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Abstract 

Landslides represent a serious hazard in many areas around the world, potentially leading 

to human losses and significant damages to structures and buildings. For this reason, over 

the years a consistent number of studies and researches have been carried out to analyse 

these natural phenomena and their evolution. This study presents the application of an 

automatic procedure specifically developed to identify the onset of landslide acceleration 

by analysing monitoring displacement data with a multi-criteria approach. The proposed 

procedure aims to identify this point by applying a four-level validation process on a pre-

determined dataset. Once the analysis returns a positive result for a certain number of 

monitoring data, it is possible to state that the landslide reached the accelerating phase of 

its evolution, thus allowing to define a specific point representing the onset of 

acceleration. The method was applied to several historical case studies taken from 

scientific literature, in order to test its practicability and effectiveness. This procedure 

could be especially useful in Early Warning Systems where time of failure forecasting 

models are implemented, allowing to improve their performances by providing an 

automated and reliable procedure to define the beginning of potentially critical landslide 

events. 

Keywords: Landslide, Displacement rate, Failure forecasting, Onset-of-acceleration, 

Early Warning System 
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Introduction 

Landslides are natural phenomena characterized by a significant degree of complexity and 

variability. Risk and hazard assessment activities, together with adequate understanding of 

landslide behaviour (Carlà et al. 2018), are a significant step towards the reduction of damages 

and prevention of human victims caused by these events. The correct identification of the 

problem before its critical evolution could theoretically allow to avoid at least 90% of losses 

caused by landslide phenomena (Brabb 1993). 

The identification of pre-failure conditions in areas presenting instability signs can be 

performed through in-situ observations and monitoring (Brunner et al. 2000, Borgatti et al. 

2008, Cascini et al 2019, Segalini et al. 2019), by exploiting satellite-based technologies such 

as Interferometric Synthetic Aperture Radar (InSAR) (Intrieri et al. 2018, Lacroix et al. 2018, 

Reyes-Carmona et al 2020), optical image data (Desrues et al. 2019), or a combination of 

different sensors (Clarkson et al. 2020). The parameters controlling the landslides effect in term 

of hazard and landscape change include the landslide occurrence time, size, duration, speed, 

and total amount of their movement (Schulz et al. 2018). According to Salt (1993), it is also 

possible to take some specific actions to improve the probability to provide an adequate 

forewarning, in particular for what concern rapid movements: 

• Consideration of the slide geometry, with particular attention to the curvature of the 

failure surface; 

• Definition of pre-set alarm criteria and alert thresholds. If a specified alarm level is 

reached, it must be taken as an indication that the slide is evolving towards its collapse 

and it is necessary to activate, as quickly as possible, all measures required to mitigate 

damage; 
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• Ensuring that the monitoring sampling rate is appropriate with respect to the slide 

development rate. In fact, the possibility that a slide may accelerate suddenly and 

unexpectedly between surveys must always be considered in order not to lose essential 

data. 

Assessing the time of failure is another topic of major concern in the field of geological risk 

management, and several different methods have been proposed to achieve this goal (Intrieri et 

al. 2019). One of the most diffused approaches aimed to forecast a landslide collapse exploits 

the accelerating creep theory, which has been studied and applied by different authors over the 

years (e.g. Saito 1969, Fukuzono 1985, Voight 1989, Crosta and Agliardi 2003, Xue et al. 

2014). This theory generated mainly empirical and semi-empirical methodologies, all based on 

the assumption that the time of slope failure can be forecasted by extrapolating the trend towards 

zero of the inverse-velocity vs time plot. In particular, collapse predictions obtained through 

the applications of the Inverse Velocity Method (IVM) firstly introduced by Fukuzono (1985) 

can be found in literature, displaying generally positive results (Petley 2004, Rose and Hungr 

2007, Segalini et al. 2019). 

Despite in-depth studies and research activities performed during several decades, the 

ability to predict the future behaviour of a landslide remains a challenging task. One of the most 

crucial and complex aspects of forecasting methods is the definition of the dataset to be used to 

determine the phenomenon evolution. The importance of this task derives from the assumption 

that the pre-failure stage can be explained by applying a tertiary creep model (Siddle et al. 

