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Abstract
We study a Hilbert–Mumford criterion for polystablility associated with an action of a real
reductive Lie group G on a real submanifold X of a Kähler manifold Z . Suppose the action
of a compact Lie group with Lie algebra u extends holomorphically to an action of the
complexified groupUC and that theU -action on Z is Hamiltonian. IfG ⊂ UC is compatible,
there is a corresponding gradientmapμp : X → p, whereg = k⊕p is aCartan decomposition
of the Lie algebra of G. Under some mild restrictions on the G-action on X , we characterize
which G-orbits in X intersect μ−1

p (0) in terms of the maximal weight functions, which we
viewed as a collection ofmaps defined on the boundary at infinity (∂∞G/K ) of the symmetric
space G/K . We also establish the Hilbert–Mumford criterion for polystability of the action
of G on measures.
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1 Introduction

The classical Hilbert–Mumford criterion in Geometric Invariant Theory (in projective alge-
braic geometry) is an explicit numerical criterion for finding the stability of a point in terms
of an invariant known as maximal weight function [26]. This criterion has been extended to
the non-algebraic Kählerian settings using the theory of Kähler quotients and a version of
maximal weight function [10, 22, 27, 28, 30]. For this setting, a Kähler manifold (Z , ω) with
a holomorphic action of a complex reductive Lie group UC, where UC is the complexifica-
tion of a compact Lie group U with Lie algebra u is considered. Assume ω is U -invariant
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and that there is a U -equivariant momentum map μ : Z → u∗. By definition, for any ξ ∈ u

and z ∈ Z , dμξ = iξZ ω, where μξ (z) := μ(z)(ξ) and ξZ denotes the fundamental vector
field induced on Z by the action of U , i.e.,

ξZ (z) := d

dt

∣
∣
∣
∣
t=0

exp(tξ)z

(see, for example, [23] for more details on the momentum map).
We aim to investigate a class of actions of real reductive Lie groups on real submanifolds

of Z using gradient map techniques. This setting was recently introduced in [16–18]. More
precisely, a subgroup G of UC is compatible if G is closed and the map K × p → G,

(k, β) �→ k exp(β) is a diffeomorpism where K := G ∩ U and p := g ∩ iu; g is the Lie
algebra ofG. The Lie algebra uC ofUC is the direct sum u⊕iu. It follows thatG is compatible
with the Cartan decomposition of UC = U exp(iu), K is a maximal compact subgroup of
G with Lie algebra k and that g = k ⊕ p. The inclusion ip ↪→ u induces by restriction, a
K -equivariant map μip : Z → (ip)∗. One can choose and fix an Ad(UC)-invariant inner
product B of Euclidean type on the Lie algebra uC, see [10, Section 3.2], [25, Definition
3.2.4] and also [20, Section 2.1] for the analog in the algebraic GIT. Such an inner product
will automatically induce a well-defined inner product on any maximal compact subgroup
U ′ of UC.

Let 〈·, ·〉 denote the real part B. Then 〈·, ·〉 is positive definite on iu, negative definite on
u, 〈u, iu〉 = 0 and finally the multiplication by i satisfies 〈i·, i·〉 = −〈·, ·〉. We use −〈·, ·〉 to
identify u∗ with u and we think the momentum map μ as a u-valued map. Hence we replace
consideration of μip by that of μp : Z −→ p, where

μ
β
p(x) := 〈μp(x), β〉 := 〈iμ(x), β〉 = −〈μ(x),−iβ〉 = μ−iβ(x).

The map μp : Z −→ p is called the G-gradient map associated with μ. It is K -equivariant

and gradμ
β
p = βZ for any β ∈ p. Here the grad is computed with respect to the Riemannian

metric induced by the Kähler structure. For a G-stable locally closed real submanifold X of
Z , we also denote the restriction μp to X byμp : X → p. We have gradμp = βX for any
β ∈ p, where the gradient is now computed with respect to the induced Riemannian metric
on X .

Different notions of stability of points in X can be identified by taking into account the
position of their G-orbits with respect to μ−1

p (0). A point x ∈ X is polystable if it’s G-orbit

intersects the level set μ−1
p (0) (i.e., G · x ∩ μ−1

p (0) = ∅). As pointed out in the introduction
of [28] (see also [5]), a set of polystable points plays a critical role in the construction
of a good quotient of X by the action of G. The aim of this article is to answer the first
part of question 1.1 in [28] for actions of real Lie groups on real submanifolds of a Kähler
manifold, generalizing [28]. Following [28], we require a mild technical restriction to be
satisfied; namely, the fundamental vector field induced by the action grows at most linearly
with respect to the distance function from a given base point. More precisely, we require the
following assumption.

Assumption 1.1 X is connected, and there exists a point x0 ∈ X and a constant C > 0 such
that for any x ∈ X and any β ∈ p,

‖ βX (x) ‖≤ C ‖ β ‖ (1 + dX (x0, x)), (1)

where dX denotes the geodesic distance between points of X with respect to the induced
Riemannian metric on X .
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A Hilbert–Mumford criterion for polystability for actions…

If X is compact or if X is a vector space and the G-action on X is linear then this condition
is satisfied. Under this assumption, we construct the maximal weight function

λx : ∂∞(G/K ) → R ∪ {∞}
for any x ∈ X . It is well-known that G acts on ∂∞(G/K ) and the G-action on ∂∞(G/K ) is
continuous with respect to the sphere topology [7]. The same idea given in [28] proves that
the maximal weight functions are G-equivariant. If g ∈ G, p ∈ ∂∞(G/K ) and x ∈ X , then
λgx (p) = λx (g−1 p). We then prove that a point x ∈ X is polystable if and only if λx ≥ 0
and for any p ∈ ∂∞(G/K ) such that λx (p) = 0 there exists p′ ∈ ∂∞(G/K ) such that p and
p′ are connected in the sense of Definition 5.1 below. In the classical case of a group action
on a Kähler manifold this characterization is due to Mundet i Riera [28].

