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Abstract
We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlin-
ear equations driven by nonlocal, possibly degenerate, integro-differential operators,
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lems are bounded and Hölder continuous, by also establishing general estimates as
fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.

Keywords Quasilinear nonlocal operators · Fractional Sobolev spaces · Hölder
continuity · Heisenberg group · Fractional sublaplacian

Mathematics Subject Classification Primary 35D10 · 35B45; Secondary 35B05 ·
35H05 · 35R05 · 47G20

B Giampiero Palatucci
giampiero.palatucci@unipr.it

Maria Manfredini
maria.manfredini@unimore.it

Mirco Piccinini
mirco.piccinini@unipr.it

Sergio Polidoro
sergio.polidoro@unimore.it

1 Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena
e Reggio Emilia, Via G. Campi 213/B, 41121 Modena, Italy

2 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle
Scienze 53/a, Campus, 43124 Parma, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-022-01124-6&domain=pdf
http://orcid.org/0000-0002-3706-9349


   77 Page 2 of 41 M. Manfredini et al.

1 Introduction

The aim of the present paper is to prove some regularity results for the (weak) solutions
to a wide class of nonlinear integro-differential equations.

Let � be an open bounded subset of the Heisenberg groupHn , for n ≥ 1, the class
of problems we are dealing with are the following,

{
Lu = f in �,

u = g in Hn
� �,

(1.1)

where the nonlocal boundary datum g belongs to the fractional space Ws,p(Hn), the
datum f ≡ f (·, u) ∈ L∞

loc(H
n) locally uniformly in�, and the leading operatorL is an

integro-differential operator of differentiability exponent s ∈ (0, 1) and summability
exponent p > 1 given by

Lu(ξ) = P.V .

∫
Hn

|u(ξ) − u(η)|p−2
(
u(ξ) − u(η)

)
do(η−1 ◦ ξ)Q+sp

dη, ξ ∈ Hn, (1.2)

with do being a homogeneous norm onHn , and Q = 2n + 2 the usual homogeneous
dimension of Hn . In the display above, the symbol P.V . stands for “in the principal
value sense”. We immediately refer the reader to Sect. 2 for the precise definitions of
the involved quantities and related properties, as well as further observations in order
to relax some of the assumptions presented above.

As a model example in the class of the problems in (1.1), one can consider the
classic fractional Dirichlet problem, despite in such a case the difficulties arising from
the nonlinear growth in the definition in (1.2) actually disappear; that is,

{
(−�Hn )su = 0 in �,

u = g in Hn
� �,

(1.3)

where as usual the symbol (−�Hn )s refers to the fractional sublaplacian on theHeisen-
berg group, defined in the suitable fractional Sobolev spaces Hs(Hn) for any s ∈ (0, 1)
as follows,

(−�Hn )su(ξ) := C(n, s) lim
δ→0+

∫
Hn

�Bδ(ξ)

u(ξ) − u(η)

|η−1 ◦ ξ |Q+2s
Hn

dη, ξ ∈ Hn . (1.4)

In the Gagliardo-type kernel above, the symbol | · |Hn denotes the standard Heisenberg
gauge.

In the last decades, a great attention has been focused on the study of problems
involving fractional equations, both from a pure mathematical point of view and for
concrete applications since they naturally arise in many different contexts. Despite
its relatively short history, the literature is really too wide to attempt any compre-
hensive treatment in a single paper; we refer for instance to the paper [20] for an
elementary introduction to fractional Sobolev spaces and for a quite extensive (but
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still far from exhaustive) list of related references. For what concerns the regularity
and related results, the theory in the fractional Euclidean case has very recently shown
many fundamental progresses. In this respect, by solely focusing on the specific goal
of the present manuscript, which does basically consist in the generalization of the
celebrated De Giorgi-Nash-Moser theory to the fractional Heisenberg setting, even in
the nonlinear case when p �= 2, many important results for the Euclidean counterpart
of (1.1) have been obtained, as for instance boundedness, Harnack inequalities, and
Hölder continuity (up to the boundary) for the fractional p-Dirichlet problem in [4,
18, 19, 33, 36]; for a survey on the results in the aforementioned papers and other
related investigations, we refer the interested reader to the paper [40].

For what concerns specifically the fractional panorama in the Heisenberg group,
we first stress that one can find different definitions of the involved operator and
related extremely different approaches. In the case when p = 2, an explicit integral
definition can be found in the relevant paper [45], where several Hardy inequalities
for the conformally invariant fractional powers of the sublaplacian are proven, also
paying attention to the sharpness of the involved constants, and thus extending to
the Heisenberg group some of the important results in [26], as well as extending to
the fractional framework someHeisenberg type uncertainty inequalities proven for the
sublaplacian in [14].We refer also to [10] for relatedHardy and uncertainty inequalities
on general stratified Lie groups, involving fractional powers of the Laplacian, and also
to [1], where, among other important results, Sobolev and Morrey-type embeddings
are derived for fractional order Sobolev spaces.

Still in the linear case when p = 2, very relevant results have been obtained based
on the construction of fractional operators via a Dirichlet-to-Neumann map associated
to degenerate elliptic equation, as firstly seen for the Euclidean framework in [8]. For
this, we would like to mention the very general approach in the recent series of papers
[27, 28]; the Liouville-type theorem in [11]; the Harnack and Hölder results in Carnot
groups in [22]; the results in the context of CR geometry in [25]; the connection with
the fractional perimeters of sets in Carnot group in [23].

For what concerns the more general situation as in (1.2) when a p-growth exponent
is considered, in our knowledge, a regularity theory is very far from be complete;
nonetheless, very interesting estimates have been proven, as, e.g., in [30, 31, 50], and
fundamental functional inequalities have been very recently obtained in the nonlocal
framework even for more general metric spaces (see [21]).

It is worth noticing that the equation in (1.1) inherits both the difficulties aris-
ing from the noneuclidean geometrical structure and those naturally arising from the
nonlocal character of the involved integro-differential operators. More than this, it is
worth pointing out that the fractional operators L in (1.2) present as well the typical
issues given by their nonlinear growth behavior. For this, some very important tools
recently introduced in the nonlocal theory and successfully applied in the fractional
sublaplacian on the Heisenberg group, as the celebrated Caffarelli-Silvestre ([8]) s-
harmonic extension mentioned above, and the approach via Fourier representation, as
well as other successful tricks, like for instance the pseudo-differential commutator
compactness in [41], the commutator estimates in [46], and many others, seem not
to be adaptable to the framework considered here. However, even in the nonlinear
noneuclidean framework considered here, we will be able to extend part of the strat-
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egy developed in [18, 19] where it has been introduced a special quantity, the nonlocal
tail of a fractional function, which has revealed to play a fundamental role to under-
stand the nonlocality of the nonlinear operator L. In our settings, the nonlocal tail of
a function u ∈ Ws,p(Hn) in a ball BR(ξ0) ⊂ Hn of radius R > 0 and centered in
ξ0 ∈ Hn , is defined as follows,

Tail(u; ξ0, R) :=
(
Rsp

∫
Hn

�BR(ξ0)

|u(ξ)|p−1|ξ−1
0 ◦ ξ |−Q−sp

Hn dξ

) 1
p−1

. (1.5)

In the standard Euclidean framework, the nonlocal tail has already proven to be a
keypoint in the proofs when a fine quantitative control of the long-range interactions,
naturally arising when dealing with nonlocal operators as in (1.2), is needed. As
mentioned before, right after its introduction, this quantity has been subsequently
used in many recent results on nonlinear fractional equations; see for instance the
subsequent results proven in [4, 33–36] and the references therein.

We are now in a position to state our main results. Here below we assume that the
datum f ≡ f (·, u) belongs to L∞

loc(H
n) locally uniformly in �. However, as we will

remark in forthcoming Sect. 2.2, such an assumption can be suitably replaced; see in
particular Remark 2.11 there. Our first result describes the local boundedness of weak
subsolutions.

Theorem 1.1 (Local boundedness) Let s ∈ (0, 1) and p ∈ (1,∞), let u ∈ Ws,p(Hn)

be a weak subsolution to (1.1), and let Br ≡ Br (ξ0) ⊂ �. Then the following estimate
holds true, for any δ ∈ (0, 1],

sup
Br/2

u ≤ δ Tail(u+; ξ0, r/2) + c δ
− (p−1)Q

sp2

(
−
∫
Br

u p
+dξ

) 1
p

, (1.6)

where Tail(u+; ξ0, r/2) is defined in (1.5), u+ := max {u, 0} is the positive part of
the function u, and the constant c depends only on n, p, s and ‖ f ‖L∞(Br ).

Wewould like to stress the presence of the parameter δwhich allows an interpolation
between the local and nonlocal terms in (1.6). In our knowledge, the boundedness result
presented in Theorem 1.1 above is new even in the linear case when p = 2.

The second result provides the desired localHölder continuity for theweak solutions
to problem (1.1). As expected, the nonlocal tail of the solutions naturally arises in the
main estimate.

Theorem 1.2 (Hölder continuity) Let s ∈ (0, 1), p ∈ (1,∞), and let u ∈ Ws,p(Hn)

be a solution to (1.1). Then u is locally Hölder continuous in�. In particular, there are
constants α < sp/(p− 1) and c > 0, both depending only on n, p, s and ‖ f ‖L∞(Br ),
such that if B2r (ξ0) ⊂ � then

osc
Bρ(ξ0)

u ≤ c
(ρ

r

)α
[
Tail(u; ξ0, r) +

(
−
∫
B2r (ξ0)

|u|p dξ
) 1

p
]

, (1.7)
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for every ρ ∈ (0, r).

The theorem above provides an extension of the classical results by De Giorgi-
Nash-Moser to the nonlocal framework on the Heisenberg group. In the linear case,
when p = 2, for what concerns classical Hölder regularity results for linear integro-
differential operators in a very wide class of metric measure spaces, we refer to the
important paper by Chen et Kumagai [9]. Still in the linear case, it is also worth
mentioning some related regularity results in [22], where the authors deal with linear
operators related to (1.2) bymaking use of the Neumann-to-Dirichlet extension, which
– as said above – is not applicable in our nonlinear setting.

In both the proof of the Hölder continuity result and that of the local boundedness
one, a crucial role is played by the precise estimates stated in the following theorems,
the Caccioppoli-type estimate (see Theorem 1.3 below) and the logarithmic-type one
(see forthcoming Lemma 1.4). We believe that these results could have their own
interest in the analysis of equations involving the (nonlinear) fractional sublaplacian
on the Heisenberg group, and related integro-differential operators. The first of them
states a natural extension in our framework of the Caccioppoli inequality with tail, by
showing that even in such a noneuclidean case one can take into account a suitable
tail in order to detect deeper information on the regularity of the solutions.