2007). It follows that a correct definition of the beginning of the actual acceleration phase could 

be fundamental to apply these methods correctly and, consequently, provide meaningful 

evaluations regarding the most probable event behaviour (Dick et al. 2014). According to this 

consideration, the definition of the landslide acceleration phase acquires a particularly relevant 
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position among the several components forming an Early Warning System (EWS), that 

typically include a field monitoring system, forecasting and data analysis methods, alert 

messages dissemination, and emergency planning (Intrieri et al. 2012, Calvello and Piciullo 

2016). Traditionally, the identification of the landslide onset-of-acceleration (OOA) and the 

following application of failure forecasting methods have been performed manually (e.g. 

Voight and Kennedy 1979, Rose and Hungr 2007, Mazzanti et al. 2015). While this approach 

could provide highly accurate results due to the first-hand evaluation of an expert, it is definitely 

not an optimal solution when a timely warning is needed, specifically due to the lack of 

automation, which is a key component for an effective real-time EWS (Allasia et al. 2013). 

Carlà et al. (2017b) proposed an interesting approach to solve this problem, relying on the 

crossover between short-term and long-term moving averages (SMA and LMA, respectively) 

to identify a trend change in the raw data. According to the authors, when the SMA line crosses 

above the LMA, the beginning of an uptrend can be signalled and, therefore, the OOA point 

can be defined. On the opposite, a downtrend occurs when the SMA line lies below the 

corresponding LMA line, thus representing the end of the acceleration phase. However, it 

should be noted that, to this day, a standard procedure to identify the beginning of the tertiary 

creep phase has yet to be defined (Bozzano et al. 2018). 

As explained in the previous paragraph, the applicability of failure forecasting methods 

has been successfully demonstrated under the hypothesis of a tertiary creep behaviour. For this 

reason, the dataset should contain only accelerating displacement data in order to provide 

reliable predictions. This assumption highly influences the forecasting analysis outcomes and 

increases the necessity to apply innovative monitoring tools, featuring high sampling rates and 

automatic acquisition procedures. In fact, a traditional monitoring approach with manual 

acquisition is not suitable for early warning purposes since the sampling rate is often too low 
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to guarantee an adequate description of the acceleration phase, which can take place in a time 

interval up to some hours (e.g. Bozzano et al. 2011, Carlà et al. 2017a).  

In general, the identification of the acceleration phase is not a difficult task when 

performed through a manual check by an expert operator. The issue become quite harder when 

a software has to recognize automatically the starting and progression of an accelerating phase 

in real time or near-real time. Another context that should be considered is the simultaneous 

monitoring activity of several different landslides, which nowadays is becoming more and more 

common thanks to the application of automatic instrumentation. In the latter case, the 

integration of highly detailed models would be hardly sustainable in terms of economical and 

computational resources. All these aspects were taken into consideration during the 

development of the proposed approach, addressing the advantages of an automated procedure 

and the possibility to apply it consistently to a large number of monitored sites. 

Methodology 

This paper presents a new algorithm aimed to identify an increasing stage in 

displacement rate values by analysing the dataset trend according to four different criteria, 

applied in a “drop-down” approach. This choice provides some relevant advantages when 

implementing the procedure automatically. Mainly, the possibility to stop the algorithm when 

a single condition is not fulfilled allows to shorten the time analysis. While the impact of this 

choice on a single dataset analysis could be almost negligible, it becomes more and more 

relevant when dealing with several devices featuring high sampling rates, often resulting in an 

extremely large database of monitoring values to be elaborated at the same time. This aspect 

heavily influenced the design of the proposed approach, which has been developed trying to 

balance results reliability and computational complexity. Additionally, a multi-criteria 

approach permits to introduce a tolerance component for each sub-routine.  
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Since its development, the algorithm has been tested on a large number of automatic 

monitoring devices featuring different sampling frequencies. However, from a conceptual point 

of view, the proposed methodology could be applied to any device intended to monitor slope 

displacements. The method is based on the hypothesis that the monitored landslide would 

displays a transition from a linear to a non-linear behaviour, corresponding respectively to a 

constant and increasing displacement rate. Moreover, the displacement rate should be 

increasing and positive between two consecutive readings, i.e. an increasing negative 

displacement rate is not considered (Carri 2019). 

