
24 April 2024

University of Parma Research Repository

Aggregates of polar dyes: beyond the exciton model / Anzola, Mattia; Painelli, Anna. - In: PHYSICAL
CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 23:(2021), pp. 8282-8291. [10.1039/D1CP00335F]

Original

Aggregates of polar dyes: beyond the exciton model

Publisher:

Published
DOI:10.1039/D1CP00335F

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2891700 since: 2023-06-11T07:47:16Z

Royal Society of Chemistry

This is the peer reviewd version of the followng article:

note finali coverpage



rsc.li/pccp

PCCP
Physical Chemistry Chemical Physics

rsc.li/pccp

ISSN 1463-9076

PAPER
H.-P. Loock et al. 
Determination of the thermal, oxidative and photochemical 
degradation rates of scintillator liquid by fluorescence EEM 
spectroscopy

Volume 19
Number 1
7 January 2017
Pages 1-896

PCCP
Physical Chemistry Chemical Physics

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

Accepted Manuscript

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  M. Anzola and A.

Painelli, Phys. Chem. Chem. Phys., 2021, DOI: 10.1039/D1CP00335F.

http://rsc.li/pccp
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d1cp00335f
https://pubs.rsc.org/en/journals/journal/CP
http://crossmark.crossref.org/dialog/?doi=10.1039/D1CP00335F&domain=pdf&date_stamp=2021-03-10


Aggregates of polar dyes: beyond the exciton model†

Mattia Anzola,a and Anna Painelli,∗a

The physics of aggregates of polar and polarizable donor-acceptor dyes is discussed, extending a
previous model to account for the coupling of electronic and vibrational degrees of freedom. Fully
exploiting translational symmetry, exact absorption and fluorescence spectra are calculated for ag-
gregates with up to 6 molecules. A two-step procedure is presented: in the first step, a mean-field
solution of the problem is proposed to define the excitonic basis via a rotation of the electronic basis.
The rotation is also accompanied by a Lang-Firsov transformation of the vibrational basis. In the
second step, the aggregate Hamiltonian, written on the exciton basis, is diagonalized towards exact
results. The procedure leads to a reduction of the dimension of the problem, since, at least for weak
coupling, only states with up to 3 excitons are needed to get reliable results. More interestingly,
the mean-field solution represents the proper reference state to discuss excitonic and ultraexcitonic
effects. The emerging picture demonstrates that the exciton model offers a reliable description of
aggregates of polar and polarizable dyes in the weak coupling regime, while ultraexcitonic effects
are important in the medium-strong coupling regimes, and particularly so for J-aggregates where
ultraexcitonic effects show up most clearly with multistability and multiexciton generation.

1 Introduction
Electrostatic intermolecular interactions are comparatively weak
forces in supramolecular systems, but are responsible for energy
transfer, an incoherent process where energy is transferred be-
tween different chromophores,1–4 as well as for the coherent
process of energy delocalization that governs the spectral prop-
erties of molecular crystals and aggregates.5–7 Typically, energy
transfer processes are investigated in loosely bound systems with
intermolecular distances larger than ∼ 10 Å,8,9 while in molec-
ular crystals and aggregates fairly compact structures are of in-
terest with intermolecular distances roughly comprised in the
3.5-7 Å range. In some systems, including molecular crystals
as well as aggregates, intermolecular charge transfer (CT) in-
teractions are important,10–13 but here we will only discuss sys-
tems where CT interactions can be safely neglected, or, in other
words, aggregates where electrons are localized in each molecu-
lar unit.5,6,14,15

The exciton model, widely adopted to describe optical spectra
of molecular crystals and aggregates, dates back to the 60’s5,14–16

and found several successful applications, as recently extensively
reviewed by Spano.7,17 In the simplest version, it accounts for a
single excitation on each molecule and, neglecting electrostatic

a Department of Chemistry, Life Science and Environmental Sustainability, University
of Parma, 43124 Parma, Italy. E-mail: anna.painelli@unipr.it
† Electronic Supplementary Information (ESI) available: [Detailed derivation of
the Hamiltonian in the exciton basis; additional computational results]. See DOI:
10.1039/cXCP00000x/

interactions among non-degenerate states, reduces the problem
to that of a single particle, the exciton, moving on the molecular
lattice. The corresponding problem is easily solved even on fairly
large aggregates and, for symmetric (crystalline-like) systems, ex-
act solutions in the thermodynamic limit are also available. Davy-
dov splittings in crystals15 and J and H-bands in aggregates14

emerge quite naturally from this picture that can also be extended
to discuss chirooptical properties of chiral aggregates.18–20

Molecules are flexible objects and their geometry usually re-
sponds to electronic excitations, as demonstrated by the promi-
nent Frank-Condon structures often observed in molecular spec-
tra. Extending the exciton model to account for molecular vi-
brations is non-trivial, mainly because the adiabatic (or Born-
Oppenheimer) approximation cannot be applied. Indeed there
are two easy limits: the vibrational frequency is either (a) much
smaller or (b) much higher than the hopping frequency of the ex-
citon. Case (a) corresponds to the adiabatic limit: the molecule
has no time to relax its geometry following the exciton motion
and vibrational coupling does not affect optical spectra. Case (b)
corresponds to the antiadiabatic limit:21 the exciton is trapped in
the molecular site and the optical spectra show the same vibronic
structure as the isolated molecule. Between these two limits the
problem becomes non-adiabatic and special techniques must be
adopted for its solution.17,22 Quite interestingly, interpolating be-
tween the two limits, the vibronic structure observed in the aggre-
gate can lead to a reliable estimate of the exciton delocalization,
as first proposed by Spano.23

Neglecting the interactions between non-degenerate states, the
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exciton model does not account for the effect of the local environ-
ment on the molecular properties, including e.g. the charge distri-
bution in the ground or excited states, the transition energy and
dipole moment etc. Typically, the parameters entering the exciton
model, i.e. the reference transition frequency and the transition
dipole moment, are obtained from the analysis of experimental
data on isolated (solvated) molecules, thus implicitly accounting
for environmental corrections. Indeed the environmental polar-
ity has marginal effects in non-polar dyes, while the medium po-
larizability can be considered roughly constant organic media.24

Extracting the same quantities from quantum chemical calcula-
tions in the gas phase is trickier. Most often reference transition
frequencies are empirically adjusted.15,16 Deviations from the ex-
citon model are mainly recognized in the intensity of optical tran-
sitions as well as of CD spectra.25 However, in aggregates of non-
polar dyes with a large quadrupolar character large deviations
from the exciton model are observed:26–30 in these systems, the
dense excitation spectrum at the molecular level, and the large
molecular polarizability, make the approximations of the exciton
model critical, with impressive effects on linear and non-linear
optical spectra.

