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Simple Summary: This review deals with the general notion of EMT and the main factors regulating 

this process, including transcription factors, microRNAs, reactive oxygen species, exosomes, mi-

crovesicles, and viruses. Articles dealing with EMT in embryonic life, EMT in fibrosis, as well as in 

cancer metastasis are discussed, including those dealing with EMT and the tumor microenviron-

ment, pre-metastatic niches, and cancer stem cells. Subsequently, a more in depth analysis of articles 

reporting EMT in relevant epithelial cancers such as mammary gland carcinomas, prostatic carcino-

mas, and others is provided. Articles that reported results on the use of EMT as a prognostic marker 

are also selected and discussed. In addition, the general notion of MET and, in more detail, of MET 

in sarcomas is discussed. Finally, the use of therapeutic approaches for EMT and MET is addressed. 

Abstract: Historically, pre-clinical and clinical studies in human medicine have provided new in-

sights, pushing forward the contemporary knowledge. The new results represented a motivation 

for investigators in specific fields of veterinary medicine, who addressed the same research topics 

from different perspectives in studies based on experimental and spontaneous animal disease mod-

els. The study of different pheno-genotypic contexts contributes to the confirmation of translational 

models of pathologic mechanisms. This review provides an overview of EMT and MET processes 

in both human and canine species. While human medicine rapidly advances, having a large amount 

of information available, veterinary medicine is not at the same level. This situation should provide 

motivation for the veterinary medicine research field, to apply the knowledge on humans to re-

search in pets. By merging the knowledge of these two disciplines, better and faster results can be 

achieved, thus improving human and canine health. 

Keywords: epithelial-to-mesenchymal transition (EMT); mesenchymal-to-epithelial transition 

(MET); canine tumors; translational medicine  

 

1. Introduction 

Cancer in dogs is one of the major clinical concerns, both in terms of mortality [1]and 

overall incidence [2]. For decades, human and veterinary medicine have been intercon-

nected. This concept is defined as “one health–one medicine”, which has developed over 

the years, promoting the collaboration between physicians and veterinarians [3]. This is 

proven by the numerous comparative studies and animal models for human diseases. 

Many comparative studies have been performed on different tumor types affecting both 

humans and dogs, such as melanoma [4], osteosarcoma [5], and prostatic adenocarcinoma 

[6].  

The approach for collecting scientifically-relevant papers for this review was based 

on a keyword-based overall search in the NCBI PubMed® database of articles related to 

EMT and MET under physiological conditions and in different tumors, independently of 
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the species. As a starting point and to have a wide overview of the topic, the article selec-

tion was based on the inclusion of both original research papers and reviews. The selection 

criteria were based on the previous knowledge of the authors about relevant literature 

and more recent papers on the topics presented in this review, while trying to avoid over-

lapping information and the inclusion of papers with non-univocal results. In addition, 

the main topics chosen were selected among those investigated by various research 

groups, in order to have different perspectives and evaluations. Preconceived exclusion 

criteria were not applied to any articles, thus research performed in a specific geographical 

area or institution was not prioritized. Particular attention was given to the recruitment 

of recent results available on these topics, reporting specific information on the cellular 

and molecular mechanisms supporting, or thought to support, EMT and MET processes 

and EMT/MET-related pathways. Then, the search focused on all available literature re-

garding EMT and MET in the canine species, which was gathered in the present review. 

2. An overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithe-

lial Transition 

2.1. The Metastatic Process Is a Complex and Challenging Multistep Event 

The metastatic process is considered one of the hallmarks of cancer malignancy and 

an advanced stage [7]. The first steps of metastasis begin when malignant cells lose their 

connections with the surrounding cells and extracellular matrix (ECM), gaining motility 

and invasive features [8]. All these morpho-functional changes are possible in epithelial 

tumors because of a process called the epithelial-to-mesenchymal transition (EMT). This 

process is characterized by the downregulation of epithelial features and the prompt acti-

vation of the so-called “master gene regulators”, such that a mesenchymal phenotype is 

gradually developed [9]. Extensive studies have focused on this event, illustrating its role 

in various tumors, and proposed its use for prognostic, diagnostic, and even therapeutic 

approaches [10–12]. However, only a small percentage of circulating tumor cells (CTCs) 

survive this step and exit the circulation through extravasation. This latter process de-

pends on many factors, including the blood flow [13] and endothelium remodeling [14]. 

Moreover, cell plasticity determines the interactions between CTCs and endothelium, al-

lowing extravasation [15]. 

2.2. Epithelial-to-Mesenchymal Transition (EMT)  

Epithelial cells can acquire a mesenchymal phenotype as a consequence of the down-

regulation of epithelial cell hallmarks during the epithelial-to-mesenchymal transition 

(EMT) [16]. Micro-environmental signals triggers EMT. Cells in which the EMT process 

has just began are characterized by stable epithelial cell–cell junctions, apical–basal polar-

ity, and interactions with the basement membrane. Changes in the gene expression and/or 

in the post-translational regulation result in the loss of these epithelial features and the 

acquisition of a mesenchymal phenotype. As a consequence, cells display a fibroblast-like 

morphology and increased cell motility [16,17]. The mesenchymal-to-epithelial transition 

(MET), i.e., the reverse process, can also occur afterwards. An interesting feature of EMT 

is that the cells can also reside in intermediate states and retain both epithelial and mes-

enchymal features. These intermediate states can be different, according to the biological 

context [16,18–20].  

EMT is regulated by several transcription factors, as well as by other factors such as 

microRNAs, reactive oxygen species (ROS), and exosomes. Moreover, EMT is widely de-

scribed in different phases of embryogenesis, fibrosis, and cancer development. 
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2.3. The Regulation of EMT 

Multiple factors are involved in the regulation of EMT. For instance, the major tran-

scription factors (TFs) of EMT include Zeb, TWIST, and SNAIL, and multiple networks 

involving TFs regulate EMT [21].  

2.3.1. Transcription Factors 

Snail1 and Snail2 are induced by a vast plethora of molecules and pathways, such as 

TGF-β [22], Notch signaling [23,24], Wnt pathways [25,26], ROS [27], and hypoxic stress 

[28,29]. The short splicing variants of the transcription factors Singleminded-2 (SIM2s), 

ELF5, and ETS (E twenty-six)-domain transcription factor family member were also 

shown to directly bind the SNAIL2 promoter, to inhibit Snail2 transcription [30,31]. Inter-

estingly, both SIM2s and ELF5 are essential for mammary gland ductal development and 

alveologenesis during pregnancy, and both are frequently lost during breast cancer de-

velopment [30,31]. Mammary gland-specific knockout of either SIM2s or ELF5 hinders 

mammary gland development and also induces EMT-like changes in epithelial cells 

[30,31]. Since zinc fingers and other domains change in different Snail TFs [32], not all 

Snail family members trigger EMT with the same efficiency [33]. Snail family members 

not only repress the CDH-1 gene, as shown by Guaita and colleagues, but are capable of 

repressing other epithelial markers, such as claudins 1, 3, 4, 7, occludins, cytokeratins, and 

mucins [34]. 