Displacement rate values can be computed starting from monitored data according to 

the following equation: 

𝑣𝑗 =
𝑆𝑗 − 𝑆𝑗−1

𝑡𝑗 − 𝑡𝑗−1
 (1)  

where 𝑣 is the displacement rate recorded between 𝑗 and 𝑗 − 1 readings, 𝑆 is the displacement 

recorded at reading 𝑗, and 𝑡𝑗 is the date, expressed as a number, corresponding to reading 𝑗. 

Each single sub-condition is detailed below, while the complete structure of the algorithm is 

summarized in the flowchart reported in Figure 1. 
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Figure 1: Flow chart of the multi-criteria algorithm, displaying each passage and the 

corresponding conditions 
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Criterion 0: positive displacement rate 

Criterion 0 was introduced in the algorithm as a preliminary check on displacement rates. This 

condition requires four consecutive positive velocities (referred to reading j) to proceed with 

the following tasks, as in Eq. (2). This means that a dataset composed of at least four 

displacement rate values (i.e. five displacement records) is necessary in order to begin the 

analysis. The introduction of this first step is particularly important to obtain meaningful results 

from the application of forecasting models, like IVM, to the selected dataset (a negative velocity 

would be meaningless in this context, effectively invalidating the forecasting analysis). 

{
 
 

 
 𝑣𝑗 > 0

𝑣𝑗−1 > 0

𝑣𝑗−2 > 0

𝑣𝑗−3 > 0

 (2)  

Criterion 1: increasing displacement rate 

If Criterion 0 gives a positive result, the following step investigates the variation between two 

consecutive values in order to check if the displacement rate is displaying an accelerating trend. 

To verify this condition, the velocity difference Δ𝑣𝑗 is computed by considering data referred 

to readings 𝑗 and 𝑗 − 1. The criterion is fulfilled if the Δ𝑣 > 0 condition applies to at least three 

out of four consecutive displacement rate values of the considered dataset.  

The main objective of this step is to prevent errors deriving from anomalies in monitoring data, 

e.g. outliers or spike noises. In fact, a too strict condition could interpret a single negative result 

in this phase as an actual deceleration, thus stopping the procedure. On the other hand, by 

introducing this tolerance margin it is possible to carry on the analysis even if an anomalous 

value is recorded. Additionally, this approach could be helpful when dealing with high sampling 

Δ𝑣𝑗 = 𝑣𝑗 − 𝑣𝑗−1 > 0 (3)  
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frequencies, which could be able to detect a temporary deceleration within a more consistent 

accelerating trend. It follows that a 100% validation condition of the dataset would interpret 

this behaviour as an actual deceleration, while its duration could be minimal when compared to 

the general trend of the landslide evolution. 

Criterion 2: parabolic trend 

The following condition relies on the hypothesis that displacement rates will follow a nonlinear 

behaviour during the acceleration phase. According to this assumption, this specific step aims 

to define a curve fitting the selected dataset, with the purpose to identify an increasing trend. 

Taking as a reference the creep theory (as presented by Varnes 1982), criteria 1 and 2 are 

intended to highlight the initial transition from a linear trend, typically associated with a 

secondary creep, to a non-linear behaviour. When dealing with the evolution of potentially 

critical landslide events, several studies apply a power law equation to displacement rate data 

in order to describe the tertiary creep phase, which usually leads to the landslide collapse (e.g. 

Cruden and Masoumzadeh 1987, Voight 1989, Crosta and Agliardi 2003, Helmstetter et al. 

