combining (4.7) and (4.9), it easy to show that, if N∗ denotes 328

the first time index such that cPtN∗−1 > cStN∗−1 > diam(�), 329

we have EEE
(�)

m̃,m = 0 for all � = N∗, . . . , N�t −1. Due to this 330

cut-off property, the matrix of the final linear system (4.5) 331

has the well known band structure of standard collocation 332

approaches [28], i.e. 333
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EEE
(0) 0 0 0 0 0 0 . . . 0

EEE
(1)

EEE
(0) 0 0 0 0 0 . . . 0

EEE
(2)

EEE
(1)

EEE
(0) 0 0 0 0 . . . 0

...
...

...
. . .

. . .
...

...
...

...

EEE
(N∗−1)

EEE
(N∗−2)

EEE
(N∗−3) . . . EEE

(0) 0 0 . . . 0
0 EEE

(N∗−1)
EEE

(N∗−2)
EEE

(N∗−3) . . . EEE
(0) 0 . . . 0

0 0 EEE
(N∗−1)

EEE
(N∗−2)

EEE
(N∗−3) . . . EEE

(0) . . . 0
...

...
. . .

. . .
. . .

. . . . . .
. . .

...

0 0 . . . 0 EEE
(N∗−1)

EEE
(N∗−2)

EEE
(N∗−3) . . . EEE

(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.11)

334

while the unknowns and right hand side entries are organized335

as follows336

α =
(
α(0),α(1), . . . ,α(N∗), . . . ,α(N�t −1)

)�

with α(�) =
(
α

(�)
1 ,α

(�)
2 , . . . ,α

(�)
M�x

)�

β =
(
β(0),β(1), . . . ,β(N∗), . . . ,β(N�t −1)

)�

with β(�) =
(
β

(�)
1 ,β

(�)
2 , . . . ,β

(�)
M�x

)�
.

(4.12)337

The solution of (4.11) is obtained by a block forward substi-338

tution, i.e. at every time instant t�, with � = 0, . . . , N�t − 1,339

one computes340

z(�) = β(�) −
�∗∑

j=1

EEE
( j)α(�− j)

341

with �∗ := min {�, N∗ − 1}, (4.13)342

and then solves the reduced linear system343

EEE
(0)α(�) = z(�). (4.14)344

Procedure (4.13) and (4.14) is a time-marching technique,345

where the only matrix to be inverted is the non-singular block346

EEE
(0); therefore the LU factorization needs to be performed347

only once and stored. Then, at each time step, the solution of348

(4.14) requires only a forward and a backward substitution349

phases. All the other blocks EEE
(�), with � = 1, . . . , N∗ − 1,350

are used to update at every time step the right-hand side. Of351

course, due to the whole matrixEEE structure, one can construct352

and store only blocks EEE
(0), . . . ,EEE(N∗−1) with a considerable353

reduction in the computational cost and the memory require-354

ment.355

Remark We stress that the crucial point for the success of356

the energetic BEM is the careful numerical evaluation of357

the entries of the block EEE
(0) that must take place under the358

assumption that all the involved integrals are computed with359

a sufficiently high accuracy.360

Remark The proposed energetic weak formulation, after 361

time integration, can be regarded as a Newmark scheme with 362

parameters ζ =1/2 and θ = 1 in the notation of [33], as 363

proved for scalar problems in [6, 7] in the more general 364

framework of Energetic BEM-FEM coupling. This particu- 365

lar Newmark scheme is implicit, unconditionally stable and 366

first-order accurate in �t . Furthermore, the theoretical analy- 367

sis about convergence and space–time accuracy in the context 368

of 3D elastodynamic problems has been performed in [10]. 369

5 Quadrature of double integrals in space 370

variables 371

In this section we focus on the efficient computation of the 372

space integrals appearing in (4.7), which is essential for the 373

numerical stability of the EBEM. Since we use piecewise 374

constant basis and test functions, we can reduce the integrals 375

over � to double integrals over the source and the field trian- 376

gles Em̃ and Em respectively: 377

E
(�)

m̃,m = − 1

4π�

1∑
η,η̃=0

(−1)η+η̃
378

∫

Em̃

∫

Em

G(x, y;�ñ+η̃,n+η)d�yd�x. (5.1) 379

The outer integration on the source triangle is carried out by 380

applying a Mg-point suitable quadrature rule, so that 381

E
(�)

m̃,m 	 − 1

4π�

1∑
η,η̃=0

(−1)η+η̃

Mg∑
q=1

ωq 382

∫

Em

G(xq , y;�ñ+η̃,n+η)d�y, (5.2) 383

where xq and ωq are the quadrature nodes and weights, 384

respectively. The same strategy can in principle be used for 385
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Fig. 1 Projection of the source point xq onto the plane of the inner
(field) triangle of integration

the numerical computation of the integral over the field tri-386

angle but standard quadrature formulas would require a very387

large number of quadrature nodes, due to the low regularity388

of the time integrated kernel. Furthermore, it is worth noting389

that, in this case, the implementation is complicated since the390

integration domain is defined by the intersection of the field391

triangle and the wavefronts of the P- and S-waves. In partic-392

ular, the presence of the Heaviside functions in (4.8) implies393

that the integration over Em has to be in general limited to394

the portion enclosed between two spherical surfaces of radii395

rP = cP�ñ,n and rS = cS�ñ,n respectively, both centered396

at xq . In order to avoid excessive simplifications in dealing397

with such integration domains, that may strongly affect the398

stability properties of the EBEM, we follow the strategy sug-399

gested in [29] for the scalar wave equation. First of all, we400

project the source point xq into the plane � containing the401

triangle Em and we call xπ
q the projection point, as depicted402

in Fig. 1.403

Then, we apply a coordinate transformation maintaining404

the distances and mapping the point xπ
q into the origin Ô =405

(0, 0, 0) and the canonical system e1, e2, e3 of the Euclidean406

space R3 into the triplet ê1, ê2, ê3 where ê3 is the direction407

perpendicular to the plane � while ê1 is parallel to a chosen408

side of the field triangle Em . As a consequence, we have that409

the new coordinates of xq are x̂q = (0, 0, z), where z :=410

|xq −xπ
q |. This transformation is a translation and a rotation,411

so that the arbitrary point y = (y1, y2, y3) is mapped into the412

point ŷ = (ŷ1, ŷ2, ŷ3) related to it through the relations:413

y = xπ
q + Sŷ414

and ŷ = S
−1(y − xπ

q ), (5.3)415

where S is the orthogonal rotation matrix with |det(S)| = 1.416

Considering the change of variable in (5.3), we derive the417

relation between the kernel G with respect to the old coordi-418

nates system and the corresponding kernel Ĝ with respect to 419

the new coordinates system, i.e. G = S
−1

ĜS. As the conse- 420

quence, we obtain: 421

E
(�)

m̃,m 	 − 1

4π�

1∑
η,η̃=0

(−1)η+η̃
ν∑

q=1

ωq 422

∫

Êm

S
−1

Ĝ(x̂q , ŷ;�ñ+η̃,n+η)Sd�ŷ. (5.4) 423

At this stage, we express the inner integration over the field 424

triangle Êm (father) as an algebraic sum of integrals over 425

three triangles Ê (k)
m (children), k = 1, 2, 3, having Ô, ŷ(k)

1 426

and ŷ(k)
2 as vertices (see Fig. 2). Consequently, we have: 427

E
(�)

m̃,m 	 − 1

4π�

1∑
η,η̃=0

(−1)η+η̃
ν∑

q=1

ωq

3∑
k=1

ςk 428

∫

Ê (k)
m

S
−1

Ĝ(x̂q , ŷ;�ñ+η̃,n+η)Sd�ŷ, (5.5) 429

where the coefficients ςk are given by 430

ςk := sign

⎛
⎜⎝

∣∣∣∣∣∣∣

1 0 0

1 ŷ(k)
1,1 ŷ(k)

1,2

1 ŷ(k)
2,1 ŷ(k)

2,2

∣∣∣∣∣∣∣

⎞
⎟⎠ 431

=

⎧⎪⎨
⎪⎩

−1, if ŷ(k)
1,1 ŷ(k)

2,2 − ŷ(k)
1,2 ŷ(k)

2,1 < 0

0, if ŷ(k)
1,1 ŷ(k)

2,2 − ŷ(k)
1,2 ŷ(k)

2,1 = 0

1, if ŷ(k)
1,1 ŷ(k)

2,2 − ŷ(k)
1,2 ŷ(k)

2,1 > 0.