Even more intriguing is the situation in aggregates of polar
dyes.31,32 Indeed, as long as the molecular polarizability stays
small, the exciton model, possibly with marginal corrections, still
applies. However, in clusters of polar and polarizable dyes, typ-
ically push-pull dyes with large conjugation and hence strongly
polarizable structures,33 large deviations from the easy predic-
tions of the exciton model are expected. Push-pull chromophores
are π-conjugated molecules with an electron donor (D) and an
acceptor (A) unit, whose low-energy physics is dominated by
the charge resonance between a neutral DA (N) and a zwitte-
rionic (Z) D+A− structure.34–36 The resulting two state model
accounts for both the molecular polarity and polarizability and
very interesting physics emerges when clusters of dyes are con-
sidered, interacting via electrostatic intermolecular interactions.
The model for interacting polar and polarizable dyes was intro-
duced more than 40 years ago by Soos, as a toy model to describe
the neutral-ionic phase transition in mixed stack CT crystals.37

Multistability was recognized and discussed since then in differ-
ent systems,38–40 and spectroscopic effects in clusters of polar
and polarizable molecules were also addressed.31,32,41–43

The number of basis states needed to describe aggregates of
polar and polarizable dyes, increases as 2N , N being the number
of molecules. The relevant Hamiltonian can be diagonalized on
fairly large systems.31 Accounting for vibrational coupling how-
ever is challenging and so far exact solutions are only available for
dimers,41 while for larger systems, dramatic approximations have
been introduced.42 In a recent paper, Spano analyzed in detail
absorption spectra of dimers of push-pull dyes fully accounting
for vibrational coupling.43 An interesting discussion of spectral
badshapes emerges together with the demonstration of dramatic
deviation from the Kasha behavior. In this paper we face the same
problem, adopting the exciton transformation described in ref31,
and a Lang-Firsov transformation for the vibrational coupling.21

An optimized basis set with reduced dimension can then be de-
fined, and, fully accounting for symmetry, we can handle com-

paratively large systems with up to 6 molecules. On a different
perspective, the exciton transformation helps us to disentangle
mean-field from excitonic and ultraexcitonic effects in these sys-
tems. Indeed, for weakly interacting aggregates, the Kasha model
works well, provided the proper mean-field reference state is se-
lected. On the other hand, in case of attractive interactions and
strong coupling, multistability is expected and wild spectroscopic
effects are observed, definitely beyond any exciton-like descrip-
tion.

2 The model

Each DA dye is described by two electronic diabatic states, cor-
responding to the two limiting neutral and zwitterion structures,
|N〉 and |Z〉, respectively (Fig. 1). The two electronic states are
separated by an energy gap 2z0 and are mixed by a matrix ele-
ment −τ. To account for the different geometry of the molecule
in the two diabatic states, a single harmonic vibration with fre-
quency ωv is considered on each molecular unit, leading to a lin-
ear dependence of the energy gap between the basis states on the
coordinate, as shown by the diabatic potential energy curves in
Fig. 1c.34

Fig. 1 The isolated (gas-phase) dye. Top: the two resonating structures.
(a) The ρ(z0/τ) curves calculated for εv = 0 and 0.4 τ. (b) the transition
energy Ω and the transition dipole moment as a function of ρ. (c) The
potential energy surfaces for a system with τ = 1, εv = 0.4 and z0 = 0.7.
(d) the adiabatic PES calculated for the same system as in panel (c).

The Hamiltonian for an aggregate of N equivalent dyes, only
interacting via electrostatic interactions, reads:

H = ∑
i

{[
2z0−g(â†

i + âi)
]

ρ̂i− τσi + h̄ωv(â
†
i âi +

1
2
)

}
+∑

i> j
Vi jρ̂iρ̂ j

(1)
where i and j run on the molecular sites. The terms in the curly
bracket define the molecular Hamiltonian and ρ̂i = |Z〉i〈Z|i mea-
sures the weight of the zwitterionic state in the i-th molecule,
σ̂i = |Z〉i〈N|i + |N〉i〈Z|i, and âi is the distruction operator for a vi-
brational quantum on the i-th molecule, so that the vibrational
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coordinate and its conjugated momentum are:

Qi =

√
h̄

2ωv
(â†

i + âi)

Pi = i

√
h̄ωv

2
(â†

i − âi) (2)

Finally, g is the electron-vibration coupling constant, related to
the vibrational relaxation energy as εv = g2/(h̄ωv), as shown in
Fig. 1c. Specifically εv measures the energy gained by the
molecule due to its geometrical rearrangement when its state
changes from N to Z. The last term in the above equation ac-
counts for intermolecular electrostatic interactions with Vi j mea-
suring the interaction between molecules on site i and j when
both molecules are in a zwitterionic state. In the following, we
will only account for nearest neighbor interactions, even if ex-
tending the calculation to more general forms of the electrostatic
potential is trivial. Moreover, we will impose periodic boundary
conditions and will consider systems with just one molecule per
unit cell. Finally, for the sake of simplity, we will consider aligned
molecules, so that only two limiting structures are of interest, as
shown in Fig. 2. Since intermolecular interactions are attrac-
tive and repulsive in the two structures we dub them as J and
H-structures, respectively.

Essential state models are traditionally parametrized from a de-
tailed analysis of optical spectra (typically absorption and fluores-
cence) collected in solvents of different polarity, as to disentan-
gle the effect of environmental polarity, but fully accounting for
the environmental polarizability.35,36,42,44 Under the assumption
that the environmental polarizability (as measured e.g. by the
medium refractive index) is similar in all organic media, the re-
sulting effective model should properly account for the core polar-
izability of the surrounding molecules in the aggregate, i.e. of the
polarizability due to the electronic degrees of freedom not explic-
itly included into the molecular essential state model. Extracting
the same information from quantum chemical calculations is pos-
sible, but gas-phase results must be properly corrected to account
for the environmental polarizability.45

2.1 Rotating the basis

The Hamiltonian in Eq.1 can be written on the basis obtained
as the direct product of the 2N electronic basis states times the
states (at least the first few states) of each molecular harmonic
oscillator. Even accounting for just 5 vibrational states on each
oscillator, the basis, growing as 10N , explodes very fast with N.
The adopted diabatic basis leads to a very simple expression for
the Hamiltonian describing the aggregate, but it is not the most
clever basis. Indeed we need to account for all electronic states
and for a large number of vibrational states simply to be able to
recover a reliable description of the molecular ground state in
terms of charge distribution and equilibrium geometry.

