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Abstract
Consider a large labeled graph (network), denoted the target. Subgraph matching is
the problem of finding all instances of a small subgraph, denoted the query, in the
target graph. Unlike the majority of existing methods that are restricted to graphs
with labels solely on vertices, our proposed approach, named can effectively handle
graphs with labels on both vertices and edges. ntroduces an efficient new vertex/edge
domain data structure filtering procedure to speed up subgraph queries. The proce-
dure, called path-based reduction, filters initial domains by scanning them for paths
up to a specified length that appear in the query graph. Additionally, ncorporates
existing techniques like variable ordering and parent selection, as well as adapting
the core search process, to take advantage of the information within edge domains.
Experiments in real scenarios such as protein–protein interaction graphs, co-au-
thorship networks, and email networks, show that s faster than state-of-the-art sys-
tems varying the number of distinct vertex labels over the whole target graph and
query sizes.

Keywords Subgraph isomorphism · Domain reduction · Path-based
reduction · Labelled graphs

1 Introduction

Graphs are mathematical objects used to represent the overall topological relationship
among a given set of entities. Entities can be represented by vertices, while their
pairwise relationships can be represented by edges. Such a topological structure is
often enriched with labels that represent specific properties of vertices and edges.
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Applications abound. In computational chemistry, atoms are modelled as vertices
labelled with atom symbols, and edges represent chemical bonds (Balaban 1985).
Living cells are often modelled via protein–protein interaction networks (Stelzl et al.
2005), where vertices are proteins and edges are their interactions. Vertex labels may
denote functional properties of a protein, and edge labels might denote the type of
interaction, for example, physical bond or expression correlation. Similar models are
employed to represent a wide variety of phenomena of biological systems (Clark
et al. 2021), and, in general, to represent relationship data by means of heterogeneous
networks (Petković et al. 2022; Bing et al. 2023). In social science, graphs are used to
represent social networks, in which vertices are persons and each edge represents a
type of social relationship (Zheng and Skillicorn 2017).

A key step in analysing graph structures is to search for a specific substructure,
often called a subgraph query, within a given target graph. The goal is to find all or a
given number of occurrences of the query within the target graph. The correspon-
dence or mapping between query and target vertices of each occurrence can help to
recognize functional modules in biological networks (Milo et al. 2002), to detect
hardware trojans (Piccolboni et al. 2017), to identify reusable patterns in software
designs (Chaturvedi et al. 2018), or to optimize the geometry of parts and buildings
(Zeng et al. 2019; Cao and Hall 2021). In the realm of web platforms like e-
commerce, social media, and financial systems, fraud detection is a common key task
solved by representing contacts as annotated graphs. Subgraphs of the contact graph
in which particular agents engage with a sizable pool of users to mask their identities
and activities (Pourhabibi et al. 2020) may indicate fraud. Similarly, a cyber attack is
a deliberate and malicious act aimed at compromising the integrity, confidentiality, or
availability of data or services within an information system. The ability to attribute
such attacks is essential for security but is also notoriously challenging. Subgraphs
are queried to identify the initiator of an attack, defining a mapping between an attack
pattern and a history log (Avellaneda et al. 2019). Communication devices (i.e
routers and switches) play a critical role in the reliable functioning of embedded
system networks. They need to be tested in conjunction with many different
configurations that represent operating networks. Starting from an available test
system set and a multitude of test cases. Subgraphs are queried to determine the
mapping that associates the test case elements (the logical network topology) with the
appropriate elements of the test systems (the physical network topology) (Strandberg
et al. 2018). Uveal melanoma (UM) is a highly malignant intraocular tumour with a
poor prognosis and response to therapy. The metastatic microenvironment contains
high levels of tumour-associated macrophages (TAMs) that correlate positively with
a worse patient prognosis. Given a network-based representation of the TAMs,
certain forms of subgraphs identify potential targets for the immunomodulation. The
selected targets will be used for pharmacophore-based virtual screening against a
library of FDA-approved chemical compounds, followed by refined flexible docking
analysis (Weich et al. 2024). In general, it is not clear when two molecular networks,
composed of genetic elements with feedback interactions, are similar. One such
measure is the size of the set of overrepresented subgraphs that are similar. The
method proposed by Huang et al. (2022) clusters networks with diverse function-
alities based on the frequency distribution of common subgraphs.
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This type of search can also be performed on top of modern graph database
systems, such as Neo4j (Hoksza and Jelínek 2015). However, graph database
systems, by default, solve a different version of subgraph isomorphism (SubGI). In
that default mode, they allow two distinct query vertices to match the same target
vertex in a given SubGI instance. Figure 1 gives an example of a use case where
distinct query nodes should map to distinct target nodes. The query is to verify within
a co-authorship network how many cliques of 3 authors (q0, q1 and q2) that are
affiliated with the same department have co-authored a paper with at least two other
authors (q3 and q4). This example query might be part of research studying
cooperation among members of the same department.

As another example, in searching for molecular structures the user does not want
to allow two different query atoms to match the same target atom. The same applies
to people in social network analysis (Archibald et al. 2021).

For this reason, we focus our attention only on algorithms that solve the definition
of subgraph isomorphism in which distinct query vertices must match distinct target
vertices, as originally formulated in Ullmann (1976) and in the main related
literature.

The problem is known to be NP-Complete (Cook 1971), and several heuristic
methodologies for solving subgraph isomorphism have been proposed over the years.
An early solution was presented in Ullmann (1976) by Ullmann, which models the
problem as a backtracking search. The search space can be seen as a tree which
encodes partial mappings and their extensions to complete solutions.

In Cordella et al. (2001), Carletti et al. (2017b), the authors enhanced the search
with a set of look-head rules for predicting unfeasible branches of the search space.
In Solnon (2010), McCreesh et al. (2020), concepts developed for solving constraint
satisfaction problems have been applied. Constraint satisfaction aims at verifying
constraints among a set of variables once specific values are assigned to them. The
application to subgraph isomorphism represents query vertices as variables whose
possible values are target vertices. Labels and edges are represented as constraints of
the problem. The set of target vertices that are compatible (i.e. they have the same
label) with a given query vertex is called vertex domain. Thus, feasible combinations
of target vertices are tested to assess the correspondence of their relationships with
the query topology and labels. Sophisticated procedures, called reduction techniques,
are applied to refine domains before the verification step, thus reducing the search
space and thus (hopefully) decreasing the running time. Recently Han et al. (2013),

Fig. 1 A use case example of subgraph searching over a co-authorship network
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Bi et al. (2016), Han et al. (2019), Kim et al. (2021, 2022), the concept of domains
has been extended to edges. Such approaches outperform previous methodologies
based on graph algebra (He and Singh 2008) and query decomposition strategies
(Sun et al. 2012). This entailed the definition of a new data structure in which feasible
correspondences between vertices and edges are stored. A disadvantage of the
domain-based approach is the high memory consumption, especially in the presence
of edge domains. In Bonnici et al. (2013), a matching order strategy of the query
vertices has been defined to maximize the number of constraints that are verified at
each step of the computation. Such an approach has been shown to work well to
define the ordering of the variables (Sun and Luo 2020; Lee et al. 2012; Bonnici and
Giugno 2017; Aparo et al. 2019).

This paper presents a novel approach, called hich works on graphs having labels
on vertices and/or edges. It solves subgraph isomorphism and it returns the matching
mappings between the query and the target graph, as well as the count of such
mappings. ntroduces the following new methodologies for optimizing reduction
techniques.

● ilters using vertex domains before filtering using edge domains. This reduces
memory consumption.

● A further filtering technique, called path-based domain reduction, verifies the
correspondence between paths in the query and the target graph.

● The matching order strategy, defined in Bonnici et al. (2013), aims at applying as
many constraints as possible at each step of the searching process is extended in
order to exploit the information on domains rather than the graph topology alone.

● The search process is cost-based where the cost is assumed proportional to the
size of edge domains. Moreover, it is equipped with a dynamic parent selection
that explores the search space according to the effective number of candidate
vertices for a given partial mapping.

Path-based domain reduction including their theoretical properties as well as the cost-
based search process constitute the main novel algorithmic features of the present
work. In addition, the pipeline itself is new and contributes to the high performance
of Further, ntroduces the concept of path-based reduction. In addition, rovides the
first formal implementation of a backtracking search procedure which is completely
driven by edge domains. It extends the valuable variable ordering technique defined
in Bonnici et al. (2013) by equipping it with the information residing in domains, and
by providing a subprocedure for peripheral query vertices.