The idea of viewing the maximal weights as defining functions on the boundary ∂∞M
appeared in [22]. They also give a characterization of polystability which they refer to as
nice semistability [22, Definition 3.13]. Finally, we prove the polystability criterion for the
G-action on measures. Polystable measures are interested in an application to upper bounds
for the first eigenvalue of the Laplacian of functions, see, for instance, [3, Section 1.17], [8,
19] and the introduction to [1].

2 Compatible subgroups, parabolic subgroups, and gradient maps

Let U be a compact Lie group and let UC be the corresponding complex linear algebraic
group [11]. The group UC is reductive and is the universal complexification of U in the
sense of [21]. On the Lie algebra level, we have the Cartan decomposition uC = u ⊕ iu
with a corresponding Cartan involution θ : uC −→ uC given by ξ + iν �→ ξ − iν. We also
denote by θ the corresponding involution onUC. The real analytic map F : U × iu −→ UC,
(u, ξ) �→ u exp(ξ) is a diffeomorphism. We refer to the compositionUC = U exp(iu) as the
Cartan decomposition of UC.

Let G ⊂ UC be a closed real subgroup of UC. We say that G is compatible with the
Cartan decomposition of UC if F(K × p) = G where K := G ∩ U and p := g ∩ iu. The
restriction of F to K × p is then a diffeomorphism onto G. It follows that K is a maximal
compact subgroup of G and that g = k⊕p. Since K is a retraction of G, it follows that G has
only finitely many connected components and G = KGo, where Go denotes the connected
component of G containing e.

Lemma 2.1 ( [2, Lemma 7])

a) If G ⊂ UC is a compatible subgroup, and H ⊂ G is closed and θ -invariant, then H is
compatible if and only if H has only finitely many connected components.

b) If G ⊂ UC is a connected compatible subgroup, then Gss is compatible.
c) If G ⊂ UC is a compatible subgroup and E ⊂ p is any subset, then GE = {g ∈

G : Ad(g)(β) = β, ∀ β ∈ E} is compatible. Indeed, GE = K E exp(pE ), where
K E = K ∩ GE and pE = {x ∈ p : [x, E] = 0}. If E = {β} then we simply write K β ,
pβ and Gβ .

If β ∈ p we define,

Gβ+ := {g ∈ G : lim
t→−∞ exp(tβ) g exp(−tβ) exists},

Rβ+ := {g ∈ G : lim
t→−∞ exp(tβ) g exp(−tβ) = e}.
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Then Gβ+ is a parabolic subgroup of G with unipotent radical Rβ+. Gβ+ is the semi-direct
product of Gβ and Rβ+.

Proposition 2.2 For any β ∈ p, we have G = KGβ+.

Proof If G is connected, the result is well-known, see for instance [2, Lemma 9] and [17,
Lemma 4.1]. SinceG = KGo, it follows thatG = KGo = K (Go)β+ = KGβ+, concluding
the proof. ��
Let (Z , ω) be a Kähler manifold endowed with a holomorphic action UC × Z −→ Z . We
assume thatω isU -invariant and there exists aU -equivariant momentummapμ : Z −→ u∗.
We fix an Ad(UC) inner product B on uC and we denote by 〈·, ·〉 it’s real part. Then 〈·, ·〉 is
positive definite on iu, negative definite on u, 〈u, iu〉 = 0 and finally the multiplication by
i satisfies 〈i·, i·〉 = −〈·, ·〉. We may think of the momentum map as a u-valued map using
−〈·, ·〉.

Let G be a closed and compatible subgroup of UC. The G-gradient map associated with
μ is given by μp : Z −→ p where

μ
β
p(x) := 〈μp(x), β〉 := 〈iμ(x), β〉 = −〈μ(x),−iβ〉 = μ−iβ(x),

for any β ∈ p. For the rest of the paper, we fix a G-invariant locally closed submanifold X of
Z . We also denote the restriction of μp to X by μp. The map μp : X −→ p is K -equivariant

and gradμ
β
p = βX , for any β ∈ p, where the gradient is computed with respect to the induced

Riemannian structure.
Let β ∈ p and let Xβ = {z ∈ X : βX (z) = 0}. If A = exp(Rβ) we have a Slice Theorem

at every point of X [17, Theorem 3.1]. In particular, Xβ is a smooth, possibly disconnected,
submanifold of X . Since gradμ

β
p = βX it follows that Xβ is the set of critical points of

μ
β
p that we denote by Critμβ

p . Moreover, μβ
p : X −→ R is a Morse-Bott function, see for

instance [2, Corollary 2.3].
Assume that X is compact. The Slice Theorem implies that the limit limt→+∞ exp(tβ)x

exists and it lies in Xβ for any x ∈ X .
Let C1, . . . ,Ck be the connected components of Xβ . Let

Wβ
i := {x ∈ X : lim

t→+∞ exp(tβ)x ∈ Ci },
for i = 1, . . . , k. One of the fundamental theorems of Morse theory is the following, see for
instance [9].