A discussed in Ref.31 the molecular electronic basis can be ro-
tated from the diabatic to the exciton basis |g〉, |e〉 via the trans-

formation:

|g〉 =
√

1−ρ|N〉+
√

ρ|Z〉

|e〉 =
√

ρ|N〉−
√

1−ρ|Z〉 (3)

where the parameter ρ, comprised between 0 and 1, measures the
weight of the zwitterionic state into the |g〉 state, a measure of the
molecular polarity. A clever choice sets ρ to the mean-field (mf)
result: when inserted in the aggregate, each dye feels the elec-
trostatic potential generated by the surrounding molecules, and
readjusts its ground state ionicity in response to this potential.
The potential in turn depends on the ionicity of the molecules,
leading to a self-consistent problem, that has been solved and
discussed many times.11,31,37

However, the mean field ionicity is also affected by the vibra-
tional coupling. For each molecule, the Hellman-Feynman theo-
rem sets the equilibrium coordinate proportional to ρ as follows
(see ESI for explicit expressions):38

Q̄i =

√
2ωv

h̄
g

ω2
v

ρ (4)

It is convenient to move the origin of the vibrational coordinate
to the equilibrium position, via a Lang-Firsov transformation of
the vibrational operators:21

ˆ̃Qi = Q̂i− Q̄ =

√
h̄

2ωv
( ˆ̃a†

i +
ˆ̃ai)

ˆ̃Pi = P̂i = i

√
h̄ωv

2
( ˆ̃a†

i − ˆ̃ai) (5)

Applying the exciton rotation to the electronic basis and
the Lang-Firsov transformation to the molecular oscillators, the
Hamiltonian in Eq. 1 reads (the derivation can be found in ESI):

H = h̄Ω∑
i

n̂i + h̄ωv ∑
i

(
ˆ̃a†
i

ˆ̃ai +
1
2

)

− g

[
(1−2ρ)∑

i
n̂i( ˆ̃a†

i +
ˆ̃ai)+

√
ρ(1−ρ)∑

i
(b̂†

i + b̂i)( ˆ̃a†
i +

ˆ̃ai)

]

+ ∑
i> j

Vi jρ(1−ρ)
[
(b̂†

i b̂ j + b̂†
j b̂i)+(b̂†

i b̂†
j + b̂ jb̂i)

]
+ (1−2ρ)2

∑
i> j

Vi jn̂in̂ j +2
√

ρ(1−ρ)(1−2ρ)∑
i> j

n̂i(b̂
†
j + b̂ j)

(6)

The Paulion operator b̂†
i that creates and exciton at site i, bringing

the relevant molecule from the |g〉 state (the vacuum state) to
the excited |e〉 state. The number operator n̂i = b̂†

i b̂i counts the
number of excitons on site i (0 for g, 1 for e states).

The above Hamiltonian is exactly equivalent to the Hamilto-
nian in Eq. 1, provided ρ is fixed to the mean field value:31

ρ =
1
2
− z(ρ)

2
√

z(ρ)2 + τ2
(7)

Journal Name, [year], [vol.], 1–10 | 3
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where z(ρ) measures half the energy gap between the two dia-
batic states that self-consistently depends on ρ:

z(ρ) = z0 +(M− εv)ρ (8)

where M defines the Madelung energy

M =
1
N ∑

i> j
Vi j (9)

that reduces to M = V when only nearest neighbor interactions
are considered.

To understand the physical picture that emerges from the ag-
gregate Hamiltonian on the rotated basis (Eq. 6), we first address
the mf solution for the aggregate. To start with, for an isolated
molecule in the gas phase and neglecting the vibronic coupling
(εv = 0), the solution of the two-dimensional electronic problem
is trivial and leads to the |g〉 and |e〉 states in Eq. 3 with ρ fixed by
Eq. 7 but with z = z0. The |g〉 → |e〉 transition energy and transi-
tion dipole moment are expressed as a function of ρ as follows:34

h̄Ω =
τ√

ρ(1−ρ)

µge = µ0
√

ρ(1−ρ) (10)

where µ0 is the dipole moment associated with the zwitterionic
state, proportional to the intramolecular D-A distance. The ρ(z0)

curves and the ρ-dependence of the transition energy and dipole
moments of the isolated dye are shown in fig. 1a and 1b.

When accounting for vibronic coupling, the energies of the di-
abatic states acquire a Q-dependence, as shown for typical model
parameters in Fig. 1c. In the adiabatic approximation, the two-
dimensional electronic Hamiltonian is diagonalized for each Q
to get the adiabatic potential energy curves for the |g〉 and |e〉
states, shown in Fig. 1d. If we are only interested in adia-
batic results for the equilibrium Q = Q̄, we may exploit eq. 4
and solve the self-consistent two dimensional adiabatic Hamilto-
nian for a system where the energy difference between the dia-
batic states self-consistently depends on ρ as 2z = 2z0−2εvρ.38,40

While the equilibrium ρ is affected by the vibrational coupling,
the ρ-dependence of the transition frequency and dipole moment
is always defined by Eqs. 10, so that curves in Fig. 1b apply
irrespective of the εv value.

When the dye is inserted in the aggregate its ionicity will read-
just in response to the surrounding charges. In an H-type (repul-
sive) geometry (fig. 2a), the ionicity of the dye in the aggregate
will be lower than for the isolated dye, while in a J-type (attrac-
tive) geometry it will be higher. The calculation is easy in the
mf approximation: each molecule feels the electrostatic poten-
tial generated by the surrounding molecules, each one bearing a
fractional charge ±ρ at the D/A site. The energy of the zwitte-
rionic state is then moved with respect to the isolated molecule
by a quantity 2Mρ, positive and negative for H and J aggregates,
respectively (see Fig 2c and 2d). The mf solution of the prob-
lem is then obtained self-consistently, setting the ionicity of the
surrounding molecules equal to the ionicity of the test molecule,
then regaining Eq. 7. The ρ(z0) curves in fig. 2 (e and f) are

calculateed accordingly. Of particular interest is the case of J-
aggregates, where not only the molecular ionicity increases with
M, as expected, but, at large enough M values, a discontinuous
behavior emerges,31,38,39 with sizable bistability regions. Once
again, the molecular ionicity is affected by the interactions, but
the ρ-dependence of the transition dipole moment and frequency
are fixed as in Eq. 10.