Tests conducted on real graphs, where both vertices and edges are labeled,
demonstrate that our approach exhibits notably faster performance compared to
existing state-of-the-art tools when retrieving all the embeddings of a query graph
within a target graph as opposed to just counting them. This is especially pronounced
when dealing with high numbers of target and query labels. That tendency holds for
all the tested benchmarks, that include protein–protein interaction networks, a co-
authorship network, a email exchange network and synthetic graphs generated by
most-used models (Barabási–Albert, the Erdos-Rényi and the Forest Fire). Several
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new or existing techniques are involved in the proposed methodology, making the
performance analysis of their combination a hard task. For this reason, we conducted
an ablation study aimed at analysing the performance contribution of each technique
and combinations of them. This has led to the conclusion that in some cases path
reduction is helpful and in some cases it is not. For that reason, we propose two
algorithms nd a “light” version of called lt (in which path reduction is disabled). lt is
particularly competitive when the results are capped at a certain number of mappings.
The ode is open source and is available at https://github.com/vbonnici/ArcMatch.

In what follows, Sect. 2 gives the problem definition, defines the notation that is
used throughout the manuscript, and reports the concepts of interest that currently
represent the state of the art of the techniques involved in The novel techniques of re
introduced in Sect. 3. Section 4 describes the experiments to assess the performance
of s compared with the state-of-the-art. The section gives a description of the
principal technical aspects of the existing methodologies that were compared with the
proposed approaches, together with their limitations. Section 4 also reports a study
regarding the scalability of the compared approaches on varying topological and
labelling properties of the involved graphs. Lastly, Sect. 5 concludes the manuscript.

2 Background

This section presents the basic notions regarding graphs and then introduces state-of-
the-art techniques for SubGI. A summary of the notation used in this manuscript is
reported in Table 1.

2.1 Graphs

A simple graph is a tuple G ¼ ðV ;EÞ, where V is the set of vertices and E is the set of
edges. An undirected edge is a set fv; ug, with v; u 2 V , which means that
E 2 ffu; vg : u; v 2 Vg. Thus, the graph may contain self-edges but not multi-edges
(namely, multiple edges between that same pair of vertices). We say that the edge
fv; ug is incident to the vertices v and u. Two vertices are adjacent if there exists an
edge between them. A path is a sequence of vertices ðv1; v2; . . .; vnÞ, such that vj 2 V
for 1� j� n and fvi; viþ1g 2 E for 1� i� n� 1. A vertex may appear multiple times
in a path. A ring (or cycle) is a path ðv1; v2; . . .; vnÞ such that v1 ¼ vn and these two
vertices are the only two to be repeated in the path, namely 8i; j : 1\i; j\n; i 6¼
j) vi 6¼ vj (i.e. the ring has n� 1 distinct nodes). The degree deg(u) of a vertex u is
given by the number of edges that are incident on it, thus
degðuÞ ¼ jffvi; vjg : vi ¼ u or vj ¼ ugj. The neighborhood N(u) of a vertex u is
given by the set of vertices that are adjacent to u, thus
NðuÞ ¼ fv : fu; vg 2 E or fv; ug 2 Eg. Given a set of vertices V 0 � V , the neigh-
borhood of V 0 is defined as NðV 0Þ ¼ ð[v2V 0NðvÞÞ. A graph can be equipped with
labels on vertices and on edges. Given a set of vertex labels A, the function a : V 7!A
maps a vertex to a single label. Given a set of edge labels B, the function b : V 7!B
maps an edge to a single label (that is, there is one label per node though the label
could itself have further structure, e.g. could be a string).
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Table 1 Main notation used in this manuscript

Symbol Definition Description

G ðV ;EÞ : E 2 ffu; vg : u; v 2 Vg A graph as a set of
vertices V plus a set of
edges E

a a : V 7!A A function mapping
vertices to labels

b b : E 7!B A function mapping
edges to labels

Gq ðVq;EqÞ A query graph

Gt ðVt ;EtÞ A target graph

deg(u) jffvi; vjg : vi ¼ u or vj ¼ ugj The degree of the vertex
u

N(u) fv : fu; vg 2 E or fv; ug 2 Eg The neighborhood of the
vertex u

NðV 0Þ ð[u2V 0NðuÞÞ n V 0 : V 0 � V The neighborhood of the
set of vertices V 0

x ðv1; v2; . . .; vnÞ : vi 2 V ; fvi; viþ1g 2 E; 8i : 1� i� n� 1 A path of length jxj ¼ n

xi ðv1; v2; . . .; viÞ : x ¼ ðv1; v2; . . .; vnÞ; 1� i� n The first i vertices of x

x½i� vi : x ¼ ðv1; v2; . . .; vnÞ; 1� i� n The ith vertex of the path
x

x½i. . .j� ðvi; viþ1; . . .; vj�1; vjÞ : x ¼ ðv1; v2; . . .; vnÞ; 1� i� j� n The subpath of x from
the ith to the jth vertex
of it, both included

h ðv1; v2; . . .; vjV jÞ : vi 2 V An ordering of the
vertices of V

hi ðv1; v2; . . .; viÞ : h ¼ ðv1; v2; . . .; vjV jÞ; 1� i� n A partial ordering,
namely the first i
vertices of h

h½i� vi : h ¼ ðv1; v2; . . .; vjV jÞ; 1� i� n The ith vertex of h

ðqi; tiÞ qi 2 Vq; ti 2 Vt A matching pair

M M : Vq 7!Vt A SubGI mapping of Gq

into Gt as an injective
function

M ððq1; t1Þ; ðq2; t2Þ; . . .; ðqn; tnÞÞ A SubGI mapping of Gq

into Gt as an ordered
set of matching pairs

Mi ððq1; t1Þ; ðq2; t2Þ; . . .; ðqi; tiÞÞ : 1� i� n The first ith pairs of the
mapping M

M fM1;M2; . . .;Mkg; jMj ¼ k The entire set of matches
between a query Gq and
a target graph Gt

DðqiÞ fth 2 Vt : th ’ qig The domain of the vertex
qi

Dðfqi; qjgÞ ffth; tkg 2 Et : th 2 DðqiÞ; tk 2 DðqjÞ;bðfth; tkgÞ ¼ bðfqi; qjgÞg The domain of the edge
fqi; qjg
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2.2 Subgraph isomorphism (SubGI)

Given a query graph Gq ¼ ðVq;EqÞ and a target graph Gt ¼ ðVt;EtÞ, the subgraph
isomorphism problem (SubGI), also called monomorphism, consists in finding the
occurrences of Gq in Gt. An occurrence is an injective mapping of query vertices to
target vertices that preserves the topology and the labeling of the query graph. A
mapping can be seen as a function M : Vq 7!Vt, such that MðqiÞ ¼ ti. It is also
represented as an ordered vector M ¼ ððq1; t1Þ; ðq2; t2Þ; . . .; ðqn; tnÞÞ, such that
qi 2 Vq, ti 2 Vt. Each pair in M represents the mapping of a query vertex qi to the
target vertex ti. The all different property must hold, viz. 8i; j s:t: i 6¼ j, qi 6¼ qj, and
ti 6¼ tj. The mapping preserves the query topology if there exists a set of edges
between the mapped target vertices that is equivalent to the set of query edges. Thus,
8fqi; qjg 2 Eq ) fMðqiÞ;MðqjÞg 2 Et. The preservation of labels implies
8i : 1� i� n) aðqiÞ ¼ aðtiÞ, and
8fqi; qjg 2 Eq ) bðfqi; qjgÞ ¼ bðfMðqiÞ;MðqjÞgÞ. (Recall that there is at most
one edge between two nodes and each edge has one label.)

A slightly different definition of SubGI is induced SubGI. This version of the
problem introduces the further constraint that no edges can connect target vertices
(belonging to an occurrence of the match) other than those present in the query. It is
formally expressed as 8i; j : fMðqiÞ;MðqjÞg 2 Et ) fqi; qjg 2 Eq.

Multiple mappings obeying the above constraints can exist, and each mapping
identifies a given occurrence. The goal of SubGI is either to find all such occurrences
or all occurrences up to a certain limit (e.g. 100,000).

Figure 2 shows two graphs having vertex labels represented by the colors, grey
and white. The edge labels are represented by their trait, solid or dashed. The query
graph occurs twice in the target graph of the example. A first match is given by
M 1 ¼ ððq4; t0Þ; ðq0; t1Þ; ðq1; t4Þ; ðq3; t2Þ; ðq2; t5ÞÞ, and the second occurrence M 2 ¼
ððq4; t0Þ; ðq0; t1Þ; ðq1; t2Þ; ðq3; t4Þ; ðq2; t5ÞÞ that is obtained by exchanging t2 with t4,
thus by switching the match for q1 from t2 to t4 and vice versa for q3. The set of
mappings of a query graph within a target graph is referred to as M ¼ fM 1;M 2g.