Twist-related protein 1 (TWIST1) is a basic helix–loop–helix transcription factor en-

coded by the TWIST1 gene [35], having a basic domain interacting with the core E-box 

sequence “CANNTG”, a helix–loop–helix (HLH) domain that mediates homodimeriza-

tion or dimerization with E12/E47, and a highly conserved C-terminal domain, called 

“Twist box” [36]. Twist is implicated in multiple epithelial cancers through its EMT pro-

moting function and correlates with poor prognosis and invasion [14,37,38]. A role has 

also been described in embryogenesis, where it is defined as “neural crest specifier” for 

its role in neural crest formation, due to its EMT-promoting activity [39]. The interactions 

between Twist and other core EMT transcription factors are controlled by GSK3-mediated 

phosphorylation [40]. An interesting study by Lai and colleagues showed that EMT and 

cancer stemness properties can be obtained upon chronic treatment with TNF-α [40], a 

pro-inflammatory cytokine that activates Twist1 in a NF-κB-dependent fashion [41]. Twist 

represses E-cadherin, not only by binding CDH-1, but also by inducing Snail1 or Snail2, 

as Casas and colleagues showed in a study where knockdown of Snail2 resulted in no E-

cadherin suppression by Twist1 [42].  

The Zeb family members include ZEB1 and ZEB2, which contain multiple independ-

ent domains able to interact with other transcriptional regulators [43]. ZEB1 and ZEB2 

activate N-cadherin and vimentin expression (markers of a mesenchymal-like phenotype) 

and repress E-cadherin binding to E-boxes of the CDH-1 promoter, as well as recruiting 

co-repressors [44]. In particular, E-cadherin repression is obtained by ZEB1 recruitment 

of a chromatin remodeling protein [45]. Phosphorylation of ZEB1 varies in different cell 

types [46], and both ZEB1- and ZEB2-repressing activities can be modulated by post-trans-

lational modifications, such as SUMOylation by Pc2 or acetylation [47]. Nicotinamide-ad-

enine-dinucleotide-dependent histone deacetylase (SIRT1) is recruited by ZEB1 to repress 

the E-cadherin promoter and also induces ZEB and Snail factors, but not Twist [48]. More-

over, ZEB2 mRNA also functions as a competitive endogenous RNA (ceRNA) squelching 

other microRNAs (miRNAs) targeting other transcripts, thus activating their expression 

[49]. ZEB2 mRNA can also be controlled at protein level, for instance by YB-1, a protein 

associated with increased invasion in breast carcinomas [50]. Even steroid and growth 

hormones can upregulate ZEB in diabetic nephropathy and breast cancer [51,52]. In addi-

tion, the miR200 family can regulate ZEB1 and ZEB2 [53] through post-transcriptional 

control. Several other transcription factors have been described as involved in EMT regu-

lation, including Goosecoid [54,55], LBX1 [56–58], FOXC2 [59–61], ETS-1 [62–64], and LEF-
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1 [65–67]. For instance, PRRX1 was found to induce EMT and worsen prognosis in colo-

rectal, gastric, and breast cancers, whereas its silencing suppressed invasion, migration, 

cell proliferation, as well as EMT itself [68–70]. All these non-canonical EMT TFs have very 

specific direct roles in distinct tumors, but also interact with canonical EMT TFs such as 

Snail and ZEB, meaning that they may also indirectly affect EMT [71]. 

2.3.2. MicroRNAs 

miRNAs are non-coding RNA molecules with a 21–23 nucleotide length that regulate 

gene expression at post-transcriptional level [72–74]. MiRNAs regulate invasion and me-

tastasis by targeting the transcripts of a large number of genes involved in EMT/MET. It 

was demonstrated that the loss of miR-200 correlates with the lack of E-cadherin expres-

sion in invasive breast cancer cell lines and breast tumor specimens, suggesting an in vivo 

role for the miR-200 family in EMT [53]. On the other hand, overexpression of individual 

miR-200 members or different clusters represses EMT, by directly targeting and downreg-

ulating ZEB1 and ZEB2. This results in enhanced E-cadherin expression and inhibition of 

murine mammary tumor cell migration and motility [75,76]. 

2.3.3. Reactive Oxygen Species 

Cells undergoing oxidative stress acquire adaptive mechanisms to counteract the po-

tential toxic effects of elevated ROS, by promoting cell survival pathways and factors [77]. 

ROS activate numerous signaling pathways, including matrix metalloproteases (MMPs), 

integrins, EGF, EGFR, VEGF, TGF-β, HIF-1, HGF, NADPH oxidases, and p53 [78–80]. In-

terestingly, ROS play a key role in TGF-β1-induced EMT, primarily through MAPK acti-

vation and subsequently through ERK-dependent activation of the Smad pathway [81]. 

Another example of the role of ROS as second messengers for EMT was demonstrated by 

Bayurova and colleagues, showing that HIV-1 reverse transcriptase enhances tumor 

growth and metastasis formation via ROS-dependent upregulation of Twist [82]. 

2.3.4. Exosomes and Microvesicles 

A new metaphor for the “seed and soil” theory addresses extracellular vesicles as 

“fertilizers” of cancer cells (the “seed”) in their respective host organs (the “soil”) [83]. 

Exosomes are mediators of the crosstalk among metabolic organs, important factors for 

the organ specificity of metastasis [84–86] and EMT inducers [87–89]. Microvesicles are 

small membrane-enclosed structures thought to be shed from a variety of cell types and 

found in several body fluids [90,91]. They are morphologically distinct from exosomes 

and their dimensions are two-fold larger than exosomes. Other differences arise from their 

biogenesis and release [92]. The role of microvesicles has been described in various pro-

cesses, including inflammation and coagulation [93], as well as in tumors [94]. Microvesi-

cles can regulate MMP activity, favoring matrix degradation, a key step in the metastatic 

cascade that is often linked to EMT features [95,96]. Microvesicles can also be secreted and 

delivered to recipient cells, inducing them to undergo EMT [97]. Exosomes and microvesi-

cles are classified as tumor-derived secreted factors (TDSFs), and their role in tumor sig-

naling and metastasis is a topic of research, hopefully leading to new strategies for cancer 

diagnosis, cancer prognosis, and possibly cancer therapy in the future [98–102]. 