Fig. 2 The mf dye. Panels (a) and (b) show the H and J geometries,
respectively. (c) The diabatic PES for the isolated dye and for a dye in
an H-aggregate. (d) The diabatic PES for the isolated dye and for a dye
in an J-aggregate. (e) The ρ(z0/τ) curves calculated for an H aggregate
with M=0 (isolated sye) and M=1. (f) The ρ(z0/τ) curves calculated
for a J aggregate with M=0 (isolated dye) and M=-1, -1.4 and -2.0. All
results refer to systems with εv = 0.4τ

Having described the mf solution, we are now in the position
to discuss the rotated Hamiltonian in Eq. 6. The first line assigns
energy h̄Ω to each exciton and adds the vibrational energy h̄ωv to
each vibrational excitation. The second line accounts for vibra-
tional coupling. As expected, it is an on-site term. The first term
in this line is the standard Condon term, with the vibrational cou-
pling renormalized from g to g(1−2ρ) to account for the relative
position of the equilibrium geometries for the ground and excited
state potential energy surfaces (PES).46 The second term in the
second line is instead an ultraexcitonic term mixing states with
the number of excitons differing by one unit. This ultraexciton
term has a vibronic origin: the creation/destruction of the exci-
ton on site i is always accompanied by the creation or destruction
of a vibrational quantum in the same site. The terms in the two
last lines of Eq. 6 all come from intermolecular electrostatic inter-
actions. The term in the third line is proportional to the squared
transition dipole moment of the mf dye (see eq. 10) and con-
tains both the exciton hopping term, as well as the two-exciton
terms that are usually neglected in the exciton model.25 In the
last line the first term is an exciton-exciton interaction term (pro-
portional to the squared mesomeric moment): it conserves the
exciton mumber and it may enter the exciton model, but is of
course relevant only to aggregates of polar dyes.31 The very last
term is again an ultraexcitonic term mixing states whose exciton
number changes by one unit.

A special situation occurs in the so-called cyanine limit, when
the mean field ρ attains the 0.5 value. This occurs whenever
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z(ρ = 0.5) = 0 in Eq. 8, or 2z0− εv = M (2z0− εv = V , for nearest
neighbor interactions), fully in line with the analogous result for a
dimeric aggregate in Ref.43. In the cyanine limit, the leading Con-
don term for vibronic coupling vanishes, and the vibronic struc-
ture in aggregate spectra is washed out,43 with marginal vibronic
effects only expected for strong coupling, when the ultraexcitonic
term enters into play. Moreover, all excitonic and ultraexcitonic
terms proportional to (1− 2ρ) (i.e. to the mesomeric dipole mo-
ment) vanish when ρ = 0.5 so that only terms proportional to the
squared transition dipole moment survive. In the cyanine limit
then the electronic part of the Hamiltonian in Eq. 6 reduces to
the Hamiltonian for aggregates of non-polar dyes.25

2.2 Computational strategy

The dimension of the non-adiabatic basis increases fast with the
aggregate dimension. On each molecular unit the basis includes
2 electronic states to be multiplied by the number of vibrational
states as needed for convergence nph. The basis for an aggre-
gate of N molecules has then dimension (2nph)

N , quickly leading
to untractable problems. To overcome this limitation, we make
use of symmetry: the adopted periodic boundary conditions in
fact not only help minimizing finite size effects, but also enforce
translational symmetry in the system. The wavevector k is then
a good quantum number for the aggregate, with optical transi-
tions obeying a strict selection rule imposing that only states with
the same wavevector can be reached. The ground state is a zero-
wavevector state, so that only the k = 0 subspace is of interest for
absorption processes. In J-aggregates the lowest excited state also
has k = 0 , so that, again, only the k = 0 subspace is of interest.
In H-aggregates instead the lowest excited state belongs to the
k = π subspace, so that, to address fluorescence in H-aggregates,
we must also diagonalize the model Hamiltonian in the k = π sub-
space.

To further reduce the dimension of the problem we work in the
exciton basis that, while leading to a fairly cumbersome Hamilto-
nian, allows, for not too large intermolecular interactions, to limit
the basis dimension discarding all states with a number of exci-
tations larger than Me with Me ≤ N. Moreover, we truncate the
vibrational basis as to discard all states with a total number of vi-
brational quanta larger than Mv. Of course, large enough Me and
Mv must be considered to ensure convergence on relevant results.

In the bit-representation, we store each basis state in the com-
puter memory as an integer number whose binary code is com-
posed of 4 bits for each molecule in the aggregate, where the first
bit represents the electronic state (0 ≡ |g〉, 1 ≡ |e〉) and the fol-
lowing 3 bits store the integer number that counts the vibrational
quanta (from a minimum of 000≡ |0〉 to a maximum of 111≡ |7〉).
The basis set is created scrolling through all integer numbers from
0 to 16N−1 and selecting only the states that comply with the re-
quired values of Me and Mv. Translational symmetry operations
are then applied to the basis states to finally obtain symmetry-
adapted linear combinations in the k = 0 space, as needed to cal-
culate spectra of J and H-aggregates, and in the k = π subspace
for H-aggregates to address their fluorescence spectra. Since the
basis is very large, we only store a single representative state for

each symmetry-adapted linear combination, together with the in-
formation concerning its multiplicity. The Hamiltonian in Eq. 6 is
finally written on the symmetrized basis and diagonalized in the
relevant subspaces. Depending on the number of excitons and
vibrational states needed to reach convergence, we are able to
address systems with up to N = 6 sites (of course only aggregates
with an even N can be considered in the k = π subspace).

3 Results

In the following we set τ = 1, as the energy unit (typical values
for CT dyes are of the order of 1 eV, even if for dyes of interest for
thermally activated delayed fluorescence47 τ can be up to an or-
der of magnitude smaller), and fix εv = 0.4 and ωv = 0.17. Results
will be shown for different z0 as to decribe the properties of dyes
with different ionicities. All results were obtained setting Nv = 6.