Fig. 2 A query graph and a target graph. Each vertex is labelled white or grey. Each edge is labelled solid
or dashed
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SubGI is an NP-Complete problem (Cook 1971). Backtracking algorithms have
proven to have among the best performance (Ullmann 1976; Cordella et al. 2001;
Carletti et al. 2017b; Bonnici et al. 2013), but other approaches based on Cartesian
products or join operations have been proposed (Bi et al. 2016; Sun et al. 2012). By
analogy to the constraint satisfaction problem (CSP), query vertices can be seen as
variables and the goal is to assign values, namely target vertices, to them such that
constraints are satisfied (Zampelli et al. 2010). The constraints include topological
constraints, labeling constraints as discussed above, as well as the all different
property of the mapping (Solnon 2010).

An exponential brute force algorithm tries to assign all possible values to
variables, and for each complete assignment, the constraints are verified a posteriori.
Heuristic algorithms use backtracking, for which the search space can be represented

as a tree. The tree has a dummy root, and it has potentially Vq
jVt j nodes, plus the root.

Each tree node (except the root) represents a vertex mapping ðqi; tiÞ. A path from
each child of the root to a leaf of the tree represents a complete mapping solution. A
path from the root to an intermediate node represents a partial solution. The tree
defines the order in which mappings are investigated. The process of tree
construction does not check constraints, so constraints must be verified separately.
That verification can be performed for a full mapping at the leaves of the tree or for a
partial mapping at intermediate nodes. In the latter case, if a partial solution violates
at least one constraint, then the subtree branching from its last tree node can be
ignored. In this way, the size of the search space can be drastically reduced.

Given a partial solution Mi ¼ ððq1; t1Þ; ðq2; t2Þ; . . .; ðqi; tiÞÞ, with i\jVqj, the
following constraints are verified:

(1) 8j : 1� j\i) ti 6¼ tj;
(2) aðqiÞ ¼ aðtiÞ;
(3) 8j : 1� j\i; fqi; qjg 2 Eq ) fMðqiÞ;MðqjÞg 2 Et. Because we impose an

ordering in Mi, subscript indexes represent the order of a given element in Mi.

2.2.1 Variable ordering

The performance of SubGI algorithms depends to a large extent on the order in which
query vertices are included in the mapping. Formally, given a query graph
Gq ¼ ðVq;EqÞ, an ordering h ¼ ðv1; v2; . . .; vjVqjÞ : vi 2 Vq is a sequence of the
vertices in Vq. Given h, a partial ordering hi ¼ ðv1; v2; . . .; viÞ is defined as the first i
vertices of h. The ordering can be chosen statically (before the search process begins)
or dynamically by exploiting the information in the current partial solution (Bonnici
and Giugno 2017). Each approach has advantages for certain graphs and
disadvantages for others.

Reference Bonnici et al. (2013) introduced a static variable ordering strategy. It is
based on the most-constrained fail-first principle. The vertex that is most constrained
is the one that is likely to cause a constraint failure. Constraints may be semantic (i.e.
vertex label) or topological (i.e. the vertex degree, and edges). Intuitively, the vertex
with the highest number of constraints is the one with the highest pruning power.
Constraints come in the form of the edges that link a possible next vertex to other

123

V. Bonnici et al.



vertices that are already in a partial mapping. The more vertices that are already in the
ordering and are linked to the next vertex, the more constraining the next vertex will
be. Moreover, since multiple vertices with the same constraint value can exist, a tie-
breaking rule is adopted. Such a strategy has been shown empirically to be an
excellent strategy (Sun and Luo 2020; Lee et al. 2012; Bonnici and Giugno 2017;
Aparo et al. 2019).

2.3 Domains

2.3.1 Vertex domains and vertex features

One way to improve the performance of SubGI solvers is to try to filter out some of
the assigned values before the backtracking search process begins. For example, for a
given query vertex qi only those elements having the same label as qi should be
considered, rather than trying to assign all target vertices to it. Thus, for each query
vertex qi, a domain DðqiÞ is defined. Each domain contains the target vertices that are
compatible with the corresponding query vertex. Compatibility is assessed based on
the label, but also on the degree. Thus, the degree of the vertices in DðqiÞ must be
greater than or equal to degðqiÞ. Compatibility can also be assessed by degree
probability (Carletti et al. 2017b) or by looking at the neighbors of a vertex and their
labels (Ullmann 1976).

Even more sophisticated compatibility criteria can be exploited, for example, in
Han et al. (2019) the directed acyclic graph (DAG) induced by a vertex of the query
graph is compared to the DAG induced by vertices in the target graph. The DAG
induced by a vertex is retrieved by performing a breath-first visit of the graph. In
general, every kind of invariant based on substructures of the graph topology can be
used as a feature to establish vertex compatibility (Dahm et al. 2015; Ullmann 2011;
Shang et al. 2008).

Paths, trees and subgraphs are the most used feature types for describing vertices
(Sakr and Al-Naymat 2010; Han et al. 2011) by extracting their neighborhood. Such
features are often involved in graph indexing techniques. The aim is to build an index
of the target graph that can be used to reduce the searching time. The cost for
indexing the graph is amortized if multiple queries are run. Surprisingly, sometimes
indexing yields advantages in single-query executions (Giugno et al. 2013; Katsarou
et al. 2015, 2017).

2.3.2 Domain reduction

Initial vertex domains can be refined via reduction procedures in which the global
topology of the query is used to discard candidate portions of the target graph.

A well-known procedure is called arc consistency (Mackworth 1977), which
ensures that target vertices belonging to the domains of two connected query vertices
must be connected too. Formally, the procedure verifies that for each query edge
fqi; qjg, 8tk 2 DðqiÞ9th 2 DðqjÞ : ftk ; thg 2 Et. In addition, we require
bðftk ; thgÞ ¼ bðfqi; qjgÞ. The verification procedure is applied to a given domain
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DðqiÞ in order to discard target vertices in that domain that violate arc consistency.
The removal of a target vertex may influence the state of other domains, previously
reduced. Thus, it is necessary to run multiple iterations of the procedure. The number
of iterations can either be bounded or the algorithm can be executed until
convergence. Convergence is reached when a run produces no reduction of the
current domains. Algorithm 1 shows a procedure for applying arc consistency until
convergence. The procedure searches for edge existence between vertex domains by
also verifying edge label compatibility.

Algorithm 1 Application of arc consistency until convergence.

Figure 3a shows the initial vertex domains that are obtained when matching the
query and the target graphs of Fig. 2. The target vertices t1; t2; t4 and t7 initially
comprise the domain of the query vertex q0. They are the target vertices that satisfy
the vertex constraints, namely, they are grey and they have a degree equal to or
greater than degðq0Þ. Vertex t3 is excluded from the domain because its degree is less
than the degree of q0, while vertex t0 is excluded because its label is white. The
domain composition of the other vertices can be similarly explained. Arc consistency
is applied to initial domains and the result of its application until convergence is
shown in Fig. 3c. Figure 3b shows an intermediate phase. Thus, the edge ft4; t7g is
not considered between the domains of the vertices q0 and q3 because the edge
fq0; q3g is dashed while the edge ft4; t7g is solid. In the example, vertex t2 is in the
domain of q0 but it has no valid edge to the domain of vertex q4, so it is discarded by
arc consistency. Similarly, vertex t7 has no valid edge to any vertex in Dðq3Þ, so it is
discarded too.
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Vertex reduction procedures can also be applied during the search process
(Haralick and Elliott 1980; Zampelli et al. 2010).

2.3.3 Edge domains and domain graph

The concept of vertex domain naturally extends to edges. Given two query vertices,
qi and qj, their domains DðqiÞ and DðqjÞ, and an edge fqi; qjg 2 Eq linking
them, the domain of such an edge is given by
Dðfqi; qjgÞ ¼ fftk ; thg 2 Et : tk 2 DðqiÞ; th 2 DðqjÞg. Vertex domains and edge
domains can be combined into a single structure, here called a domain graph
(DG), first introduced in Han et al. (2013) and then refined in Bi et al. (2016) and
subsequently in Han et al. (2019).

An example of a domain graph is given in Fig. 3c. The complex data structure is
able to represent vertex domains and all the edges connecting their elements.

3 Methods

The main steps of the proposed methodology for scanning all the occurrences of a
query graph Gq over a target graph Gt are:

1. compute initial vertex domains
2. run arc consistency over vertex domains
3. compute initial edge domains
4. run path-based reduction procedure
5. choose a static variable ordering
6. run the backtracking phase to locate matching occurrences.