Theorem 2.3 Wβ
i is an immersed submanifold, which is called the unstable manifold

corresponding to Ci , and

ϕ∞ : Wβ
i −→ Ci , x �→ exp(tβ)x,

is smooth. Moreover, X = ⊔
Wβ

i (disjoint union).

3 Symmetric spaces

Let G ⊂ UC be a closed compatible subgroup. Then G = K exp(p), where K := G ∩U is
a maximal compact subgroup of G and p := g∩ iu; g is the Lie algebra of G. Let M = G/K
and let 〈·, ·〉 be the real part of the fixed Ad(UC)-invariant inner product B of Euclidean type
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on the Lie algebra uC. Then 〈·, ·〉 is positive definite on iu, negative definite on u, 〈u, iu〉 = 0
and finally the multiplication by i satisfies 〈i·, i·〉 = −〈·, ·〉. Since k ⊂ u, respectively p ⊂ iu,
the formula 〈ξ1 + β1, ξ2 + β2〉 := −〈ξ1, ξ2〉 + 〈β1, β2〉 where ξ1, ξ2 ∈ k and β1, β2 ∈ p,
defines an Ad(K )-invariant inner product on g and so it induces a G-invariant Riemannian
metric of nonpositive curvature on M . Moreover, M is a symmetric space of non-compact
type [7]. Let π : G → M be the projection onto the right cosets of G. G acts isometrically
on M from left by

Lg : M → M; Lg(hK ) := ghK , g, h ∈ G.

A geodesic γ in M is given by γ = g exp(tβ)K , where g ∈ G and β ∈ p. For β ∈ p, we set
γ β(t) = exp(tβ)K and o := K ∈ M .

Since M is a Hadamard manifold there is a natural notion of a boundary at infinity
which can be described using geodesics. We refer the reader to [7, 14] for more details.
Two unit speed geodesics γ, γ ′ : R → M are equivalent, denoted by γ ∼ γ ′, if
supt>0 d(γ (t), γ ′(t)) < +∞.

Definition 3.1 The Tits boundary of M denoted by ∂∞M is the set of equivalence classes of
unit speed geodesics in M .

Themap that sends β ∈ p to the tangent vector γ̇ β(0) produces an isomorphism p ∼= ToM .

Since any geodesic ray in M is equivalent to a unique ray starting from o, the map

e :S(p) → ∂∞M;
e(β) := [γ β ]

where S(p) := {β ∈ p :‖ β ‖= 1} is the unit sphere in p, is a bijection. The sphere topology
is the topology on ∂∞M such that e is a homomorphism. Since G acts by isometries on
M, then for every unit speed geodesic γ, gγ is also a unit speed geodesic for any g ∈ G.

Moreover, if γ ∼ γ ′ then gγ ∼ gγ ′. There is a G-action on ∂∞M given by:

g · [γ ] = [g · γ ]
and this action also induces a G-action on S(p) given by

g · β := e−1(g · e(β)) = e−1[g · γ β ].
This action is continuous with respect to the sphere topology on ∂∞M . The K -action on
∂∞M induces the adjoint action of K on S(p), see for instance [7].

Let H be a compatible subgroup of G, i.e H := L exp(q), where L := H ∩ K and
q = h ∩ p, where h is the Lie algebra of H . It follows that H is a real reductive subgroup of
G. The Cartan involution of G induces a Cartan involution of H , L is a maximal compact
subgroup of H , and h = l⊕ q. The inclusion M ′ := H/L ↪→ M = G/K is totally geodesic
and induces an inclusion ∂∞M ′ ↪→ ∂∞M .

3.1 The Kempf–Ness function

Given G a real reductive group which acts smoothly on Z; G = K exp(p), where K is a
maximal compact subgroup of G. Let X be a G-invariant locally closed submanifold of Z .

As Mundet pointed out in [29], there exists a function  : X × G → R, such that

〈μp(x), ξ 〉 = d

dt

∣
∣
∣
∣
t=0

(x, exp(tξ)), ξ ∈ p,
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and satisfying the following conditions:

a) For any x ∈ X , the function (x, .) is smooth on G.

b) The function (x, .) is left-invariant with respect to K , i.e., (x, kg) = (x, g).
c) For any x ∈ X , v ∈ p and t ∈ R;

d2

dt2
(x, exp(tv)) ≥ 0.

Moreover:

d2

dt2
(x, exp(tv)) = 0

if and only if exp(Rv) ⊂ Gx .

d) For any x ∈ X , and any g, h ∈ G;
(x, hg) = (x, g) + (gx, h).

This equation is called the cocycle condition. Finally, using the cocycle condition, we
have

d

dt
(x, exp(tβ)) = 〈μp(exp(tξ)x), β〉.

The function  : X × G → R is called the Kempf-Ness function for (X ,G, K ). It is just
the restriction of the classical Kempf-Ness function Z × UC −→ R considered in [29, 30]
to X × G [4]. Moreover, if H ⊂ G is compatible and Y ⊂ X is a H -stable submanifold of
X , then the restriction |Y×H is the Kempf-Ness function of the H -gradient map on Y .

Let x ∈ X . By property b), i.e. (x, kg) = (x, g), the function x : G → R given
by x (g) := (x, g−1) descends to a function on M which we denote by the same symbol.
That is

x : M −→ R; x (gK ) := (x, g−1).