3.1 Weak coupling

We start our analysis with H-aggregates, setting a moderate value
for the electrostatic interaction, V = 1. Fig. 3 shows results for a
largely neutral dye, a dye with intermediate ionicity and a zwitte-
rionic dye. Results are shown for the biggest achievable aggregate
N=6, but finite size effects are negligible in this case. Conver-
gence is obtained already for Ne=3, as the Ne = 3 and 4 results
are superimposed in the scale of the figure. In all cases, in line
with the H-nature of the aggregate, as determined by repulsive
intermolecular interactions, the fluorescence intensity is largely
suppressed as a result of aggregation, and a huge Stokes shift is
observed for the aggregate. Understanding the position of absorp-
tion bands is however tricky. With reference to the isolated (gas
phase) dye, the absorption band blueshifts for the dyes with low
and intermediate polarity (left and central panels), but red-shifts
in the case of a largerly polar dye (right panel). These apparently
crazy results, possibly suggesting the failure of the exciton pic-
ture, are indeed related to a bad choice of the reference state. A
large part of the shift in fact is not excitonic in origin, but is re-
lated to the effects that surrounding charges have on the energy
of the states. This is easily calculated in the mf approximation.
Repulsive intermolecular interactions reduce the polarity of each
dye in the aggregate (see fig. 2e), hence affectig the frequency of
the absorption band. The proper reference for the exciton model
is indeed represented by the mf absorption frequency. Specifically,
for the dye in the left panels of Fig. 3, the ionicity decreases from
0.19 in the gas phase to a mf value of 0.17. Accordingly, the max-
imum of the absorption blueshifts, slightly reducing the exciton
shift. Similar considerations apply to the dye in the middle pan-
els, whose ionicity is reduced from 0.64 in the gas phase to 0.5 in
the mf approach. For ρ = 0.5 (the cyanine limit) the Condon vi-
brational coupling (proportional to the squared mesomeric dipole
moment) vanishes, leading to the disappearance of the vibronic
structure in absorption and fluorescence bands. More inspiring is
the case of the zwitterionic dye in right column of Fig. 3. Here
the decrease of the ionicity from 0.76 in the gas phase to 0.61
in the mf approximation is responsible for a large red-sfift of the
absorption band. Taking as proper reference the mf frequency, a
blue-shift of the absorption band is observed for the aggregate,
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fully in line with its H character, as due to repulsive (V > 0) inter-
molecular interactions.

Fluorescence in H-aggregates comes from electronic states at
the border of the Brillouin zone and are therefore only allowed
due to the coupling to vibrational modes. As a result, very weak
and largely red-shifted bands are observed, but what we notice
here is that, since the dominating (Condon) term accounting for
vibronic coupling vanishes in the cianine limit, the fluorescence
intensity is vanishingly small in this limit.

Fig. 3 H aggregate, V=1, εv = 0.4, ωv =0.17: top and bottom panel show
calculated absorption and fluorescence spectra. Intensities per molecules
are reported in arbitrary units. The weak florescence spectra of the ag-
gregate are multiplied by a factor, as shown in the figure. Left panels
refer to a system with z0=0.8, corresponding to an ionicity for the iso-
lated dye ρ = 0.21 that deacreses in the mf approximation to ρ = 0.17.
Middle panels: z0 =−0.3, gas phase ρ = 0.76, mf ρ = 0.5. Right panels:
z0 =−0.6, gas phase ρ = 0.84, mf ρ = 0.61.

A similar analysis applies to the aggregates in Fig. 4, corre-
sponding to the case of weak attractive intermolecular interac-
tions (V = −1). Intense emission bands and vanishing Stokes
shifts in the aggregate are fully in line with J-aggregate behav-
ior. The redshift of absorption (and emission) bands observed
for the dyes in the left and middle panels of Fig. 4 are again
in line with a J-aggregate behavior. The most striking results is
however recognized again for the most polar molecule (ρ = 0.36
in the gas phase) in the right panels of Fig.4: here in fact the
exciton band moving to the blue with respect to the gas-phase
molecule. But again this anomalous behavior is simply related to
the choice of a wrong reference. In the aggregate, the mf solu-
tion of the problem drives the molecule deep in the ionic regime
with ρ= 0.82. This implies a large blue shift of the absorption
and fluorescence bands, so that, when taking as reference the gas
phase molecule, an apparent blue-shift of the exciton band is ob-
served, that actually corresponds to a red-shift when the proper
mf reference is considered, in line with the attractive nature of
the interactions. We also notice that for the zwitterionic system,
when the wrong reference state is considered, the intensity of the
transitions (both absorption and fluorescence) decreases and the
vibronic structure becomes more prominent, in striking contrast
with the J-nature of the aggregate. This inconsistency is however

Fig. 4 J aggregate, V=-1, εv = 0.4, ωv =0.17: top and bottom panel show
calculated absorption and fluorescence spectra. Intensities per molecules
are reported in arbitrary units. Left panels refer to a system with z0=1.0,
corresponding to an ionicity for the isolated dye ρ = 0.15 that increases
in the mf approximation to ρ = 0.21. Middle panels: z0 = 0.7, gas phase
ρ = 0.21, mf ρ = 0.50. Right panels: z0 = 0.3, gas phase ρ = 0.36, mf
ρ = 0.82.

quite naturally solved if the proper mf reference is considered:
in all cases the spectral intensity increases when going from the
mf dye to the aggregate, while the vibronic structure becomes
less and less prominent. Quite interestingly, results in the central
panel fo Fig. 4 refer to a dye with ionicity ρ = 0.16 in the gas
phase that is driven to the cyanine limit, ρ = 0.50 when embed-
ded in the aggregate. Once again, in the cianine limit the vibronic
structure of absorption and fluorescence bands disappears.

3.2 Medium and strong coupling

We will now address the cases of medium and strong coupling.
Fig. 5 show absorption spectra calculated for H-aggregates in the
medium (V = 1.6) and strong-coupling (V = 2.0) regimes. It turns
out that Ne = 4 is the minimum number of exciton states to be in-
troduced to get convergence, Ne = 3 results are totally untenable,
with the only exception of the systems that in the mf approaxi-
mation have ρ = 0.5. In these conditions in fact all terms in Eq. 6
proportional to 1−2ρ vanish. Accordingly, the vibronic structure
disappears, as discussed above, but also all terms related to the
mesomeric dipole moment (the difference between the perma-
nent dipole moments in the excited and ground state) vanish. For
the electronic part, the Hamiltonian in the ρ = 0.5 limit reduces to
that relevant to a non-polar aggregates and most of the anoma-
lous effects associated with aggregates of polar and polarizable
dyes are washed out.43 Once convergence is reached, finite size
effects are marginal for largely neutral dyes, as well as for dyes in
the cyanine limit, but become relevant for zwitterionic dyes.