Theorem 1.3 (Caccioppoli estimates with tail) Let s ∈ (0, 1), p ∈ (1,∞), and let
u ∈ Ws,p(Hn) be a weak subsolution to (1.1). Then, for any Br ≡ Br (ξ0) ⊂ � and
any nonnegative φ ∈ C∞

0 (Br ), the following estimate holds true

∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |w+(ξ)φ(ξ) − w+(η)φ(η)|p dξ dη

≤ c
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn w

p
+(ξ)|φ(ξ) − φ(η)|p dξ dη

+ c
∫
Br

w+(ξ)φ p(ξ) dξ

(
sup

η∈suppφ

∫
Hn

�Br
|η−1 ◦ ξ |−Q−sp

Hn w
p−1
+ (ξ) dξ

+ ‖ f ‖L∞(Br )

)
(1.8)

where w+ := (u − k)+ with k ∈ R, and c = c (n, p, s).

Lemma 1.4 (LogarithmicLemma) Let s ∈ (0, 1), p ∈ (1,∞), and let u ∈ Ws,p(Hn)

be a weak solution to (1.1) such that u ≥ 0 in BR ≡ BR(ξ0) ⊂ �. Then, there exists a
constant c̃ ∈ [1,+∞) such that the following estimate holds for any Br ≡ Br (ξ0) ⊂
B R

2c̃
(ξ0) and any d > 0,

∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

∣∣∣∣log
(
u(ξ) + d

u(η) + d

)∣∣∣∣p dξ dη +
∫
Br

(
f (ξ, u)

)
+
(
u(ξ) + d

)1−p dξ

≤ cr Q−sp + cd1−p r Q

Rsp

{[
Tail(u−; ξ0, R)

]p−1 + 1
}

+ c‖ f ‖L∞(Br )

∫
B2r

(u(ξ) + d)1−p dξ. (1.9)
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where Tail(u−; ξ0, R) is defined in (1.5), u− := max{−u, 0} and c depends only on
n, p and s.

Starting from the results proven in the present paper, several questions naturally
arise:

• Firstly, it is worth remarking that here we treat general weak solutions, namely
by truncation and dealing with the resulting error term as a right-hand side, in the
same flavor of the papers [18, 19], in the spirit of DeGiorgi-Nash-Moser. However,
one could approach the same family of problems by focusing solely to bounded
viscosity solutions in the spirit of Krylov-Safonov, as in the important paper [48].

• Consequently, a second natural question is whether or not, and under which
assumptions on the structural quantities, the viscosity solutions to nonlocal equa-
tions in the Heisenberg group are indeed fractional harmonic functions and/or
weak solutions, and vice versa. In this respect, let us observe that one cannot
plainly apply the results for p-fractional minimizers as obtained in the recent
paper [34] together with those in [32], whose proofs seem to be feasible only for
a restrict class of kernels which cannot include modulating coefficients or other
variations.

• Third, in the same spirit of the series of paper by Brasco, Lindgren, and Schikorra
[3, 4], one would expect higher differentiability and other additional regularity
results for the bounded solutions to nonlocal equations in the Heisenberg group. It
could be useful to start from the estimates in the aforementioned papers obtained
for the standard fractional p-Laplace equation.

• Also, again in clear accordance with the Euclidean counterpart, one would expect
self-improving properties of the solutions to (1.1). For this, one should extend the
recent nonlocal Gehring-type theorems proven in [35, 46].

• Also, one could expect Hölder continuity and other regularity results for the solu-
tions to a strictly related class of problems; that is, by adding in (1.1) a second
integral-differential operators, of differentiability exponent t > s and summability
growth q > 1, controlled by the zero set of a modulating coefficient: the so-called
nonlocal double phase problem, in the same spirit of the Euclidean case treated
in [17, 51], starting from the pioneering results in the local case, when s = 1, by
Colombo, Mingione and many others; see for instance [15, 16] and the references
therein.

• Also, mean value properties for solutions to general nonlinear fractional operators,
and their stability in the linear casewhen p = 2, could lead to very tricky situations
in fractional non-Euclidean framework; we refer to the very recent papers [6, 7]
and the references therein.

• Moreover, to our knowledge, nothing is known about the regularity for solutions to
parabolic nonlocal integro-differential equations involving the nonlinear operators
in (1.2).

• Finally, by starting from the estimates proven in the present paper, in [42] weak and
strongHarnack inequalities for the solutions to (1.1) are proven. As expected, a tail
contribution naturally appears in those estimates in order to control the nonlocal
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contributions coming from far.We refer also to [44] for regularity results (up to the
boundary) for very general boundary data, and for the related obstacle problems.

To summarize. The result in the present paper seems to be one of the first concerning
regularity properties of nonlinear nonlocal equations in the Heisenberg group. We
prove that one can extend to the Heisenberg setting the strategy successfully applied
in the fractional Euclidean case ([18, 19, 35, 36]); from another point of viewour results
can be seen as the (nonlinear) nonlocal extension of the Heisenberg counterpart of the
celebrated De Giorgi-Nash-Moser theory ([37, 39]). Moreover, since we derive all our
results for a general class of nonlinear integro-differential operators, via our approach
by taking into account all the nonlocal tail contributions in a precise way, we obtain
alternative proofs that are new even in the by-now classical case of the pure fractional
sublaplacian operator (−�Hn )s . Finally, we prove a boundedness estimate allowing
an interpolation between the local and nonlocal contributions, which seems to be new
even in the linear case. We believe our estimates to be important in a forthcoming
nonlinear nonlocal theory in the Heisenberg group.

The paper is organized as follows. In Sect. 2 below we set up notation and termi-
nology, and we briefly recall our underlying geometrical structure, by also recalling
the involved functional spaces, and providing a few remarks on the assumptions on the
data. The whole Sects. 3 and 4 are devoted to the proof of the Caccioppoli inequality
with tail, and the Logarithmic Lemma, respectively. In the last two sections, we are
finally able to prove the boundedness result in Theorem 1.1, and the Hölder continuity
of the weak solutions u to (1.1).

2 Preliminaries

It is convenient to fix some notationwhichwill be used throughout the rest of the paper.
Firstly, notice that we will follow the usual convention of denoting by c a general
positive constant which will not necessarily be the same at different occurrences and
which can also change from line to line. For the sake of readability, dependencies of
the constants will be often omitted within the chains of estimates, therefore stated after
the estimate.

2.1 The Heisenberg-Weyl Group

We start by introducing some definitions and briefly setting up the notation concern-
ing the Heisenberg group. For further details, we refer to the book by Bonfiglioli,
Lanconelli and Uguzzoni, [5].

As customary, we identify the Heisenberg groupHn with R2n+1. Points inHn are
denoted by

ξ := (z, t) = (x1, . . . , xn, y1, . . . , yn, t).
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The related group multiplication is given by

ξ ◦ ξ ′ :=
(
x + x ′, y + y′, t + t ′ + 2〈y, x ′〉 − 2〈x, y′〉

)

=
⎛
⎝x1 + x ′

1, ..., xn + x ′
n, y1 + y′

1, ..., yn + y′
n, t + t ′ + 2

n∑
i=1

(
yi x

′
i − xi y

′
i
)⎞⎠ .

One can check that (R2n+1, ◦) is a Lie group with identity element the origin 0 and
inverse ξ−1 = −ξ . Moreover, one can consider the following automorphism group

λ on R2n+1,


λ : R2n+1 −→ R2n+1

ξ �−→ 
λ(ξ) := (λx, λy, λ2t
)
,

so that the group Hn = (
R2n+1, ◦, 
λ

)
is a homogeneous Lie group; that is, the

so-called Heisenberg-Weyl group in R2n+1.
The Jacobian basis of the Heisenberg Lie algebra hn of Hn is given by

X j := ∂x j + 2y j∂t , Xn+ j := ∂y j − 2x j∂t , 1 ≤ j ≤ n, T = ∂t .

Since

[X j , Xn+ j ] = −4∂t for every 1 ≤ j ≤ n,

it follows

rank
(
Lie{X1, . . . , X2n, T }(0, 0)

)
= span

{
∂x1, . . . , ∂xn , ∂y1 , . . . , ∂yn ,−4∂t

} = 2n + 1,

which is the Euclidean dimension of Hn , whereas we denote by Q its homogeneous
dimension

Q = 2n + 2.

This shows that Hn is a Carnot group with the following stratification

hn = span{X1, . . . , X2n} ⊕ span{T }.

Moreover, let � ⊂ Hn be a domain. For u ∈ C1(�; R) we define the subgradient
∇Hn u by

∇Hn u(ξ) :=
(
X1u(ξ), . . . , X2nu(ξ)

)
,
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and

|∇Hn u|2 :=
2n∑
j=1

|X ju|2.

Definition 2.1 A homogeneous norm onHn is a continuous function (with respect to
the Euclidean topology ) do : Hn → [0,+∞) such that:

(i) do(
λ(ξ)) = λdo(ξ), for every λ > 0 and every ξ ∈ Hn ;
(ii) do(ξ) = 0 if and only if ξ = 0.

Moreover, we say that the homogeneous norm do is symmetric if

do(ξ
−1) = do(ξ), ∀ξ ∈ Hn .

Remark 2.2 Let do be a homogeneous norm on Hn . Then the function 
 defined on
the set of all pairs of elements of Hn by


(ξ, η) := do(η
−1 ◦ ξ)

is a pseudometric on Hn .

Consider now the standard homogeneous norm on Hn ,

|ξ |Hn =
(
|z|4 + t2

) 1
4
, ∀ξ = (z, t) ∈ Hn . (2.1)

For any fixed ξ0 ∈ Hn and R > 0, the ball BR(ξ0)with center ξ0 and radius R is given
by

BR(ξ0) :=
{
ξ ∈ Hn : |ξ−1

0 ◦ ξ |Hn < R
}
.

We conclude this section with some properties of the homogeneous norm on Hn

that will be useful in the rest of the paper.

Proposition 2.3 (Equivalence of the homogeneous norm) Let do be a homogeneous
norm on Hn. Then there exists a constant c > 0 such that

c−1|ξ |Hn ≤ do(ξ) ≤ c|ξ |Hn , ∀ξ ∈ Hn .

In viewof the preceding proposition, inmost of the forthcoming proofs, one can simply
take into account the pure homogeneous norm defined in (2.1) with no modifications
at all.

Proposition 2.4 (Pseudo-triangle inequalities) Let do be a homogeneous norm on
Hn. Then there exists a constant c̃ > 0 such that the following statements are satisfied:

(1) do(ξ ◦ η) ≤ c̃(do(ξ) + do(η));
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(2) do(ξ ◦ η) ≥ 1
c̃ do(ξ) − do(η−1);

(3) do(ξ ◦ η) ≥ 1
c̃ do(ξ) − c̃do(η).