The cocycle condition d) can be rewritten as

x (ghK ) = g−1x (hK ) + x (gK ), (2)

and it is equivalent to L∗
gx = g−1x + g−1x (gK ), where Lg denotes the action of G on

X given above.
Note that

−(dx )o(γ̇
β(0)) = d

dt

∣
∣
∣
∣
t=0

x (exp(−tβ)K ) = d

dt

∣
∣
∣
∣
t=0

(x, exp(tβ)) = 〈μp(x), β〉.

Lemma 3.1 Let x ∈ X and let x : M → R. Suppose γ (t) = g exp(tβ)K for β ∈ p is a
geodesic in M, then x ◦ γ is convex and so,

lim
t→∞

d

dt
(x ◦ γ ) = lim

t→∞
x ◦ γ

t
.

Proof That x is a convex function on M follows from [3, Lemma 2.19]. Let f (t) =
(x ◦ γ )(t). Since f is convex,

f (s)

s
≤ f ′(s) ≤ f (t) − f (s)

t − s
0 < s < t .
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Furthermore, the two quantities are increasing in s, while the third in t . Hence,

lim
s→∞

f (s)

s
≤ lim

s→∞ f ′(s) ≤ lim
t→∞

f (t) − f (s)

t − s
.

Since the last limit is the same with the first limit, we have limt→∞ f ′(t) = limt→∞ f (t)
t

and the result follows. ��

4 Stability andmaximal weight function

LetU be a compact Lie group andUC its complexification. Let (Z , ω) be a Kähler manifold.
In this paper, we assume that the complex reductive Lie group UC acts holomorphically on
Z . The Kähler form ω is U -invariant and the U -action on Z is Hamiltonian and so there
exists a momentum map μ : Z → u. Let G ⊂ UC be a closed compatible subgroup. Then
G = K exp(p),where K := G∩U is a maximal compact subgroup ofG and p := g∩ iu; g is
the Lie algebra ofG. Suppose X ⊂ Z is aG-stable locally closed connected real submanifold
of Z with the gradient map μp : X → p. From now on, X satisfies Assumption 1.1.

We recall that by Gx and Kx , we denote the stabilizer subgroup of x ∈ X with respect to
the G-action and the K -action respectively, and by gx and kx their respective Lie algebras.

Definition 4.1 Let x ∈ X . Then:

a) x is stable if G · x ∩ μ−1
p (0) = ∅ and gx is conjugate to a Lie subalgebra of k.

b) x is polystable if G · x ∩ μ−1
p (0) = ∅.

c) x is semistable if G · x ∩ μ−1
p (0) = ∅.

We denote by Xs
μp

, Xss
μp

, X ps
μp the set of stable, respectively semistable, polystable, points.

It follows directly from the definitions above that the conditions are G-invariant in the sense
that if a point satisfies one of the conditions, then every point in its orbit satisfies the same
condition, and for stability, recall that ggx = Ad(g)(gx ).

The following well-known result establishes a relation between the Kempf-Ness function
and the polystability condition. A proof is given in [5].

Proposition 4.1 Let x ∈ X and let g ∈ G. The following conditions are equivalent:

a) μp(gx) = 0.
b) g is a critical point of (x, ·).
c) g−1K is a critical point of x .

Proposition 4.2 Let x ∈ X.

• If x is polystable, then Gx is compatible.
• If x is stable, then Gx is compact.

4.0.1. maximal weight function

In this section, we introduce the maximal weight function associated with an element x ∈ X .

For any t ∈ R, define λ(x, β, t) = 〈μp(exp(tβ)x), β〉.

λ(x, β, t) = 〈μp(exp(tβ)x), β〉 = d

dt
(x, exp(tβ)), (3)
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where  : X × G → R is the Kempf-Ness function. By the properties of the Kempf-Ness
function,

d

dt
λ(x, β, t) = d2

dt2
(x, exp(tβ)) ≥ 0.

This means that λ(x, β, t) is a non decreasing function as a function of t .
The maximal weight of x ∈ X in the direction of β ∈ p is defined in [5] as the numerical

value

λ(x, β) = lim
t→∞ λ(x, β, t) = lim

t→+∞〈μp(exp(tβ)x), β〉 ∈ R ∪ {∞}.

Note that

d

dt
λ(x, β, t) =‖ βX (exp(tβ)x) ‖2,

and so

λ(x, β, t) = 〈μp(x), β〉 +
∫ t

0
‖ βX (exp(sβ)x) ‖2 ds. (4)

Lemma 4.3 Let β, β ′ ∈ p. If β ∈ gx and [β, β ′] = 0, then

lim
t→+∞

d

dt
(x, exp(t(β + β ′)) = lim

t→+∞
d

dt
(x, exp(tβ)) + d

dt
(x, exp(tβ ′)),

Proof By the cocycle condition, keeping in mind that [β, β ′] = 0, we have

(x, exp(t(β + β ′)) = (x, exp(tβ ′)) + (exp(tβ)x, exp(tβ ′))
= (x, exp(tβ ′)) + (x, exp(tβ ′)),

and so the result follows. ��
Let γ : [0,+∞) −→ G/K be a geodesic ray and let x be the Kempf-Ness function at x .
We define

λx (γ ) = lim
t→+∞

x (γ (t))

t
.

The results proved in [28, sections 3.2 and 3.3] hold in our setting. Therefore, we have the
following result.