Step (1) is performed by comparing the labels and degrees of query and target
vertices such that, for a query node qi,
DðqiÞ ¼ ft 2 Vt : aðqiÞ ¼ aðtÞ; degðqiÞ� degðtÞg. Arc consistency in step (2) is
performed as described in Sect. 2.3.2, and it can be run until convergence or not.
Initial edge domains, in step (3), are computed as described in Sect. 2.3.3. Thus,
given an edge fqi; qjg, its domain is computed as
Dðfqi; qjgÞ ¼ fftk ; thg 2 Et : tk 2 DðqiÞ; th 2 DðqjÞg. The domain graph is

Fig. 3 Domains, and their transformation by means of reduction techniques, obtained in solving the
example of Fig. 2
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composed of vertex and edge domains (defined in Sect. 2.3.3). In step (4), a novel
path-based reduction (presented in Sect. 3.1) is applied to the domain graph. The
search phase is driven by a new static ordering (step (5)) which combines domain
cardinality with the filtering power of a vertex, presented in Sect. 3.2. The
backtracking SubGI searching phase (step (6)) is completely driven by the domain
graph, and it is described in Sect. 3.3. Candidates of the next vertex to be mapped are
chosen by selecting an already mapped vertex, called parent. A novel procedure for
its selection is given. Furthermore, the search is equipped with a novel ad hoc
procedure for managing a particular type of query vertices, called peripheral, which
is introduced in Sect. 3.2.1. Thus, steps 4, 5, and 6 constitute the main algorithmic
novelty of the proposed approach.

3.1 Path-based domain reduction

Paths represent a good compromise between complexity and efficacy when used as
graph and/or vertex features in graph indexing approaches for SubGI (Bonnici et al.
2010; Giugno et al. 2013). Thus, we decided to exploit this concept in implementing
a path-based reduction procedure, here simply called path reduction, to discard
elements in the domain graph.

The path reduction procedure is performed after arc consistency has been run on
vertex domains until convergence. Initial edge domains are extracted as described in
Sect. 2.3.3. Then, the reduction is run based on comparing the paths that start from a
given query vertex with the paths starting from target vertices. ompares query paths
to target paths as follows. For each target vertex th in the domain DðqiÞ, the reduction
verifies that for each path (up to a given length) starting from qi, at least one
corresponding path starts from th. The correspondence is verified by looking at vertex
and edge domains. Formally, given a path ðu1; u2; . . .; unÞ such that u1 ¼ qi (the
starting node), uj 2 Vq and fuj�1; ujg 2 Eq for 2� j� n, a target vertex th is included
in the domain of qi if and only if there exists at least one path ðv1; v2; . . .; vnÞ such that
v1 ¼ th, vj 2 DðujÞ and fvj; vjþ1g 2 Dðfuj; ujþ1gÞ. Since target paths are extracted
from the domain graph, label compatibility is implicitly ensured. A maximal path is a
path whose length is exactly lp or is a ring, or it cannot be extended. Formally, given
a graph G ¼ ðV ;EÞ and a path length parameter lp, let pathsGðlpÞ be the set of paths
in G having length lp, and let ringsGðlpÞ be the set of rings in G having length lp.
Moreover, let mpathsGðnÞ the set of paths in G of length n such that
8x ¼ ðv1; v2; . . .; vnÞ;x 2 pathsGðnÞ : NðxÞnfv : v 2 xg ¼ ;. The set of maximal
paths of G with parameter lp is defined as
maxpathsGðlpÞ ¼ pathsGðlpÞ [ ringsGðlpÞ [ fmpathsGðnÞ : 1� n\lpg.

Maximal paths from a minimal length of 3 to a maximal length of 6 are taken into
account. Such a length is a user-defined parameter. A path length of 6 achieves a
good trade-off between computational costs and filtering power (Bonnici et al. 2010;
Giugno et al. 2013). Note that the consistency of paths of length 2 is already ensured
by arc consistency if edge labels are taken into account during the process.

Figure 3d shows an example of path reduction after the application of arc
consistency. The figure shows that path reduction is more powerful than simple arc
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consistency. The target vertex t8 does not violate arc consistency. In fact, it has at
least one valid edge between vertices in the domains Dðq1Þ and Dðq3Þ. However, the
query graph (shown in Fig. 2) has the ring ðq2; q3; q0; q1; q2Þ. Thus, from vertex t8 of
domain Dðq2Þ, we should be able to navigate the domain graph (Fig. 3c) and to
obtain a compatible path. However, such a path can not be extracted from the domain
graph. The only ring that can be obtained starting form t8 is ðt8; t4; t1; t4; t8Þ but that
would violate the all different constraint because t8 appears twice. Thus, t8 is
removed form Dðq2Þ.

Figure 3 also gives an example to motivate why arc consistency should be applied
before path-based reduction. The intermediate step of the panel (b) of the figure is
never materialized by the proposed methodology for two reasons. First, arc
consistency is able to substantially reduce the domains. This can be a substantial cost
because each edge domain can have up to jEtj elements. Thus, arc consistency
represents a fast low-memory technique for reducing both vertex domains and edge
domains.

The example of Fig. 3 shows the effectiveness of arc consistency. Panel (b) of the
figure shows the complete initial data structure of the proposed SubGI instance. It
contains a high number of candidates in both vertex and edge domains. Applying arc
consistency on the initial vertex domains (panel (a) of the figure) yields an instance
of edge domains as shown in panel (c) of the figure. Panel (c) of the figure is sensibly
smaller than panel (b).

Algorithm 2 implements the procedure for extracting maximal paths from the
query graph. The procedure is a depth-first search (DFS) which takes as input the
current visited path x and the max path length lp. The variable x can also be seen as
the stack which drives the DFS visits. PathReduction visits only query vertices, and it
is run by setting each query vertex as the source, namely PathReductionðx ¼ ½v�Þ for
v 2 Vq. Push and pop operations are implemented by adding a vertex to the tail of the
vector x½iþ 1�  v, and by removing the vertex from the tail x x½1. . .i�. In each
recursive DFS call, the neighbors of the vertex that are at the top of the stack are
scanned in order to extend the path. If a neighbor is at the bottom of the stack, then
such a path is a ring. Otherwise, only vertices that are not already in the stack are
visited. The assertion of not visited is here expressed as v 62 x. However, an array of
Booleans can be used to efficiently implement the search such that the visited
flag is activated/deactivated during the recursive process. When a valid neighbor is
pushed on the stack, it is checked and whenever a maximal path of length lp is
formed, a recursive DFS call is run. After this, the neighbor is removed from the
stack.

The algorithm takes a trace of paths that cannot be extended by exploiting the
variable extended, such that each time a maximal path is obtained as an extension
of the current path, or the current path is a non-expandable path, the VerifyPath
procedure is called to verify the domains.
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Algorithm 2 Path-based reduction procedure. It implements a recursive DFS over the query graph for
retrieving maximal paths (up to length lp).

Once a maximal path x is found, Algorithm 3 verifies that each target graph
vertex in the domain of the source vertex x½1� is compatible with x½1� If a given
target vertex is not compatible with x½1�, then it is removed from the domain of x½1�.
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Algorithm 3 Path reduction by verifying the existence of at least one path in the domain graph
corresponding to the query path x.

Algorithm 4 Path reduction to verify the existence of at least one path bx in the domain graph
corresponding to the query path x.
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The compatibility reduction is performed by Algorithm 4 which extracts paths
starting from the target vertex. The extraction is done recursively by a DFS visit over
the target graph and according to the current state of edge domains. Given a query
path x, a corresponding target path bx is searched by matching vertices in x with
vertices in the corresponding domains. Edge domains guide how to go forward in the
path. In extending the path from position i to position iþ 1, we take into account the
two consecutive query vertices x½i� and x½iþ 1�. The partial path x½1. . .i� is already
mapped to some target vertices, and the procedure has to find a vertex to which to
map x½iþ 1�. Because the two query vertices are consecutive in the path, the edge
fx½i�;x½iþ 1�g links them. Moreover, domains are in a consistent state such that if
fut; vtg in Dðfx½i�;x½iþ 1�gÞ then ut 2 Dðx½i�Þ and vt 2 Dðx½iþ 1�Þ. Thus, a vertex
for x½iþ 1� can be extracted from the edges in Dðfx½i�;x½iþ 1�gÞ. The procedure
also verifies that each extension does not contain duplicate vertices, except in the
case of rings. In a ring the first and the last vertex are equal. The procedure checks
that constraint separately.

The reason why we decided to perform Algorithm 2 before Algorithm 3 is to
avoid an exponential explosion in memory requirements. The reason is that for each
query path, an exponential number of paths could match within the target graph.
Thus, if the DFS visit over the query graph is performed together with the multiple
DFS visits over the target graph, an exponential number of parallel DFSs must be run
and stored at the same time.

Similarly to arc consistency, the removal of one candidate in a domain may affect
the consistency of the other domains. Thus, a consistency check procedure must be
applied. The procedure is described in Algorithm 5. It first checks the edge domains
linked to the query vertex whose domains have been changed. Then, the effects of
such a reduction are propagated in an iterative way. At each iteration, the edge
domain consistency is verified. Subsequently, vertices that are inconsistent with edge
domains are removed.