2.3.5. Viruses 

Increasing evidence has demonstrated that viruses can also trigger EMT, both in nor-

mal and neoplastic cells [103]. Among these, there are two very important viral groups: 

one is represented by the papillomaviruses, and the other by the coronaviruses. An in-

creasing body of literature has demonstrated an association between high-risk papilloma-

virus infection and the onset of EMT, especially in cervical and oropharyngeal tumors 

[104]. E2, E6, and E7 papillomavirus oncoproteins have been further investigated in cer-
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vical cancers and it was demonstrated that these oncoproteins play a pivotal role in trig-

gering EMT, favoring chemotherapy resistance and promoting a more aggressive biolog-

ical behavior [105,106]. Interestingly, similar findings were also reported in veterinary 

medicine. An equine papillomavirus, i.e., Equus caballus papillomavirus type-2 (EcPV-2), 

also demonstrated this aspect in a species other than humans. Future studies focusing on 

papillomavirus-induced transformation can count on the horse as a promising spontane-

ous animal model. EcPV-2 infection in horses was reported to dysregulate RANKL and 

Wnt pathways [107], and induce EMT [108] in penile squamous cell carcinomas and EMT 

in a laryngeal squamous cell carcinoma [109]. 

Severe acute respiratory syndrome coronavirus-2 (SARS-Co2), the virus responsible 

for the pandemic that started in 2019, has been the focus of much research for the past 3 

years. Interestingly, this virus is not only responsible for causing deaths due to its respir-

atory tropism and systemic dysregulation. Reports have described that SARS-CoV-2 in-

fection in patients with cancer triggers the EMT phenomenon, thus favoring neoplastic 

malignant transformation [110–112]. In particular, a study by Lai and colleagues under-

lined the important oncogenic role of SARS-CoV-2 in triggering breast cancer metastasis 

through Snail upregulation [112]. Another study suggested that the SARS-CoV-2 M pro-

tein induces motility, proliferation, stemness, and in vivo metastasis of triple-negative 

breast cancer [111]. Despite studies reporting that SARS-CoV-2 could also infect felids 

[113], dogs [114], and many other domestic species [115], reports on dogs or other pets 

exhibiting a SARS-CoV-2-induced EMT process are still lacking. 

2.4. EMT in Embryonic Life 

EMT is an important mechanism in different phases of embryogenesis; in fact, most 

tissues undergo different cycles of EMT and its reverse program (MET) [16]. For instance, 

after gastrulation, and during the formation of the neural crest, EMT plays a pivotal role. 

Other tissues/organs, such as the kidneys, need EMT during embryogenesis, to become 

properly functional. Multiple rounds of EMT and MET need to take place [116]. Another 

example of physiologic EMT during embryogenesis is cardiac tissue development, in 

which some of the main signaling pathways, such as Notch, Bmp2, and Wnt/β-catenin, 

drive a primary EMT [117–120]. Cardiac valve formation follows a different path, thanks 

to a very similar process called endothelial-to-mesenchymal transition (EndMT), in which 

endothelial cells detach from vessels and form a mesenchymal phenotype [121]. Moreo-

ver, Ubil and colleagues showed the presence of the reverse process, called the mesenchy-

mal-to-endothelial transition (MEndoT), during revascularization of the myocardium by 

cardiac fibroblast after ischemic cardiac injury [122]. 

2.5. EMT in Fibrosis 

Fibrosis is a natural consequence of the repair of damaged tissue but can often be 

aberrant and uncontrolled, causing organ dysfunction [123]. During fibrosis, resident fi-

broblasts can acquire a smooth muscle cell-like phenotype, becoming myofibroblasts, and 

secrete excessive amounts of ECM [124]. Myofibroblasts are mainly involved in the phys-

iologic remodeling process during healing [125,126]. One of the major drivers of fibrosis 

is TGF-β1, which has an important effect on myofibroblasts [127–129]. This mediator is 

also a critical regulator of EMT signaling and physiologic wound healing [129]. Common 

end-stage kidney fibrosis occurs in 30–40% of diabetic nephropathies [130] and it was pos-

tulated that EMT might play a role in this pathomechanism. EMT induces local fibroblasts 

to become myofibroblasts, as shown by Iwano and colleagues [131]. However, the origin 

of these myofibroblasts remains under debate [132–134]. They might arise from bone mar-

row, pericytes, renal epithelium, and vascular endothelium [135]. Nevertheless, other 

studies suggested that these different origins are not mutually exclusive and can be pre-

sent at the same inflammation site [136].  

Fibrosis is also one of the main events involved in hepatic cirrhosis [137]. During 

chronic liver diseases, the mechanisms driving or counteracting fibrosis are not balanced, 
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leading to a persistent activation of hepatic myofibroblasts [138]. EMT also plays a role in 

this case and can lead to increased deposition of ECM in the hepatic parenchyma [139]. 

During this process, hepatocytes decrease the expression of E-cadherin and zonula oc-

cludens-1 (ZO-1) and replace them with expression of α-SMA, MMP-2, MMP-9, and vi-

mentin [140]. In rats, TGF-β1 was shown to play a pivotal role in liver fibrogenesis [141], 

as it inhibits ECM degradation and promotes its deposition [142–144]. In addition, SMAD7 

is involved in EMT-driven hepatic fibrosis. SMAD7 deletion promotes EMT, whereas 

overexpression protects against it [145,146], which is consistent with the process described 

in different tumors [147–150]. Improving the knowledge about EMT in hepatic fibrosis is 

of paramount importance for the development of possible new targeted therapies. 

In veterinary medicine, a study by Aresu and colleagues used canine spontaneous 

tubulo-interstitial fibrosis to investigate EMT in tubular epithelial cells. The study tried to 

use a canine model to investigate whether tubular epithelial cells actively participate in 

the mechanism of renal fibrosis [151]. The study underlined that EMT of tubular epithelial 

cells might be one of the pathomechanisms involved during renal fibrosis in dogs, as re-

ported in humans [151]. Another study in dogs, focusing on hepatic fibrosis, showed that 

the area and intensity of α-SMA staining in hepatic stellate cells (HSCs) strongly correlates 

with the increased fibrotic stage, giving a more contractile and profibrotic phenotype to 

these cells [152]. α-SMA is used in humans and rodents to confirm activation of HSCs and 

portal myofibroblasts in liver disease [153]. However, the reliability of this protein in dog 

hepatic fibrosis seemed not to be confirmed by other studies [152,154,155]. On the other 

hand, a study by Neumann and colleagues suggested that the plasma concentration of 

TGF-β1, a potent EMT-inducer, could be a good marker for hepatic fibrosis in dogs [156]. 