432

Each of the children triangles is now addressed separately. 433

For a given Ê (k)
m , the lengths of its sides are defined to be: 434

a := | ŷ(k)
1 − Ô|, b := | ŷ(k)

2 − Ô| 435

and c := | ŷ(k)
2 − ŷ(k)

1 |, 436

while its angles are defined via Carnot’s theorem as 437

α = acos

(
b2 + c2 − a2

2bc

)
, β = acos

(
a2 + c2 − b2

2ac

)
438

and γ = acos

(
a2 + b2 − c2

2ab

)
439

with 0 ≤ α, β, γ ≤ π and α + β + γ = π . 440

We make a counterclockwise rotation in the plane � by an 441

angle δ about the ê3-axis, so that we introduce a new coor- 442

dinate frame consisting of the origin Ǒ = Ô and mutually 443

orthogonal axes in the directions of the unit vectors ě1, ě2 and 444

ě3 = ê3. This change of variable, which maps the point ŷ(k)
1 445
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Fig. 2 Decomposition of the field triangle Êm (father) into three triangles Ê (k)
m (children), k = 1, 2, 3, having Ô, ŷ(k)

1 and ŷ(k)
2 as vertices. On the

left plot, the point Ô ≡ x̂q is inside the triangle Êm . On the right plot, the point Ô ≡ x̂q is outside the triangle Êm

Fig. 3 Counterclockwise rotation in the plane � by an angle δ about
the ê3-axis. The new coordinate frame has the origin at Ǒ = Ô and
mutually orthogonal axes in the directions of the unit vectors ě1, ě2 and
ě3 = ê3

into the point y̌(k)
1 = (a, 0, 0), is represented by the matrix446

equations:447

ŷ = Ty̌ and y̌ = T
−1ŷ, with |det(T)| = 1 (5.6)448

as depicted in Fig. 3.449

Therefore, Eq. (5.5) is recast in the following form450

E
(�)

m̃,m 	 − 1

4π�

1∑
η,η̃=0

(−1)η+η̃
ν∑

q=1

ωq

3∑
k=1

ςk451

∫

Ě (k)
m

S
−1

T
−1

Ǧ(x̌q , y̌;�ñ+η̃,n+η)TSd�y̌. (5.7) 452

We point out that the benefits of the above described appar- 453

ently cumbersome procedure are extremely significant. In 454

fact, it is worth noting that it allows for the exact detection of 455

the integration domain and, consequently, for the analytical 456

computation of the integrals in (5.7), as we will explain in 457

the following subsections. 458

5.1 Exact representation of the wave fronts 459

As z is constant for the integral over Ě (k)
m , we fix the plane 460

ě1-ě2 as a working plane and we select an intrinsic 2D polar 461

coordinate system (ρ, θ) with origin at Ǒ := (0, 0), so that 462

the distance ř = |x̌q − y̌| becomes ř = √z2 + ρ2, while the 463

components of the distance vector ř = x̌q − y̌ are given by: 464

ři = ρ

sin γ

[
A1i sin (γ − θ) + A2i sin (θ)

]+ A3i z, 465

i = 1, 2, 3, (5.8) 466

where the coefficients A1i , A2i and A3i are defined as fol- 467

lows: 468

A1i := 1

a
y̌(k)

1 · ěi , A2i := 1

b
y̌(k)

2 · ěi 469

and A3i := 1

z

(
x̌q − Ǒ

)
· ěi . 470
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As a consequence of relation (5.8), for each i, j = 1, 2, 3 we471

have472

ři ř j = ρ2

sin2 γ

[
A1i A1 j sin2 (γ − θ) + (A1i A2 j + A2i A1 j )

sin (γ − θ) sin (θ) + A2i A2 j sin2 θ
]

+ z
ρ

sin γ

[
(A1i A3 j + A3i A1 j ) sin (γ − θ)

+ (A2i A3 j + A3i A2 j ) sin θ
]+ z2 A3i A3 j .

(5.9)473

Furthermore, the distance R(θ) between a point y̌ on the side474

y̌(k)
2 − y̌(k)

1 and the origin Ǒ is of particular importance for475

integration purposes and it is given by476

R(θ) := F

sin (θ + β)
477

with F = a sin β and θ ∈ (−β, π − β).478

In order to establish a simple and general procedure to479

account for the presence of the wavefronts in an exact way,480

we remark that in the working plane they are represented by481

two circles of radii ρP =
√

r2
P − z2 and ρS =

√
r2

S − z2, both482

centred at Ǒ. Moreover, when rS < z < rP, only the P-wave483

front intersects the plane �, inducing the partition of Ě (k)
m484

depicted in the left plot of Fig. 4 and represented by (the sum485

of) the three possible sub-regions:486

R1 := {(ρ, θ) | θ ∈ [0, min{max{0, θ1}, γ }] , ρ ∈ [0, ρP]}487

R2 := {(ρ, θ) | θ ∈ [min{max{0, θ1}, γ }, max{0, min{θ2, γ }}] ,488

ρ ∈ [0, R(θ)]}489

R3 := {(ρ, θ) | θ ∈ [max{0, min{θ2, γ }}, γ ] , ρ ∈ [0, ρP]}490

where the angles θ1 and θ2 are the slopes of the rays joining491

the origin Ǒ with all the intersections between the P-wave492

front and the whole extension line of the side y̌(k)
2 − y̌(k)

1 of493

the triangle Ě (k)
m . Note that these intersections may lie outside494

the triangle.495

Otherwise, i.e. when z < rS < rP, both the P- and the S-wave496

fronts are active. As a consequence, this scenario is more497

complicated than the previous one, because the integration498

domain (as illustrated in the right plot of Fig. 4) is made by499

the seven possible sub-regions500

Q1 := {(ρ, θ) | θ ∈ [0, min{max{0, θ1}, γ }] , ρ ∈ [0, ρS]}501

Q2 := {(ρ, θ) | θ ∈ [min{max{0, θ1}, γ }, max{0, min{θ2, γ }}] ,502

ρ ∈ [0, R(θ)]}503

Q3 := {(ρ, θ) | θ ∈ [max{0, min{θ2, γ }}, γ ] ,504

ρ ∈ [0, ρS]}505

Q4 := {(ρ, θ) | θ ∈ [0, min{max{0, θ3}, γ }] ,506

ρ ∈ [ρS, ρP]}507

Q5 := {(ρ, θ) | θ ∈ [min{max{0, θ3}, γ }, min{max{0, θ1}, γ }] , 508

ρ ∈ [ρS, R(θ)]} 509

Q6 := {(ρ, θ) | θ ∈ [max{0, min{θ2, γ }}, max{0, min{θ4, γ }}] , 510

ρ ∈ [ρS, R(θ)]} 511

Q7 := {(ρ, θ) | θ ∈ [max{0, min{θ4, γ }}, γ ] , ρ ∈ [ρS, ρP]} 512

where the angles θ1, θ2, θ3 and θ4 are the slopes of the rays 513

joining the origin Ǒ with all the intersections between the P- 514

and S-wave fronts and the whole extension line of the side 515

y̌(k)
2 − y̌(k)