2004). However, the model calibration and testing evidenced how this type of function would 

not be suitable in an algorithm intended to interpolate a generic trend, since it gives reliable 

outcomes only when applied to the last phase of the phenomenon evolution. To avoid this 

problem, the authors tested a fitting procedure involving a second-degree polynomial function 

to identify upward or downward trends in different datasets by analysing the concavity 

direction. Figure 2 presents four different examples obtained from the testing process, 

displaying a comparison between two fitting approaches, namely power law and second-degree 

polynomial equation (Table 1) , performed on displacement rate data (obtained from a digitizing 

process of time series reported in Ryan and Call 1992) It is possible to observe the accurate 
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fitting obtained with a parabolic equation, displaying a concavity that correctly represents both 

an increasing (Datasets #1 and #2) and decreasing (Datasets #3 and #4) displacement rate trend. 

Table 1: Equations used for the parabolic and power law fitting procedures, together with the 

parameters resulting from their application to datasets reported in Figure 1 

Dataset 

Parabolic fitting 

𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 

Power law fitting 

𝒚 = 𝒂𝒙𝒃 

a b c a b 

#1 4.9507 -775.5021 30391.6446 8.8988E-049 26.0745 

#2 1.2344 -181.1658 6658.9467 2.6346E-019 10.5431 

#3 -0.3178 45.8235 -1639.4291 6.7969E-012 6.5973 

#4 - 0.3631 43.9043 -1318.2098 1.0399E-017 10.039 

 

 

Figure 2: Comparison between two different fitting approaches, based on power law and 

parabolic equation, applied to four different displacement rate datasets 

Based on the results obtained in the testing phase, if the Criterion 1 is activated, displacement 

rate data are interpolated using a parabolic fitting (Eq. 4) in order to obtain the value of the 𝑎 
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parameter that describes the concavity orientation:  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (4)  

where 𝑦 refers to displacement rates and 𝑥 represents time, expressed as a number. 

It should be specified that the most appropriate number of data to perform this operation 

may vary according to the specific case study, depending on parameters like sampling 

frequency, smoothing procedures and filters applied on monitoring data. The example in Table 

2 refers to a case study concerning a fitting operation performed on a dataset composed of 10 

displacement rate values.  

As previously assessed, the objective of this phase is to evaluate the 𝑎 coefficient of the 

interpolating curve, since this parameter holds information regarding the curve concavity. 

Specifically, a positive value identifies an upward concavity (i.e. an accelerating phase), while 

a downwards concavity features a value of 𝑎 < 0. In the proposed procedure, a positive value 

should be observed in order to assess that an acceleration is taking place. If the condition is 

verified for at least the 75% of the dataset represented by 𝑗, 𝑗 − 1, 𝑗 − 2 and 𝑗 − 3 readings, 

Criterion 2 is fulfilled, and the analysis can proceed to the following step. 

Table 2: Dataset considered for the Criterion 2, under the hypothesis of n=10 data for the 

nonlinear interpolation (modified after Carri 2019). 

Referring 

dataset 

First reading considered 

in the dataset 

Last reading considered 

in the dataset 

Concavity parameter 

j 𝑣𝑗−9 𝑣𝑗 𝒂𝒋 

j-1 𝑣𝑗−10 𝑣𝑗−1 𝒂𝒋−𝟏 

j-2 𝑣𝑗−11 𝑣𝑗−2 𝒂𝒋−𝟐 

j-3 𝒗𝒋−𝟏𝟐 𝒗𝒋−𝟑 𝒂𝒋−𝟑 

 

Criterion 3: increasing concavity 

The last criterion takes into account the variation of the 𝑎 coefficient between two consecutive 
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readings. Specifically, in this step the sign of Δ𝑎 is studied to assess if the curve approximating 

the monitoring data displays a more pronounced upward concavity (i.e. the acceleration is 

increasing). While the previous criteria were intended to evidence a transition between two 

different behaviours, this particular condition aims to analyse a non-linear trend featuring 

increasing values. According to the classical interpretation of creep theory, this specific trend 

can be observed in the tertiary phase (Varnes, 1982). This condition is represented by a positive 

result obtained from the application of Eq. 5. On the opposite, Δ𝑎 < 0 means that the curve is 

experiencing a transition towards a more linear trend, thus approaching a downwards concavity 

that represents a deceleration of slope movements.  