“Appendix B” further investigates the relation between arc consistency and the
proposed path-based reduction.
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Algorithm 5 Refinement of domains after the alteration of the domain of the query vertex s.

3.1.1 Relation among different values of lp

Theorem 1 Given two different values of path length, lp1 and lp2, such that
lp1� lp2, if a target vertex is discarded from a given domain by using lp1 then it is
also discarded by using lp2.

Proof Given a query path x ¼ ðq1; q2; � � � ; qnÞ such that n ¼ lp2, the verification of
x entails the verification of each prefix of the path. Moreover, all the sets of paths
that are scanned for lp1 are scanned for lp2 because paths of length lp2 includes all
the path of length lp1\lp2.

Thus, when evaluating a path of length n ¼ lp2, the procedure VerifyPath will
discard at least the vertices that VerifyPath discards when evaluating the smaller
path length lp1. h
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Let RFCðGq;Gt; lpÞ be the set of removal operations that are performed by a single
run of PathReduction for a given value of lp and without propagation, namely
by discarding the call to the procedure RefineDomains.

Theorem 2 Given two different values of path length, lp1 and lp2, such that
lp1\lp2, RFCðGq;Gt; lp1Þ � RFCðGq;Gt; lp2Þ.
Proof According to Theorem 1, given a query path x ¼ ðq1; q2; . . .; qnÞ of length
n ¼ lp2, the procedure VerifyPath includes the verification of xi such that
1� i\n. For i ¼ n� 1, the extension of a target path dxn�1 to a path cxn is performed
by the procedure VerifyPathDFS. If no valid extension is found, then the
procedure stops with a negative result. This means that a path that is consistent until
length n� 1 may be inconsistent at length n. Thus, at length n a further set of
removals is produced. Such a consideration can be applied inductively from n� 2 to
n� 1, and in general from i to i� 1 with 1\i\n. Thus, for any i ¼ lp1 such that
1\i\lp2, RFCðGq;Gt; lp1Þ � RFCðGq;Gt; lp2Þ. h

3.1.2 Safety of the path-based reduction

In what follows, we show the safety of PathReduction. Namely, the procedure does
not discard from the domains any vertex or edge that is included in at least one match
between the query and the target graph. Given a query graph Gq, we let M be the set
of matches between Gq and a target graph Gt. In order to ensure the safety of the
procedure, we must ensure that the reduced domains are safe for M. Safety means
that 8M 2M; 8vq 2 Vq ) MðvqÞ 2 DðvqÞ AND 8fqi; qjg 2 Eq wfMðviÞ;
MðvjÞg 2 Dðfvi; vjgÞ.
Theorem 3 Given a query graph Gq, a target graph Gt, their corresponding set of
matches M, and a state of vertex and edge domains that are safe for M, then
PathReduction alters such domains such that they are still safe for M.

Proof Given a query graph Gq, let Xq to be the set of paths of Gq, from length 1 to
the maximum path length in Gq. PathReduction visits a subset X0q � Xq of

paths, depending on the lp parameter. Let vt be a target vertex in the domain of vq
such that 9M 2M : MðvqÞ ¼ vt. For each path xq 2 X0q such that xq½1� ¼ vq, there

exists a corresponding path xt such that xq½i� ¼ Mðxq½i�Þ ¼ xt½i� for 2� i� jxqj. If
we suppose that all the domains, except DðvqÞ, are safe, then vt can not be removed
from DðvqÞ because for each path xq starting from vq, Mðxq½i�Þ is in Dðxq½i�Þ.

The reduction of edge domains is performed by the procedure RefineDomains.
Since we suppose the safety of initial domains, RefineDomains cannot remove any
target edge fti; tjg for which a corresponding mapping to fvi; vjg exists in M. This
last assertion comes from the fact that a target edge is removed from an edge domain
only after one removal from a vertex domain. Therefore, the cause for removing the
edge fti; tjg from Dðfvi; vjgÞ is that ti has been removed from DðviÞ or tj has been
removed from DðvjÞ. Thus, the safety of the removal of an edge from a domain is
ensured by the safety of the removal of one of its vertices from the corresponding
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domain. Thus, the overall path reduction procedure alters domains such that they are
still safe for M. h

3.2 Vertex ordering strategy

dopts a modified version of the strategy proposed in Bonnici et al. (2013) for defining
a matching ordering among query vertices. Given a partial ordering hi, the node v to
be chosen next in the ordering is selected among the neighbors of hi. Then, the
neighborhood of v is divided into three sets:

● N1ðvÞ ¼ fu 2 hi : fu; vg 2 Eg
● N2ðvÞ ¼ fu 2 NðhiÞ : fu; vg 2 Eg
● N3ðvÞ ¼ NðvÞ n fN1ðvÞ [N2ðvÞg

Figure 4 shows an example of such a partition of the neighborhood of the vertex v.
We define five measures on a given vertex v for ordering query vertices:

● N1ðvÞ ¼ jN1ðvÞj
● N2ðvÞ ¼ jN2ðvÞj
● N3ðvÞ ¼ jN3ðvÞj
● N4ðvÞ ¼ degðvÞ
● N5ðvÞ ¼ jDðvÞj

Thus, given a partial ordering hi and two query vertices, v0 and v00 that are neighbors
of at least one vertex in hi, the next vertex to be included in the ordering is chosen by
comparing sequentially their Ni, for 1� i� 5, measures. The vertex v0 with the
smallest i such that Niðv0Þ[Niðv00Þ, for 1� i� 4, is chosen. If two vertices have
exactly the same values, then N5 is taken into account such that the v0 is selected if
N5ðv0Þ\N5ðv00Þ. If still no vertex can be chosen, then the one with the lowest
identifier is selected.

An exception to the ordering rule is given by vertices with singleton domains.
Such vertices are put before the non-singleton vertices in the ordering.

Fig. 4 A 3-ways division of the
neighborhood of a vertex v given
a partial ordering hi
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3.2.1 Peripheral vertices

Postponing Cartesian products of disjoint domains is a well-known heuristic for
SubGI (Bi et al. 2016). Here, we propose a methodology which combines the
postponing of peripheral query vertices with an ad hoc procedure for matching
vertices with disjoint domains.

Given a query graph Q ¼ ðVq;EqÞ and a partial ordering h ¼ ðq0; q1; . . .; qjÞ
defined on the query vertices, a query vertex qi is peripheral if
jfqk : fqi; qkg 2 Eqgj ¼ 1

Two vertices, qi and qj, have joint domains if at least one element of DðqiÞ is also
in DðqjÞ. We do not take into account peripheral vertices with singleton domains
since they are put at the being of the ordering. Then, the set of peripheral vertices
having joint domains is retrieved, and only one vertex is selected for each set. The
selected vertex is the one with the biggest domain. Selected vertices are put at the end
of the matching ordering.

Once a partial solution regarding all non-peripheral disjoint vertices is found,
domains of peripheral disjoint vertices can be independently reduced. They have
disjoint domains, thus the all different property does not need to be tested among
them. This reduces the time requirement. Moreover, if just the counting of the
subisomorphisms is required, it can be quickly computed by multiplying the size of
their reduced domains.

3.3 Extension of partial mappings and dynamic parent selection

Algorithm 6 implements the backtracking procedure of the search process. It
recursively extends partial matches to complete solutions. In each recursive step, a
parent query vertex s is chosen dynamically. Such a parent is the currently matched
vertex which minimizes the number of candidates to the current state i (line 3). The
minimization is obtained by counting the query edges that are in the domain
Dðfs; h½i�gÞ. Once a parent is chosen, candidate target vertices are extracted by
retrieving the subset of edges fut; vtg 2 Dðfs; h½i�gÞ such that MðsÞ ¼ ut (line 4).

Thus, the target vertices of type vt 62 bh (if not already matched) are evaluated. The
evaluation is made by verifying the connectivity of each candidate with the vertices
that are in the partial matching, according to the query topology (line 5–10). The
verification is performed by exploiting the edge domains (line 7). If a candidate
verifies the connectivity, then it is added to the partial match in order to extend it (line
11–16). If the length of the formed partial match is equal to the number of query
vertices, then a complete solution has been found and it is reported by the algorithm
(line 13) via the Report match instruction. Report match is a wrapper of an abstract
function which is in charge of counting or listing the matches.
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Algorithm 6 Backtracking procedure for searching all the occurrences starting from a given target vertex
bh[1] by following the variable ordering h.

Please recall that the proposed algorithm is not intended to work with multi-
graphs, which admit multiple edges between two vertices. The restriction to simple
graphs ensures that the list of candidates does not contain duplicate vertices, thus no
duplicate matches are reported. Moreover, because the SearchOccurrences
procedure performs tail recursion, we implement it in an iterative fashion, thus
eliminating the call stack overhead.