1 of the triangle Ě (k)
m . 516

Looking at Fig. 4, we remark that the sub-regions may be 517

traced back to four different shapes. For this reason, in order 518

to describe the analytical procedure to compute the integrals 519

in (5.7), we refer to the four reference integration domains 520

illustrated in Fig. 5, i.e. 521

E := {(ρ, θ) | θ♦ ≤ θ ≤ θ♥ and 0 ≤ ρ ≤ ρ♠
}

522

F := {(ρ, θ) | θ♦ ≤ θ ≤ θ♥ and ρ♣ ≤ ρ ≤ ρ♠
}

523

G := {(ρ, θ) | θ♦ ≤ θ ≤ θ♥ and 0 ≤ ρ ≤ R(θ)
}

524

H := {(ρ, θ) | θ♦ ≤ θ ≤ θ♥ and ρ♣ ≤ ρ ≤ R(θ)
}
. 525

We point out that, when ρ♣ = 0, the regions F and H 526

collapse into E and G, respectively. For this reason, we are 527

going to detail the analytical integration only over the former 528

domains, i.e. we are going to consider 529

I D
1 :=

∫

D

1

ř
d�y̌, I D

2 :=
∫

D

ři ř j

ř3 d�y̌, 530

I D
3 :=

∫

D

ři ř j

ř5
d�y̌ and I D

4 :=
∫

D

1

ř3 d�y̌, (5.10) 531

with D = F ,H. Since both the integration domains are 532

described in terms of polar coordinates, we convert the above 533

integrals, taking into account (5.9) and remembering that 534

the elemental area d�y̌ changes according to the formula 535

d�y̌ = ρdρdθ . We point out that the results presented in the 536

following two sub-sections extend those in [31]. 537

5.2 Integrals over the regionF 538

When D = F , plugging the polar coordinates into the double 539

integrals in (5.10) gives rise to separable integrals of the type: 540

θ♥∫

θ♦

(sin θ)k−1 (sin (γ − θ))h−1 dϑ

ρ♠∫

ρ♣

�i

(
�2 + z2

) j/2 d� 541

:= �k,h(θ♦, θ♥)Ki, j (ρ♣, ρ♠), 542

where the indices h, k = 1, 2, 3 are such that 2 ≤ h + k < 5, 543

while the indices i and j are such that i = j = 1 or i = 1, 2, 3 544
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Fig. 4 General partition of one triangle Ě (k)
m due to the wave fronts. On the left plot, only the P-wave front is active. On the right plot, both the

P-wave and S-wave fronts are active

Fig. 5 The four reference
integration domains

and j = 3, 5. It easy to check that the integration in variable545

� produces the functions:546

K1,1(ρ♣, ρ♠) :=
√

ρ2♠ + z2 −
√

ρ2♣ + z2
547

K1,3(ρ♣, ρ♠) := − 1√
ρ2♠ + z2

+ 1√
ρ2♣ + z2

548

K1,5(ρ♣, ρ♠) := 1

3

⎡
⎢⎣
⎛
⎝ 1√

ρ2♣ + z2

⎞
⎠

3

−
⎛
⎝ 1√

ρ2♠ + z2

⎞
⎠

3
⎤
⎥⎦ 549

K2,3(ρ♣, ρ♠) 550

:= log

⎛
⎝ρ♠ +

√
ρ2♠ + z2

ρ♣ +
√

ρ2♣ + z2

⎞
⎠− ρ♠√

ρ2♠ + z2
+ ρ♣√

ρ2♣ + z2
551

K2,5(ρ♣, ρ♠) := 1

3z2 552
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⎡
⎢⎣
⎛
⎝ ρ♠√

ρ2♠ + z2

⎞
⎠

3

−
⎛
⎝ ρ♣√

ρ2♣ + z2

⎞
⎠

3
⎤
⎥⎦553

K3,3(ρ♣, ρ♠) :=
√

ρ2♠ + z2 −
√

ρ2♣ + z2 + z2
554

⎛
⎝ 1√

ρ2♠ + z2
− 1√

ρ2♣ + z2

⎞
⎠555

K3,5(ρ♣, ρ♠) := 1√
ρ2♣ + z2

− 1√
ρ2♠ + z2

+ z2

3
556

⎡
⎢⎣
⎛
⎝ 1√

ρ2♠ + z2

⎞
⎠

3

−
⎛
⎝ 1√

ρ2♣ + z2

⎞
⎠

3
⎤
⎥⎦557

while the results of the integration in variable θ are:558

�1,1(θ♦, θ♥) := θ♥ − θ♦559

�1,2(θ♦, θ♥) := 2 sin

(
θ♥ − θ♦

2

)
sin

(
γ − θ♥ + θ♦

2

)
560

�1,3(θ♦, θ♥)561

:= 1

2

[
θ♥ − θ♦ − sin (θ♥ − θ♦) cos (2γ − θ♥ − θ♦)

]
562

�2,1(θ♦, θ♥) := 2 sin

(
θ♥ − θ♦

2

)
sin

(
θ♥ + θ♦

2

)
563

�2,2(θ♦, θ♥)564

:= 1

2

[
sin (θ♥ − θ♦) cos (γ − θ♥ − θ♦) − (θ♥ − θ♦) cos γ

]
565

�3,1(θ♦, θ♥)566

:= 1

2

[
θ♥ − θ♦ − sin (θ♥ − θ♦) cos (θ♥ + θ♦)

]
.567

Due to the above computations, when z > 0 we can conclude568

that569

I F
1 = �1,1(θ♦, θ♥)K1,1(ρ♣, ρ♠) and570

I F
4 = �1,1(θ♦, θ♥)K1,3(ρ♣, ρ♠)571

while572

I F
2 = K3,3(ρ♣, ρ♠)

sin2 γ

[
A1i A1 j�1,3(θ♦, θ♥)573

+ (A1i A2 j + A2i A1 j )�2,2(θ♦, θ♥)574

+ A2i A2 j�3,1(θ♦, θ♥)
]+ z

K2,3(ρ♣, ρ♠)

sin γ
575

[
(A1i A3 j + A3i A1 j )�1,2(θ♦, θ♥)576

+ (A2i A3 j + A3i A2 j )�2,1(θ♦, θ♥)
]

577

+ z2 K1,3(ρ♣, ρ♠)�1,1(θ♦, θ♥)A3i A3 j578

and 579

I F
3 = K3,5(ρ♣, ρ♠)

sin2 γ
580

[
A1i A1 j�1,3(θ♦, θ♥) + (A1i A2 j + A2i A1 j )�2,2 581

(θ♦, θ♥) + A2i A2 j�3,1(θ♦, θ♥)
]

582

+ z
K2,5(ρ♣, ρ♠)

sin γ
583

[
(A1i A3 j + A3i A1 j )�1,2(θ♦, θ♥) 584

+ (A2i A3 j + A3i A2 j )�2,1(θ♦, θ♥)
]

585

+ z2 K1,5(ρ♣, ρ♠)�1,1(θ♦, θ♥)A3i A3 j . 586

Remark In Appendix A we report the values of Ki, j (0, ρ♠) 587

for i = j = 1 or i = 1, 2, 3 and j = 3, 5. These quanti- 588

ties are useful to compute the integrals over the integration 589

domain E . 590

Remark When the field and the source triangles lay on the 591

same plane, i.e. z = 0, with the help of a limit process that 592

makes z tending to 0, it is easy to show that 593

I F
1 = �1,1(θ♦, θ♥)K ∗

1 and I F
4 = �1,1(θ♦, θ♥)K ∗

2 594

while 595

IF
2 = K ∗

1

sin2 γ

[
A1i A1 j �1,3(θ♦, θ♥) + (A1i A2 j 596

+ A2i A1 j )�2,2(θ♦, θ♥) + A2i A2 j �3,1(θ♦, θ♥)
]

597

IF
3 = K ∗

2

sin2 γ

[
A1i A1 j �1,3(θ♦, θ♥) 598

+ (A1i A2 j + A2i A1 j )�2,2(θ♦, θ♥) + A2i A2 j �3,1(θ♦, θ♥)
]
, 599

where the constants K ∗
1 and K ∗

2 600

following values: 601

K ∗
1 := (cP − cS)�n,ñ and K ∗

2 := 1

�n,ñ

cP − cS

cPcS
. 602

5.3 Integrals over the regionH 603

If we consider the domain D = H in (5.10) and we use polar 604

coordinates, we obtain double integrals of the type: 605

θ♥∫

θ♦

(sin θ)k−1 (sin (γ − θ))h−1 Ki, j (ρ♣, R(θ))dϑ 606

:= K̃ k,h
i, j (ρ♣; θ♦, θ♥), 607

where the indices h, k = 1, 2, 3 are such that 2 ≤ h + k < 5, 608

while the indices i and j are such that i = j = 1 or i = 1, 2, 3 609

and j = 3, 5. The computation of K̃ k,h
i, j (ρ♣; θ♦, θ♥) is not 610
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straightforward, since it requires the knowledge of sophis-611

ticated relationships linking the complex logarithm to the612

inverse or hyperbolic sine and cosine, collected in [1]. Fur-613

thermore, the results of this computation are given in terms614

of the following functions:615

g1(θ♦, θ♥) :=
√

1 + z2

R2(θ♦)

g2(θ♦, θ♥) :=
√

1 + z2

R2(θ♥)

g3(θ♦, θ♥) :
= 1

2 log

(
(g1(θ♦,θ♥)+cos (θ♦+β))(g2(θ♦,θ♥)−cos (θ♥+β))

(g1(θ♦,θ♥)−cos (θ♦+β))(g2(θ♦,θ♥)+cos (θ♥+β))

)

g4(θ♦, θ♥) := log

(
R(θ♦)

z +
√

1 + R2(θ♦)

z2

)

g5(θ♦, θ♥) := log

(
R(θ♥)

z +
√

1 + R2(θ♥)

z2

)

g6(θ♦, θ♥) := π − acos

(
− z cos (θ♥+β)√

F2+z2

)

−acos

(
z cos (θ♦+β)√

F2+z2

)

g7(θ♦, θ♥) := F2

F2+z2 .