2.6. EMT in Cancer Metastasis 

In 2008, Trimboli and colleagues were among the first to describe the occurrence of 

EMT in breast cancer, using the Rosa26LoxP reporter mouse model to genetically mark 

tumor epithelial and stromal cells independently and determine their fate during tumor 

progression. EMT resulted as only associated with myc-initiated breast tumors. This 

means that the occurrence of EMT to different degrees depends on the initiating onco-

genes [157]. Various studies have shown quite different results, sometimes being contra-

dictory, and the exact role of EMT during metastasis formation is under debate. Clusters 

of CTCs were found in the bloodstream of cancer patients in several studies, testifying to 

the presence of a collective migration in vivo [158,159]. Plakoglobin, an adherens junction 

protein, was found to be crucial for cluster formation, while its knockdown resulted in 

reduced metastatic spread [160]. Lecharpentier and colleague showed that the majority of 

isolated cells or clusters of CTCs in patients with advanced metastatic non-small cell lung 

cancer (NSCLC) show a dual epithelial–mesenchymal phenotype. This confirmed that 

EMT was an important process for invasion and metastasis in these patients [161]. In 

mouse, the role of Twist in lung cancer was investigated by Yang and colleague, showing 

that interfering with its expression through siRNA3 led to a drastic decrease of the num-

ber of metastases but did not prevent them [37]. In a study by Lu and colleague, it was 

shown that CTCs from human lobular breast cancer were predominantly epithelial, while 

those from HER2+ and triple-negative subtypes were mostly mesenchymal; this provided 

evidence of EMT in human breast cancer specimens [162], consistent with other studies in 

mice [163,164]. In another study, it was demonstrated that EMT inhibition by overexpress-

ing miR-200 does not affect lung metastasis development, even though EMT plays a role 

in chemotherapy resistance [165]. In 2015, Zheng and colleague published a study defin-

ing EMT as “dispensable” for pancreatic cancer metastasis [166]. Aiello and colleague 

showed that EMT markers are expressed in micrometastases, whereas epithelial markers 

are re-expressed upon metastasis growth [167]. The same study also showed a link be-

tween myofibroblasts and metastasis dimension, as the number of associated myofibro-

blasts significantly increased with lesion size [167]. Tran and colleagues reported that 

Snail expression is sufficient to drive breast cancer cells into the circulation, but it must be 
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downregulated once those cells reach the lung, to successfully colonize the pulmonary 

parenchyma [168]. 

2.7. Tumor Microenvironment (TME) 

The tumor microenvironment (TME) consists of extracellular matrix components, es-

pecially collagen, fibronectin, hyaluronan, and laminin, as well as tumor cells, tumor stro-

mal cells (including stromal fibroblasts), endothelial cells, and immune cells (microglia, 

macrophages, and lymphocytes) [169–171]. Modifications of the TME are essential for im-

mune evasion during primary tumor growth [172–175]. Within the TME, different immu-

nosuppressor cells can be found, including myeloid-derived suppressor cells (MDSCs) 

[176,177], cancer-associated fibroblasts (CAFs) [178,179], tumor-associated macrophages 

(TAMs) [180,181] and Treg lymphocytes [182,183], producing immunosuppressive medi-

ators such as IL-10, TGF-β, VEGF, PGE2, and PD-L1 [184]. Tumor cells are able to produce 

TGF-β [185], which is a potent EMT driver. TGF-β also inhibits the immune response al-

tering Fas ligand, IFN-γ, perforin, and other immune-related mediators [186]. A compre-

hensive review of EMT and the tumor microenvironment was provided by Romeo and 

colleagues [187]. 

2.8. Premetastatic Niches and EMT 

Cancer cells need a favorable environment in order to metastasize [188]. Interest-

ingly, primary tumors actively secrete factors to condition ECM and immune cell envi-

ronment of a distant organ, thereby creating a supportive pre-metastatic niche, allowing 

the formation of metastasis [189]. Pre-metastatic niches can contain pro-tumor immune 

cells such as neutrophils [190], monocytes [191], macrophages [192], and bone marrow-

derived cells (BMDCs) [193]. The latter are crucial for generating a suitable microenviron-

ment for the primary tumor and the development of metastasis [194]. Tumor-derived ex-

osomes (TDEs) can even recruit BMDCs through upregulation of pro-inflammatory mol-

ecules at pre-metastatic sites [195]. Hsu and colleagues showed that BMDCs cells can se-

crete extracellular vesicles containing miR-92a, specifically promoting lung cancer metas-

tasis in the liver [196]. In addition, hypoxia can drive EMT [28,29,197] and promote pre-

metastatic niche formation through HIFs and VEGFs [198]. Platelets were found to be cru-

cial for the promotion of metastasis in some cancers, by improving survival of CTCs 

[199,200] and favoring the development of pre-metastatic niches [201]. In a study on a 

Lewis lung carcinoma spontaneous metastatic model, the knockout of the platelet ADP 

receptor (P2Y12) led to decreased lung fibronectin, a major component of pre-metastatic 

niches, resulting in decreased pulmonary metastasis [202]. As P2Y12 is a target for com-

mon anti-platelet drugs, it may be developed into a new target against metastasis [203]. 

2.9. EMT and Cancer Stem Cells (CSCs) 

Stochastic genetic and/or epigenetic mutations in single cells were initially thought 

to be the cause of tumor heterogeneity. These changes were supposed to induce a clonal 

selection of cells with growth advantages. More recently, a hypothesis considering the 

involvement of cancer stem-like cells (CSCs) sustaining cancer progression has been for-

mulated [204,205]. Subsequently, CSCs were found to be involved in drug resistance and 

metastatic dissemination [206–209]. Another hypothesis, which reconciles both above-

mentioned theories, suggests that cancer cell phenotypic plasticity, shifting between CSC 

and non-CSC states, is responsible for the evolution and maintenance of cancer [210] and 

that “stemness” in cancer cells could be a state, rather than an entity [211]. During the last 

decade, EMT has been identified as one of the key mechanisms that confers stem-cell 

properties. This notion came from a study on mammary gland and breast cancer cells, in 

which Snai2 and Sox9 interplay was found to determine a mammary stem cell fate [212]. 

Afterwards, the association between EMT and CSCs was recognized in many human car-

cinomas [213]. For instance, Rhim and colleagues demonstrated that in vivo pancreatic 
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cancer cells that underwent partial EMT, expressing Zeb1 and E-cadherin, showed stem 

cell properties [164]. Another study showed that in vivo activation of slug and CD87 genes 

through their promoter demethylation was associated with EMT and cancer stem-cell fea-

tures in lung cancer [214]. Interestingly, many EMT-associated miRNAs inhibit cancer cell 

stemness. However, miR-10b in breast cancer [215] and miR-1207-5p in colorectal cancer 

[216] block tumor-related suppressive signals, facilitating stemness properties [217].  

The relationship between EMT and CSCs has also been investigated in veterinary 

medicine. Pang and colleagues isolated CSCs from a canine mammary carcinoma cell line 

(REM134) and showed that in vitro canine CSCs predominantly express mesenchymal 

markers and have enhanced invasive features. Subsequently, they showed that TGF-β can 

enhance CSCs features inducing EMT, thus increasing the ability to form tumor spheres 

[218]. Another in vitro study focusing on canine and human breast cancer cells showed 

that melatonin can modulate the expression of EMT-related proteins in breast CSCs, re-

sulting in decreased tumor invasion [219]. 