For a proof of the previous propositions, we refer to Proposition 5.1.4 and Propo-
sition 5.1.7 in [5].

Remark 2.5 In the case when the homogeneous norm do does reduce to the standard
norm | · |Hn defined in (2.1), the constant c̃ given by Proposition 2.4 can be chosen
equal to 1. For the proof, we refer to[13]; see also Example 5.1 in[2]. However, in view
of possible generalizations of the results obtained in the present paper, as, e.g., in to a
more general framework involving abstract Carnot groups G with some homogenous
norm | · |G satisfying only a pseudo-triangle inequality, we would prefer to keep the
constant c̃ throughout all the forthcoming proofs.

The computation in the result below will be used several times in the proofs in the
following.

Lemma 2.6 Let γ > 0 and let | · |Hn be the homogeneous norm onHn defined in (2.1).
Then,

∫
Hn

�Br (ξ0)

dξ

|ξ−1
0 ◦ ξ |Q+γ

Hn

≤ c(n, γ )r−γ .

Proof The proof is straightforward. For any j ∈ N let us indicatewith B j the following
set

B j :=
{
ξ ∈ Hn

� Br (ξ0) : 2 j r ≤ |ξ−1
0 ◦ ξ |Hn ≤ 2 j+1r

}
.

Then, we have that

∫
Hn

�Br (ξ0)

dξ

|ξ−1
0 ◦ ξ |Q+γ

Hn

=
∞∑
j=0

∫
B j

dξ

|ξ−1
0 ◦ ξ |Q+γ

Hn

≤
∞∑
j=0

(2 j r)−Q−γ |B2 j+1r (ξ0)|

= c(n)r−γ
∞∑
j=0

(
1

2γ

) j

≤ c(n, γ )r−γ . (2.2)

��

2.2 The Setting of theMain Problem

We firstly need to recall some definitions and a few basic results about our fractional
functional setting. For further details, we refer the reader to [1, 30].
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Let p ≥ 1 and s ∈ (0, 1), and let u : Hn → R be a measurable function; we define
the Gagliardo (semi)norm of u as follows,

[u]Ws,p =
(∫

Hn

∫
Hn

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξ dη

) 1
p

. (2.3)

The fractional Sobolev spaces Ws,p on the Heisenberg group are defined as

Ws,p(Hn) :=
{
u ∈ L p(Hn) : [u]Ws,p < +∞

}
, (2.4)

endowed with the natural fractional norm

‖u‖Ws,p(Hn) :=
(
‖u‖p

L p(Hn) + [u]pWs,p

) 1
p
, u ∈ Ws,p(Hn). (2.5)

Similarly, given a domain � ⊂ Hn , one can define the fractional Sobolev space
Ws,p(�) in the natural way, as follows

Ws,p(�) :=
⎧⎨
⎩u ∈ L p(�) :

(∫
�

∫
�

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξ dη

) 1
p

< +∞
⎫⎬
⎭ (2.6)

endowed with the norm

‖u‖Ws,p(�) :=
(

‖u‖p
L p(�) +

∫
�

∫
�

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξ dη

) 1
p

. (2.7)

By Ws,p
0 (�), we denote the closure of C∞

0 (�) in Ws,p(Hn). Conversely, if v ∈
Ws,p(�′) with � � �′ and v = 0 outside of � almost everywhere, then v has a
representative in Ws,p

0 (�) as well.
As expected, one can prove a fractional Sobolev embedding on the Heisenberg

group. We have the following

Theorem 2.7 Let p > 1 and s ∈ (0, 1) such that sp < Q. For any measurable
compactly supported function u : Hn → R there exists a positive constant c =
c(n, p, s) such that

‖u‖p
L p∗ (Hn)

≤ c [u]pWs,p(Hn) ,

where p∗ = Qp/(Q − sp) is the critical Sobolev exponent.

For the proof, we refer to Theorem 2.5 in [30], where the authors extend the strategy
in the standard Euclidean settings as seen in [20, 43].

As in the classical case with s being an integer, the space Ws,p is continuously
embedded in Ws1,p when s1 ≤ s, as the result below points out.
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Proposition 2.8 Let p > 1 and 0 < s1 ≤ s < 1. Let � be an open subset of Hn, and
let u ∈ Ws,p(�). Then

‖u‖Ws1,p(�) ≤ c‖u‖Ws,p(�),

for some suitable positive constant c depending only on n, p and s1.

Proof We extend the strategy in the proof in the fractional Euclidean framework; see
[20, Proposition 2.1].

Firstly, we can control the size of the nonlocal tail of u by its L p-norm. We have

∫
�

∫
�∩{|η−1◦ ξ |Hn≥1}

|u(ξ)|p
|η−1 ◦ ξ |Q+s1 p

Hn

dξ dη ≤
∫
�

(∫
Hn

�B1(0)

1

|ξ̃ |Q+s1 p
Hn

d ξ̃

)
|u(ξ)|p dξ

≤ c(n, p, s1)‖u‖pL p(�)
,

and thus ∫
�

∫
�∩{|η−1◦ ξ |Hn≥1}

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+s1 p

Hn

dξ dη

≤ 2p−1
∫

�

∫
�∩{|η−1◦ ξ |Hn≥1}

|u(ξ)|p + |u(η)|p
|η−1 ◦ ξ |Q+s1 p

Hn

dξ dη

≤ c‖u‖p
L p(�), (2.8)

up to relabelling the constant c.
On the other hand,

∫
�

∫
�∩{|η−1◦ ξ |Hn<1}

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+s1 p

Hn

dξ dη

≤
∫

�

∫
�∩{|η−1◦ ξ |Hn<1}

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξ dη. (2.9)

Combining (2.8) with (2.9), we finally get

∫
�

∫
�

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+s1 p

Hn

dξ dη ≤ c‖u‖p
L p(�) + [u]pWs,p ,

which yields

‖u‖p
Ws1,p(�)

≤ (c + 1)‖u‖p
L p(�) + [u]pWs,p ≤ c‖u‖p

Ws,p(�),

again up to relabelling the constant c. ��
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We conclude this section by providing the definition of weak solution to the class
of fractional problem we deal with.

Let � be a bounded open set in Hn and g ∈ Ws,p(Hn), we are interested in the
weak solutions to the following integro-differential problems,

{
Lu = f in �,

u = g in Hn
� �,

(2.10)

where the datum f ≡ f (·, u) ∈ L∞
loc(H

n) locally uniformly in �, and the leading
operator L is an integro-differential operator of differentiability exponent s ∈ (0, 1)
and summability exponent p > 1 given by

Lu(ξ) = P.V .

∫
Hn

|u(ξ) − u(η)|p−2
(
u(ξ) − u(η)

)
do(η−1 ◦ ξ)Q+sp

dη, ξ ∈ Hn,

with do being a homogeneous norm on Hn in accordance with Definition 2.1.
We now need to introduce some further notation. For any g ∈ Ws,p(Hn) the

classes K±
g (�) of suitable fractional functions are defined by

K±
g (�) :=

{
v ∈ Ws,p(Hn) : (g − v)± ∈ Ws,p

0 (�)
}
,

and

Kg(�) := K+
g (�) ∩ K−

g (�) =
{
v ∈ Ws,p(Hn) : v − g ∈ Ws,p

0 (�)
}
.

We have the following

Definition 2.9 A function u ∈ K−
g (�) (K+

g (�), respectively) is a weak subsolution
(supersolution, resp.) to (2.10) if

∫
Hn

∫
Hn

∣∣u(ξ) − u(η)
∣∣p−2(

u(ξ) − u(η)
)(

ψ(ξ) − ψ(η)
)

do(η−1 ◦ ξ)Q+sp
dξ dη

≤ ( ≥, resp.
) ∫

Hn
f (ξ, u(ξ))ψ(ξ) dξ,

for any nonnegative ψ ∈ Ws,p
0 (�).

A function u is a weak solution to (2.10) if it is both a weak sub- and supersolution.
In particular, u belongs to Kg(�) and it satisfies

∫
Hn

∫
Hn

|u(ξ) − u(η)|p−2(u(ξ) − u(η))(ψ(ξ) − ψ(η))

do(η−1 ◦ ξ)Q+sp
dξ dη =

∫
Hn

f (ξ, u(ξ))ψ(ξ) dξ,

for any ψ ∈ Ws,p
0 (�).
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For any u ∈ Ws,p(Hn) and for any BR(ξ0) ⊂ Hn we will define the nonlocal tail
of a function u in the ball BR(ξ0) the quantity

Tail(u; ξ0, R) :=
(
Rsp

∫
Hn

�BR(ξ0)

|u(ξ)|p−1|ξ−1
0 ◦ ξ |−Q−sp

Hn dξ

) 1
p−1

. (2.11)

A few observations are in order.
Firstly, we notice that, by Hölder’s Inequality, since u ∈ L p(Hn) and R > 0, we

have that Tail(u; ξ0, R) < +∞.
Second, we have the following

Remark 2.10 The requirement on the boundary datum g to be in the whole Ws,p(Hn)

can be weakened by assuming only a local fractional differentiability, namely g ∈
Ws,p

loc (�), in addition to the boundedness of its nonlocal tail; i.e., Tail(g; ξ0, R) < ∞,
for some ξ0 ∈ Hn and some R > 0. This is not restrictive, and it does not bring relevant
modifications in the rest of the paper. For further details on the related “Tail space”,
we refer the interested reader to papers[33, 34].

Finally, there is an important observation about the assumptions on the datum f in
the right-hand side of (2.10).

Remark 2.11 The presence of the datum f is a novelty with respect to the Euclidean
counterpart studied in [19] where the authors assume the right-hand side in (2.10) to
be zero. However, as we basically will prove, the techniques there can be applied also
to more general framework.

In addition, in accordance with the classical elliptic theory, with no important
modifications in the forthcoming proofs, one could consider the case when the local
boundedness assumption on the datum f is replaced by a uniformly growth control
from above, as, e.g.,

| f (ξ, u)| ≤ a + b|u|q for almost everywhere ξ ∈ � and any u ∈ R,

for some suitable choice of the exponent q = q(n, p, s).

Before going into the proofs, it is worth pointing that in the rest of the paper
we will only consider the case when the structural parameters n, s and p are such
that sp ≤ Q. This is not a restriction, since, in the remaining case when sp > Q, the
desired boundedness andHölder continuity results are assured by the fractionalMorrey
embedding in the Heisenberg group; for the proof,we refer for instance to Theorem 1.5
in [1].