616

When z > 0, the analytical integration over the domain H617

yields618

I H
1 = K̃ 1,1

1,1 (ρ♣; θ♦, θ♥) and I H
4 = K̃ 1,1

1,3 (ρ♣; θ♦, θ♥),619

where620

K̃ 1,1
1,1 (ρ♣; θ♦, θ♥)621

:= Fg3(θ♦, θ♥) + zg6(θ♦, θ♥) − (θ♥ − θ♦)

√
ρ2♣ + z2

622

K̃ 1,1
1,3 (ρ♣; θ♦, θ♥) := −1

z
g6(θ♦, θ♥) + θ♥ − θ♦√

ρ2♣ + z2
.623

For what concerns the computation of I H
2 , we have:624

IH
2 = 1

sin2 γ

[
A1i A1 j K̃ 1,3

3,3 (ρ♣; θ♦, θ♥) + (A1i A2 j + A2i A1 j )

K̃ 2,2
3,3 (ρ♣; θ♦, θ♥) + A2i A2 j K̃ 3,1

3,3 (ρ♣; θ♦, θ♥)
]

+ z

sin γ

[
(A1i A3 j + A3i A1 j )K̃ 1,2

2,3 (ρ♣; θ♦, θ♥)

+ (A2i A3 j + A3i A2 j )K̃ 2,1
2,3 (ρ♣; θ♦, θ♥)

]

+ z2 A3i A3 j K̃ 1,1
1,3 (ρ♣; θ♦, θ♥),

625

where:626

K̃ 1,2
2,3 (ρ♣; θ♦, θ♥) := g5(θ♦, θ♥) cos (γ − θ♥)627

− g4(θ♦, θ♥) cos (γ − θ♦) − g3(θ♦, θ♥) cos α628

+
⎡
⎣ ρ♣√

ρ2♣ + z2
− log

⎛
⎝ρ♣ +

√
ρ2♣ + z2

z

⎞
⎠
⎤
⎦ 629

[
cos (γ − θ♥) − cos (γ − θ♦)

]
630

K̃ 2,1
2,3 (ρ♣; θ♦, θ♥) := −g5(θ♦, θ♥) cos θ♥ 631

+ g4(θ♦, θ♥) cos θ♦ − g3(θ♦, θ♥) cos β 632

−
⎡
⎣ ρ♣√

ρ2♣ + z2
− log

⎛
⎝ρ♣ +

√
ρ2♣ + z2

z

⎞
⎠
⎤
⎦(cos θ♥ − cos θ♦

)
633

K̃ 1,3
3,3 (ρ♣; θ♦, θ♥) := F[g2(θ♦, θ♥) cos (θ♥ + α − γ ) 634

− g1(θ♦, θ♥) cos (θ♦ + α − γ ) + g3(θ♦, θ♥) sin2 α] 635

+ zg6(θ♦, θ♥) − ρ2♣ + 2z2

√
ρ2♣ + z2

�1,3(θ♦, θ♥) 636

K̃ 2,2
3,3 (ρ♣; θ♦, θ♥) := F[g1(θ♦, θ♥) cos (θ♦ + α) − g2(θ♦, θ♥) 637

cos (θ♥ + α) − g3(θ♦, θ♥) sin α sin β] 638

− zg6(θ♦, θ♥) cos γ − ρ2♣ + 2z2

√
ρ2♣ + z2

�2,2(θ♦, θ♥) 639

K̃ 3,1
3,3 (ρ♣; θ♦, θ♥) := F[g1(θ♦, θ♥) cos (θ♦ − β) 640

− g2(θ♦, θ♥) cos (θ♥ − β) + g3(θ♦, θ♥) sin2 β] 641

+ zg6(θ♦, θ♥) − ρ2♣ + 2z2

√
ρ2♣ + z2

�3,1(θ♦, θ♥). 642

Finally, 643

I H
3 = 1

sin2 γ

[
A1i A1 j K̃ 1,3

3,5 (ρ♣; θ♦, θ♥)

+ (A1i A2 j + A2i A1 j )K̃ 2,2
3,5 (ρ♣; θ♦, θ♥)

+A2i A2 j K̃ 3,1
3,5 (ρ♣; θ♦, θ♥)

]

+ z

sin γ

[
(A1i A3 j + A3i A1 j )K̃ 1,2

2,5 (ρ♣; θ♦, θ♥)

+ (A2i A3 j + A3i A2 j )K̃ 2,1
2,5 (ρ♣; θ♦, θ♥)

]

+ z2 A3i A3 j K̃ 1,1
1,5 (ρ♣; θ♦, θ♥).

644

where 645

K̃ 1,1
1,5 (ρ♣; θ♦, θ♥) := − 1

3z2

F

F2 + z2 646

[
cos (θ♥ + β)

g2(θ♦, θ♥)
− cos (θ♦ + β)

g1(θ♦, θ♥)

]
647

− g6(θ♦, θ♥)

3z3 + θ♥ − θ♦

3
(
ρ2♣ + z2

)3/2 648

K̃ 1,2
2,5 (ρ♣; θ♦, θ♥) := − ρ3♣

3z2(ρ2♣ + z2)
3/2 �1,2(θ♦, θ♥) 649

+ 1

3z2

[
sin α sin

(
θ♥ + β

)− g7(θ♦, θ♥) cos α cos
(
θ♥ + β

)

g2(θ♦, θ♥)
650
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+ g7(θ♦, θ♥) cos α cos
(
θ♦ + β

)− sin α sin
(
θ♦ + β

)

g1(θ♦, θ♥)

]
651

K̃ 2,1
2,5 (ρ♣; θ♦, θ♥) := − ρ3♣

3z2(ρ2♣ + z2)
3/2 �2,1(θ♦, θ♥)652

+ 1

3z2

[
sin β sin

(
θ♦ + β

)+ g7(θ♦, θ♥) cos β cos
(
θ♦ + β

)

g1(θ♦, θ♥)
+653

− sin β sin
(
θ♥ + β

)+ g7(θ♦, θ♥) cos β cos
(
θ♥ + β

)

g2(θ♦, θ♥)

]
654

K̃ 1,3
3,5 (ρ♣; θ♦, θ♥) := 3ρ2♣ + 2z2

3(ρ2♣ + z2)
3/2 �1,3(θ♦, θ♥)655

− g6(θ♦, θ♥)

3z
656

+ g7(θ♦, θ♥) cos2 α cos (θ♥ + β) − cos (θ♥ + α − γ ) sin2 (θ♥ + β)

3Fg2(θ♦, θ♥)
657

− g7(θ♦, θ♥) cos2 α cos (θ♦ + β) − cos (θ♦ + α − γ ) sin2 (θ♦ + β)

3Fg1(θ♦, θ♥)
658

659

K̃ 2,2
3,5 (ρ♣; θ♦, θ♥) := 3ρ2♣ + 2z2

3(ρ2♣ + z2)
3/2 �2,2(θ♦, θ♥)660

+ g6(θ♦, θ♥)

3z
cos γ661

+ g7(θ♦, θ♥) cos α cos β cos (θ♥ + β) + cos (θ♥ + α) sin2 (θ♥ + β)

3Fg2(θ♦, θ♥)
662

− g7(θ♦, θ♥) cos α cos β cos (θ♦ + β) + cos (θ♦ + α) sin2 (θ♦ + β)

3Fg1(θ♦, θ♥)
663

K̃ 3,1
3,5 (ρ♣; θ♦, θ♥) := 3ρ2♣ + 2z2

3(ρ2♣ + z2)
3/2 �3,1(θ♦, θ♥) − g6(θ♦, θ♥)