2.10. EMT in Mammary Gland Carcinomas 

Basal-like breast carcinomas, i.e., breast cancers showing triple-negative expression 

of estrogen receptor, progesterone receptor, and HER2 receptor, are among the most ag-

gressive and deadly cancer subtypes, with a high metastatic ability associated with mes-

enchymal features [220,221]. One molecular pathway responsible for the mesenchymal 

phenotype in this cancer is the expression of SNAI2, driven by KRAS, a RAS oncogene 

family member [220]. Transcriptional profiling showed that EMT regulators were ex-

pressed in this carcinoma, but in a heterogenous fashion across the tumor [222]. Subse-

quently, a link between estrogen receptor (ER) silencing and EMT in human breast cancer 

cells was hypothesized. Findings have indicated that the loss of ERα probably results in 

an EMT phenomenon characterized by striking changes in the expression profile of spe-

cific matrix macromolecules [223,224]. High-grade carcinomas present higher numbers of 

cells positive for vimentin, nuclear β-catenin, and CD44, compared to low-grade carci-

noma and benign lesions, suggesting that the breast cancer cell de-differentiation process 

could be related to EMT [220]. Basal-like carcinomas have more mesenchymal features 

compared to the luminal (A and B) and HER2-enriched counterpart and are correlated 

with more extended invasion [224,225]. An interesting series of effects is exerted by ET-1, 

one of the three isoforms of endothelin in mammary tumors, through its receptors ETAR 

(or ETA) and ETBR (or ETB). ET-1 is highly expressed in mammary tumors in humans 

and can modulate angiogenesis, invasion, apoptosis, and the metastatic potential via au-

tocrine or paracrine action [226,227]. Chen and colleagues showed that TAMs induce the 

ET axis in endothelial and breast cancer cells through IL-8 and TNF-α secretion [228,229]. 

It is tempting to speculate that the role of ET-1 is linked to EMT, as it seems to be in other 

tumors such as chondrosarcoma [230]. EMT is widely involved in breast cancer metastasis 

[162,219,231], and research is focusing on its main pathways, to elucidate their role in these 

carcinomas and hypothesize future therapeutic approaches. The main targets are TGF-β 

[232]; silencing of CDH-1, which has shown controversial results [233,234]; Wnt/β-catenin 

pathway [235–237]; Notch [238]; TNF-α, through NF-κB-mediated transcriptional upreg-

ulation of Snail1 [41]; and miRNAs [237,239,240], especially miR-300-targeting Twist to 

inhibit EMT [241]. 

Canine mammary carcinomas are widely studied as a comparative model for hu-

mans [242]. Restucci and colleagues showed a correlation between ET-1 presence in canine 

mammary tumors (mostly G2- or G3-graded) and the malignancy of cancer, also suggest-

ing a positive interaction between hypoxia and ET-1 expression [226]. Breast cancer inci-

dence in humans is related to various environmental chemicals, including synthetic chem-

ical bisphenol A (BPA) [243]. BPA is the main component used in the manufacturing of 

polycarbonate plastic, can be found in many common household products, and is present 

in air and drinking water [244,245]. An interesting study by Zhang and coll. showed that 

BPA stimulates EMT of estrogen negative breast cancer cells via FOXA1 signals [246]. As 
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pet dogs fed with canned food showed high circulating BPA concentrations in serum, it 

would be intriguing to understand if this chemical product can induce EMT and impact 

canine mammary carcinoma incidence [247]. Another study investigating EMT in canine 

mammary carcinomas showed a positive correlation between E-cadherin+/vimentin+ cells 

and a higher tumor grade, and also reported some preliminary results on the possible role 

of SNAIL/SLUG transcription factors in the onset of metastasis, inducing EMT and subse-

quently MET. The study had some limitations, namely a restricted analysis of EMT mark-

ers and a small case number, but represents a promising starting point to focus future 

research on finding some meaningful predictive values of clinical outcome for canine car-

cinomas [248]. 

2.11. EMT in Prostatic Carcinomas 

Prostatic tumors are a major cause of death in the human male population. Androgen 

deprivation therapy, one of the most common therapies against locally advanced and met-

astatic disease, is often ineffective [249]. The presence of an EMT-like phenotype has also 

been reported in prostatic tumors [250] and plays a role in both resistance to treatment 

and metastasis [251]. In prostate cancers, androgen signaling is dysregulated, allowing 

these hormones to suppress E-cadherin expression, and activate mesenchymal marker ex-

pression [252] and Snail [253]. Despite this, conflicting results have been published in re-

cent years about the exact link between androgens and EMT [254–258]. Estrogens also 

play a role in prostate cancer through prostatic estrogen receptor alpha (ER-α) and beta 

(ER-β), whose expression patterns gradually differ during cancer progression [259]: ER-β 

inhibits the EMT process due to its inhibitory action on HIF-1α and Snail [260], while ER-

β2 and ER-β5 variants can stabilize HIF-1α and favor hypoxic genes expression in prostate 

cancer [261]. EMT in prostatic cancer is promoted by both hypoxia and TGF-β signaling 

[262]. EGF and EGF receptor (EGFR) are aberrantly expressed in both androgen-inde-

pendent and metastatic prostate cancers, with high EMT-related features, and are strongly 

associated with an aggressive phenotype, a poor clinical prognosis, a high Gleason score, 

and a reduced survival rate [263]. Moreover, EGF can induce Twist1 expression and pros-

tate cancer cell invasion through a ROS/STAT3/HIF-1α signaling cascade [264]. Twist1 

expression causes an increased expression of fibronectin and N-cadherin, and a concur-

rent E-cadherin decrease [265]. 

Evidence of EMT in canine prostatic cancers is available and comprises overexpres-

sion of vimentin [266], repression of E-cadherin expression [267], changes in β-catenin lo-

calization [268], loss of E-cadherin, and β-catenin translocation in prostatic metastases 

[269]. Taken together, the growing body of literature in canine prostatic cancer and EMT 

lays the basis for the possible use of a canine spontaneous animal model to further inves-

tigate treatment options or early prognostic markers. 

2.12. EMT in Other Carcinomas 

A high number of studies have investigated the role of EMT in the invasive tumor 

front (ITF) of oral squamous cell carcinoma (OSCC) and tongue squamous cell carcinoma 

(TSCC). In oral cancers, the morphological and functional features of the ITF are sugges-

tive of the biological aggressiveness of oral cancers, showing cells with an increased ag-

gressive metastatic potential [270]. The ITF shows increased cell invasion, motility, and 

several features of EMT, including vimentin expression [271], loss of E-cadherin [272], loss 

of claudins [273], and loss of laminin 5 [274]. In TSCC, an interesting link between EMT 

and tumor “budding” was studied, demonstrating that high-intensity tumor budding is 

associated with reduced E-cadherin expression and enhanced vimentin expression [275]. 