3 Proof of the Caccioppoli Inequality with Tail

The aim of this section is to give a full proof of Theorem 1.3. We would stress that,
as in the classical Euclidean case, in both the entire framework and the fractional one,
the Caccioppoli estimates with tail (1.8) encode all the needed information to derive
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the desired Hölder continuity from the minimum properties of the solutions, and it is
an independent result which could be very useful in order to detect further regularity
properties of the solutions to general fractional problems.

Proof of Theorem 1.3 Let u be a weak subsolution. We firstly choose as a test function
in 2.9 the function

ψ := w+φ p ≡ (u − k)+φ p, for k ∈ R,

where φ is any nonnegative function in C∞
0 (Br ). We get

0 ≥
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2

× (u(ξ) − u(η)
)(

w+(ξ)φ p(ξ) − w+(η)φ p(η)
)
dξdη

+2
∫
Hn

�Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) + u(η)|p−2

× (u(ξ) − u(η)
)
w+(ξ)φ p(ξ) dξdη −

∫
Br

f (ξ, u(ξ))w+(ξ)φ p(ξ) dξ.

(3.1)

Note that ψ is an admissible test function since truncations of functions in Ws,p(Hn)

still belong to Ws,p(Hn).
Let us begin by estimating the first integral on the right-hand side in (3.1). Without

loss of generality, we assume that u(ξ) ≥ u(η); otherwise,it just suffices to interchange
the roles of ξ and η below. We have

∣∣u(ξ) − u(η)
∣∣p−2(u(ξ) − u(η)

)(
w+(ξ)φ p(ξ) − w+(η)φ p(η)

)
= (u(ξ) − u(η)

)p−1
((u(ξ) − k)+φ p(ξ) − (u(η) − k)+φ p(η)

)

=

⎧⎪⎨
⎪⎩
(
w+(ξ) − w+(η)

)p−1
(w+(ξ)φ p(ξ) − w+(η)φ p(η)) for u(ξ), u(η) > k,(

u(ξ) − u(η)
)p−1

w+(ξ)φ p(ξ) for u(ξ) > k, u(η) ≤ k,
0 otherwise

≥ (
w+(ξ) − w+(η)

)p−1(
w+(ξ)φ p(ξ) − w+(η)φ p(η)

)
.

For the second term on the right-hand side in (3.1), we have

∣∣u(ξ) − u(η)
∣∣p−2(

u(ξ) − u(η)
)
w+(ξ) ≥ −(u(η) − u(ξ)

)p−1
+
(
u(ξ) − k

)
+

≥ −(u(η) − k
)p−1
+
(
u(ξ) − k

)
+

= −w
p−1
+ (η)w+(ξ) ,
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which yields

∫
Hn

�Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2(u(ξ) − u(η)

)
w+(ξ)φ p(ξ) dξ dη

≥ −
∫
Hn

�Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn w

p−1
+ (η)w+(ξ)φ p(ξ) dξ dη

≥ −
∫
Br

w+(ξ)φ p(ξ) dξ

(
sup

ξ∈supp φ

∫
Hn

�Br
|η−1 ◦ ξ |−Q−sp

Hn w
p−1
+ (η) dη

)
. (3.2)

From (3.1)-(3.2), we deduce

0 ≥
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |w+(ξ) − w+(η)|p−1(w+(ξ)φ p(ξ) − w+(η)φ p(η)

)
dξdη

−2
∫
Br

w+(ξ)φ p(ξ) dξ

(
sup

ξ∈supp φ

∫
Hn

�Br
|η−1 ◦ ξ |−Q−sp

Hn w
p−1
+ (η) dη

)

−
∫
Br

f (ξ, u)w+(ξ)φ p(ξ) dξ. (3.3)

Let us consider the first term in (3.3). In the case when w+(ξ) ≥ w+(η) and φ(ξ) ≤
φ(η), we can use forthcoming Lemma 3.1 to obtain

φ p(ξ) ≥ (1 − cpε)φ
p(η) − (1 + cpε)ε

1−p|φ(ξ) − φ(η)|p, ε ∈ (0, 1]. (3.4)

Choosing

ε := 1

max{1, 2cp}
w+(ξ) − w+(η)

w+(ξ)
∈ (0, 1]

we have that

(
w+(ξ) − w+(η)

)p−1
w+(ξ)φ p(ξ) ≥ (

w+(ξ) − w+(η)
)p−1

w+(ξ)
(
max

{
φ(ξ), φ(η)

})p
−1

2

(
w+(ξ) − w+(η)

)p(max
{
φ(ξ), φ(η)

})p
−c
(
max

{
w+(ξ), w+(η)

})p∣∣φ(ξ) − φ(η)
∣∣p,

where c depends only on p. We now recall that it has been assumed that φ(ξ) ≤ φ(η).
On the other hand, if w+(ξ) = w+(η) = 0, or if w+(ξ) ≥ w+(η) and φ(ξ) ≥ φ(η),
then the estimate above trivially follows. Hence, we have(

w+(ξ) − w+(η)
)p−1(

w+(ξ)φ p(ξ) − w+(η)φ p(η)
)

≥ (
w+(ξ) − w+(η)

)p−1(
w+(ξ)(max{φ(ξ), φ(η)})p − w+(η)φ p(η))
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−1

2

(
w+(ξ) − w+(η)

)p(max
{
φ(ξ), φ(η)

})p
−c
(
max

{
w+(ξ), w+(η)

})p∣∣φ(ξ) − φ(η)
∣∣p

≥ 1

2

(
w+(ξ) − w+(η)

)p(max
{
φ(ξ), φ(η)

})p
−c
(
max

{
w+(ξ), w+(η)

})p∣∣φ(ξ) − φ(η)
∣∣p

whenever w+(ξ) ≥ w+(η). In the case when the opposite inequality holds, again it
just suffices to interchange the roles of ξ and η. Therefore, we have

∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |w+(ξ) − w+(η)|p−1(w+(ξ)φ p(ξ) − w+(η)φ p(η)

)
dξdη

≥ 1

2

∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

(
w+(ξ) − w+(η)

)p(max
{
φ(ξ), φ(η)

})p dξ dη
− c

∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

(
max

{
w+(ξ), w+(η)

})p|φ(ξ) − φ(η)|p dξ dη.

(3.5)

Now, we note that

∣∣w+(ξ)φ(ξ) − w+(η)φ(η)
∣∣p ≤ 2p−1

∣∣w+(ξ) − w+(η)
∣∣p(max

{
φ(ξ), φ(η)

})p
+ 2p−1(max

{
w+(ξ), w+(η)

})p|φ(ξ) − φ(η)|p.

Hence, combining the preceding inequality with (3.3) and (3.5), it follows

0 ≥
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

∣∣w+(ξ)φ(ξ) − w+(η)φ(η)
∣∣p dξ dη

−c
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

(
max

{
w+(ξ), w+(η)

})p∣∣φ(ξ) − φ(η)
∣∣p dξ dη

−2
∫
Br

w+(ξ)φ p(ξ) dξ

(
sup

ξ∈supp φ

∫
Hn

�Br
|η−1 ◦ ξ |−Q−sp

Hn w
p−1
+ (η) dη

)

−
∫
Br

f (ξ, u)w+(ξ)φ p(ξ) dξ . (3.6)

Moreover, in the second integral in the right-hand side in the display above, we can
suppose that w+(ξ) ≥ w+(η) up to interchanging ξ with η; recall that |η−1 ◦ ξ |Hn =
|ξ−1 ◦ η|Hn is symmetric. The last integral in (3.6) can be finally estimated thanks to
the assumption on f . We have

∫
Br

f (ξ, u(ξ))w+(ξ)φ p(ξ) dξ ≤ ‖ f ‖L∞(Br )

∫
Br

w+(ξ)φ p(ξ) dξ. (3.7)
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The desired estimate in (1.8) is thus a plain consequence of the estimates in (3.6)
and (3.7). ��

In the proof above, we made use of the following small inequality, which will be
useful in the next section, as well.

Lemma 3.1 Let p ≥ 1 and ε ∈ (0, 1]. Then

|a|p ≤ |b|p + cpε|b|p + (1 + cpε)ε
1−p|a − b|p, cp := (p − 1)�(max{1, p − 2}) ,

holds for every a, b ∈ Rm, m ≥ 1. Here � stands for the standard Gamma function.

The proof is straightforward. It follows via convexity and a standard iteration process.
See for instance Lemma 3.1 in [19].

4 Proof of the Fractional Logarithmic Lemma

In this section, we prove our second main tool; that is, the Logarithmic Lemma 1.4.

Proof of Lemma 1.4 As pointed out in Remark 2.5, we denote by c̃ the precise constant
which satisfies inequalities

|η−1 ◦ ξ |Hn ≥ 1

c̃
|η|Hn − |ξ |Hn , |η ◦ ξ |Hn ≤ c̃(|η|Hn + |ξ |Hn ), (4.1)

even in the case when c̃ ≡ 1.
Fix such a constant c̃ and choose r > 0 such that Br ≡ Br (ξ0) ⊂ B R

2c̃
≡ B R

2c̃
(ξ0).

Consider a smooth cut-off function φ ∈ C∞
0 (B3r/2) such that

0 ≤ φ ≤ 1, φ ≡ 1 in Br and |∇Hnφ| ≤ cr−1 in B3r/2.

Now, take the following test function ψ in Definition 2.9,

ψ = (u + d)1−pφ p.

We have∫
B2r

f (ξ, u(ξ))
(
u(ξ) + d

)1−p
φ p(ξ) dξ

=
∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2(u(ξ) − u(η)

)
×
[

φ p(ξ)

(u(ξ) + d)p−1 − φ p(η)

(u(η) + d)p−1

]
dξ dη

+ 2
∫
Hn

�B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2 u(ξ) − u(η)

(u(ξ) + d)p−1φ p(ξ) dξ dη

=: I1 + I2. (4.2)
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Using the very definition of the function φ and the assumption on the datum f , we
can estimate the left-hand side of (4.2) as follows,

∫
B2r

f (ξ, u(ξ))
(
u(ξ) + d)1−pφ p(ξ) dξ

=
∫
B2r

( f (ξ, u))+(u(ξ) + d)1−pφ p(ξ) dξ −
∫
B2r

( f (ξ, u))−(u(ξ) + d)1−pφ p(ξ) dξ

≥
∫
Br

( f (ξ, u))+(u(ξ) + d)1−p dξ − ‖ f ‖L∞(B2r )

∫
B2r

(u(ξ) + d)1−p dξ.