Δ𝑎𝑗 = 𝑎𝑗 − 𝑎𝑗−1 (5)  

If Criterion 2 is activated at reading 𝑗, the process considers a dataset composed of four 

parameters and evaluates the variation of 𝑎 starting from 𝑗 − 3 reading. The Criterion 3 is 

activated if the corresponding condition is verified for at least three out of four consecutive 

data, similarly to the two previous stages. If this last step returns a positive outcome, it could 

be assumed that an accelerating phase is taking place, and the 𝑗 − 3 reading could be taken as 

the OOA of the monitored landslide. 

The validation of the proposed approach involved a parametric analysis performed on 

several displacement datasets, in order to evaluate the model performances under the variation 

of the main parameters implemented in the algorithm. In particular, the number of data points 

(d), the percentage limit, and the number of data (n) used in the model fitting procedure were 

considered during the process analysis.  
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Results and Discussion 

Parametric study 

Figure 3 displays an example of the results obtained by the parametric analysis focused on the 

number of monitoring data to consider in the OOA identification process. Moreover, the study 

included different rate limit values (i.e. the percentage of positive data points required to fulfil 

a specific criterion) to highlight their influence on the acceleration phase assessment, as well as 

the generation of possible false positives.  

In particular, Figure 3a compares the reference dataset of 𝑑 = 4 monitoring data, 

featuring a 3/4 rate limit (i.e. 75%), with a 5-point dataset characterized by two different rates, 

namely 3/5 (60%) and 4/5 (80%). Figure 3b presents the same reference case compared to a 6-

point dataset with a rate of 4/6 (67%) and 5/6 (83%). Reported results derive from the 

elaboration of the New Tredegar landslide dataset (Bentley and Siddle 2000) and are obtained 

by considering 10 monitoring data for the parabolic model fitting.  

By studying the outcomes of this analysis, it is possible to make the following 

considerations: 

o All configurations provided the same OOA estimation at 𝑡 = 59 days, except for the 

𝑑 = 6, 4/6 model that placed the OOA one day earlier.  

o An increment of the data points number resulted in a delayed fulfilment of the Criterion 

3 conditions, ultimately leading to a postponed identification of the onset of 

acceleration. This is a relevant drawback in a methodology that aims to provide timely 

evaluations for early warning purposes.  

o Percentage limits higher than the reference value did not evidence a significant 

improvement in avoiding false positives. The only exception is the 83% rate in the 𝑑 =

6 configuration, which however provided a significantly delayed OOA estimation. On 
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the other hand, values lower than 75% led to an increment of false positives for both 

𝑑 = 5 and 𝑑 = 6. 

 

 

Figure 3: Parametric analysis of the New Tredegar landslide dataset, comparing the 𝑑 = 4, 3/4 

reference configuration with (a) 𝑑 = 5, and (b) 𝑑 = 6 configurations, including also different 

values for the percentage level parameter  

Figure 4a and Figure 4b provide two examples of the parametric study performed on the number 

of monitoring data used in the parabolic model fitting, deriving respectively from the analysis 

of the New Tredegar landslide (Bentley and Siddle 2000) and Ohto landslide (Suwa et al. 2010) 

datasets. Both these cases were processed by considering a 𝑑 = 4, 3/4 configuration. 

By observing the results of these elaborations, it is possible to notice the influence of 

the 𝑛 parameter for what concern the occurrence of false positives. In particular, values of 𝑛 >

10 evidenced a higher number of data points fulfilling the Criterion 3 conditions, generating a 
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series of false positives before the actual onset of acceleration. Moreover, datasets including 

less data points displayed a lower reliability in the assessment of the critical acceleration phase. 

An example of this behaviour can be observed in Figure 4b, where the analyses performed with 

datasets ranging from 10 to 12 points consistently fulfilled the Criterion 3 conditions after the 

OOA identification. On the other hand, 𝑛 = 8 and 𝑛 = 9 configurations were unable to provide 

a reliable assessment of the onset of acceleration, since the analyses did not reach the higher 

level of the algorithm during the critical acceleration phase, thus leading to an inaccurate OOA 

definition. 