3.4 Overall matching procedure and its complexity

Algorithm 7 describes the pseudo-code of the overall approach. It solves the SubGI
problem by calling at line 13 the function that is defined in Algorithm 6,
SearchOccurrences.
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Algorithm 7 Matching procedure

In what follows, we give an analysis of the time complexity of the overall
procedure. In doing this, we suppose that the set-theoretical membership operator 2
can be computed in constant time (e.g., using hashing), as well as the mapping of an
element to its labels, and the comparison of the labels of two elements.

The complexity for building the initial vertex domains (lines 2–4) is HðjVqj � jVtjÞ,
assuming we can compute the degree of a vertex in constant time (again using, for
example, hashing).

The time complexity of ArcConsistency is Oðe � k3ÞDechter et al. (2003), where e
is the number of constraints to verify and k is the size of the largest vertex domain. In
our case, e ¼ jEqj because the set of query edges are the constraints. The procedure
works only over vertex domains, thus, k is the size of the largest vertex domain that

can be at most jVtj. Thus, the complexity of the procedure equals OðjEqj � jVtj3Þ.
The complexity of retrieving the initial edge domains (lines 6–7 of Algorithm 7) is

OðjEqj � jEtjÞ.
The variable ordering regards the query vertices. At each step of the ordering, a

vertex must be chosen by scanning those not already included in the ordering. After
the selection, the five measures reported in Sect. 3.2 of the neighbors of the selected
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vertex must be updated. Thus, an upper bound to the time complexity of the

procedure is given by OðjVqj � ðjVqj þ jVqjÞÞ ¼ OðjVqj2Þ, because a vertex can have
at most jVqj neighbors.

Algorithm 4 has complexity proportional to the number of paths of length lp that
can be extracted from the query graph. For each query path, it scans all the
corresponding target paths, thus the complexity is multiplied by the size of vertex
domains. Let dq be the average degree of the query graph. Then, an approximate
number of paths of length lp is given by the falling factorial ðdqÞlp. If we suppose that
each edge domain contains each vertex edge, VerifyPath comes with a complexity of
Oðlp � jEtjÞ. Such a cost is multiplied by the total number of paths, thus we obtain
OððdqÞlp � lp � jEtjÞ.. Lastly, for each query path, domains are refined by Algorithm 5.

Such a procedure has a complexity proportional to OðjEqj � jEtj � tÞ, where t is the
number of times the cycle at line 10 is repeated. Because this repetition cannot be
easily predicted, we give an upper bound: it can be performed at most jVtj times if
each query vertex domain contains each target vertex and if one element of the
domain is discarded at each cycle. Unfortunately, we cannot make any assumptions
regarding the size of the domains and the number of times the refinement procedure
is run. Thus, Algorithm 4 has a complexity bounded by
OðjEtj � ððdqÞlp � lpþ jEqj � jVtjÞÞ. However, if we suppose ðdqÞlp � lp\\jEqj � jVtj,
then the complexity becomes OðjEtj � jEqj � jVtjÞ. This means that it equals the cost of

ArcConsistency when jEtj ¼ jVtj2 multiplied by a factor (ðdqÞlp � lp) proportional to
the number of query paths. That expresses the fact that the proposed path reduction
technique extends ArcConsistency by generalizing from single edges to paths.

Lastly, the SearchOccurrences procedure implements the searching process of the
subgraph isomorphism problem which is known to be NP-Complete Cook (1971).
The problem can be modelled as a constraint satisfaction problem where variables are
the query vertices and values are the target vertices. The size of a domain of a query
vertex can be at most jVtj, and the process can be modelled as a simple combinatorial
process that generates all possible combinations of jVqj target vertices. The total

number of possible combinations is HðjVtjjVqjÞ. However, for each combination, we
must verify the constraints (represented by the query edges). Thus, the overall

complexity is bounded by OðjVtjjVqj � jEqjÞ if we admit that checking the existence of
an edge between two matched target vertices has a constant cost. In our case, the
search process is driven by edge domains. It is shown to be complete and safe (see

next Section), thus it scans for the entire set of jVtjjVqj combinations. Algorithm 6
implements a non-redundant generation of such combinations by enumerating
elements in edge domains (line 4). At each step of the process, the query edges
linking vertices to a previous state of the process are verified (lines 5–11). Thus, for
each combination, each edge query edge is verified only once. Assuming that set
inclusion of line 7 can be performed in constant time, the complexity is bounded by

OðjVtjjVqj � jEqjÞ, because unfeasible combinations are never examined. At each step
of the process, the algorithm chooses a parent vertex by means of line 3. Such a
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choice can be computed statically before the search process, thus its total complexity

is HðjEqjÞ. Thus, the search process has overall complexity OðjVtjjVqj � jEqjÞ.
As a result, the time complexity of the entire matching procedure of as two main

contributions. The first contribution is given by the path reduction procedure, with a
cost bounded by OðjEtj � ððdqÞlp � lpþ jEqj � jVtjÞÞ. The second main contribution is

given by the search process, bounded by OðjVtjjVqj � jEqjÞ. Overall, the time
requirement of the path reduction has a predominant sub-cost (jEqj � jVtj) due to the
domain refinement. Turning off the refining step noticeably reduces the time spent on
pre-processing. On the other hand, the more precise the reduction is, the fewer
unfeasible combinations are explored during the search process. Furthermore, we
recall that the filtering power of the reduction also depends on the degree of
compatibility between query and target elements, which is generally unpredictable.

3.5 Safety and completeness

In what follows, we prove the safety and completeness of Algorithm 7. Given a
query Gq and a target Gt graph, and let M be the entire set of mappings of Gq in Gt,
safety means that every match found by Algorithm 7 is in M. Completeness means
that every match in M is found by Algorithm 7.

A match is an assignment of values to every query variable, that is the assignment
of a target vertex to every query vertex. Domains define the compatibility between
query and target vertices. The initial domains contain the entire set of target vertices.

A brute force algorithm generates all possible assignments of target vertices to
query vertices, and, for each assignment, verifies the constraints of the SubGI
instance. It is safe because only assignments that verify constraints are returned. A
brute force algorithm is complete because it generates every possible assignment,
which implies that M is a subset of the generated assignment. By contrast,
Algorithm 7 applies an initial filtering to vertex domains such that, for each query
vertex, only target vertices having the same labels and compatible degrees are
selected. In addition, similarly to vertex domains, an initial safe filtering is applied by
checking label compatibility. Thus, initial edge domains do not violate safety.

ArcConsistency is safe for M, because Theorem 6 shows that the filtering
operations executed by ArcConsistency are a subset of those executed by
PathReduction, and Theorem 3 shows that PathReduction is safe.
Therefore, ArcConsistency does not violate safety and completeness. Edge
domains are built from a set of vertex domains that are safe for M. Thus, Algorithm 6
is run on a safe set of domains.

The backtracking procedure for generating the assignment, namely
SearchOccurrences, is run after setting the first variable in the ordering to a
value that is in its domain. This means that every partial mapping of length 1 does not
violate safety. Thus, safety and completeness depend on Algorithm 6.

The difference between Algorithm 6 and the brute force algorithm described
above is that it generates potential assignments by scanning edge domains rather than
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vertex domains. However, the two procedures have the same aim, which is to find
target vertex combinations that satisfy the SubGI constraints.

Theorem 4 Algorithm 6 is safe.

Proof Algorithm 6 is safe because for every partial assignment, and thus for every
complete assignment, it verifies the all different constraint and all the topological

constraints. The all different constraint is verified by requiring vt 62 bh. For a given
position i (1� i� jVqj). The topological constraints that apply to h½i� can be divided
into three groups. Group one contains the edges that link to previous positions of h.
Those are verified by lines from 6 to 9. Group two contains the edge that link h½i�
with its parent positions, namely fs; h½i�g, where s is the chosen parent state. This
constraint is verified because every extracted target edge fut; vtg 2 Dðfs; h½i�gÞ is, by
construction of Dðfs; h½i�gÞ, in Et and this verifies edge label compatibility. Group
three contains the edges that link to future states, and that will be verified in such
future states. At position i ¼ jhj, only the first two groups of edges can occur because
no further states exist. Vertex label compatibility is verified because fut; vtg 2
Dðfs; h½i�gÞ implies vt 2 Dðh½i�Þ, which implies aðvtÞ ¼ aðh½i�Þ, by construction. In
conclusion, every SubGI constraint is verified, thus Algorithm 6 is safe. h

Safety implies that the set of assignments generated by the algorithm is a subset of
M. However, to prove completeness, we need to show that the assignment set is
exactly M.

Theorem 5 Algorithm 6 is complete, if domains are safe for a given M.

Proof Given a state i (1� i� jhj), an algorithm is complete for hi if: (i) it is
complete for hi�1; (ii) given the set of assignments generated for hi�1, identified by
Mi�1, it generates all the assignments in Mi.