We now focus on the remaining integrals on the right-hand side of (4.2).
We start with I1. If u(ξ) > u(η) then we can apply Lemma 3.1 stated at the end of

Sect. 3, by choosing there

a = φ(ξ), b = φ(η),

and

ε = δ
u(ξ) − u(η)

u(ξ) + d
∈ (0, 1), δ ∈ (0, 1);

since u ≥ 0 in B2r ⊂ BR , we can therefore estimate the integrand in I1 as follows,

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2(u(ξ) − u(η)

) [ φ p(ξ)

(u(ξ) + d)p−1 − φ p(η)

(u(η) + d)p−1

]

≤ |η−1 ◦ ξ |−Q−sp
Hn

(
u(ξ) − u(η)

u(ξ) + d

)p−1

φ p(η)

[
1 + cpδ

u(ξ) − u(η)

u(ξ) + d
−
(
u(ξ) + d

u(η) + d

)p−1
]

+cpδ
1−p|η−1 ◦ ξ |−Q−sp

Hn |φ(ξ) − φ(η)|p
=: J1 + J2

Now, in order to estimate the contribution J1, we will follow the strategy in the
proof of Lemma 1.3 in [19]. We firstly notice that

J1 ≡ |η−1 ◦ ξ |−Q−sp
Hn

(
u(ξ) − u(η)

u(ξ) + d

)p

φ p(η)

⎡
⎢⎣1 −

(
u(η)+d
u(ξ)+d

)1−p

1 − u(η)+d
u(ξ)+d

+ cpδ

⎤
⎥⎦

(4.3)

Secondly, we can consider the real function g given by

g(t) := 1 − t1−p

1 − t
= − p − 1

1 − t

∫ 1

t
τ−pdτ, ∀t ∈ (0, 1).
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Since g is an increasing function, we have

g(t) ≤ −(p − 1) ∀t ∈ (0, 1).

Moreover, for any t ≤ 1/2,

g(t) ≤ − p − 1

2p

t1−p

1 − t
.

Therefore, in the case when

t = u(η) + d

u(ξ) + d
∈
(
0,

1

2

]
;

i. e.,

u(η) + d ≤ u(ξ) + d

2
,

then, since
(
u(ξ) − u(η)

)(
u(η) + d

)p−1
/
(
u(ξ) + d

)p ≤ 1, we get

J1 ≤ |η−1 ◦ ξ |−Q−sp
Hn

(
cpδ − p − 1

2p

)[
u(ξ) − u(η)

u(η) + d

]p−1

φ p(η). (4.4)

Hence, it suffices to choose the following suitable δ in the preceding inequality,

δ = p − 1

2p+1cp
,

to get

J1 ≤ −|η−1 ◦ ξ |−Q−sp
Hn

p − 1

2p+1

[
u(ξ) − u(η)

u(η) + d

]p−1

φ p(η).

We consider case when

u(η) + d >
u(ξ) + d

2
;

i. e.,

t = u(η) + d

u(ξ) + d
∈
(
1

2
, 1

)
,

we can choose the parameter δ as in (4), and we have

J1 ≤ −|η−1 ◦ ξ |−Q−sp
Hn

(2p+1 − 1)(p − 1)

2p+1

[
u(ξ) − u(η)

u(ξ) + d

]p
φ p(η). (4.5)
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Furthermore, if 2(u(η) + d) < u(ξ) + d, then

[
log

(
u(ξ) + d

u(η) + d

)]p
≤ cp

[
u(ξ) − u(η)

u(η) + d

]p−1

(4.6)

holds, where we used the fact that (log x)p ≤ c(x − 1)p−1 when x > 2.
On the other hand, if 2(u(η)+d) ≥ u(ξ)+d, then – recalling that we have assumed

u(ξ) > u(η) – we have

[
log

(
u(ξ) + d

u(η) + d

)]p
=
[
log

(
1 + u(ξ) − u(η)

u(η) + d

)]p
≤ 2p

[
u(ξ) − u(η)

u(ξ) + d

]p
,

(4.7)

where we used

log(1 + x) ≤ x, ∀ x ≥ 0, with x = u(ξ) − u(η)

u(η) + d
≤ 2[u(ξ) − u(η)]

u(ξ) + d
.

Hence, combining (4.4) with (4.5), (4.6), and (4.7), we can conclude with

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2(u(ξ) − u(η)

) [ φ p(ξ)

(u(ξ) + d)p−1 − φ p(η)

(u(η) + d)p−1

]

≤ − 1

cp
|η−1 ◦ ξ |−Q−sp

Hn

[
log

(
u(ξ) + d

u(η) + d

)]p
φ p(η)

+cp δ1−p|η−1 ◦ ξ |−Q−ps
Hn |φ(ξ) − φ(η)|p.

Notice that if u(ξ) = u(η), then the same estimate above does trivially hold. If
u(η) > u(ξ),we can interchange the roles of ξ and η in the computation above.
Finally, we get the estimate for the integral I1 in (4.3),

I1 ≤ − 1

cp,δ

∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn

∣∣∣∣log
(
u(ξ) + d

u(η) + d

)∣∣∣∣
p

φ p(η) dξ dη

+ cp,δ

∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn |φ(ξ) − φ(η)|p dξ dη. (4.8)

For the second contribution in (4.3), namely I2, we can proceed as follows. Firstly,
we notice that it η ∈ BR , then u(η) ≥ 0, and so

(
u(ξ) − u(η)

)p−1
+(

u(ξ) + d
)p−1 ≤ 1 ∀ξ ∈ B2r , η ∈ BR .

Moreover, when η ∈ Hn
� BR ,

(
u(ξ) − u(η)

)p−1
+ ≤ 2p−1[u p−1(ξ) + (u(η))

p−1
−
]
, ∀ξ ∈ B2r .
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Then, since u(ξ) ≥ 0 and φ(ξ) ≤ 1 on B2r , the integral I2 can be estimated as follows,

I2 ≤ 2
∫
BR�B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn

(
u(ξ) − u(η)

)p−1
+ (u(ξ) + d)1−pφ p(ξ) dξ dη

+2
∫
Hn

�BR

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn (u(ξ) − u(η))

p−1
+
(
u(ξ) + d

)1−p
φ p(ξ) dξ dη

≤ cp

∫
BR�B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn φ p(ξ) dξ dη

+cp

∫
Hn

�BR

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn

[
u p−1(ξ) + (u(η))

p−1
−
](
u(ξ) + d

)1−p
φ p(ξ) dξ dη ,

and thus

I2 ≤ cp

∫
BR�B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn φ p(ξ) dξ dη

+ cpd
1−p

∫
Hn

�BR

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn φ p(ξ) dξ dη

+ cpd
1−p

∫
Hn

�BR

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn (u(η))

p−1
− dξ dη

=: I2,1 + I2,2 + I2,3. (4.9)

From now on, in contrast with the proof in the Euclidean case in [19] where the
logarithmic estimates plainly follows, here we need to take care of the Heisenberg
framework in order to deal with the tail contribution in (1.9). Let us estimate the
contribution in the right-hand side of (4.9). The integral I2,1 can be easily estimated
by recalling the definition of the cut-off function φ; we have

I2,1 ≤ cr Q
∫
BR�B2r

sup
ξ∈B3r/2

|η−1 ◦ ξ |−Q−sp
Hn dη ≤ cr Q−sp, (4.10)

where c = c(n, p).
For any ξ ∈ B2r , and any η ∈ Hn

�BR , in view of (4.1) and the symmetry of | · |Hn ,
we have

|η−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn
≤ c̃(|ξ−1 ◦ ξ0|Hn + |η−1 ◦ ξ |Hn )

|η−1 ◦ ξ |Hn

= c̃ + c̃
|ξ−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn

≤ c̃ + c̃
2r

1
c̃ |η−1 ◦ ξ0|Hn − |ξ−1 ◦ ξ0|Hn

≤ c̃ + c̃
2r

R/c̃ − 2r
:= C,
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where C > 0 since R > 2c̃r . This yields

I2,2 ≤ cd1−pr Q
∫
Hn

�BR

|η−1 ◦ ξ0|−Q−sp
Hn dη ≤ cd1−p r Q

Rsp
, (4.11)

where we also used Lemma 2.6 with γ = sp there; the constant c depending only on
n, p and s.

For what concerns the integral I2,3 in (4.9), we have

I2,3 = cpd
1−p

∫
Hn

�BR

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn (u(η))

p−1
− dξ dη

≤ cd1−p|B2r |
∫
Hn

�BR

|η−1 ◦ ξ0|−Q−sp
Hn (u(η))

p−1
− dη

≤ cd1−p r Q

Rsp
[Tail(u−; ξ0, R)]p−1, (4.12)

as long as we enlarge the constant c = c(n, p, s). Combining (4.9),(4.10),(4.11) with
(4.12), we finally obtain

I2 ≤ cr Q−sp + cd1−pr Q R−sp + cr Qd1−p R−sp[Tail(u−; ξ0, R)]p−1. (4.13)

Combining, now, (4.2) with (4.8) and (4.13), we have

∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

∣∣∣∣log
(
u(ξ) + d

u(η) + d

)∣∣∣∣
p

φ p(η) dξ dη

≤ c
∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn |φ(ξ) − φ(η)|p dξ dη

+ cr Q−sp + cd1−pr Q R−sp + cr Qd1−p R−sp[Tail(u−; ξ0, R)]p−1,

(4.14)

where c depends only on n, p and s. Let us consider the first integral on the right-hand
side in (4.14). Fixed η ∈ B2r there exists a vector ξ̃ such that ξ = η ◦ ξ̃ . Then we can
rewrite

|φ(ξ) − φ(η)| = |φ(η ◦ ξ̃ ) − φ(η)|.

Thanks to Theorem 1.41 in [24], we have that the previous quantity can be estimated
as follows,

|φ(η ◦ ξ̃ ) − φ(η)| ≤ c|ξ̃ |Hn sup
B3r/2

|∇Hnφ|
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Hence, changing again variables and recalling the estimate from above on |∇Hnφ|,
we get

∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn |φ(ξ) − φ(η)|p dξ dη

≤ cr−p
∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp+p
Hn dξ dη . (4.15)

For any η ∈ B2r note that a simple application of the triangular inequality yields

|η−1 ◦ ξ |Hn ≤ |η−1 ◦ ξ0|Hn + |ξ−1 ◦ ξ0|Hn ≤ 4r , ∀ξ ∈ B2r ,

so that B2r ⊂ B4r (η). Hence, as seen in the local framework in [29, 49], one can apply
Proposition 5.4.4 in [5] to get

∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp+p
Hn dξ dη ≤

∫
B2r

∫
B4r (η)

|η−1 ◦ ξ |−Q−sp+p
Hn dξ dη

≤ Qωn

∫
B2r

∫ 4r

0
ρ p−sp−1 dρ dη

≤ cr Q+p−sp

p − sp
,

where we denote by ωn := |B1(0)|. The estimate in (4.15) thus becomes

∫
B2r

∫
B2r

|η−1 ◦ ξ |−Q−sp
Hn |φ(ξ) − φ(η)|p dξ dη ≤ cr Q−sp,

and the proof is complete. ��
We conclude this section by presenting an important consequence of the Logarith-

mic Lemma, which will prove extremely useful in Sect. 6. We firstly need to introduce
the following standard notation. Let v be in L1(S) and denote by |S| the Lebesgue
measure of the set S ⊂ Hn which we assume to be finite and strictly positive. Here
and subsequently we write

(v)S := −
∫
S
v(ξ) dξ = 1

|S|
∫
S
v(ξ) dξ.