3z
664

+ g7(θ♦, θ♥) cos2 β cos (θ♥ + β) + cos (θ♥ − β) sin2 (θ♥ + β)

3Fg2(θ♦, θ♥)
665

− g7(θ♦, θ♥) cos2 β cos (θ♦ + β) + cos (θ♦ − β) sin2 (θ♦ + β)

3Fg1(θ♦, θ♥)
.666

Remark The values K̃ h,k
i, j (θ♦, θ♥) := K̃ h,k

i, j (0; θ♦, θ♥), for667

i = j = 1 or i = 1, 2, 3 and j = 3, 5, are collected in668

Appendix B. We point out that these functions are involved669

in the computation of the integral over the domain G.670

Remark When the source and the field triangles are in the671

same plane, i.e. z = 0, we introduce the function672

g(θ♦, θ♥) := 1

2
log

(
(1 + cos (θ♦ + β))(1 − cos (θ♥ + β))

(1 − cos (θ♦ + β))(1 + cos (θ♥ + β))

)
673

and we consider: 674

I H
1 = K

1,1
1,1(ρ♣; θ♦, θ♥) and I H

4 = K
1,1
1,3(ρ♣; θ♦, θ♥), 675

where 676

K
1,1
1,1(ρ♣; θ♦, θ♥) := Fg(θ♦, θ♥) − ρ♣(θ♥ − θ♦) 677

K
1,1
1,3(ρ♣; θ♦, θ♥) 678

:= 1

F

[
cos (θ♥ + β) − cos (θ♦ + β)

]+ θ♥ − θ♦
ρ♣

. 679

The value of I H
2 is given by the following relationship: 680

I H
2 = 1

sin2 γ

[
A1i A1 j K

1,3
3,3(ρ♣; θ♦, θ♥) 681

+(A1i A2 j + A2i A1 j )K
2,2
3,3(ρ♣; θ♦, θ♥) 682

+ A2i A2 j K
3,1
3,3(ρ♣; θ♦, θ♥)

]
683

where 684

K
1,3
3,3(ρ♣; θ♦, θ♥) 685

:= F[g(θ♦, θ♥) sin2 α + cos (θ♥ + α − γ ) 686

− cos (θ♦ + α − γ )] 687

− ρ♣�1,3(θ♦, θ♥) 688

K
2,2
3,3(ρ♣; θ♦, θ♥) 689

:= F[cos (θ♦ + α) − cos (θ♥ + α) − g(θ♦, θ♥) sin α sin β]690

− ρ♣�2,2(θ♦, θ♥) 691

K
3,1
3,3(ρ♣; θ♦, θ♥) 692

:= F[cos (θ♦ − β) − cos (θ♥ − β) 693

+ g(θ♦, θ♥) sin2 β] 694

− ρ♣�3,1(θ♦, θ♥). 695

Finally, the computation of I H
3 yields 696

I H
3 = 1

sin2 γ
697

[
A1i A1 j K

1,3
3,5(ρ♣; θ♦, θ♥) + (A1i A2 j + A2i A1 j )K

2,2
3,5(ρ♣; 698

θ♦, θ♥) + A2i A2 j K
3,1
3,5(ρ♣; θ♦, θ♥)

]
699
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where700

K
1,3
3,5(ρ♣; θ♦, θ♥) := (1 + cos2 α) cos (θ♥ + β) − cos (θ♥ + α − γ ) sin2 (θ♥ + β)

3F

− (1 + cos2 α) cos (θ♦ + β) − cos (θ♦ + α − γ ) sin2 (θ♦ + β)

3F

+ 1

ρ♣
�1,3(θ♦, θ♥)K

2,2
3,5(ρ♣; θ♦, θ♥) := [cos α cos β + cos (α + β)] cos (θ♥ + β) + cos (θ♥ + α) sin2 (θ♥ + β)

3F

− [cos α cos β + cos (α + β)] cos (θ♦ + β) + cos (θ♦ + α) sin2 (θ♦ + β)

3F
+ 1

ρ♣
�2,2(θ♦, θ♥)K

3,1
3,5(ρ♣; θ♦, θ♥)

:= (1 + cos2 β) cos (θ♥ + β) + cos (θ♥ − β) sin2 (θ♥ + β)

3F
− (1 + cos2 β) cos (θ♦ + β) + cos (θ♦ − β) sin2 (θ♦ + β)

3F

+ 1

ρ♣
�3,1(θ♦, θ♥).

701

6 Numerical results702

Here, we address three numerical examples to validate the703

EBEM approach. As recalled in the previous section, dou-704

ble time integrals are performed analytically as well as the705

inner space integral over the field triangle. On the con-706

trary, the outer space integral over the source element is707

numerically computed by using Mg-point Gauss-Hammer708

quadrature rules. The choice of the parameter Mg ≤ 12 has709

guaranteed the computation of all the involved integrals with710

a sufficiently high accuracy. Higher values of Mg could be711

considered, but they would increase the overall computa-712

tional cost of the method.713

For the generation of the partitioning T�x(�), we have714

used the GMSH software (see [22]). In particular, we have715

built uniform or quasi-uniform conforming meshes consist-716

ing of triangular elements. All the numerical computations717

have been performed on a cluster with two Intel® XEON®
718

E5-2683v4 CPUs (2.1 GHz clock frequency and 16 cores)719

by means of parallel MATLAB® codes.720

6.1 Error analysis for an elastodynamic problem721

exterior to a square crack722

In this example, we consider a square crack � = {x =723

(x1, x2, 0) : −0.5 ≤ xi ≤ 0.5, i = 1, 2} and the elas-724

todynamic problem defined in � = R3\�, equipped by725

Dirichlet boundary conditions given on �. The chosen P,726

S-velocities are cP = 1 m/s and cS = 1/
√

2 m/s , the material727

density is � = 1kg/m3
and the final time is T = 1 s. The728

boundary datum g(x; t) is assigned in such a way that the729

analytical solution of (3.9) turns out to be w(x; t) = x t . We730

consider successive refinements levels of a uniform coarse

731

mesh constituted by 8 equal triangles (lev. 0) covering �. 732

Refinements are obtained halving each triangle side, giving 733

meshes as those depicted in Fig. 6. In Table 1 we show the 734

discretization parameters, together with the error evaluated 735

in L2(� × [0, T ]) norm: 736

εL2(�×[0,T ]) := ‖w − w̃‖L2(�×[0,T ]) 737

=
[∫

�

∫ T

0
‖w(x; t) − w̃(x; t)‖2 d�x dt

]1/2

738

and the Estimated Order of Convergence (EOC). We remark 739

that, here, �x corresponds to the cathetus length of the uni- 740

form mesh elements, while �t has been chosen in a way such 741

that cP = �x
�t

. 742

As one can see, the error decays as O(�1.5
x ). The observed 743

super-convergence could be ascribed to the regularity of the 744

meshes and the smoothness of the solution. 745

6.2 Longitudinal waves in a bar 746

To study the behaviour of the proposed method, we will 747

deduce a Dirichlet problem from a classical benchmark for 748

Table 1 Discretization parameters for different levels of refinement,
space–time L2 error and EOC

�x = cP �t M�x N�t εL2(�×[0,T ]) EOC

lev. 0 0.50000 8 2 4.20 10−2 –

lev. 1 0.25000 32 4 1.52 10−2 1.47

lev. 2 0.12500 128 8 5.21 10−3 1.54

lev. 3 0.06250 512 16 1.81 10−3 1.52

lev. 4 0.03125 2048 32 6.65 10−4 1.45
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Fig. 6 Meshes on the square crack for successive refinement levels

time-domain BEMs applied to 3D elstodynamics, which is749

well known to be extremely challenging for what concern750

standard BEMs analysis in terms of stability properties.751

Let us consider a bar �i of height equal to L and square752

cross section with unit side, depicted in Fig. 7. In litera-753

ture, this domain is typically equipped with mixed boundary754

conditions: on the lower surface the Dirichlet boundary755

datum ū(x; t) = (0, 0, 0)� is enforced, while the upper sur-756

face is subjected to a uniform normal traction p̄(x; t) =757

(0, 0, p0 H(t))�. On the remaining boundary the tractions758

are set to zero.759

If we set a (artificially) vanishing Poisson’s ratio and, con-760

sequently cP = √
2cS, the related elastodynamic problem761

possesses an analytical solution, representing the total dis-762

placement field in the whole 3D bar volume and surface,763

directed only in x3-direction and whose expression coincides764

with that of the longitudinal waves in a 1D elastodynamic rod765

(see [21], page 473), i.e.:766

u(x; t) = p0 H(t)