 

Figure 4: Parametric analysis of the (a) New Tredegar landslide and (b) Ohto landslide datasets, 

focusing on the number of monitoring data used for the parabolic fitting model  

Case studies application 

As detailed in the previous section, the proposed multi-level procedure is intended to be applied 

in real-time monitoring scenarios to identify potentially critical acceleration trends starting from 
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displacement data. In this paragraph, an application to three real case scenarios is presented as 

an example of the algorithm implementation. The analysis was performed with the drop-down 

approach described in previous paragraphs, creating a new dataset for each single monitoring 

data. Even if all monitoring data here presented derive from historical events, the procedure is 

intended as a simulation of a real-time acquisition, since the algorithm provides a new result 

each time a sampled value is elaborated by the automatic software. 

Regarding the algorithm application to these case studies, it is important to underline 

the following considerations: 

• Displacement rate datasets were digitized from data reported in scientific literature 

considering a daily sampling rate; 

• In order to perform the Criterion 2 procedure, a dataset composed of 10 displacement 

rate values (n=10) was selected for all following case studies. This implies that the 

minimum number of monitoring data to perform the complete analysis is 12 

displacement values. In fact, the first displacement rate can be evaluated starting from 

the second reading and the Criterion 3 needs two nonlinear interpolation to check the 

concavity behaviour. Additionally, according to the results obtained in the parametric 

analyses, a 4-point dataset and a percentage limit of 75% were used for these 

elaborations. 

Case Study #1: Ohto Landslide  

This case study refers to a landslide occurred in Nara Prefecture, Japan on August 10, 2004 

(Suwa et al. 2010). The collapse took place during a particularly critical year due to the high 

number of typhoons and prolonged rainfalls that interested the country, damaging structures 

and triggering several landslides (Fujisawa et al. 2010). The event presented in this case study 
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was first identified in January 2004, when a series of cracks appeared on a retaining wall along 

National Highway 168, close to Otomura village. Due to the importance of this route, several 

monitoring tools were installed on site, including extensometers to observe the displacement of 

the unstable slope. Additionally, the system was able to send an automatic notification message 

at the overcoming of predefined thresholds. The National Highway was closed at 5.10 AM on 

August 8 when the displacement velocity reached 4 mm over 2 hours. The landslide collapsed 

43 hours later, without claiming any victims (Suwa et al. 2010). 

The displacement dataset obtained from the monitoring activity was used in this study 

to check the ability of the proposed method to identify correctly the tertiary phase of the 

landslide evolution (Figure 5). As reported by Suwa et al. (2010), displacement data recorded 

by extensometers showed a constant creep until July 31 when an acceleration was observed, 

meaning that the creep mode transitioned from a secondary to a tertiary phase. According to 

this observation, it is possible to consider this date as reference value for the landslide OOA, 

since it marked the beginning of the accelerating phase that ultimately led to the slope collapse.  

 

Figure 5: Displacement and acceleration curves for the Ohto landslide – dataset digitized from 

Suwa et al. (2010) 
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A graphical representation of the results obtained from the algorithm application is 

presented in Figure 6, displaying the outcome of the procedure applied to each single 

monitoring data. In particular, the chart represents the landslide displacement trend and the 

corresponding verified sub-criteria as the monitoring activity progresses. As can be observed, 

even if some early activations were detected, the algorithm identified accurately the 

acceleration phase. In particular, the first point of the dataset that fulfils all the conditions of 

the algorithm is the measure recorded on August 1st and, starting from that point, the procedure 

gives a positive result for all the following elaborated data. Hence, it could be assessed that the 

onset of acceleration point corresponds to the displacement measured on July 29th, which is in 

good agreement with the OOA defined in literature for this landslide.  