We have the following

Corollary 4.1 Let s ∈ (0, 1), p ∈ (1,∞), and let u ∈ Ws,p(Hn) be the solution to
problem (1.1) such that u ≥ 0 in BR ≡ BR(ξ0) ⊂ �. Let a, d > 0, b > 1 and define

v := min
{
(log(a + d) − log(u + d))+, log(b)

}
.
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Then, the following estimates holds true, for any Br ≡ Br (ξ0) ⊂ BR/2c̃(ξ0) ⊂
BR/2(ξ0) (where c̃ ≥ 1 is precisely the constant obtained in the proof of the Log-
arithmic Lemma),

−
∫
Br

|v − (v)Br |p dξ ≤ c + cd1−p
( r
R

)sp {
1 + [Tail(u−; ξ0, R)

]p−1
}

+crsp‖ f ‖L∞(B2r ) −
∫
B2r

(u(ξ) + d)1−p dξ. (4.16)

where c depends only on n, p, s.

Proof The estimate in (4.16) is a plain consequence of the Logarithmic Lemma 1.4.
Firstly, we need to apply the fractional Poincaré inequality, whose proof can be found
in [38] (see in particular on Page 297 there. See also the recent paper [12] for further
Poincaré-type inequalities in the Heisenberg group). We get

−
∫
Br

|v − (v)Br |p dξ ≤ crsp−Q
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |v(ξ) − v(η)|p dξ dη,

where c = c(n, p, s).
Now, it is sufficient to observe that v is precisely a truncation of the sum of a

constant and log(u + d). For this, we have∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |v(ξ) − v(η)|p dξ dη

≤
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

∣∣∣∣log
(
u(η) + d

u(ξ) + d

)∣∣∣∣
p

dξ dη

+
∫
Br

( f (ξ, u))+
(
u(ξ) + d

)1−p dξ,

so that the desired estimate plainly follows by applying the estimate in (1.9). ��

5 Proof of the Local Boundedness

The aim of this section is to prove the local boundedness result in Theorem 1.1. In our
knowledge, such a result is new even in the case of the pure fractional sublaplacian
on the Heisenberg group. Here we are able to prove that, via careful estimates based
on the nonlocal tail of the solutions together with the Caccioppoli inequality proven
in Sect. 3, one can extend the approach firstly seen in [19] for the counterpart in the
Euclidean case.

Proof of Theorem 1.1 Before starting, we would need to define a few quantities. For
any j ∈ N and r > 0 such that Br (ξ0) ≡ Br ⊂ �,

r j = 1

2
(1 + 2− j )r , r̃ j = r j + r j+1

2
, (5.1)
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Bj = Br j (ξ0), B̃ j = Br̃ j (ξ0).

Also,

φ j ∈ C∞
0 (B̃ j ), 0 ≤ φ j ≤ 1, φ j ≡ 1 on Bj+1 and |∇Hnφ j | < 2 j+3/r , (5.2)

k j = k + (1 − 2− j )k̃, k̃ j = k j+1 + k j
2

, k̃ ∈ R+ and k ∈ R,

w̃ j = (u − k̃ j )+ w j = (u − k j )+.

We divide the proof into two steps. Firstly, we consider the subcritical case when

sp < Q. Recalling the fractional Sobolev exponent p∗ = Qp

Q − sp
, we have

p

p∗ = p
Qp

Q−sp

= Qp − sp2

Qp
= 1 − sp

Q
.

Consequently,

(
1

|Bj |
) p

p∗ = 1

|Bj | |Bj |
sp
Q = crspj

|Bj | .

Wenow apply the Sobolev inequality in Theorem 2.7 to the function w̃ jφ j . It yields

(
−
∫
Bj

|w̃ j (ξ)φ j (ξ)|p∗
dξ

) p
p∗

≤ crspj −
∫
Bj

∫
Bj

|η−1 ◦ ξ |−Q−sp
Hn

∣∣w̃ j (ξ)φ j (ξ) − w̃ j (η)φ j (η)
∣∣p dξ dη,

which, combined with the nonlocal Caccioppoli inequality (1.8), gives

(
−
∫
Bj

|w̃ j (ξ)φ j (ξ)|p∗
dξ

) p
p∗

≤ crspj −
∫
Bj

∫
Bj

|η−1 ◦ ξ |−Q−sp
Hn w̃

p
j (ξ)|φ j (ξ) − φ j (η)|p dξ dη

+ crspj −
∫
Bj

w̃ j (η)φ
p
j (η) dη

(
sup

η∈spt φ j

∫
Hn

�Bj

|η−1 ◦ ξ |−Q−sp
Hn w̃

p−1
j (ξ) dξ

)
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+ crspj ‖ f ‖L∞(Bj ) −
∫
Bj

w̃ j (η)φ
p
j (η) dη

=: I1 + I2 + I3 . (5.3)

We begin by estimating the first contribution in the right-hand side of (5.3). By
applying the same strategy as in the proof of the Logarithmic Lemma in Sect. 4, we
have

I1 ≤ c2pj r sp−p
j −

∫
Bj

∫
Bj

|η−1 ◦ ξ |−Q−sp+p
Hn w̃

p
j (ξ) dξ dη

≤ c2pj r sp−p
j −

∫
Bj

w̃
p
j (ξ)

∫
Bj

|η−1 ◦ ξ |−Q−sp+p
Hn dη dξ

≤ c2pj −
∫
Bj

w̃
p
j (ξ) dξ. (5.4)

Now, we note that w̃ j ≤ w
p
j /(k̃ j − k j )p−1. Moreover, since η ∈ spt φ j ⊆ B̃ j

and ξ ∈ Hn
� Bj , we have

|ξ−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn
≤ c(|η−1 ◦ ξ0|Hn + |η−1 ◦ ξ |Hn )

|η−1 ◦ ξ |Hn
≤ c̃ + c̃r̃ j

r j − r̃ j
≤ c2 j+4.

For this,

I2 ≤ c2 j(Q+sp)rspj −
∫
Bj

w
p
j (η)

(k̃ j − k j )p−1
dη
∫
Hn

�Bj

w
p−1
j (ξ)

|ξ−1 ◦ ξ0|Q+sp
Hn

dξ

≤ c2 j(Q+sp+p−1)

k̃ p−1
[Tail(w0; ξ0, r/2)]p−1 −

∫
Bj

w
p
j (η) dη. (5.5)

Since w̃ j ≤ w j , r j ≤ r and φ ≤ 1, the third integral in (5.3) can be easily estimated
as follows

I3 ≤ rsp‖ f ‖L∞(Br ) −
∫
Bj

w
p
j (η) dη. (5.6)

For what concerns the left-hand side in (5.3), we have

(
−
∫
Bj

|w̃ j (ξ)φ j (ξ)|p∗
dξ

) p
p∗

≥ (k j+1 − k̃ j )
(p∗−p)p

p∗
(

−
∫
Bj+1

w
p
j+1(ξ) dξ

) p
p∗

=
(

k̃

2 j+2

) (p∗−p)p
p∗

(
−
∫
Bj+1

w
p
j+1(ξ) dξ

) p
p∗

.
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Then, calling A j :=
(

−
∫
Bj

w
p
j (ξ) dξ

) 1
p

we obtain

(
k̃
1− p

p∗

2( j+2) p∗−p
p∗

)p

A
p2

p∗
j+1 ≤ c2 j(Q+sp+p−1)

(
1 + rsp‖ f ‖L∞(Br ) + (Tail(w0; ξ0, r/2))p−1

k̃ p−1

)
Ap
j . (5.7)

Now, by taking

k̃ ≥ δ[Tail(w0; ξ0, r/2)], δ ∈ (0, 1] , (5.8)

we obtain

(
A j+1

k̃

) p
p∗ ≤ δ

1−p
p c̄

p
p∗ 2

j
(
sp
Q + Q+sp+p−1

p

)
A j

k̃
, (5.9)

where c̄ = c
p∗
p2 [δ p−1(1 + rsp‖ f ‖L∞(Br )) + 1]

p∗
p2 2

2(p∗−p)
p .

We set

C := 2
sp

Q−sp + Q(Q+sp+p−1)
p(Q−sp) > 1, β = p∗

p
− 1,

so that the estimate in (5.9) can be rewritten as

A j+1

k̃
≤ δ

p∗(1−p)
p2 c̄C j

(
A j

k̃

)1+β

. (5.10)

Thus it suffices to prove that the following estimate does hold,

A0

k̃
≤ δ

p∗(p−1)
p2β c̄− 1

β C
− 1

β2 , (5.11)

and by a standard iteration argument, it will follow that A j → 0 as j → ∞.
Since

p∗(p − 1)

p2β
= (p − 1)Q

sp2
,

we then choose

k̃ := δTail(w0; ξ0, r/2) + δ
− (p−1)Q

sp2 H A0, H = c̄
1
β C

1
β2 ,

which is in accordance with (5.8).
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It follows

sup
Br/2

u ≤ k + k̃

= k + δTail((u − k)+; ξ0, r/2) + δ
− (p−1)Q

sp2 H

(
−
∫
Br

(u − k)p+
) 1

p

,

which gives the desired result by choosing k = 0. The proof is complete in the case
when sp < Q.