For i ¼ 1, the completeness of the algorithm in ensured by the safety of D(w[1]).
For i[ 1, let A be the set of target vertices that extend a given mapping in Mi�1 to
one or more mappings in Mi. Let s be the parent state chosen by the algorithm. Let B
be the set of target vertices retrieved by extracting from Dððs; h½i�ÞÞ all the target
edges ðut; vtÞ for which ut ¼ Mðh½s�Þ. That is B ¼ fvt : fut; vtg 2
Dðfs; h½i�gÞ AND ut ¼ MðsÞg. Thus B is the set of unverified target vertices that
Algorithm 6 retrieves at line 4 to extend partial solutions. Unverified means that the
SubGI constraints have still to be checked for those vertices. If the algorithm is
complete for hi�1, then A � B because of the safety of edge domains. The verification

is performed at line 4 by ensuring vt 62 bh, and at lines 5–10 by verifying topological
constraints. The verification produces a set B0 � B of target vertices. B0 ¼ A because
of the safety of the algorithm. Then, since, by hypothesis, the algorithm is complete
for hi�1, it is necessarily complete for hi because B0 contains all and only those
vertices that extend mappings of Mi�1 to mappings in Mi. When i ¼ jhj, Mi equals
M, which means that the produced mappings are exactly the complete solutions of
the SubGI instance. Therefore, Algorithm 6 is complete. h
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In general, the ordering is not a relevant aspect regarding safety and completeness,
because matches in M are independent of it. However, it is important to notice that
every possible ordering includes each query vertex exactly once.

4 Experiments

We run a detailed evaluation of all the techniques that are explained above through an
ablation study. After considering the results of such an evaluation, that are reported in
“Appendix A”, we decided to release two different versions of hich exploit a
different combination of the techniques described above. The standard version,
simply called fully exploits edge domain reduction. By contrast, ArcMatch-lt
performs vertex domain reduction until convergence but does not perform edge
domain reduction. Both configurations use edge domains during the search process
and employ specialized techniques for peripheral query vertices (see Sects. 2.3.2, 3.1,
3.2.1).

Note: s intended to be the very general-purpose version of the proposed approach.
However, some existing tools focus on solving a special case of SubGI in which they
report only up to a certain predefined maximum number of matches. To compare
with such systems when the predefined number is relatively small, lt is better.

We have compared ith other systems by taking into account the features and
limitations of the state-of-the-art approaches RI-DS (Bonnici et al. 2013), DAF (Han
et al. 2019), VEQ (Kim et al. 2021), Glasgow (McCreesh et al. 2020). RI-DS speeds
up the search process by giving precedence to query vertices that maximize the
number of constraints that can be verified at a given step of the process (see also
Sect. 3.2). Because RI-DS already includes vertex domains and arc-consistency, it
can be used to evaluate the effectiveness of introducing edge domains and path-based
reduction. DAF is a recent method that uses a combined vertex and edge domain
structure. Instead of path-based reduction, it reduces domains by comparing the
directed acyclic graphs induced by vertices. DAF manages graphs with labels only
on vertices, not on edges. This limitation also affects its predecessors TurboISO (Han
et al. 2013) and CFL-Match (Bi et al. 2016). VEQ is based on the DAF techniques
but it exploits the constraints induced during the matching process to reduce the
search space. The released VEQ software searches only up to 100k matches, and,
similarly to DAF, allows labels on vertices but not on edges. The Glasgow solver is a
recent algorithm based on constraint programming. It makes use of domain-specific
search and inference techniques for solving computationally hard SubGI instances
which are often represented by graphs with a few labels.

Table 2 reports the functional features of the state-of-the-art software packages
with which we compare.

RI-DS, and lt), and Glasgow are able to list all the subgraph isomorphism matches
between the query and the target graph. By contrast, current implementations of DAF
and VEQ return only the count of the matches.

DAF (and similarly VEQ) first performs the combinatorial search on a core set of
query vertices with constraints affecting other vertices in the core. Peripheral
vertices, whose constraints do not affect subsequent vertices, are examined later.
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Thus, the core set is examined using a SubGI searching approach. Then, for each
instance of the core set, the number of global instances produced by extending the
core is calculated by exploiting the current domain sizes of peripheral vertices. This
strategy implies that DAF does not give the details of global matches, so it cannot
return the mapping instances between the target graph and the query. Moreover, the
available version of VEQ does not retrieve all the matches between a query graph
and a target graph, but it stops at a maximum of 100,000. Thus, the results reported
here refer to the counting problem. Further, in the tests in which VEQ is included,
algorithms were modified to stop at the first 100k occurrences. Every approach
reported in Table 2 can solve the counting problem. Thus, our experiments show
results for counting, rather than for the listing problem.

Concerning the techniques introduced in VF2 (Cordella et al. 2001) and VF3
(Carletti et al. 2017b), in Bonnici et al. (2013) it is shown that RI-DS outperforms
VF2. VF3 is a state-of-the-art algorithm based on a set of feasibility rules for
matching vertices that are applied during the search process algorithm, and it allows
labels on vertices and edges. Unfortunately, the currently available executable can
solve only induced subgraph isomorphism. for this reason, we performed a
comparison between VF3 and a version of hat has been modified for searching
induced substructures.

Each test in each benchmark consisted of a single query on a single target graph,
and by setting a timeout of 600 s. Queries were randomly extracted subgraphs from
target graphs. The query extraction procedure uses a uniform random distribution to
pick up a vertex from the target graph. That constitutes the initial vertex of the query.
Subsequently, within the target graph, a neighbor of the vertices that currently
comprise the query is randomly selected. The selected vertex is added to the query
together with all the edges that link it with any of the vertices already in the query.
The process is repeated until the desired number of vertices (or edges) is reached.

The command /usr/bin/time -f“%e %s %M” was used to measure time and
memory consumption. In addition, internal timers have been injected into the source
code. All tests were run on an Intel(R) Core(TM) i7-5960x with 64-Gb of RAM
machine running a Ubuntu 64-bit 18.04 LTS system. All the evaluated tools are
written in C??. DAF and VEQ are provided as executable files but without source
code.

We applied the empirical non-parametric paired test described in Katari et al.
(2021) to evaluate the statistical significance of a predominance of an algorithm with

Table 2 Functional features of the compared approaches

Algorithm Vertex labels Edge labels Listing Counting Count limit

ArcMatch U U U U No limit

RI-DS U U U U No limit

Glasgow U U U U No limit

DAF U U No limit

VEQ U U 100k
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respect to the others. In particular, we tested whether the algorithm with the lowest
average running time was also statistically the best one. A formal description is given
in “Appendix C”. We put an asterisk on the charts if the fastest algorithm is
statistically significantly better than all other algorithms at a p value level of 0.05 or
less.

We also compute speed-ups of the proposed approach with respect to the state-of-
the-art methodologies. In doing this calculation, we take into account timeouts (when
a query takes over 600 s). Then, we divided the running time of the compared
algorithm by the running time of or ArcMatch-lt), and we computed the average
along all the tested queries.

In what follows, Sect. 4.1 gives details of the benchmarks used for the
comparisons. Section 4.2 reports the main tests that regard the search for subgraph
isomorphism with an unlimited number of matches to be reported. The results of tests
performed by limiting the number of reported matches to the first 100k occurrences
in Sect. 4.3. This type of search is not the main goal of the proposed approach, but
we show such results to enable comparison with VEQ. Section 4.5 reports results on
searches of induced subgraphs. This type of search is not the main goal of the
proposed approach, but we show such results to enable comparison with VF3.
Section 4.4 reports scalability tests according to the time requirements of the
compared algorithms. The memory requirement of all the compared algorithms is
below 300Mb, so we consider memory consumption to be irrelevant. However,
memory footprints are reported in “Appendix D”. Lastly, Sect. 4.6 reports a
comparison between nd a well-known graph database management system, Neo4j.
Because of the complexity of database management systems, the reported results are
aimed at showing that the performance of such systems can still be improved.

4.1 Benchmarks

We conducted the experiments on two different types of graphs, depending on the
type of labels that are taken into account. Fully labelled graphs refers to experiments
on graphs in which both vertices and edges have one label each. By contrast, vertex
labelled graphs concerns experiments in which only vertex labels are used. Graphs
also differ by the application domain: protein–protein interactions networks, co-
authorship and email networks.

The PPI (Protein–Protein interaction) networks data set is a popular benchmark for
subgraph isomorphism (Bonnici et al. 2013), because it is composed of different
target graphs varying in size and density. It contains PPIs belonging to 11 different
species, that have from 5000 to 12000 vertices, and an average degree ranging from 8
to 54. Target graphs have labels on vertices and edges. The number of labels varies
from 8, 16, 32, 64, 128 to 256. Queries were randomly extracted from the labelled
target graphs by setting the number of vertices to 4, 8, 12, 16 or 32. For each number
of query vertices, 10 queries were extracted from each labelled target. The average
query density is 0.169, with minimum and maximum values of 0.057 and 0.437,
respectively.