 

Figure 6: Results obtained from the application of the algorithm to the Ohto Landslide dataset 

(displacement data recorded during the monitoring period from May to August 2004)  

Moreover, a more in-depth analysis of each single condition makes it possible to note 

that monitoring value measured on July 29th fulfilled only the Criterion 0 condition, and it was 

included in the accelerating dataset thanks to the tolerance factor introduced in the algorithm. 
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In fact, starting from July 30th, each single point verified all the conditions included in the 

proposed method. Therefore, this date could be taken as a more reliable OOA point, resulting 

in a date even closer to what Suwa et al. (2010) reported in their study. 

Case Study #2: Agoyama Landslide 

The second case study presented in this paper deals with a collapse occurred in December 1972 

about 5 km to the northwest of Fukui City, Japan (Saito 1979). As reported by the author, the 

triggering factor may be attributed to excavation works as borrow-pit at the foot of the slope. 

First signs of instability were observed starting from October 4th, when a long-continued crack 

was found on a hillside of Agoyama. It was then decided to set up measuring instruments in 

order to sample landslide displacements. Additionally, a failure forecasting analysis was 

performed, and the person in charge of the site was informed concerning the phenomenon 

evolution. The analysis met some difficulties related to irregular movements in the final stage 

and partial failures of the landslide body, resulting in a slightly anticipated forecasting of the 

collapse, which happened on December 2nd at 1:30 AM (Saito 1979). 

As reported by the author, displacement recorded by the instrumentation installed on-

site (Figure 7) amounted to 10 mm per day in the first phase of the monitoring activity, reaching 

20 mm/d at the end of October and escalated up to 100 mm/day after November 20th (Saito 

1979). On the basis of these information, the OOA date that will serve as a comparison for the 

algorithm application for this case study could be placed on the moment where displacement 

increased significantly, i.e. November 20th, 1972.  
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Figure 7: Displacement and acceleration curves for the Agoyama landslide – dataset digitized 

from Hayashi and Yamamori (1991) 

Results reported in Figure 8 highlight once again the good performances of the proposed 

methodology, which correctly identified the accelerating trend starting from the displacement 

measured on November 23rd. According to this outcome, it is possible to place the OOA for this 

case study on November 20th, which corresponds to the reference value previously defined. 

Another possible interpretation of the outcome could take into account the displacement 

measured on November 21st, which does not satisfy the Criterion 3, as part of the accelerating 

trend together with the previous data that is instead classified as an accelerating point. This 

choice would place the onset of acceleration on November 18th, some days before the previous 

estimation.  Even if this prevision is slightly anticipated if compared to the OOA reference 

value, it could be still considered a good result in terms of definition of the accelerating trend.  
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Figure 8: Results obtained from the application of the algorithm to the Agoyama Landslide 

dataset (displacement data recorded during the monitoring period from October to December 

1972) 

Case Study #3: Tuckabianna West Landslide 

The third case study reported to outline the algorithm application regards a translational planar 

rockslide occurred in Tuckabianna West open pit mine, Australia. The collapse involved 

1.2x105 m3 of material and was likely triggered by excavation works (Glastonbury and Fell, 

2002). Pre-collapse rockfall events were observed in the area 10 days before the main collapse. 

It should be noted that these phenomena occurred before the beginning of the tertiary creep 

phase, which lasted approximately 6 days (Moretto et al., 2017). Monitoring activities involving 

surface surveys were issued after the identification of a tension crack in the upper part of the 

slope. However, as reported by Glastonbury and Fell (2002), mining activities continued even 

during the acceleration phase.  
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The onset of acceleration reference value for this case study was defined by taking into 

consideration all information reported on the phenomenon evolution by authors mentioned in 

the previous paragraph. In particular, displacement data trend (Figure 9) and considerations 

regarding the acceleration evolution over time allow to identify the beginning of the 

accelerating phase between March 4th and 5th. 