Proposition 4.4 The function λx : ∂∞M → R ∪ {+∞} defined by
λx ([γ ]) = λx (γ )

is well-defined and G-equivariant, i.e., λgx (p) = λx (g−1 p) for any g ∈ G and any p ∈
∂∞(G/K ).

We conclude this section by recalling the results that will be needed in the following sections.
By Lemma 3.1 for any β ∈ S(p), keeping in mind formula (3), we have

λx (e(β)) = lim
t→∞

d

dt
x (exp(tβ)K ) = lim

t→∞
d

dt
(x, exp(−tβ))

= lim
t→+∞〈μp(exp(tβ)x,−β〉. (5)
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Lemma 4.5 Let β ∈ p − {0} and let v = β
‖β‖ . Then

λx (e(v)) = 1

‖ β ‖ lim
t→+∞

d

dt
(x, exp(−tβ)).

Proof x (exp(tv)) = x (exp
( t

‖β‖β
)

). Then

λx (e(β)) = 1

‖ β ‖ lim
t→+∞

d

dt
(x, exp(−tβ)).

��
A proof of the following lemma is given in [5, Lemma 3.5, p. 92], see also [30].

Lemma 4.6 Let V be a subspace of p. The following are equivalent for a point x ∈ X:

a) the map (x, ·) is linearly properly on V , i.e., there exist positive constants C1 and C2

such that

‖ v ‖≤ C1(x, exp(v)) + C2, ∀v ∈ V .

b) λx , (e(β)) > 0 for every β ∈ S(V ).

The following theorem is well-known and it gives a numerical criterion for stable points in
terms of maximal weights. A proof is given in [5, Theorem 3.7].

Theorem 4.7 Let x ∈ X. Then x is stable if and only if λx > 0 on ∂∞M .

5 Polystability

Definition 5.1 We say that p, q ∈ ∂∞M are connected if there exists a geodesic α in X such
that p = α(∞) and q = α(−∞).

For any x ∈ X , as in [28], see also [3], let Z(x) := {p ∈ ∂∞M : λx (p) = 0}.
Lemma 5.1 Let x ∈ X be such that μp(x) = 0, then gx = kx ⊕ px and Z(x) = e(S(px )) =
∂∞Gx/Kx .

Proof By Proposition 4.2 if μp(x) = 0, Gx is a compatible subgroup of G. Hence, gx =
kx ⊕ px . To prove the second assertion, let β ∈ S(p). Suppose e(β) ∈ Z(x). This means that
λx (e(β)) = 0, then the convex function f (t) := x (exp(tβ)K ) satisfies

f ′(∞) = lim
t→∞

d

dt
x (exp(tβ)K ) = λx (e(β)) = 0

and

f ′(0) = d

dt

∣
∣
∣
∣
t=0

x (exp(tβ)K ) = 〈μp(x),−β〉 = 0.

These imply that f is constant for all t > 0, and by the condition (c) of Kempf-Ness function,
exp(Rβ) ⊂ Gx . Since Gx is compatible, β ∈ S(px ). Conversely, if β ∈ S(px ), then f is
linear. Moreover, f ′(0) = 0. Therefore, f ≡ 0 and e(β) ∈ Z(x). ��
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Let x ∈ X and β ∈ S(p). Since p ⊂ iu, then iβ ∈ u. We define the torus Tβ given as

Tβ := {exp(tiβ) : t ∈ R} ⊆ Uo,

where Uo denotes the connected component of U containing the identity.

Lemma 5.2 Let g ∈ G. Then dim Tβ = dim Tg·β.

Proof It is well-known that Gβ+ fixes e(β), see for instance [14, Proposition 2.17.3, p.102].
Then for any g ∈ G, keeping in mind Proposition 2.2, write g = kh, where k ∈ K and
h ∈ Gβ+. Hence g · β = kh · β = k · β = Ad(k)(β) and so

Tg·β = {exp(i tAd(k)β) : t ∈ R}
= {k exp(i tβ)k−1 : t ∈ R}
= kTβk

−1.

Therefore dim Tβ = dim Tg·β. ��
Lemma 5.3 Let x ∈ X and p, p′ ∈ Z(x) be connected. Then there exists g ∈ G and ξ ∈ S(p)

such that ξ ∈ py , where y = gx .

Proof Since p, p′ ∈ Z(x) are connected, then there exists geodesic α ∈ M such that
α(+∞) = p ∈ Z(x) and α(−∞) = p′ ∈ Z(x). Assume α(t) = g exp(tξ)K , g ∈ G.

Then p = g · e(ξ) and p′ = g · e(−ξ). By the G-invariant property of the maximal weigh
we get

λg−1x (e(ξ)) = λx (g · e(ξ)) = λx (p) = 0

and

λg−1x (e(−ξ)) = λx (g · e(−ξ)) = λx (p
′) = 0.

Let y = g−1x . This means that the convex function t �→ y(exp(tξ)K ) has zero derivatives
at both +∞ and −∞, and so, it is constant and by property (c) of Kempf-Ness function,
exp(Rξ) ⊂ Gy , ξ ∈ py . ��

Let Xβ := {z ∈ X : βX (z) = 0}. Gβ preserves Xβ [5, Prop. 2.9] and Xβ is the
disjoint union of closed submanifold of X [17]. The following result is proved in [5,
Proposition 2.10,p.92]

Proposition 5.4 The restriction (μp)|Xβ takes value on pβ and so it coincides with the Gβ -
gradient map (μpβ )|Xβ .

Corollary 5.1 If x ∈ Xβ is Gβ -polystable, then x is G-polystable.