�c2
P

⌈
cPT
2L

⌉
−1∑

k=0

(−1)k

[(cPt − 2kL − (L − x))

H

(
cPt − 2kL − (L − x)

cP

)

− (cPt − 2(k + 1)L + (L − x))

× H

(
cPt − 2(k + 1)L + (L − x)

cP

)]
,

(6.1)767

Here, we consider problem (2.1), where �i = [−l, l]2 ×768

[0, L], with l = 1
2 m, L = 3m. The material parameters769

� = 1kg/m3
and μ = 1

2
kg/ms2

are taken, while we set p0 =770

1kg/ms2
, so that p0/�c2

P = 1. Using (6.1), on the boundary �771

of the bar we prescribe the Dirichlet condition:772

g(x; t) = (0, 0, u(x3; t))�, x ∈ �, t ∈ [0, T ] (6.2)773

Fig. 7 Bar geometry and boundary conditions typically prescribed in
literature

where the overall analyzed time is T = 36s. To develop 774

a convergence analysis, we start by considering the coarse 775

mesh associated to the zero level of refinement (lev. 0) and all 776

the successive refinements are obtained by halving each side 777

of its elements. In Fig. 8, the uniform meshes corresponding 778

to the four levels of refinement are represented. In Table 2, 779

the space and time discretization parameters are reported. We 780

remark that, here,�x corresponds to the cathetus length of the 781

uniform mesh elements, while �t has been chosen in a way 782

such that cP = �x
�t

. Furthermore, the last column of Table 2 783

collects the values of the parameter N∗ in (4.11), responsible 784

for the reduction of the cost of the proposed approach in 785

terms of memory and computation time. Indeed, we recall 786

that EEE
(�) = 0 for � = N∗, . . . , N�t − 1. 787

In Fig. 9, we show in relation to the finest mesh the whole 788

time history of the third component of the recovered density 789

w̃3(x; t) at the points x0 = (0, 0, 0) (on the bottom face) and 790

x6 = (0, 0, 3) (on the top face), since the components in the 791

x1- and x2-directions of the density w̃(x; t) are both trivial. 792

We remark that the oscillations in these plots are clearly asso- 793
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Fig. 8 Meshes of the domain �i for four successive levels of refinement

Table 2 Discretization parameters for different levels of refinement of
the bar boundary mesh

�x M�x �t N�t N∗

lev. 0 1.0000 28 1.0000 36 10

lev. 1 0.5000 112 0.5000 72 14

lev. 2 0.2500 448 0.2500 144 24

lev. 3 0.1250 1792 0.1250 288 42

ciated with the jump discontinuities of the analytical solution,794

but anyway they remain stable.795

To reconstruct the solution of the elastodynamic problem796

u(x; t) = (0, 0, u(x3; t)), x ∈ �i , we plug the computed797

density w̃(x; t) into the relationship (3.1), obtaining ũ(x; t).798

The analytical behaviour of the time history of u is well799

captured by the third component of ũ (the only one not800

trivial) for every choice of �x, �t presented in Table 2, in801

particular for the smallest discretization parameters, as it is802

shown in Fig. 10, where for the highest levels of refinement 803

the recovered displacement ũ in x4 = (0, 0, 2) is indis- 804

tinguishable from the exact one. This good approximation 805

property is clearly visible also in Fig. 11, where only for 806

�x = �t = 0.125, the picture on the left presents the whole 807

time history of the recovered displacement field, computed at 808

one of the points, namely x6, of the upper surface compared 809

to the exact one, while on the right, the behaviour of ũ3 at 810

the points x j = (0, 0, j/2 ), for j = 0, 1, 2, 3, 4, 5, 6 (placed 811

along a vertical line in the center of the bar) is highlighted. 812

In order to test the accuracy of the numerical solution 813

retrieved by applying the proposed energetic BEM approach, 814

in Fig. 12, we show the behaviour of the L2([0, T ]) absolute 815

error in the point x4: 816

ε(x4) := ‖ũ3(x4; ·) − u(2; ·)‖L2([0,T ]) 817

=

√√√√√
T∫

0

|̃u3(x4; t) − u(2; t)|2 dt . 818

Fig. 9 For �t = 0.125, time
history of the component in
x3-direction of the approximated
density w̃ at the location
x0 = (0, 0, 0), on the left, and
x6 = (0, 0, 3), on the right
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Fig. 10 Time history of the component in x3-direction of the approx-
imated displacement field ũ in x4 = (0, 0, 2), recovered for different
values of discretization parameters and compared to the analytical one

We point out that these results seem to suggest that ε(x4)819

decays as O(�1.5
x ). In our numerical experiments, we have820

observed similar errors when we reconstruct ũ(x; t) in other821

points x ∈ �i .822

6.3 Scattering of an incident plane P-wave by the823

unit sphere824

Finally, we consider the problem of scattering by a sphere,825

which is interesting from the mathematical point of view and826

has several applications, as reviewed in [30], ranging from827

acoustics to elastodynamics (see also [32]) and electromag-828

netism.829

Problem (2.1) is here defined in the domain �e := {x ∈830

R3 x2
1 + x2

2 + x2
3 > 1}, external to the unit sphere with831

boundary � and centered at the origin of the axes, endowed832

with homogeneous initial data and Dirichlet datum g(x; t)833

coinciding with the opposite of an incident plane P-wave834

uinc(x; t) along the obstacle �, i.e. g(x; t) = −uinc(x; t). In835

the following, we assume:836

uinc(x; t)837

:=
(

e−20(x1−2+cPt−0.475)2
, 0, 0

)�
.838

The chosen P, S-velocities are cP = 2m/s and cS = 1m/s , the839

material density is � = 1kg/m3
and the final time is T = 12s.840

Fig. 12 L2([0, T ]) absolute error ε(x4) for the sequence of time and
space discretizations described in Table 2

The total wave field utot is given by the sum of the incident 841

wave uinc and the scattered one usca, where the latter is recon- 842

structed in a post-processing phase by using the single-layer 843

representation formula (3.1), once the density w̃ is numer- 844

ically computed. For the space discretization we choose a 845

quasi-uniform mesh of � consisting of M�x = 1488, with 846

�x 	 0.125, while the time interval of interest is subdivided 847

into N = 192 subintervals so that cP 	 �x
�t

. In this case, we 848

have observed that N∗ = 38 and consequently the method is 849

extremely fast. 850

In Figs. 13 and 14, we present several snapshots related 851

to the components in the x1- and x2-directions, respec- 852

tively, of the reconstructed scattered field in the square 853

[−5, 5] × [−5, 5], laying on the plane x3 = 0 and exter- 854

nal to the obstacle, for different time instants. We omit the 855

plot of the component in the x3-direction because it is trivial. 856

These results show the capability of the proposed method to 857

simulate a complete wavefield since an S-wave appears once 858

the scattered field in x1-direction, generated by the given 859

Dirichlet datum, bumps against the obstacle and is reflected 860

back. 861

Conclusion and perspectives 862

We have considered a boundary integral reformulation of 3D 863

time-domain interior and exterior wave problems, endowed 864

Fig. 11 For �x = 0.125,
�t = 0.125, on the left, time
history of the component in
x3-direction of the recovered
displacement field ũ in x6
compared with the analytical
one and, on the right, evolution
of the approximated ũ3 at
different heights along a vertical
line in the center of the bar)
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Fig. 13 Scattering of a plane incident P-wave by the unit sphere. Snapshots of the component in the x1-direction of the reconstructed scattered
field usca around the obstacle at different time instants