Tumor buddings show EMT features in esophageal adenocarcinomas, endometrial carci-

nomas, and colorectal carcinomas, and were shown to be a prognostic marker in colorectal 

and rectal carcinomas [276–279]. As tumors initiate inflammation, mediators and cyto-

kines such as COX-2/PGE2, IL-6, ROS, RNS, miRNAs, and NF-κB are often involved in a 

series of cancers [280,281]. The role of COX-2/PGE2 was investigated in rectal cancers, 
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showing that COX-2 expression was related to higher tumor stages. Interestingly, its ex-

pression was higher in metastatic lesions than in primary tumor lesions and related to 

lower E-cadherin expression, indicating that it probably induces an EMT-like phenotype 

[282]. This link between EMT and COX-2 could lead to future therapeutic approaches, as 

shown by the fact that the therapeutic role of COX-2 has been extensively studied, includ-

ing in breast carcinomas and OSCC [272,283,284]. 

Concordant results have been achieved in veterinary medicine: in dogs, SCCs fre-

quently have either oral or cutaneous origins, and a study by Nagamine and colleagues 

comparatively investigated EMT and the histological grading between these two SSCs. 

OSSCs resulted in a lower expression of β-catenin, desmoglein, and E-cadherin compared 

with the cutaneous ones. This lower expression of epithelial markers in the ITF and the 

presence of a few N-cadherin and vimentin immunolabelled cells was indicative of an 

EMT process in the tumor cells, predicting the biological behavior of canine SCCs. These 

results suggest that the investigation of the EMT process in canine oral and cutaneous 

squamous cell carcinomas may allow a more accurate prediction of their biological behav-

ior [285]. Another more recent study underlined the importance of SLUG in promoting 

migration and invasion through EMT induction in a canine oral squamous cell carcinoma 

cell line [286]. 

The EMT process in canine melanomas has recently been described both in vitro and 

in vivo. A study from Schmid and colleagues described in vitro the EMT process in canine 

melanoma primary cell lines mostly obtained from amelanotic oral malignant melanomas 

[287]. On the other hand, an in vivo study confirmed the EMT process in canine melano-

mas characterized by expression of ZEB and Snail in tumor cells [288]. 

2.13. EMT as a Prognostic Marker 

One of the aims of studying the EMT at different stages of cancer and metastasis is to 

find out whether it is possible to use it as a prognostic marker. Increasing evidence in 

many cancer types suggests that the presence of cells undergoing EMT could predict prog-

nosis and biological behavior. In order to establish EMT-related prognostic markers, stud-

ies focused on different levels of EMT regulation are needed [289–291]. For instance, in 

human breast cancers, the loss of E-cadherin expression was successfully related to poor 

prognosis [292,293]. Martin and colleagues showed that the expression of the EMT master 

regulators Snail1, Slug, and Twist might be directly associated with higher mortality and 

metastasis in human breast cancer [294]. Similar results regarding EMT regulator expres-

sion were published for hepatocellular and ovarian carcinoma in humans [295–298]. Re-

garding the bladder, cancer can occur as muscle invasive bladder cancer (MIBC) or non-

muscle invasive bladder cancer (NMIBC), the first having a worse prognosis and a five-

year-survival rate of <50% [299]. In a study focusing on E-cadherin, vimentin, and Twist 

expression in bladder cancer, only vimentin seemed to be an independent predictor of 

cancer progression and reduced survival [300]. Cao and colleagues conducted a gene set 

variation analysis (GSVA), establishing a correlation between EMT and the transition 

from NMIBC to MIBC, and eventually developed an EMT signature that can be used as a 

negative prognostic marker [301]. Even though successful results have been published, 

EMT-related prognostic markers are not yet widely used for prognosis in clinical routine. 

One problem is that, in different locations of the same tumor, the expression of EMT mark-

ers can differ because of tumor heterogeneity. Moreover, these studies did not provide 

clear cut-offs for prognosis, which are instead present in other prognostic methods, such 

as the mitotic index, Ki67, Her2, and others [302–304]. One possible future application of 

these wide oncogenomic data sets is the creation of personalized medicine programs, al-

lowing clinicians to obtain a cancer-specific and patient-specific prognosis [305]. 

In veterinary medicine, similarly to what was observed in human breast cancer, E-

cadherin loss in canine mammary tumors has been related to a poor prognosis [306,307]. 

Another possible and interesting approach, and also more feasible in veterinary medicine, 
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was described in a recent study. Furusawa and colleagues elegantly showed how per-

forming immunocytochemistry (IHC) on cytology samples of canine and feline tumors 

allowed a fast assessment of tumor malignancy based on the IHC expression of EMT 

markers [308].  

2.14. Mesenchymal-to-Epithelial Transition (MET) 

Mesenchymal-to-epithelial transition (MET) is the reverse process of EMT, in which 

mesenchymal cells acquire an epithelial phenotype; it is observed under physiological 

conditions and in cancer [309]. In embryogenesis, many examples have been described 

[310]. MET is required for the formation of Langerhans islets during pancreatic develop-

ment [311]. In heart embryogenesis, cardiac mesodermal cells acquire their mesenchymal 

phenotype through EMT at gastrulation [312], but then cardiac progenitors quickly be-

come organized into a two-layered epithelium via MET. A secondary EMT occurs, and 

mesenchymal cells arising from this delamination form the endothelial cell lining of the 

heart through another MET, forming an endocardial tube surrounded by the myocardial 

epithelium. These tubes lead to the formation of the four compartments of the primordial 

heart. Another round of EMT, in this case more precisely EndMT, allows the formation of 

the endocardial cushion, i.e., the cells that later will assemble into the atrioventricular val-

vulo–septal complex [313]. In addition, nephrogenesis requires multiple rounds of EMT. 

In mammals, kidney arises from the metanephric mesenchyme and the ureteric bud. Re-

ciprocal inductive interactions transform the ureteric bud into the renal collecting system, 

while the metanephric mesenchyme condenses and subsequently undergoes MET, to 

form to the nephrons [314]. The failure of cells to undergo MET can lead to the develop-

ment of the pediatric kidney malignancy defined as Wilms’ tumor [315].  