Theorem 5.5 A point x ∈ X is polystable if and only if λx ≥ 0 and for any p ∈ Z(x) there
exists p′ ∈ Z(x) such that p and p′ are connected.

Proof Let x ∈ X . If Z(x) = ∅, λx > 0 and by Theorem 4.7, x is stable and hence polystable.
Suppose Z(x) = ∅. Let p ∈ Z(x). Let β ∈ S(p) such that p = e(β). Suppose p ∈ Z(x) is
chosen such that the of the torus Tβ satisfies

dim Tβ = max
η∈e−1(Z(x))

dim Tη.
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By assumption there is a geodesic α ∈ M such that α(+∞) = p ∈ Z(x) and α(−∞) =
p′ ∈ Z(x). Assume α(t) = g exp(tξ)K , g ∈ G. Then p = g · e(ξ) and p′ = g · e(−ξ). By
Lemma 5.3, ξ ∈ py where y = g−1x . Moreover, since e(β) = p = g · e(ξ), using Lemma
5.2,

dim Tξ = dim Tβ = max
η∈e−1(Z(x))

dim Tη.

Let tξ be the Lie algebra of Tξ . Then a = itξ ∩ pξ is an Abelian subalgebra contained pξ

different from zero since β ∈ a. Since Tξ = exp(iRξ) fixes y it follows that a ⊆ gy
Let Y be the connected component of Xa containing y. By Lemma 2.1, (Ga)o =

(K a)o exp(pa) is compatible and preserves Y . By Proposition 5.4 we get (μp)|Y = μpa .
Hence, if y is (Ga)o-polystable, then it is G-polystable. We split pa = span(a) ⊕ p

′
, where

p
′
is the orthogonal of a and so it is a K a-invariant splitting..
Claim: λy(e(β ′)) > 0 for all β ′ ∈ S(p′). Indeed, we prove this claim by contradiction.

Suppose there exists β ′ ∈ S(p′) such that λy(e(β ′)) = 0. Hence [ξ, β ′] = 0 by the choice
of ξ and β ′, and they are linearly independent. Let a > 0. Since [ξ, β ′] = 0 and ξ ∈ gy , by
Lemma 4.3 it follows that

lim
t→+∞ (y, exp(t(ξ + aβ ′)) = lim

t→+∞ (y, exp(t(ξ)) + a lim
t→+∞ (y, exp(tβ ′)).

Since λy(e(ξ)) = λy(e(β ′)) = 0, it follows by Proposition 4.4 that

lim
t→+∞ (y, exp(t(ξ + aβ ′)) = 0.

Applying Lemma 4.5, we have

λy(e(
ξ + aβ ′

‖ ξ + aβ ′ ‖ )) = 0,

and so the vector

ξ + aβ ′

‖ ξ + aβ ′ ‖
belongs to e−1(Z(y)).

We claim that for some a > 0, dim Tξ+aβ ′ > dim Tξ .
Let T ′ = exp(Riξ + Riβ ′) ⊆ (U ξ )o and Tβ ′ = exp(Riβ ′). LetU ′ ⊆ (U ξ )o be a compact

connected subgroup such that the morphism

Tξ ×U ′ → (U ξ )o, (a, b) �→ (ab)

is surjective with a finite center. Since β ′ /∈ a, it follows that iβ /∈ tξ . Hence, Tβ ′ ⊆ U ′ and
the morphism

f : Tξ × Tβ ′ → T ′, f (a, b) = ab

is a finite covering. Let {e1, . . . , en}, respectively {e′
1, . . . , e

′
m}, be a basis of the lattice

ker exp ⊂ tξ , respectively ker exp ⊂ tβ ′ . If iξ = X1e1 +· · ·+ Xnen and iβ ′ = Y1e′
1 +· · ·+

Yme′
m, then i(ξ + aβ ′) = X1e1 + · · · + Xnen + aY1e′

1 + · · · + aYme′
m . Denote by T ′

ξ+aβ the
closure of exp(R(i(ξ + aβ ′)). Since f is a covering, dim Tξ+aβ ′ = dim T ′

ξ+aβ ′ . Hence,

dim Tξ+aβ ′ = dimQ(QX1 + · · · + QXn + QaY1 + · · · + QaYm),
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see for instance [12, p. 61]. Since β ′ = 0, Y j = 0 for some j . Choose a such that aY j /∈
QX1 + · · · +QXn . Then dim T ξ+aβ′

‖ξ+aβ‖
> dim Tξ which is a contradiction. Therefore, λy > 0

on e(S(p′)). By Lemma 4.6, (y, ·) is linearly proper on p′. This implies that (y, ·) is
bounded from below on p′ and

m = infα∈p′(y, exp(α)),

is achieved. We claim that

m = infα∈pa(y, exp(α)).

Indeed, let v ∈ pa. Then v = v1 + v2, where v1 ∈ a and v2 ∈ p′. By the cocycle condition,
keeping in mind that [v1, v2] = 0 and v1 ∈ gy , we get

(y, exp(v)) = (y, exp(v1)) + (y, exp(v2)).

We claim that (y, exp(v1)) = 0. Indeed, since a ⊂ gy , If w ∈ S(a) then by formula (5) we
get

λy(e(w)) = 〈μpa(y),−w〉 ≥ 0,

for any w ∈ S(a). This implies λy(e(−w)) = −λy(e(w)) and so λy(e(w)) = 0 for any
w ∈ a.