More interesting is the case of J-aggregates, where electrostatic
intermolecular interactions lead to intriguing phenomena.31,32

Fig. 6 shows absorption and fluorescence spectra calculated for
a system with V=-1.6, corresponding to the curve in Fig. 2f that
marks the boundary between the normal (weak coupling) and
the bistable (strong coupling) regime. Much as in the weak cou-
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Fig. 5 H aggregate absorption spectra. All results refer to a system
with εv = 0.4 and ωv =0.17. Top panels show results for V = 1.6, from
left to right: z0 = 0.8, gas phase ρ = 0.21, mf ρ = 0.15; z0 = −0.6, gas
phase ρ = 0.84, mf ρ = 0.5; z0 = −1.0, gas phase ρ = 0.9, mf ρ = 0.62.
Bottom panels show results for V = 2.0, from left to right: z0 = 0.8, gas
phase ρ = 0.21, mf ρ = 0.14; z0 =−0.8, gas phase ρ = 0.88, mf ρ = 0.5;
z0 =−1.2, gas phase ρ = 0.92, mf ρ = 0.61.

pling case, the apparently anomalous behavior observed when
comparing aggregate spectra with spectra calculated for the iso-
lated dye are relieved if the proper reference system is considered,
corresponding to the mf solution. In all cases in fact the aggre-
gate spectrum is red-shifted with respect to the relevant mf spec-
trum. The most important difference with respect to the weak
coupling is the appearance of finite size effects, with N=6 re-
sults differering from N=4, pointing to largely delocalized ex-
citons. Moreover, to get convergence for N=6 at least Ne=4 is
needed (see Fig. S1) in sharp contrast with the weak coupling
case. Quite interestingly, finite size effects are marginal for the
system described in middle column of fig. 6 where the mf ionicity
is 0.5. As discussed above, in this limit, the vanishing of terms
proportional to 1− 2ρ not only kills the main vibronic coupling
term, but also reduces the electronic part of the Hamiltonian to
that of aggregates of non-polar dyes.

This is even more evident in the strong coupling limit in fig.
7, showing spectra calculated for V=-2.0. Similar considerations
apply as in the medium-coupling regime, but in this case N = 6
results do not converge until the maximum number of excitons
Ne = 6 is accounted for in the calculation, or in other terms, the
complete electronic basis is considered (see fig S2). This imme-
diately tells us that the exciton-exciton interaction term (the first
term in the last line of Eq. 6, lowers the energy of multiexciton
states that get mixed with the lowest excited states giving a siz-
able multiexcitonic character to the state, as extensively discussed
in refs.31,32 Again, this term vanishes for a system with a mf ion-
icity ρ = 0.5, so that for this system (middle panel of fig. 7) the
N=6 results already converge at Ne = 3.

4 Discussion
Extending a previous work31 to account for molecular vibrations,
as needed to properly address spectral bandshapes, here we pro-
pose a two-step approach to the description of optical spectra of
aggregates of polar and polarizable molecules. The first step is

Fig. 6 J aggregate, V=-1.6, εv = 0.4, ωv =0.17: top and bottom panel
show calculated absorption and fluorescence spectra. Intensities per
molecules are reported in arbitrary units. Left panels refer to a system
with z0=1.5, corresponding to an ionicity for the isolated dye ρ = 0.09 that
increases in the mf approximation to ρ = 0.10. Middle panels: z0 = 1.0,
gas phase ρ = 0.16, mf ρ = 0.50. Right panels: z0 = 0.5, gas phase
ρ = 0.33, mf ρ = 0.90.

the definition of the proper reference state as the mf solution of
the problem. Basically, the ground state polarity of each dye is
self-consistently defined by the polarity of the surrounding dyes,
leading to increased polarity for attractive intermolecular interac-
tions and reduced polarity for repulsive interactions. Of course all
molecular properties (including transition frequencies and dipole
moments) are affected by this variation. The mf state defines the
proper reference state for the exciton model. The molecular ge-
ometry is also affected by the molecular polarity and the correct
reference state for the vibrational problem is defined via a Lang-
Firsov transformation that translates the origin of the vibrational
coordinates to the equilibrium position relevant to the charge dis-
tribution of the molecule inside the aggregate. Since molecular
vibrations in turn affect the molecular polarity, vibronic coupling
leads to another self-consistent interaction. While this may look
as a difficult problem, it boils down to a simple self-consistent
diagonalization of a two by two Hamiltonian.39,42

The essential state model adopted here has been extensively
validated against experiment and describes in a very effective
way the low-energy spectral properties of push-pull dyes account-
ing for environmental effects in solution,34–36 aggregates,33,42

films44 and crystals.39,48 In the context of this work we underline
that the model relies on similar approximations as the standard
exciton model, accounting for a single electronic excitation and a
single vibrational mode per molecule. At variance with the stan-
dard exciton model, however, the proposed model fully accounts
for the molecular polarizability and for the dependence of the
ground and excited state molecular geometry on the molecular
polarity.

Once the proper reference state is defined, several interaction
terms are recognized in the Hamiltonian that can be classified
as excitonic, when conserving the exciton number, and ultraexci-
tonic when mixing states with a different number of excitons.31

The vibrational coupling leads to an excitonic term that corre-
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Fig. 7 J aggregate, V=-2.0, εv = 0.4, ωv =0.17: top and bottom panel
show calculated absorption and fluorescence spectra. Intensities per
molecules are reported in arbitrary units. Left panels refer to a system
with z0=1.5, corresponding to an ionicity for the isolated dye ρ = 0.09 that
increases in the mf approximation to ρ = 0.11. Middle panels: z0 = 1.2,
gas phase ρ = 0.12, mf ρ = 0.50. Right panels: z0 = 1.0, gas phase
ρ = 0.16, mf ρ = 0.87.

sponds to the Condon coupling in the exciton model. This term is
proportional to 1−2ρ, and vanishes in systems whose mf ionicity
is close to 0.5: in these systems the vibronic bandshape is washed
out. The ultraexcitonic term exchanges vibrational quanta and
excitons and has marginal spectroscopic effects in the weak cou-
pling limit as shown in Fig. 8 and 9 that compare exact results
obtained in the weak and strong coupling regimes for H and J
aggregates with those obtained suppressing the non-Condon vi-
bronic coupling in the Hamiltonian in Eq. 6. Non-Condon correc-
tions give rise to sizable effects in the strong regime.

Fig. 8 H aggregates with N = 6. Top panel show weak-coupling results,
V = 1 for the same values of model parameters as in Fig. 3; bottom panels
show results for strong coupling, V=2, for the same parameters as in the
bottom panels of Fig. 5. In all panels blue lines show convrged results for
the total Hamiltonian, dashed black curves show results obtained neglect-
ing the non-Condon electron-vibration coupling term, continuous black
lines show results for the exciton model, i.e. suppressing all ultraexcitonic
terms in the Hamiltonian.