The role of EMT in cancer metastasis was apparently contradicted by findings reveal-

ing that distant metastases were largely composed of cells morphologically resembling 

primary tumor cells, instead of being composed of cells with a mesenchymal-like mor-

phology. In some cases, metastatic lesions of carcinomas showed even higher E-cadherin 

levels than in the primary tumor [316–318]. To explain how this is possible, it could be 

argued that epithelial cancer cells are able to escape from the primary tumor site and reach 

distant sites for metastasis. This is in contrast with the strong evidence of a positive corre-

lation between the loss of the epithelial phenotype and metastatic potential [319]. To fur-

ther investigate this, Yates and colleagues cocultured human prostate carcinoma cells with 

hepatocytes, showing that this led to an increased expression of E-cadherin, and demon-

strating that phenotypic plasticity can occur late in prostate cancer progression at the site 

of ectopic seeding [320]One mechanism for the re-expression of E-cadherin in ectopic tis-

sues was the loss of CDH-1 promoter demethylation, probably induced by the TME of the 

host organ [321]. These data and other studies provide a proof of principle that carcinoma 

cells may undergo MET, regaining E-cadherin, in response to the host organ microenvi-

ronment, to establish connections with the resident, non-neoplastic epithelial cells 

[322,323]. 

2.15. MET in Sarcomas 

EMT in carcinomas is a widely studied mesenchymal state reversion involved in the 

pathogenesis of several carcinomas. Is it possible that, in sarcomas, a similar reversion 

occurs from a mesenchymal to an epithelial phenotype? Evidence of MET in sarcomas has 

been published in several studies, such as in synovial sarcomas [324], chondrosarcomas 

[325], epithelioid sarcomas [326], and leiomyosarcomas [327]. MET in sarcomas is charac-

terized by an increased expression of classical epithelial markers, while tumor cells still 

predominantly express classical mesenchymal markers [328]. Epithelial markers in sarco-

mas show a higher expression and can be used as prognostic markers [329–333]. 

MET can be induced by several signaling pathways and cytokines, including c-MET 

[334]; platelet-derived growth factor receptor (PDGFR); fibroblast growth factor receptor 

(FGFR) through Fox-2 regulation [335]; TGF-β1, insulin-related growth factor 1 receptor 
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(IGF1R), and regulatory kinases, such as phosphoinositide 3-kinase (PI3K), AKT, and 

mammalian target of rapamycin (mTOR) [309,322,324,336]. MicroRNAs are known to reg-

ulate EMT [337] and were also described as regulating MET [338–341]. MicroRNA cluster 

302–367 was found to accelerate MET and induce somatic cell reprogramming [342]. One 

example is miR-147, found to primarily act by increasing E-cadherin expression and de-

creasing ZEB1 expression, which is a direct target. This results in the inhibition of cell 

motility and invasion in mouse cancer models [341]. ZEB1 is also targeted by miR150, in 

a similar pathway [340]. These data provide knowledge for the establishment of new prog-

nostic markers, especially in tumors such as leiomyosarcoma or synovial sarcoma [343], 

in which the low incidence in humans does not help conduct research and statistical anal-

ysis. 

Canine sarcomas, especially osteosarcomas (OSA), are in focus for comparative stud-

ies with humans, because they have a higher incidence, representing 9–15% of all cutane-

ous or subcutaneous tumors and 10–15% of all malignant tumors in dogs. It seems that 

20% of these tumors originate in the bone and 80% is represented by soft tissue sarcomas 

(STS) [344,345]. Unfortunately, currently there are no studies focusing on the MET process 

in canine OSA. Another canine sarcoma that was widely characterized in vitro [346], and 

well-established in a murine xenotransplant model using canine cells [347,348] and in 

spontaneous tumors [349] is canine histiocytic sarcoma. This canine tumor represents a 

counterpart of a rare disease in humans, predominantly affecting the skin and soft tissues 

or occurring systemically [350,351]. This tumor has a very poor prognosis and an ideal 

treatment scheme is still lacking in both species [352]. For this reason, canine histiocytic 

sarcoma is a very interesting translational animal model, especially due to the relatively 

high prevalence of this tumor in dogs [353]. Recently, MET has been described in a histi-

ocytic sarcoma cell line (DH82) in vitro, characterized by increased expression of epithelial 

markers at protein level, namely E-cadherin and cytokeratin 8, and activation of pathways 

involved in MET at transcriptome level. These changes were associated with decreased 

cell motility and invasion on matrigel, which were interpreted as a decreased aggressive 

biological behavior. Based on the in vitro results, it was postulated that MET in canine 

histiocytic sarcoma could be used as a favorable prognostic factor [346]. The authors 

would like to point out that histiocytic sarcoma is discussed in this section because, de-

spite a non-mesenchymal cell origin, the MET in these cells results in decreased tumor 

invasion, similarly to human sarcomas undergoing MET. Investigations of MET in sarco-

mas in canine tumors remains an open field in veterinary medicine. To date, only data 

from preliminary studies on canine perivascular wall tumors are available [354]. 

2.16. Therapeutic Approaches for EMT and MET 

The immune response is one of the key targets studied in order to obtain tumor re-

gression. Research has focused on the transfer of naturally occurring or gene-engineered 

T cells, called adoptive immunotherapy [355], and on re-activating these T cells through 

the action of immune checkpoint inhibitors [356]. The most interesting results in various 

cancers come from studies of three antibodies: anti-programmed cell death protein 1 (anti-

PD-1), anti-programmed cell death protein ligand 1 (anti-PD-L1), and anti-cytotoxic T-

lymphocyte antigen 4 (anti-CTLA-4) [183,357–360]. A large number of patients show ac-

quired or intrinsic resistance. The latter is possible because the genomic and epigenomic 

instability of transformed cells allows certain resistant phenotypes to be naturally selected 

[361]. Acquired resistance occurs when single tumor cells are able to survive or escape 

immunity. One perfect example is provided by the exploitation of immune homeostasis 

mediators by cancer cells, such as PD-1 in response to IFN-γ [362]. A study by Mak and 

colleagues showed a positive correlation between the EMT signature and the high expres-

sion of several immune checkpoints, including PD-1, PD-L1, PD-L2, B7-H3, OX40, OX40L, 

CD137, TIM3, LAG3, and CTLA4 [363]. EMT is also responsible for drug resistance to anti-

cancer chemotherapies [213,364]. For instance, in preoperative chemotherapy-treated pa-
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tients with esophageal cancer, both increased SNAIL1 and decreased E-cadherin expres-

sion were predictive of poor chemotherapy response and lower overall survival [365]. Can 

EMT be targeted to favor tumor regression in carcinomas? The microRNA-200 family is 

proven to be a potent repressor of EMT [53], and the upregulation of some of its members 

can increase sensitivity to chemotherapy in both chemoresistant prostate carcinoma and 

pancreatic cancer cells [366–368]. 

An interesting new approach in cancer therapy research is the use of nanocarriers, 

usually made of noble materials. One of the advantages of these nanostructures is that 

they overcome most of the obstacles found with traditional drugs, such as the lack of spec-

ificity for cancer cells [369]. Nanocarriers do not cause cytotoxicity [370] and have intrinsic 

properties, so that the use of unmodified nanoparticles exerts different effects [371]. 