Let w ∈ a − {0} and let s : R −→ R be the function s(t) = (y, exp(tw)). Since
exp(tw)y = y for any t ∈ R, it follows that s(t) is a linear function. Therefore, s(t) = bt
for some b ∈ R. On the other hand

0 = λy

(

e

(
w

‖ w ‖
))

= lim
t→+∞

1

‖ w ‖
d

dt
(y, exp(tw)) = b.

This proves

infα∈p′(y, exp(α)) = infα∈pa(y, exp(α)),

and so y : (Ga)o/(K a)o −→ R has a minumum and so a critical point. By Proposition
4.1, it follows that y is (Ga)o polystable and by Corollary 5.1, y is G-polystable.

Suppose x is polystable. There exists g ∈ G such that μp(gx) = 0. Let y = gx and fix
β ∈ p. Since the Kempf-Ness function is convex along geodesics,

λy(e(β)) = lim
t→∞

d

dt
y(exp(tβ)K )) ≥ d

dt
|t=0y(exp(−tβ)) = 〈μp(y),−β〉 = 0.

This shows that λy ≥ 0 on ∂∞M . By the G-equivariance of the maximal weight it follows
that λx ≥ 0. By Lemma 5.1, Gy is compatible with Lie algebra gy = ky ⊕ py and Z(y) =
e(S(py)). Suppose there exist p = e(β) ∈ Z(y). Then e(−β) ∈ Z(y) also. Furthermore,
e(β) and e(−β) are connected by the geodesic [exp(tβ)]. This means that the condition of
the Theorem holds for Z(y). Now, for p ∈ Z(x), g · p ∈ Z(y). Let q ∈ Z(y) be connected
to g · p by a geodesic α. Then the geodesic g−1 ◦ α connects p to g−1 · q ∈ Z(x). This
concludes the proof of the theorem. ��

Corollary 5.2 A point x ∈ X is polystable if and only if there exist β ∈ S(p), y ∈ G · x and
g ∈ (Gβ)o such that λx (e(β)) = 0 and μp(gy) = 0.
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6 Measure

Let N be a compact manifold. We denote by M (N ) the vector space of finite signed Borel
measures on N . These measures are automatically Radon [15, Thm. 7.8, p. 217]. Denote by
C(N ) the space of real continuous function on N . It is a Banach space with the sup–norm.
By the Riesz Representation Theorem [15, p.223] M (N ) is the topological dual of C(N ).
The induced norm on M (N ) is the following one:

||ν|| := sup
{∫

N
f dν : f ∈ C(M), supM | f | ≤ 1

}

. (6)

We endow M (N ) with the weak-∗ topology as dual of C(N ). Usually, this is simply called
the weak topology on measures. We use the symbol να⇀ν to denote the weak convergence
of the net {να} to the measure ν. Denote by P(N ) ⊂ M (N ) the set of Borel probability
measures on N . We claim thatP(N ) is a compact convex subset ofM (N ). Indeed the cone
of positive measures is closed and P(N ) is the intersection of this cone with the closed
affine hyperplane {ν ∈ M (N ) : ν(N ) = 1}. Hence P(N ) is closed. For a positive measure
|ν| = ν, so P(N ) is contained in the closed unit ball in M (N ), which is compact in the
weak topology by the Banach-Alaoglu Theorem [13, p. 425]. Since C(N ) is separable, the
weak topology on P(N ) is metrizable [13, p. 426].

If f : X −→ Y is a measurable map between measurable spaces and ν is a measure on
X , the image measure f�ν is defined by f�ν(A) := ν( f −1(A)). It satisfies the change of
variables formula

∫

Y
u(y)d( f�ν)(y) =

∫

X
u( f (x))dν(x). (7)

Lemma 6.1 [3, Lemma 5.5] Let N be a compact manifold. If G is a Lie group acting
continuously on N, the map

G × P(N ) −→ P(N ), (g, ν) �→ g�ν, (8)

defines a continuous action of G on P(N ) provided with the weak topology.

Let (Z , ω) be a compact connectedKählermanifold. LetU be a compact Lie group andUC its
complexification. As before, we assume that UC acts holomorphically on Z , and the Kähler
form is U -invariant. It is also assumed that there exists a momentum map μ : Z −→ u. If
G ⊂ UC is closed and compatible we denote by μp : Z −→ p the associated G-gradient
map. Finally, If X is a compact connect G-invariant submanifold of Z then μp : X −→ p

is a K-equivariant map such that gradμ
β
p = βX . In [4] the authors introduced an abstract

setting for actions of noncompact real reductive Lie groups on topological spaces that admit
functions similar to the Kempf-Ness function.

Let  : X × G −→ X be the Kempf-Ness function such that

〈μp(x), β〉 = d

dt

∣
∣
∣
∣
t=0

(x, exp(tβ)),

for any β ∈ p. As before, we have fixed B an Ad(UC)-invariant inner product on uC and
〈·, ·〉 denotes the real part of B restricted on g.
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Proposition 6.2 [4, Proposition 31] The function

P : P(X) × G −→ R, P (ν) :=
∫

X
(x, g)dν(x),

is the Kempf-Ness function for (P(X),G, K ) with gradient map

F (ν) =
∫

X
μp(x)dν(x).

Definition 6.1 Let ν ∈ P(X). Then

a) ν is called polystable if G · ν ∩ F−1(0) = ∅.
b) ν is called stable if it is polystable and Gν is compact.
c) ν is called semistable if G · ν ∩ F−1(0) = ∅.
d) ν is called unstable if it is not stable, polystable and semistable.