Fig. 9 J aggregates with N = 6. Top panel show weak-coupling results,
V = −1 for the same values of model parameters as in Fig. 4; bottom
panels show results for strong coupling, V=-2, for the same parameters
as in Fig. 7. In all panels blue lines show converged results for the
total Hamiltonian, dashed black curves show results obtained neglecting
the non-Condon electron-vibration coupling term, continuous black lines
show results for the exciton model, i.e. suppressing all ultraexcitonic
terms in the Hamiltonian.

As for excitonic terms originating from electrostatic interac-
tions, we recognize terms ∝ ρ(1− ρ), i.e. proportional to the
squared transition dipole moment of the mf molecules: these
terms are responsible for the exciton hopping. Other terms ap-
pear proportional to the mesomeric dipole moment (1−2ρ) that
account for exciton-exciton interactions. These last terms vanish
when the mf molecular ionicity is close to 0.5, and the system
reduces to an aggregate of non-polar dyes. The exciton approxi-
mation works reasonably well for weak coupling, but fails in the
strong coupling regimes (see fig. 8 and 9).

Indeed, with increasing coupling, ultraexciton terms enter into
play with particularly impressive effects in J-aggregates, where
bistability regions are observed in the mf solution.31,32 Finite
size effects become important in these conditions and the exci-
ton basis cannot be broken down to account for just the first few
exciton states (up to 3 excitons are enough to get converged re-
sults in the weak coupling limit). Indeed, the lowest excited state
in these conditions cannot be described, not even approximately,
as a state with a single exciton, rather it corresponds to a state
where several excited molecules cluster together in a multiexci-
ton state.31,32

In this work we only consider perfectly ordered 1D aggregates.
Accordingly, translational symmetry is exploited to successfully
address the fairly complex problem of coupled electronic and vi-
brational motion in fairly large systems. Modest disorder effects
are expected in crystalline systems, but they are important for
aggregates in solution. Molecular dynamics and more generally
multiscale approaches are powerful tools to address disorder that
in aggregates in solution49,50 as related to the conformational
motion of the aggregate itself, as well as to fluctuating electric
field associated with polar solvation. However, treating electronic
and vibrational degrees of freedom in a truly non-adiabatic ap-
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proach is challenging for large disordered systems, and requires
the development of new approximation techniques. In this re-
spect, the proposed two-step approach to aggregates of polar dyes
may offer a good starting point towards the development of few-
particle approaches, that are successfully exploited for aggregates
of non-polar dyes.7,17,22,25

5 Conclusions
Spectroscopic effects of intermolecular interactions have at-
tracted the interest of scientists since almost a century. The ex-
citon model, neglecting intermolecular interactions among non-
degenerate states, offers a simple and effective approach to un-
derstand spectral properties of molecular crystals and aggre-
gates.7,14,15 However, it must be recognized that the model fully
neglects the molecular polarizability,31 in the assumption that the
nature of the ground state is not altered by intermolecular inter-
actions. This approximation works fairly well in aggregates of
non-polar molecules, where the molecular polarizability shows
up mainly with a variation of the spectral intensities,25 an ef-
fect that is difficult to assess experimentally. In aggregates of po-
lar molecules, however, the large electric fields generated by the
nearby polar molecules considerably affect the state of polarizable
dyes leading to two major effects. In the first place, when a polar
and polarizable molecule is surrounded other similar molecules,
it will readjust its polarity in response to the electrical potential
generated by the charges in the surrounding molecules. Accord-
ingly, the nature of the molecules will change, with the ground
state polarity at equilibrium being reduced in H aggregates with
respect to the isolated molecule and increased in J-aggregates.
Of course, the equilibrium geometry of the molecule will readjust
accordingly. To properly rationalize aggregation effects it is im-
portant to take in proper account this mean-field effect, building
the model for interacting dyes starting from the proper reference.
This allows to single out excitonic and ultraexcitonic effects and
to properly address vibrational coupling and hence vibronic band-
shapes. Specifically, the anomalous red/blue shifts observed in
H/J aggregates when the reference state is taken to correspond
to the isolated molecule, turn out to be normal blue/red shifts
when the proper reference is taken as the molecule in its environ-
ment. Similar anomalous effects on band-shapes are also easily
sorted out, at least in the weak-coupling regime. Apart from a
better understanding of the physics of these intriguing systems,
the proper choice of the reference state gives an enormous com-
putational advantage: for not too large couplings in fact it is pos-
sible to truncate the electronic basis only accounting for states
with a limited number of excitons. This is particularly important
because the non-adiabatic basis, needed to properly address the
aggregate, increases very fast with the number of states. Our
approach, that also accounts for the translational symmetry in
aggregates with periodic boundary conditions, allowed us to di-
agonalize exactly the non-adiabatic Hamiltonian for systems with
up to 6 molecules. Reaching large aggregates is important to sin-
gle out finite size effects that are particularly interesting for J ag-
gregates in the medium-large coupling regime, where the low-
lying excitations acquire a multiexciton character, corresponding
to a droplet of excited states bound together by attractive inter-

molecular interactions. In this paper we only considered linear
absorption and fluorescence spectra, but our approach can easily
address non-linear optical spectra, where important aggregation
effects are expected.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This project received funding from the European Union Horizon
2020 research and innovation programme under Grant Agree-
ment No. 812872 (TADFlife), and benefited from the equipment
and support of the COMP-HUB Initiative, funded by the “Depart-
ments of Excellence” program of the Italian Ministry for Educa-
tion, University and Research (MIUR, 2018-2022). We acknowl-
egde the support from the HPC (High Performance Computing)
facility of the University of Parma, Italy.

Notes and references
1 Förster, Th., Modern Quantum Chemistry, Academic Press,

1965, p. 93.
2 Scholes, G. D., Annu. Rev. Phys. Chem., 2003, 54, 57–87.
3 Di Maiolo, F. and Painelli, A., J. Chem. Theory Comput., 2018,

14, 5339–5349.
4 M. Anzola, C. Sissa, A. Painelli, A. A. Hassanali and L. Grisanti,

Journal of Chemical Theory and Computation, 2020, 16, 7281–
7288.

5 Craig, D. P. and Walmsley, S. H., Excitons in Molecular Crystals,
Benjamin, 1968.

6 Knoester, J., Organic Nanostructures: Science and applications,
IOS Press, Amsterdam, 2002, vol. 149, pp. 149–186.

7 Hestand, N. J. and Spano, F. C., Chem. Rev., 2018, 118, 7069–
7163.

8 Lakowicz, J. R., Principles of Fluorescence Spectroscopy,
Springer US, 1999, p. 698.

9 B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence:
Principles and Applications, Wiley-VCH Verlag GmbH & Co.
KGaA, 2012.