Fig. 14 Scattering of a plane incident P-wave by the unit sphere. Snapshots of the component in the x2-direction of the reconstructed scattered
field usca around the obstacle at different time instants

with a Dirichlet type boundary and null initial conditions.865

For the resolution of the corresponding boundary integral866

equation, we have used the space–time energetic Galerkin867

boundary element method with double analytical integration868

in time variable. The resulting weakly singular double inte-869

grals in space variables are then evaluated by inner analytical870

and outer numerical integrations. This issue has already been871

encountered and analysed in [5], where the energetic BEM872

has been applied to solve 3D acoustic (scalar) wave problems.873

However, the extension of this method to the elastodynamic874

(vector) case is not trivial, since a rigorous classification875

of integration domains with shapes strongly dependent on876

the advancement of P- and S-wave fronts is required. The877

accurate detection of these domains is essential to avoid878

computational inaccuracy and to overcome the difficulties879

entailed by the integration of the Heaviside functions, that 880

model the wave fronts propagation. This issue, as already 881

observed in the context of 2D elastodynamic wave problems 882

(see [11]), is crucial to maintain the global efficiency and 883

stability of the entire energetic procedure. Furthermore, we 884

have theoretically and numerically shown that the compu- 885

tational cost and memory storage required by the proposed 886

numerical method can be significantly reduced by taking into 887

account a cut-off property known since the work of Mansur 888

[28] and used for instance in [25, 26] . 889

Unfortunately, even if the energetic BEM takes advantage 890

from the dimensionality reduction of the problem, working 891

on the boundary and not on the spatial domain, 3D realis- 3892

tic problems involve a large number of surface degrees of 893

freedom. Therefore, the traditional implementation on ordi- 894
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nary laptops of the method is prohibitive as soon as the space895

dimension becomes large, and it is restricted to problems of896

small size, typically O(103) degrees of freedom, as shown897

in the presented numerical tests. We remark that at the cur-898

rent stage the design and the implementation of fast, stable899

and accurate solvers, that allow to increase the capabilities of900

space–time BEMs, are still open questions (see [12] and [20]901

for recent developments in 2D). Even if this issue is crucial902

for successful applications of the proposed method to large903

scale HPC applications, it is out of the aim of the present pio-904

neering paper. Since these aspects are worth of study, they905

will be the subject of future investigations. On the other side,906

the study of Energetic BEM for the more interesting 3D elas-907

todynamic PDE equipped by mixed or Neumann boundary908

condition is currently taken into account, with the develop-909

ment of space–time double layer potential and hypersingular910

integral operator discretizations, extending what has been911

done in [6] for 3D acoustic wave propagation.912

Appendix913

In the case of acoustic (scalar) wave propagation problems,914

for a given child triangle Ě (k)
m a single circular wave front915

induces, in the most general case, a partition represented by916

(the sum of) a triangle (region G) and two circular sectors917

(region E). In this Appendix, we detail the analytical inner918

integration over these two types of domain.919

A Results of the analytical integration over a920

circular sector921

We have already remarked that, when ρ♣ = 0, the domain922

F coincides with E (circular sector). In this special case, the923

expression of the functions Ki, j (ρ♠) := Ki, j (0, ρ♠), for924

i = j = 1 or i = 1, 2, 3 and j = 3, 5, simplifies as it925

follows:926

K1,1(ρ♠) :=
√

ρ2♠ + z2 − z927

K1,3(ρ♠) := − 1√
ρ2♠ + z2

+ 1

z
928

K1,5(ρ♠) := 1

3

⎡
⎢⎣ 1

z3 −
⎛
⎝ 1√

ρ2♠ + z2

⎞
⎠

3
⎤
⎥⎦929

K2,3(ρ♠) := log

⎛
⎝ρ♠ +

√
ρ2♠ + z2

z

⎞
⎠− ρ♠√

ρ2♠ + z2
930

K2,5(ρ♠) := 1

3z2

⎛
⎝ ρ♠√

ρ2♠ + z2

⎞
⎠

3

931

K3,3(ρ♠) :=
√

ρ2♠ + z2 + z2
√

ρ2♠ + z2
− 2z 932

K3,5(ρ♠) := 2

3z
− 1√

ρ2♠ + z2
+ z2

3

⎛
⎝ 1√

ρ2♠ + z2

⎞
⎠

3

. 933

Since they depend on z, we point out that in this scenario z 934

is always greater than 0. 935

B Results of the analytical integration over a 936

triangle 937

For what concerns the collapsed version of the domain H, i.e. 938

the triangle G, we report here the values of K̃ h,k
i, j (θ♦, θ♥) := 939

K̃ h,k
i, j (0; θ♦, θ♥), where the indices h, k = 1, 2, 3 are such 940

that 2 ≤ h + k < 5, while the indices i and j are such that 941

i = j = 1 or i = 1, 2, 3 and j = 3, 5. For easiness of the 942

presentation, we collect the expression of K̃ h,k
i, j (θ♦, θ♥) on 943

the basis of the values of the indices h and k, so that 944

• for h = k = 1 we have: 945

K̃ 1,1
1,1 (θ♦, θ♥) := Fg3(θ♦, θ♥) + zg6(θ♦, θ♥) 946

− z(θ♥ − θ♦) 947

K̃ 1,1
1,3 (θ♦, θ♥) := −1

z
g6(θ♦, θ♥) + 1

z
(θ♥ − θ♦) 948

K̃ 1,1
1,5 (θ♦, θ♥) := − 1

3z2

F

F2 + z2 949

[
cos (θ♥ + β)

g2(θ♦, θ♥)
− cos (θ♦ + β)

g1(θ♦, θ♥)

]
950

− g6(θ♦, θ♥)

3z3 + θ♥ − θ♦
3z3 951

• for h = 1 and k = 2 we have 952

K̃ 1,2
2,3 (θ♦, θ♥) := g5(θ♦, θ♥) cos (γ − θ♥) − g4(θ♦, θ♥) 953

cos (γ − θ♦) − g3(θ♦, θ♥) cos α 954

K̃ 1,2
2,5 (θ♦, θ♥) := 1

3z2 955

×
[

sin α sin
(
θ♥ + β

)− g7(θ♦, θ♥) cos α cos
(
θ♥ + β

)

g2(θ♦, θ♥)
+ 956

+ g7(θ♦, θ♥) cos α cos
(
θ♦ + β

)− sin α sin
(
θ♦ + β

)

g1(θ♦, θ♥)

]
957
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• for h = 1 and k = 3 we have958

K̃ 1,3
3,3 (θ♦, θ♥) := F[g2(θ♦, θ♥) cos (θ♥ + α − γ )959

− g1(θ♦, θ♥) cos (θ♦ + α − γ ) + g3(θ♦, θ♥) sin2 α]960

+ zg6(θ♦, θ♥) − 2z�1,3(θ♦, θ♥)961

K̃ 1,3
3,5 (θ♦, θ♥) := 2

3z
�1,3(θ♦, θ♥) − g6(θ♦, θ♥)

3z
962

+ g7(θ♦, θ♥) cos2 α cos (θ♥ + β) − cos (θ♥ + α − γ ) sin2 (θ♥ + β)

3Fg2(θ♦, θ♥)
963

− g7(θ♦, θ♥) cos2 α cos (θ♦ + β) − cos (θ♦ + α − γ ) sin2 (θ♦ + β)

3Fg1(θ♦, θ♥)
964

• for h = 2 and k = 1 we have965

K̃ 2,1
2,3 (θ♦, θ♥) := −g5(θ♦, θ♥) cos θ♥ + g4(θ♦, θ♥) cos θ♦966

− g3(θ♦, θ♥) cos β K̃ 2,1
2,5 (θ♦, θ♥) := 1

3z2967

×
[

sin β sin
(
θ♦ + β

)+ g7(θ♦, θ♥) cos β cos
(
θ♦ + β

)

g1(θ♦, θ♥)
+968

− sin β sin
(
θ♥ + β

)+ g7(θ♦, θ♥) cos β cos
(
θ♥ + β

)

g2(θ♦, θ♥)