In [4], see also [3], the authors construct the maximal weight function

λν : ∂∞(G/K ) −→ R ∪ {+∞},
for any ν ∈ P(X) proving that the maximal weight is G-equivariant. The main goal of this
section is to show that the Mundet criterion for polystability holds for the G-action on the
measure. The same proof of Theorem 5.5 works.

Let β ∈ p. Then μ
β
p : X −→ R is a Morse-Bott function with Critμβ

p = Xβ . Let
C1, . . . ,Ck be the connected components of Xβ and let

Wβ
i := {x ∈ X : lim

t→+∞ exp(tβ)x ∈ Ci }.

By Theorem 2.3, Wβ
i is an immersed submanifold and X = ⋃

Wβ
i is a disjoint union.

Lemma 6.3 Let ν ∈ P(X) and let β ∈ p. If β ∈ gν then ν(Xβ) = ν(X) and so ν(X−Xβ) =
0

Proof exp(Rβ) fixes pointwise Ci and so Ci ⊆ Wβ
i . Let Ln = exp(nβ)(Wβ

i ) for any

n ∈ N. Since exp(tβ) fixes ν it follows that ν(Ln) = ν(Wβ
i ) for any n ∈ N. Since Wβ

i is
exp(Rβ)-invariant, it follows that Ln+1 ⊂ Ln and Ci = ⋂+∞

n=1 Ln . Therefore

ν(Ci ) = lim
n �→+∞ ν(Ln) = ν(Wβ

i ).

Hence ν(X) = ∑k
i=1 ν(Wβ

i ) = ∑k
i=1 ν(Ci ) = ν(Xβ), concluding the proof. ��

Corollary 6.1 Let ν ∈ P(Z) and let β ∈ iu. If β ∈ uCν then iβ ∈ uCν .

Proof Since (iβ)Z = J (βZ ) it follows that Z iβ = Zβ . Let U ⊂ Z . Then U = (U ∩ Z iβ) ∪
(U−Z iβ) and both set are exp(t iβ)-invariant. Therefore,

ν(exp(−t iβ)(U )) = ν(exp(−t iβ)(U ∩ Z iβ)) + ν(exp(−t iβ)(U − Z iβ))

= ν(exp(U ∩ Z iβ))

= ν(U ),

concluding the proof. ��
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If β ∈ u and β ∈ uCν then it is not true that iβ ∈ uCν . Indeed, the volume form ω on the unit
sphere S2 is invariant with respect to SO(3). In particular the Killing field X generated to the

one parameter subgroup t �→
⎡

⎣

cos t − sin t 0
sin t cos t 0
0 0 1

⎤

⎦ preserves ω. The vector field J (X) is the

gradient of the the height function

S2 −→ R, p �→ 〈p,
⎡

⎣

0
0
1

⎤

⎦〉

where 〈·, ·〉 is the euclidean scalar product. We claim that J (X) does not preserve ω. Indeed,
keeping in mind that (S2)J (X) = {e3,−e3}, if the flow of J (X) fixes the Borel measure ν

associated to ω, then by Lemma 6.3 it follows that 1 = ν(S2) = ν({e3}) + ν({−e3}). A
contradiction.

Proposition 6.4 Let ν ∈ P(X) and let a ∈ p be an Abelian subalgebra. Let ν ∈ P(X). If
a ⊂ gν then F(ν) ∈ pa.

Proof By [6, Theorem 1,1] there exists β ∈ a such that

Xa = {p ∈ X : γX (p) = 0, for any γ ∈ a} = Xβ .

By change of variable formula, we get F (ν) = F (exp(tβ)ν) = ∫

X μp(exp(tβ)x)dν(x).
Taking the limit for t �→ +∞ we get

F (ν) =
∑

i=1

∫

Wβ
i

μp(x)dν(x) =
k

∑

I=1

lim
t→+∞

∫

Wβ
i

μp(exp(tβ)x)dν(x)

=
k

∑

i=1

∫

Ci

μp(x)dν(x),

where C1, . . . ,Ck are the connected components of Xa. By [5, Proposition 2.10], the image
of (μp)|Ci lies in pa and so the result follows. ��
Finally, one can characterize the stability condition in terms of the maximal weight functions,
see for instance [4, Theorem13].

Theorem 6.5 A measure ν is stable if and only if λν > 0.

Theorem 6.6 A measure ν is polystable if and only if λν ≥ 0 and for any p ∈ Z(ν) there
exists p′ ∈ Z(ν) such that p and p′ are connected.

Proof If Z(ν) = ∅ then ν is stable. Otherwise, by Lemma 5.2 and 5.3 there exists ν′ ∈ G · ν
and ξ ∈ S(p) such that λν′(ξ) = 0, β ∈ gν′

dim Tξ = dim Tβ = max
η∈e−1(Z(ν′))

dim Tη.

Let tξ be the Lie algebra of Tξ . Let i : X ↪→ Z be the inclusion and let ν′′ = i#ν′. Since
ξ ∈ pν′ it follows that ξ ∈ pν′′ . By Corollary 6.1, iξ ∈ uC

ν′′ and so Tξ fixes ν′′. Therefore
a = itξ ∩ pξ ∩ pν′ is an Abelian subalgebra contained in pξ and different from zero since
ξ ∈ a. From now on, the proof of Theorem 5.5 holds for the G-action on the measure. ��
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