We now turn to the borderline case, when sp = Q, which in the Euclidean case
in [19] is mentioned but not even sketched. We fill this gap here, by providing all the
details to investigate such a case. Choose 0 < s1 < s < 1; in particular w̃ jφ j −
(w̃ jφ j )Bj ∈ Ws,p(Bj ) ⊆ Ws1,p(Bj ). Clearly, s1 p < sp = Q, and we have the right

to apply the fractional Sobolev inequalitywhich gives, for any p < q < p∗
1 := Qp

Q−s1 p
,

‖w̃ jφ j − (w̃ jφ j )Bj ‖Lq (Bj ) ≤ |Bj |
p∗1−q

qp∗1 ‖w̃ jφ j − (w̃ jφ j )Bj ‖L p∗1 (Bj )
. (5.12)

Thus, we can write

∣∣∣∣∣∣
(

−
∫
Bj

|w̃ j (ξ)φ j (ξ)|q dξ
) 1

q

−
∣∣∣∣∣−
∫
Bj

w̃ j (ξ)φ j (ξ) dξ

∣∣∣∣∣
∣∣∣∣∣∣
p

≤ c

(
−
∫
Bj

|w̃ j (ξ)φ j (ξ) − (w̃ jφ j )Bj |q dξ
) p

q

≤ c|Bj |
(p∗1−q)p

qp∗1
− p

q

(∫
Bj

|w̃ j (ξ)φ j (ξ) − (w̃ jφ j )Bj |p
∗
1 dξ

) p
p∗1

≤ c
rs1 pj

r Qj

∫
Bj

∫
Bj

|η−1 ◦ ξ |−Q−s1 p
Hn |w̃ j (ξ)φ j (ξ) − w̃ j (η)φ j (η)|p dξ dη,

(5.13)

where in the last inequality we also used that

|Bj |
(p∗1−q)p

qp∗1
− p

q = |Bj |−
p
p∗1 = |Bj |

s1 p
Q −1 = c

rs1 pj

r Qj
.

In addition, we notice that

∣∣∣∣∣∣
(

−
∫
Bj

|w̃ j (ξ)φ j (ξ)|q dξ
) 1

q

−
∣∣∣∣∣−
∫
Bj

w̃ j (ξ)φ j (ξ) dξ

∣∣∣∣∣
∣∣∣∣∣∣
p
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≥
(

−
∫
Bj

|w̃ j (ξ)φ j (ξ)|q dξ
) p

q

− −
∫
Bj

|w̃ j (ξ)φ j (ξ)|pdξ.

Weare now in a position to apply the nonlocal Caccioppoli-type inequality in (5.13),
as done before in the subcritical case. Similarly, we get

(
−
∫
Bj

|w̃ j (ξ)φ j (ξ)|q dξ
) p

q

≤ c 2 j(Q+sp+p−1)
(
1 + rsp‖ f ‖L∞(Br ) + [Tail(w0; ξ0, r/2)]p−1

k̃ p−1

)
−
∫
Bj

w
p
j (η) dη.

Moreover, the term on the left-hand side in the inequality above can be estimated
as follows

(
−
∫
Bj

|w̃ j (ξ)φ j (ξ)|q dξ
) p

q

≥
(

k̃1−
p
q

2( j+2) (q−p)
q

)p (
−
∫
Bj+1

w
p
j+1 dξ

) p
q

. (5.14)

We set A j :=
(

−
∫
Bj

w
p
j (ξ) dξ

) 1
p

and we choose k̃ as in (5.8). It yields

A j+1

k̃
≤ δ

q(1−p)
p2 c̄C j

(
A j

k̃

)1+β

, (5.15)

where

c̄ = c
q
p2
[
δ p−1(1 + rsp‖ f ‖L∞(Br )

)+ 1
] q
p2 2

2(q−p)
p ,

C := 2
q(Q+sp+p−1)

p2
+ q−p

p > 1, and β := q

p
− 1.

We can now estimate the term A0 as in (5.11), by replacing p∗ with q, and considering
as c̄,C and β the quantities defined in the display above. Then,

A j → 0 as j → +∞.

Taking

k̃ := δTail(w0; ξ0, r/2) + δ
− (p−1)q

p(q−p) H A0, H = c̄
1
β C

1
β2 ,

which is in clear accordance with (5.8), we finally deduce that

sup
Br/2

u ≤ k + δTail((u − k)+; ξ0, r/2) + δ
− (p−1)q

p(q−p) H

(
−
∫
Br

(u − k)p+
) 1

p

,
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which gives the desired result by choosing k = 0. ��

6 Proof of the Hölder Continuity

This last section is devoted to the proof of the Hölder continuity of solutions, namely
Theorem 1.2. An iteration lemma is the keypoint of the proof, and, as before, wewould
have to handle the nonlocality of the involved operator, together with the geometry of
our settings. A certain care is required and in the proof below all the estimates proven
in the previous sections will appear.

We need to fix some notation. For any j ∈ N, let 0 < r < R/2 for some R such
that BR(ξ0) ⊂ �,

r j := σ j r

2
, σ ∈

(
0,

1

4c̃

]
, Bj := Br j (ξ0) ,

where, recalling Remark 2.5, the constant c̃ is the one given in Proposition 2.4.
Moreover, let us define

1

2
ω(r0) := 1

2
ω(r) = Tail(u; ξ0, r/2) + c

(
−
∫
Br

u p
+ dξ

) 1
p

,

with c as in Theorem 1.1 and

ω(r j ) :=
(
r j
r0

)α

ω(r0) for some α <
sp

p − 1
.

In order to prove the Theorem 1.2,it suffices to prove the following

Lemma 6.1 Under the notation introduced above, let u ∈ Ws,p(Hn) be a solution to
problem (1.1). Then

osc
Bj

u ≤ ω(r j ), ∀ j = 0, 1, 2, . . . (6.1)

Proof We will proceed by induction. For this, note that by the definition of ω(r0) and
Theorem 1.1 (with δ = 1 there), the estimates (6.1) does trivially hold for j = 0, since
both the functions (u)+ and (−u)+ are weak subsolution.

Now, we make a strong induction assumption and assume that (6.1) is valid for all
i ∈ {1, . . . , j} for some j ≥ 0, and then prove that it holds also for j + 1. We have
that either

∣∣2Bj+1 ∩ {u ≥ infBj u + ω(r j )/2
}∣∣∣∣2Bj+1

∣∣ ≥ 1

2
, (6.2)
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or ∣∣2Bj+1 ∩ {u ≤ infBj u + ω(r j )/2
}∣∣∣∣2Bj+1

∣∣ ≥ 1

2
, (6.3)

must hold. If (6.2) holds, then we set u j := u − infBj u; if (6.3) holds, then we set
u j := ω(r j ) − (u − infBj u). Consequently, in all the cases we have that u j ≥ 0 in
Bj and the following estimate holds,

∣∣2Bj+1 ∩ {u j ≥ ω(r j )/2}
∣∣∣∣2Bj+1

∣∣ ≥ 1

2
. (6.4)

Moreover, u j is a weak solution which satisfies

sup
Bi

|u j | ≤ 2ω(ri ), ∀i ∈ {1, . . . , j}. (6.5)

We now claim that under the induction assumption we have

[Tail(u j ; ξ0, r j )]p−1 ≤ cσ−α(p−1)[ω(r j )]p−1, (6.6)

where c depends only on n, p, s and α; in particular it is independent of σ . Indeed,

[Tail(u j ; ξ0, r j )]p−1 = rspj

j∑
i=1

∫
Bi−1�Bi

|u j (ξ)|p−1|ξ−1
0 ◦ ξ |−Q−sp

Hn dξ

+rspj

∫
Hn

�B0
|u j (ξ)|p−1|ξ−1

0 ◦ ξ |−Q−sp
Hn dξ

≤ rspj

j∑
i=1

[sup
Bi−1

|u j |]p−1
∫
Hn

�Bi
|ξ−1
0 ◦ ξ |−Q−sp

Hn dξ

+rspj

∫
Hn

�B0
|u j (ξ)|p−1|ξ−1

0 ◦ ξ |−Q−sp
Hn dξ

≤ c
j∑

i=1

(
r j
ri

)sp

[ω(ri−1)]p−1, (6.7)

where in the last line we also used (6.5) and the fact that

∫
Hn

�B0
|u j (ξ)|p−1|ξ−1

0 ◦ ξ |−Q−sp
Hn dξ

≤ cr−sp
0 sup

B0
|u|p−1 + cr−sp

0 [ω(r0)]p−1 + c
∫
Hn

�B0
|u(ξ)|p−1|ξ−1

0 ◦ ξ |−Q−sp
Hn dξ

≤ cr−sp
1 [ω(r0)]p−1.
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Moreover, we have

j∑
i=1

(
r j
ri

)sp

[ω(ri−1)]p−1

= [ω(r0)]p−1
(
r j
r0

)α(p−1) j∑
i=1

(
ri−1

ri

)α(p−1) (r j
ri

)sp−α(p−1)

= [ω(r j )]p−1σ−α(p−1)
j−1∑
i=0

σ i(sp−α(p−1))

≤ [ω(r j )]p−1 σ−α(p−1)

1 − σ sp−α(p−1)

≤ 4sp−α(p−1)

log(4)(sp − α(p − 1))
σ−α(p−1)[ω(r j )]p−1 (6.8)

where we used the fact that σ ≤ 1
4c̃ ≤ 1

4 and α < sp/(p − 1). Combining (6.7)
with (6.8) yields the desired estimate in (6.6).

Next, let us consider the function v defined by

v := min

{(
log

(
ω(r j )/2 + d

u j + d

))
+

, k

}
, k > 0. (6.9)

Since we have chosen σ ≤ 1
4c̃ we have that 2Bj+1 ⊂ Br j

2c̃
⊂ Bj . Indeed,

2r j+1 = 2σ j+1 r

2
≤ 1

2c̃
σ j r

2
= r j

2c̃
.

Hence, we can apply Corollary 4.1, with a ≡ ω(r j )/2 and b ≡ exp(k) there, obtaining
that

−
∫
2Bj+1

|v − (v)2Bj+1 |p dξ ≤ c + cd1−p
(
r j+1

r j

)sp {
1 + [Tail(u j ; ξ0, r j )]p−1

}

+ c(2r j+1)
sp‖ f ‖L∞(Br ) −

∫
4Bj+1

(u j (ξ) + d)1−p dξ

=: I1 + I2.

In view of the estimate in (6.6), we can estimate the first term in the right-hand side
of the display above as follows

I1 ≤ c + cσ spd1−p{1 + σ−α(p−1)[ω(r j )]p−1}
= c + cσ spd1−p{1 + σα(p−1)( j−1)[ω(r0)]p−1},
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where c depends only on n, p, s and α. Moreover, choosing

d = σ
sp
p−1 .

we arrive at

I1 ≤ c + cσα(p−1)( j−1)[ω(r0)]p−1 =: C1 < ∞, (6.10)

where we used the fact that α < sp/(p − 1), σ ≤ 1
4c̃ ≤ 1

4 , j > 1, and ω(r0) < ∞.
Let us estimate the second integral I2. Notice that since σ < 1/4, we have

4r j+1 = 4σ j+1 r

2
≤ σ j r

2
= r j ,

so that 4Bj+1 ⊆ Bj , and consequently u j ≥ 0 on 4Bj+1. Then, in view of the choice
of d, we also have (u j + d)1−p ≤ σ−sp. We arrive at

I2 ≤ cσ sp( j−1)(r/4)sp‖ f ‖L∞(Br ) =: C2 < ∞. (6.11)

Hence from (6.10) and (6.11) we obtain

−
∫
2Bj+1

|v − (v)2Bj+1 |p dξ ≤ C . (6.12)

for a suitable positive constant C .
Denote by shortness B̃ = 2Bj+1. In accordance with (6.4) and (6.9),we can write

k = 1

|B̃ ∩ {u j ≥ ω(r j )/2}|
∫
B̃∩{u j≥ω(r j )/2}

k dξ

= 1

|B̃ ∩ {u j ≥ ω(r j )/2}|
∫
B̃∩{v=0}

k dξ

≤ 2

|B̃|
∫
B̃
(k − v) dξ = 2[k − (v)B̃] .