10 Rice, M. J., Phys. Rev. Lett., 1976, 37, 36–39.
11 Painelli, A. and Girlando,A., J. Chem. Phys., 1986, 84, 5655–

5671.
12 M. Souto, J. Guasch, V. Lloveras, P. Mayorga, J. T. L. Navar-

rete, J. Casado, I. Ratera, C. Rovira, A. Painelli and J. Veciana,
The Journal of Physical Chemistry Letters, 2013, 4, 2721–2726.

13 N. J. Hestand, C. Zheng, A. R. Penmetcha, B. Cona, J. A. Cody,
F. C. Spano and C. J. Collison, The Journal of Physical Chem-
istry C, 2015, 119, 18964–18974.

14 Kasha, M., Radiat. Res., 1964, 3, 317–331.
15 Davidov, A. S., Theory of Molecular Excitons, Plenum Press,

1971.
16 Agranovich, V. M. and Galanin, M. D., Excitons in Molecular

Crystals, North-Holland, 1982.
17 Spano, F. C., Acc. Chem. Res., 2010, 43, 429–439.
18 E. U. Condon, Reviews of Modern Physics, 1937, 9, 432–457.

Journal Name, [year], [vol.], 1–10 | 9

Page 9 of 10 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
0 

M
ar

ch
 2

02
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

 d
i P

ar
m

a 
on

 3
/1

0/
20

21
 4

:2
7:

41
 P

M
. 

View Article Online
DOI: 10.1039/D1CP00335F

https://doi.org/10.1039/d1cp00335f


19 D. P. Craig and T. Thirunamachandran, Molecular quantum
electrodynamics, Dover, New York, NY, 1998.

20 K. Swathi, C. Sissa, A. Painelli and K. G. Thomas, Chemical
Communications, 2020, 56, 8281–8284.

21 Feinberg, D. and Ciuchi, S. and De Pasquale, F., Int. J. Mod.
Phys. B, 1990, 04, 1317–1367.

22 Hoffmann, M. and Soos, Z. G., Phys. Rev. B, 2002, 66, 024305.
23 Spano, F. C. and Yamagata, H., J. Phys. Chem. B, 2011, 111,

5133–5143.
24 Painelli, A., Chemical Physics, 1999, 245, 185 – 197.
25 M. Anzola, F. D. Maiolo and A. Painelli, Physical Chemistry

Chemical Physics, 2019, 21, 19816–19824.
26 D’Avino, G. and Terenziani, F. and Painelli, A.,

ChemPhysChem, 2007, 8, 2433–2444.
27 Sanyal, S. and Painelli, A. and Pati, S. K. and Terenziani, F.

and Sissa, C., Phys. Chem. Chem. Phys., 2016, 18, 28198–
28208.

28 Bardi, B. and Dall’Agnese, C. and Moineau-Chane Ching, K. I.
and Painelli, A. and Terenziani, F. , J. Phys. Chem. C , 2017,
121, 17466–17478.

29 Zheng, C. and Zhong, C. and Collison, C. J. and Spano, F. C.,
J. Phys. Chem. C, 2019, 123, 3203–3215.

30 Bardi, B. and Dall’Agnese, C. and Tassé, M. and Ladeira, S.
and Painelli, A. and Moineau-Chane Ching,K. I. and Teren-
ziani, F. , ChemPhotoChem , 2018, 2, 1027–1037.

31 Terenziani, F. and Painelli, A., Phys. Rev. B, 2003, 68, 165405.
32 A. Painelli and F. Terenziani, Journal of the American Chemical

Society, 2003, 125, 5624–5625.
33 Terenziani, F. and D’Avino, G. and Painelli A., ChemPhysChem,

2007, 8, 2433–2444.
34 Painelli, A., Chemical Physics Letters, 1998, 285, 352 – 358.
35 Painelli, A. and Terenziani, F., The Journal of Physical Chem-

istry A, 2000, 104, 11041–11048.
36 Boldrini, B. and Cavalli, E. and Painelli, A. and Terenziani, F.,

The Journal of Physical Chemistry A, 2002, 106, 6286–6294.
37 Soos, Z. G. and Klein, D. J., in Molecular Association: Including

Molecular Complexes, Vol. 1, Academic Press, New York, 1975.
38 A. Girlando and A. Painelli, Physical Review B, 1986, 34,

2131–2139.
39 J. Guasch, L. Grisanti, S. Jung, D. Morales, G. D’Avino,

M. Souto, X. Fontrodona, A. Painelli, F. Renz, I. Ratera and
J. Veciana, Chemistry of Materials, 2013, 25, 808–814.

40 G. D’Avino, A. Painelli and Z. Soos, Crystals, 2017, 7, 144.
41 F. Terenziani and A. Painelli, Journal of Luminescence, 2005,

112, 474–478.
42 Sanyal, S. and Sissa, C. and Terenziani, F. and Pati, S. K.

and Painelli, A., Phys. Chem. Chem. Phys., 2017, 19, 24979–
24984.

43 C. Zhong, D. Bialas and F. C. Spano, The Journal of Physical
Chemistry C, 2020, 124, 2146–2159.

44 Terenziani, F. and Painelli, A. and Girlando, A. and Metzger,
R. M., The Journal of Physical Chemistry B, 2004, 108, 10743–
10750.

45 D. K. A. P. Huu, C. Sissa, F. Terenziani and A. Painelli, Physical
Chemistry Chemical Physics, 2020, 22, 25483–25491.

46 A. Painelli and F. Terenziani, Chemical Physics Letters, 1999,
312, 211 – 220.

47 H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Mo-
rimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda and
C. Adachi, Nature Communications, 2014, 5, 4061.

48 G. D’Avino, L. Grisanti, J. Guasch, I. Ratera, J. Veciana and
A. Painelli, Journal of the American Chemical Society, 2008,
130, 12064–12072.

49 A. Segalina, X. Assfeld, A. Monari and M. Pastore, The Journal
of Physical Chemistry C, 2019, 123, 6427–6437.

50 M. Eskandari, J. C. Roldao, J. Cerezo, B. Milián-Medina and
J. Gierschner, Journal of the American Chemical Society, 2020,
142, 2835–2843.

10 | 1–10Journal Name, [year], [vol.],

Page 10 of 10Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
0 

M
ar

ch
 2

02
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

 d
i P

ar
m

a 
on

 3
/1

0/
20

21
 4

:2
7:

41
 P

M
. 

View Article Online
DOI: 10.1039/D1CP00335F

https://doi.org/10.1039/d1cp00335f