]
969

• for h = k = 2 we have970

K̃ 2,2
3,3 (θ♦, θ♥) := F[g1(θ♦, θ♥) cos (θ♦ + α)971

− g2(θ♦, θ♥) cos (θ♥ + α) − g3(θ♦, θ♥) sin α sin β]972

− zg6(θ♦, θ♥) cos γ − 2z�2,2(θ♦, θ♥)973

• for h = 3 and k = 1 we have974

K̃ 3,1
3,3 (θ♦, θ♥) := F[g1(θ♦, θ♥) cos (θ♦ − β)975

− g2(θ♦, θ♥) cos (θ♥ − β) + g3(θ♦, θ♥) sin2 β]976

+ zg6(θ♦, θ♥) − 2z�3,1(θ♦, θ♥).977

Even in this case, z is always greater than 0.978

References979

1. Abramowitz M, Stegun I (1964) Handbook of mathematical func-980

tions. NBS (1964)981

2. Aimi A, Diligenti M (2008) A new space–time energetic formula-982

tion for wave propagation analysis in layered media by BEMs. Int983

J Numer Methods Eng 75(9):1102–1132984

3. Aimi A, Diligenti M, Guardasoni C, Mazzieri I, Panizzi S (2009)985

An energy approach to space–time Galerkin BEM for wave prop-986

agation problems. Int J Numer Methods Eng 80(9):1196–1240987

4. Aimi A, Diligenti M, Frangi A, Guardasoni C (2012) A stable 3D988

energetic Galerkin BEM approach for wave propagation interior989

problems. Eng Anal Bound Elem 36(12):1756–1765990

5. Aimi A, Diligenti M, Frangi A, Guardasoni C (2013) Neumann991

exterior wave propagation problems: computational aspects of 3D992

energetic Galerkin BEM. Comput Mech 51(4):475–493993

6. Aimi A, Diligenti M, Frangi A, Guardasoni C (2014) Energetic 994

BEM-FEM coupling for wave propagation in 3D multidomains. 995

Int J Numer Method Eng 97:377–394 996

7. Aimi A, Desiderio L, Diligenti M, Guardasoni C (2014) A numer- 997

ical study of energetic BEM-FEM applied to wave propagation 998

in 2D multidomains. Publications de l’Institut Mathématique 999

96(110):5–22 1000

8. Aimi A, Desiderio L, Diligenti M, Guardasoni C (2019) Appli- 1001

cation of energetic BEM to 2D elastodynamic soft scattering 1002

problems. Commun Appl Ind Math 10(1):182–198 1003

9. Aimi A, Desiderio L, Fedeli P, Frangi A (2021) A fast boundary- 1004

finite element approach for estimating anchor losses in micro- 1005

electro-mechanical system resonators. Appl Math Model 97:741– 1006

753 1007

10. Aimi A, Di Credico G, Gimperlein H, Stephan EP. Higher- 1008

order time domain boundary elements for elastodynamics—graded 1009

meshes and hp-versions (under review) 1010

11. Aimi A, Di Credico G, Diligenti M, Guardasoni C (2022) Highly 1011

accurate quadrature schemes for singular integrals in energetic 1012

BEM applied to elastodynamics. J Comput Appl Math 410:114186 1013

12. Aimi A, Desiderio L, Di Credico G (2022) Partially pivoted ACA 1014

based acceleration of the Energetic BEM for time-domain acoustic 1015

and elastic waves exterior problems. Comput Math Appl 119:351– 1016

370 1017

13. Anderson TG, Bruno OP, Lyon M (2020) High-order, dispersion- 1018

less “fast-hybrid” wave equation solver. Part I: O(1) sampling cost 1019

via incident-field windowing and recentering. SIAM J Sci Comput 1020

42(2):A1348–A1379 1021

14. Bamberger A, Ha Duong T (1986) Formulation variationelle 1022

espace-temps pour le calcul par potentiel retardé de la difraction 1023

d’une onde acoustique. Math Methods Appl Sci 8:405–435 1024

15. Bonnet M (1995) Boundary integral equation methods for solids 1025

and fluids. Wiley, Hoboken 1026

16. Chaillat S, Desiderio L, Ciarlet P Jr (2017) Theory and implemen- 1027

tation of H-matrix based iterative and direct solvers for oscillatory 1028

kernels. J Comput Phys 351:165–186 1029

17. Chen G, Zhou J (2010) Boundary element methods with applica- 1030

tions to nonlinear problems. Atlantis Press, Paris 1031

18. Costabel M (2004) Time-dependent problems with the boundary 1032

integral equation method. Encycl Comput Mech 1:703–721 1033

19. Desiderio L (1978) An H-matrix based direct solver for the 1034

Boundary Element Method in 3D elastodynamics. AIP Conf Proc 1035

2018:120005 1036

20. Desiderio L, Falletta S (2020) Efficient solution of two-dimensional 1037

wave propagation problems by CQ-wavelet BEM: algorithm and 1038

applications. SIAM J Sci Comput 42(4):B894–B920 1039

21. Eringen AC, Suhubi ES (1975) Elastodynamics. Academic Press, 1040

New York 1041

22. Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite 1042

element mesh generator with built-in pre- and post processing facil- 1043

ities. Int J Numer Methods Eng 79:1309–1331 1044

23. Jang HW, Ih JG (2012) Stabilization of time domain acoustic 1045

boundary element method for the exterior problem avoiding the 1046

nonuniqueness. J Acoust Soc Am 133(3):1237–1244 1047

24. Joly P, Rodriguez J (2017) Mathematical aspects of variational 1048

boundary integral equations for time dependent wave propagation. 1049

J Integr Equ Appl 29(1):137–187 1050

25. Kager B (2014) Efficient convolution quadrature based boundary 1051

element formulation for time-domain elastodynamics. PhD Thesis, 1052

Technischen Universitat Graz 1053

26. Kager B, Schanz M (2015) Fast and data sparse time domain BEM 1054

for elastodynamics. Eng Anal Bound Elem 50:212–223 1055

27. Lubich C (1994) On the multistep time discretization of linear 1056

initial-boundary value problems and their boundary integral equa- 1057

tions. Numer Math 67(3):365–389 1058

123

Journal: 466 MS: 2312 TYPESET DISK LE CP Disp.:2023/3/30 Pages: 21 Layout: Large



un
co

rr
ec

te
d

pr
oo

f

Computational Mechanics

28. Mansur WJ (1983) A time-stepping technique to solve wave prop-1059

agation problems using the boundary element method. PhD thesis,1060

University of Southampton1061

29. Mansur WJ, Brebbia CA (1985) Further developments on the solu-1062

tion of the transient scalar wave equation. In: Brebbia CA (ed)1063

Topics in boundary elements research 2. Springer, Berlin, pp 87–1064

1231065

30. Martin PA (2021) Time-domain scattering. Cambridge University1066

Press, Cambridge1067

31. Milroy J, Hinduja S, Davey K (1997) The elastostatic three-1068

dimensional boundary element method: analytical integration1069

for linear isoparametric triangular elements. Appl Math Model1070

21:763–7821071

32. Norwood FR (1967) Diffraction of transient elastic waves by a1072

spherical cavity. Ph.D. Thesis, Caltech1073

33. Quarteroni A, Valli A (1994) A numerical approximation of partial1074

differential equations. Springer, Berlin1075

34. Rynne BP (1985) Stability and convergence of time marching 1076

methods in scattering problems. IMA J Appl Math 35(3):297–310 1077

35. Schanz M (2018) Fast multipole method for poroelastodynamics. 1078

Eng Anal Bound Elem 89:50–59 1079

Publisher’s Note Springer Nature remains neutral with regard to juris- 1080

dictional claims in published maps and institutional affiliations. 1081

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

Journal: 466 MS: 2312 TYPESET DISK LE CP Disp.:2023/3/30 Pages: 21 Layout: Large



un
co

rr
ec

te
d

pr
oo

f

Journal: 466
Article: 2312

Author Query Form

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully
against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the ‘Author’s
response’ area provided below

Query Details required Author’s response

1. Please check and confirm the edit made in the article
title.

2. Please check and confirm the inserted city for the affil-
iations 1 and 2.

3. Please provide the complete details for the reference
Aimi et al. (under review).


	A space–time energetic BIE method for 3D elastodynamics: the Dirichlet case
	Abstract
	1 Introduction
	2 Model problem
	3 Energetic TD-BIE weak formulation
	4 Galerkin BEM discretization
	5 Quadrature of double integrals in space variables
	5.1 Exact representation of the wave fronts
	5.2 Integrals over the region mathcalF
	5.3 Integrals over the region mathcalH

	6 Numerical results
	6.1 Error analysis for an elastodynamic problem exterior to a square crack
	6.2 Longitudinal waves in a bar
	6.3 Scattering of an incident plane P-wave by the unit sphere

	Conclusion and perspectives
	Appendix
	A Results of the analytical integration over a circular sector
	B Results of the analytical integration over a triangle
	References