 

Figure 9: Displacement and acceleration curves for the Tuckabianna West landslide – dataset 

digitized from Glastonbury and Fell (2002) 

Following the same process presented in previous case studies, the displacement dataset 

was elaborated by applying the algorithm to each monitoring data simulating a real-time 

acquisition. As evidenced by results reported in Figure 10, it is possible to observe a clear 

distinction between the constant velocity phase, characterized by a linear displacement trend, 

and the subsequent accelerating stage that ultimately led to the slope collapse. According to the 

outcomes provided by the software, the monitoring data sampled on March 4th was the first one 

to fulfil all conditions to achieve Criterion 3 requirements, while the following value managed 

to satisfy Criterion 1 only. However, starting from March 7th, the displacement trend 
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highlighted an evident accelerating behaviour, and every monitoring measure from this point 

on reached the level defined by Criterion 3. According to these outcomes, the OOA date for 

this case study could be placed approximately on March 4th, which is in good agreement with 

the reference value retrieved from available literature. 

 

Figure 10: Results obtained from the application of the algorithm to the Tuckabianna West 

Landslide dataset (displacement data available starting from 1st February) 

It is possible to identify a consistent behaviour in all three case studies reported in this study. 

In particular, the first part of each dataset is characterized by a linear trend (i.e. constant 

displacement rate) and is mostly limited by the Criterion 1 condition, which requires an 

increasing displacement rate. On the other hand, the second part presents an upward trend that 

consistently fulfil all conditions imposed by the methodology, effectively representing the 

accelerating stage of the landslide. However, it is possible to observe the occurrence of some 

false positives in the analysis, represented by monitoring points that fulfilled all the conditions 

despite not being part of the acceleration phase. These inaccuracies could be attributed to local 
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fluctuations in the displacement dataset (e.g. small displacement increase, slight upward trend, 

etc.) and to the digitized dataset quality, which cannot be considered as accurate as the original 

monitoring dataset. From a general point of view, possible solutions could involve the 

application of filters and smoothing procedures on raw monitoring data. Either way, it should 

be underlined that in both cases the false alarm phase lasted no more than two consecutive 

measures, thereby resulting easily detectable when following datasets did not activate one of 

the algorithm sub-criteria. 

Conclusions 

The application of technological innovations to the geotechnical field has led, in recent years, 

to the development of new monitoring tools featuring improved efficiency, reliability and 

accuracy. These innovative devices could significantly improve the performances of an Early 

Warning System, by exploiting automatic processes for data acquisition, elaboration, and 

dissemination of alarm messages. In this context, a methodology dedicated to the identification 

of critical events, represented by increasing displacement rates, could be extremely useful in 

terms of risk management and prevention. However, despite the detailed analyses performed 

on failure forecasting models, studies focused on the identification of a landslide Onset-Of-

Acceleration (OOA) are far less common in literature.  

In this paper a newly developed methodology is presented, intended to provide a multi-

criteria algorithm able to identify automatically an accelerating trend starting from 

displacement monitoring data. In particular, the proposed approach relies on a drop-down 

procedure composed of four steps that are applied to each single data sample, in order to identify 

specific variations in the landslide behaviour. The methodology was designed for the 

integration into innovative monitoring systems, featuring automatic procedures and high 
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sampling frequencies. Additionally, the model development involved a series of parametric 

analyses, aimed to calibrate the main parameters included in the algorithm.  

Three case studies are reported in this paper, to present a practical application by 

simulating a real-time acquisition in a scenario where a collapse was observed. Outcomes of 

the analyses performed on available displacement datasets evidenced how the algorithm 

allowed to identify two separate stages of the phenomenon evolution over time. The comparison 

of the onset-of-acceleration date estimated by the proposed procedure with the acceleration 

curves reported for each case study underlined the positive result of the multi-criteria 

methodology in locating the beginning of the critical acceleration phase. It should be however 

noted the presence of some isolated false positives, likely attributable to the quality of the 

displacement datasets.  

The algorithm is currently being tested in synergy with another multi-level early 

warning routine, analysing data sampled from automatic monitored devices installed in 

different sites. Specifically, the authors are working on the development of an integrated system 

that includes the proposed methodology to identify critical events and describe their evolution 

over time (Valletta et al. 2020). This approach should allow to characterize different typologies 

of accelerating trends with higher accuracy, and to reduce the occurrence of false alarms caused 

by minor acceleration events. 
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