We then integrate the inequality above over the set B̃ ∩ {v = k} to get

|B̃ ∩ {v = k}|
|B̃| k ≤ 2

|B̃|
∫
B̃∩{v=k}

[k − (v)B̃] dξ

≤ 2

|B̃|
∫
B̃

|v − (v)B̃ | dξ ≤ c,

where we also used (6.12).
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We now take

k = log

(
ω(r j )/2 + σ

sp
p−1

2σ
sp
p−1 ω(r j ) + σ

sp
p−1

)

= log

(
ω(r j )

4σ
sp
p−1 ω(r j ) + 2σ

sp
p−1

+ σ
sp
p−1

2σ
sp
p−1 ω(r j ) + σ

sp
p−1

)
≈ log

(
1

σ
sp
p−1

)
,

so that

|B̃ ∩ {v = k}|
|B̃| k ≤ c

gives

|B̃ ∩ {u j ≤ 2dω(r j )}|
|B̃| ≤ c

k
≤ clog

log
( 1

σ

) ; (6.13)

the constant clog depending only on n, p and s.
We are now in a position to start a suitable iteration to deduce the desired oscillation

reduction. First, for any i = 0, 1, 2, . . . , we define

ρi = r j+1 + 2−i r j+1, ρ̃i := ρi+1 + ρi

2
, Bi = Bρi , B̃i = Bρ̃i ,

and corresponding cut-off functions

φi ∈ C∞
0 (B̃i ), 0 ≤ φi ≤ 1, φi ≡ 1 on Bi+1 and |∇Hnφi | ≤ cρ−1

i .

Furthermore, set

ki = (1 + 2−i )dω(r j ), wi := (ki − u j )+,

and

Ai = |Bi ∩ {u j ≤ ki }|
|Bi | = |Bi ∩ {wi > 0}|

|Bi | .

Hence, the Caccioppoli inequality (1.8) yields

∫
Bi

∫
Bi

|η−1 ◦ ξ |−Q−sp
Hn |wi (ξ)φi (ξ) − wi (η)φi (η)|p dξ dη

≤ c
∫
Bi

∫
Bi

|η−1 ◦ ξ |−Q−sp
Hn w

p
i (ξ)|φi (ξ) − φ(η)|p dξ dη
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+c
∫
Bi

wi (ξ)φ
p
i (ξ) dξ

⎛
⎝ sup

η∈B̃i

∫
Hn

�Bi
w

p−1
i (ξ)|η−1 ◦ ξ |−Q−sp

Hn dξ + ‖ f ‖L∞(Br )

⎞
⎠ .

(6.14)

We now focus on the subcritical case when sp < Q. We make use of the fractional
Sobolev inequality, in order to estimate the first term on the right-hand side as follows

A
p
p∗
i+1(ki − ki+1)

p = 1

|Bi+1|
p
p∗

(∫
Bi+1∩{u j≤ki+1}

(ki − ki+1)
p∗

φ
p∗
i (ξ) dξ

) p
p∗

≤ 1

|Bi+1|
p
p∗

(∫
Bi

w
p∗
i (ξ)φ

p∗
i (ξ) dξ

) p
p∗

≤ crsp−Q
j+1

∫
Bi

∫
Bi

|η−1 ◦ ξ |−Q−sp
Hn |wi (ξ)φi (ξ) − wi (η)φi (η)|p dξ dη.

(6.15)

Recalling that |∇Hnφi | ≤ c2i r−1
j+1, we can treat the first term in the right-hand side

in (6.14) as follows

rspj+1

∫
Bi

∫
Bi

|η−1 ◦ ξ |−Q−sp
Hn w

p
i (ξ)|φi (ξ) − φ(η)|p dξ dη

≤ c2i pr−p
j+1r

p
j+1

∫
Bi∩{u j≤ki }

w
p
i (ξ) dξ

≤ c2i p[dω(r j )]p|Bi ∩ {u j ≤ ki }|. (6.16)

Moreover,

∫
Bi

wi (ξ)φ
p
i (ξ) dξ ≤ c[dω(r j )]|Bi ∩ {u j ≤ ki }|, (6.17)

holds.
Now, we notice that for any η ∈ B̃i , we have

|ξ−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn
≤ c̃(|η−1 ◦ ξ0|Hn + |η−1 ◦ ξ |Hn )

|η−1 ◦ ξ |Hn
≤ c̃ + c̃ρ̃i

ρi − ρ̃i
≤ c2i

for all ξ ∈ Hn
� Bi and that

Br j+1 ≡ Bj+1 ⊂ Bi ⇒ Hn
� Bi ⊂ Hn

� Bj+1.
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Then we have

rspj+1

⎛
⎝ sup

η∈B̃i

∫
Hn

�Bi
w

p−1
i (ξ)|η−1 ◦ ξ |−Q−sp

Hn dξ

⎞
⎠ ≤ c2i(Q+sp)[Tail(wi ; ξ0, r j+1)]p−1

(6.18)

Recalling (6.6) and the facts that wi ≤ 2dω(r j ) in Bj and wi ≤ |u j | + 2dω(r j ) in
Hn , we further get

[
Tail(wi ; ξ0, r j+1)

]p−1

≤ crspj+1

∫
Bj�Bj+1

w
p−1
i (ξ)|ξ−1

0 ◦ ξ |−Q−sp
Hn dξ + c

(
r j+1

r j

)sp
[Tail(wi ; ξ0, r j )]p−1

≤ cd p−1ω(r j )
p−1 + cσ sp[Tail(u j ; ξ0, r j )]p−1

≤ c

(
1 + σ sp−α(p−1)

d p−1

)
[dω(r j )]p−1

≤ c[dω(r j )]p−1,

where c depends only on α, p and s. Combining the estimate above with (6.18) we
get

rspj+1

(
sup
η∈B̃i

∫
Hn

�Bi
w

p−1
i (ξ)|η−1 ◦ ξ |−Q−sp

Hn dξ

)
≤ c2i(Q+sp)[dω(r j )]p−1.

(6.19)

Putting together (6.14), (6.15), (6.16), (6.17) and (6.19), we obtain

A
p
p∗
i+1(ki − ki+1)

p ≤ c
(
1 + rspj+1‖ f ‖L∞(Br )

)
2i(Q+sp+p)[dω(r j )]p Ai , (6.20)

which yields, recalling that r j+1 < r

Ai+1 ≤ c
(
1 + rsp‖ f ‖L∞(Br )

) p∗
p 2i(Q+(2+s)p) p∗

p A1+β
i

with β := sp/(Q − sp) by the definition of ki ’s.
Now, if we will prove the following estimate on A0,

A0 = |B̃ ∩ {u j ≤ 2dω(r j )}|
|B̃| ≤ c−1/β(1 + rsp‖ f ‖L∞(Br )

)− p∗
pβ 2

− (Q+(2+s)p)p∗
pβ2 =: ν∗,

(6.21)
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then we can deduce that

Ai → 0 as i → ∞.

Indeed, the condition (6.21) it is guaranteed by (6.13) choosing

σ = min

{
1

4c̃
, e− clog

ν∗
}

,

which depends only on n, p, s and α. We have hence shown that

osc
Bj+1

u ≤ (1 − d)ω(r j ) = (1 − d)

(
r j
r j+1

)α

ω(r j+1) = (1 − d)σ−αω(r j+1).

Taking α ∈
(
0, sp

p−1

)
small enough that

σα ≥ 1 − d = 1 − σ
sp
p−1

leads to

osc
Bj+1

u ≤ ω(r j+1),

and the proof is complete in the case when sp < Q.
For the remaining case, namely when sp = Q, we can proceed as in the proof of

the local boundedness. Consider 0 < s1 < s < 1; the fractional Sobolev inequality
gives

‖wiφi‖p

L p∗1 (Bi )
≤ c[wiφi ]ps1,p

with p1 := Qp
Q−s1 p

. Note also that

‖wiφi‖Lq (Bi ) ≤ |Bi |
p∗1−q

qp∗1 ‖wiφi‖L p∗1 (Bi )
, (6.22)

and thus,

A
p
q
i+1(ki − ki+1)

p = 1

|Bi+1|
p
q

(∫
Bi+1∩{u j≤ki+1}

(ki − ki+1)
qφ

q
i (ξ) dξ

) p
q

≤ 1

|Bi+1|
p
q

(∫
Bi

w
q
i (ξ)φ

q
i (ξ) dξ

) p
q
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≤ |Bi |
(p∗1−q)p

qp∗1

|Bi+1|
p
q

(∫
Bi

w
p∗
1

i (ξ)φ
p∗
1

i (ξ) dξ

) p
p∗1

≤ c
rs1 pj+1

r Qj+1

∫
Bi

∫
Bi

|η−1 ◦ ξ |−Q−s1 p
Hn |wi (ξ)φi (ξ) − wi (η)φi (η)|p dξ dη.

(6.23)

The term in the right-hand side of (6.23) can be estimated using the nonlocal Cac-
cioppoli inequality as in (6.14) and recalling the estimates (6.17) and (6.19).

All in all, we have

A
p
q
i+1(ki − ki+1)

p ≤ c(1 + rspj+1‖ f ‖L∞(Br ))2
i(Q+sp+p)[dω(r j )]p Ai ,

which yields

Ai+1 ≤ c
(
1 + rsp‖ f ‖L∞(Br )

) q
p 2i

(Q+(2+s)p)q
p A1+β

i , (6.24)

where we denoted by β := q/p − 1 > 0. We now choose the following σ in (6.13),

σ := min

{
1

4c̃
, e− clog

ν̄

}

with ν̄ := c− 1
β (1 + rsp‖ f ‖L∞(Br ))

− q
pβ 2

− (Q+(2+s)p)q
pβ2 , in order to deduce that

A0 = |B̃ ∩ {u j ≤ 2dω(r j )}|
|B̃| ≤ c− 1

β
(
1 + rsp‖ f ‖L∞(Br )

)− q
pβ 2

− (Q+(2+s)p)q
pβ2 .

Hence,

Ai → 0, as i → ∞.

and the proof is complete, by proceeding exactly as in the case when sp < Q. ��
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