Arvizo and colleagues showed that administration of unmodified gold nanoparticles 

(AuNPs) induced a reversion of EMT in ovarian cancer models, inducing a higher expres-

sion of E-cadherin, and lower expression of vimentin and Snail [372]. Another study of a 

similar cancer model showed that AuNPs also induced higher sensitivity to cisplatin [373]. 

Similar studies have also been published for pancreatic cancer [374]; for melanoma, where 

AuNPs also reduced metastasis [375]; and for others [376,377]. Some studies focused on 

the delivery of small molecules such as short interfering RNAs or miRNAs, for instance 

those of the miR-200 family, to reduce metastasis and tumor growth [378,379]. In the fu-

ture, one possible application of this knowledge would be directly targeting cancer cells 

undergoing EMT, to block their progression towards increased proliferation, acquisition 

of stem-like property, increased metastatic potential, and chemoresistance. 

Cytotoxic T lymphocytes (CTLs) mainly use the perforin/granzyme pathway to de-

stroy target cells, including cancer cells [380]. Interestingly, it was shown that cells with 

experimentally-induced high expression of Brachyury, an EMT inducer, had decreased 

susceptibility to lymphocyte-mediated killing [381]. Another link between EMT and im-

mune escape was hypothesized by Akalay and colleagues, in a study where MCF-7 hu-

man mammary carcinoma cells underwent EMT and exhibited reduced susceptibility to 

CTL-mediated lysis. This was possible through stable expression of SNAIL or after pro-

longed exposure to TNF-α [382]. Interestingly curcumin, a phytochemical derived from 

Curcuma longa, showed EMT repression in the same cancer cells [383]. Nonetheless, no 

therapeutic strategy to date has specifically targeted EMT to obtain an increase of CTL 

activity. 

Vimentin is highly expressed in carcinoma cells that undergo EMT, and new drugs 

targeting vimentin might lead to improvements in cancer therapy. Withaferin-A (WFA) is 

a steroidal lactone derived from Withania somnifera, a medicinal plant commonly used in 

India, and showed anti-cancer properties, including the repression of tumor growth and 

tumor-associated angiogenesis [384,385]. By focusing on the exact mechanisms of WFA, it 

was discovered that it acts through the degradation of vimentin [386]. Another study also 

showed that knockdown of vimentin in cancer cells makes them less sensitive to WFA 

[387]. The latter results were obtained in sarcoma cells and are promising for the future 

development of anti-vimentin therapies in soft tissue sarcomas (STS) [387]. Another prom-

ising approach in veterinary medicine was described in vitro by Armando and colleagues, 

infecting canine histiocytic sarcoma cells with an oncolytic virus, namely canine distem-

per virus-Onderstepoort (CDV-Ond). This induced a perinuclear accumulation of vi-

mentin that in turn resulted in decreased cell motility and invasion of matrigel by tumor 

cells [346]. An interesting therapeutic approach for canine mammary tumors was reported 

by Ren and colleagues, showing that miR-124 regulates canine mammary carcinoma 

growth and EMT in vitro by targeting CDH2, and thus suggesting a potential therapeutic 

strategy against canine mammary carcinoma [388]. 
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3. Conclusions 

This review provides an overview of knowledge about the EMT and MET processes 

in both human and canine species. However, to answer the question “how far have we 

come with EMT and MET knowledge in canine tumors?”, it is evident that human medi-

cine is advancing at a different pace. All relevant findings in veterinary medicine fields 

are summarized in Table 1. While a large amount of information is available for humans, 

veterinary medicine is not yet at the same level. This situation should not discourage, but 

rather motivate, veterinary medicine researchers to apply the knowledge from the human 

counterparts to research in pets. By merging the knowledge from these two disciplines, 

better and faster results can be reached, thus improving human and canine health. 

Table 1. Main results of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial 

transition (MET) reported in the canine species. 

Type of Disease Type of Process Main Results Study Conditions Ref. 

renal fibrosis EMT 

proved EMT of tubular 

epithelial cells during renal 

fibrosis  

in vivo [151]  

hepatic fibrosis EMT 

α-SMA staining in hepatic 

stellate cells strongly 

correlates with an increased 

fibrotic stage 

in vivo 
[152], but not confirmed 

by [154,155] 

hepatic fibrosis EMT 

TGF-β1 plasma concentration 

could be a good marker for 

hepatic fibrosis  

in vivo [156] 

mammary 

carcinoma 
EMT 

TGF-β induces EMT in cancer 

stem cells, enhancing tumor 

sphere formation 

in vitro [219] 

mammary 

carcinoma 
EMT 

melatonin modulates EMT-

related protein expression in 

cancer stem cells resulting in a 

decreased tumor invasion  

in vitro [220] 

mammary 

carcinoma 
EMT 

correlation between ET-1 and 

the malignancy of the 

neoplasm, suggesting a 

positive interaction between 

hypoxia and ET-1 expression 

in vivo [227] 

mammary 

carcinoma 
EMT 

positive correlation between 

E-cadherin+/vimentin+ cells 

and higher tumor grade 

in vivo [250] 

mammary 

carcinoma 
EMT 

E-cadherin loss is related to a 

poor prognosis 
in vivo [308,309] 

mammary 

carcinoma 
EMT 

miR-124 regulates EMT by 

targeting the CDH2 gene 
in vitro [388] 

prostatic  

carcinoma 
EMT 

EMT in canine prostate gland 

carcinoma features vimentin 

over-expression, E-cadherin 

loss and β-catenin nuclear 

translocation 

in vivo [268,269,270,271,] 

oral and cutaneous 

squamous cell 

carcinoma 

EMT 
oral squamous cell carcinoma 

undergoes EMT showing an 
in vivo [287] 
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N-cadherin and vimentin 

expression, and a 

lower expression of β-catenin, 

desmoglein, and E-cadherin 

compared to cutaneous 

carcinoma  

oral squamous cell 

carcinoma 
EMT 

importance of SLUG in 

promoting migration and 

invasion through EMT 

induction in a canine oral 

squamous cell carcinoma cell 

line 

in vitro [288] 

melanoma EMT 

the EMT process is 

characterized by secretion of 

biologically-active MMP2 

in vitro [289] 

melanoma EMT 

the EMT process is 

characterized by ZEB and 

Snail expression in tumor cells 

in vivo [290] 

histiocytic sarcoma MET 

increased expression of 

epithelial markers (E-cadherin 

and cytokeratin 8) associated 

with a decreased aggressive 

biological behavior of tumor 

cells 

in vitro [348] 

α-SMA: alpha smooth muscle actin; TGF-β1: tumor growth factor beta 1; ET-1: endothelin 1; E-cad-

herin: epithelial cadherin; miR: microRNA; CDH2: cadherin 2; N-cadherin: neural cadherin; SLUG: 

Zinc finger protein SNAI2; MMP2: matrix metalloprotease 2; ZEB: zinc finger E-box binding home-

obox; Snail: Zinc finger protein SNAI1. 
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