DBLP is a co-authorship network in which vertices are authors and they are
connected if they published at least one research paper together. We downloaded the
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network from the SNAP database.1 The graph has 317,080 vertices and 1,049,866
edges. We randomly labelled the network with 20 (as proposed by DAF’s authors
Han et al. (2019)), 100 and 1000 vertex labels. Moreover, we labelled the network
with a set of 11,760 labels corresponding to the output of a community detection
procedure, as described in Yang and Leskovec (2015). Each label identifies a specific
community: each vertex is labelled according to the one community it belongs to.
Figure 5 reports the size of communities in terms of the number of vertices. The
largest community, consisting of 56k vertices, represents vertices which were not
assigned to a particular community. Thus, 17% of the vertices are labelled with this
particular ’unassigned’ community. The second largest community consists of 7.5k
(2%) vertices. The 50 (over 11k) largest communities cover in total 50% of the
network.

Sets of 100 queries were randomly extracted for each of the four target networks
(three random labelling plus one community membership). Each set is composed of
queries having the same number of vertices ranging from 5, 10, 15, 20 to 50. Thus,
500 queries were extracted from each target graph, with a total of 2000 queries for
the entire benchmark. The average query density is 0.191, with minimum and
maximum values of 0.040 and 0.640, respectively.

We finally evaluate a network that was generated using email data, from October
2003 to May 2005, from a large European research institution. Vertices represent
individuals, and a directed edge between individuals i and j is created if i sends at
least one email to j. We downloaded the network from the SNAP database.2 The
graph has 265,214 vertices and 420,045 edges. Thus, compared to the other two
benchmarks, it is more sparse. Because no vertex labels are provided in the original
version, we randomly labelled the network with 20, 100 and 1000 different labels.
Queries were extracted from one of the three labelled targets by varying the number
of query vertices from 5 to 50.

4.2 Subgraph isomorphism

Our comparisons regarding subgraph isomorphism involve the state-of-the-art
methodologies that have the same functionality as see the functionality discussion in
Sect. 4 and reported in Table 2) in solving such a problem. This means that they can

Fig. 5 Rank (x-axis) obtained by order communities according to their size (y-axis) in increasing order. By
assigning a distinct label to each community. The chart shows that labels are not uniformly distributed
within the graph. In particular, there is one community which predominates with more than 50k members

1 https://snap.stanford.edu/data/com-DBLP.html.
2 https://snap.stanford.edu/data/email-EuAll.html.
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handle graphs with labels on vertices and edges, and they search and return all the
occurrences of the query graph within the target graph. Those are RI-DS, Glasgow
and

Table 3 and Fig. 6 show the comparison over the PPI benchmark on target graphs
having both vertex and edge labels. The proposed approach results in the fastest
method for the majority of the problem instances that were taken into account. as an
average speed-up of a factor of approximately 2 with respect to RI-DS and a factor of
more than 80 with respect to Glasgow. s, however, outperformed by RI-DS for large
queries (32 vertices). This disadvantage is mainly due to the costs of the reduction
techniques implemented by They prove to be expensive on large queries or when the
information coming from edge labels is not enough to cover the cost of exploiting it
through reduction. RI-DS has less expensive reduction techniques and it completely
avoids the handling of edge labels in such techniques.

Subsequently, we restricted the test to a graph having labels only on vertices in
order to compare the proposed approach with DAF. It is a methodology in which the
internal domain structure is more similar to thus it represents a more close approach.
Figure 7 shows the comparison on the PPI benchmark for target graphs having vertex
labels but ignoring edge labels. In this case, s the fastest algorithm when the results
are investigated by looking at the trends (Fig. 7a) w.r.t. the query size. Up to 16 query
vertices, s statistically better than all the other approaches. For 32 query vertices is
still the fastest on average, but it becomes comparable to DAF and thus the statistical
significance of its performance is lost. When the results are examined by looking at
the trends on varying the number of vertex labels (Fig. 7b), again s the fastest
approach for the majority of the instances except when graphs are equipped with a
small number of labels (8 vertex labels). In this case, ecomes comparable to DAF.
However, the Fig. 7c shows the details of such results. In particular, it shows that s
statistically the best approach for queries having between 8 and 16 vertices,
independently of the number of vertex labels. as an average speed-up of a factor of
547, 1418 and 1196 with respect to RI-DS, Glasgow and DAF, respectively.

Table 4 and Fig. 8a–c report the results of the proposed approach, RI-DS and DAF
over the co-authorship network. as an average speed-up of a factor of 19 and 357
with respect to RI-DS and DAF, respectively. The smaller the number of random
labels, the greater the running time of all the compared approaches. As noted,
however, the unassigned community covers 17% of the network, so the overall label
frequency distribution is skewed (see Fig. 5). Both factors affect the filtering power
of each algorithm. utperforms other systems when the number of query vertices is
sufficiently high, for example, when that number exceeds 15.

Finally, Fig. 9 reports results on the email benchmark. In this type of network, 20
labels are not enough to provide a sufficient amount of information to be exploited by
the reduction procedure of Nevertheless, overall, as an average speed-up of a factor
of 632 and 3.85 compared with RI-DS and DAF, respectively.
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4.3 Subgraphs isomorphism with a limited number of matches

In searching for the first 100k occurrences, all the approaches finished a similar
number of instances as when searching for all the occurrences (not shown here). The
analysis focuses on target graphs that have vertex labels but ignore edge labels in
order to compare the proposed approach with VEQ, which is equipped with an
evolved set of techniques introduced in DAF but whose available implementation
only reports the first 100k occurrences. lt always outperforms or the 100,000 match
problem. Complex path reduction procedures are not necessary for this sort of limited
search. The convergence of vertex domain reduction is enough to reduce overall
execution times. For this reason, we only show the performance of lt.

Figure 10 presents a comparison of retrieving the first 100k matches on the two
real benchmarks. In general, VEQ finishes a total number of instances that is

Fig. 6 Comparison of ith those systems that allow an arbitrarily large number of returned matches on the
Protein–Protein Interaction (PPI) graphs with both vertex and edges labels. a Average running times
grouped by the number of query vertices along with varying numbers of vertex and edge labels. b Average
running times grouped by the number of vertex labels along with varying numbers of query vertices and
edge labels. c Algorithm with the lowest average running time, grouping queries by the number of query
vertices and edge labels, along with varying numbers of vertex labels. s nearly always the fastest,
sometimes significantly so

Fig. 7 Comparison of ith other systems that allow an arbitrarily large number of returned matches on the
Protein–Protein Interaction (PPI) graphs with vertex labels but ignoring edge labels. Subfigures a and b
depict the average running times, grouping queries by the number of query vertices along with varying the
numbers of vertex labels, and by the number of vertex labels along with varying numbers of query vertices,
respectively. Subfigure c shows the algorithm with the lowest average running time, grouping queries by
the number of query vertices and the number of vertex labels. ends to dominate with 8 or more query
vertices, as long as there are a sufficient number of vertex labels
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Table 4 Average running times over the co-autorship network, grouping queries by: (1) the number of
query vertices along with varying the numbers of vertex labels, (2) the number of vertex labels along with
varying numbers of query vertices

Algorithm Query vertices Vertex labels

5 10 15 20 50 20 100 1000 11760

ArcMatch 1.97 2.92 6.06 6.51 14.70 8.94 0.30 0.23 16.27

RI-DS 0.39 5.53 21.11 40.66 185.64 82.02 0.40 0.39 119.84

DAF 154.85 155.26 176.23 166.03 207.47 70.36 7.10 10.42 600.0

For large numbers of query vertices or vertex labels, s the fastest

Fig. 8 Comparison of ith those systems that allow an arbitrarily large number of returned matches over the
co-authorship benchmark (which has vertex labels only). Subfigures a and b depict the average running
times, grouping queries by the number of vertex labels along with varying numbers of query vertices, and
by the number of query vertices along with varying the number of vertex labels, respectively. Subfigure c
shows the algorithm with the lowest average running time, grouping queries by the number of query
vertices and the number of vertex labels. emonstrates superior performance when the number of query
vertices is sufficiently high (e.g., 15 or more) or there are many vertex labels

Fig. 9 Comparison of ith those systems that allow an arbitrarily large number of returned matches over the
email benchmark (which has vertex labels only). Subfigures a and b depict the average running times,
grouping queries by the number of vertex labels along with varying numbers of query vertices, and by the
number of query vertices along with varying numbers of vertex labels, respectively. Subfigure c shows the
algorithm with the lowest average running time, grouping queries by the number of query vertices and the
number of vertex labels. emonstrates superior performance when the number of vertex labels is sufficiently
high (e.g., 100 or more)
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comparable to that of lt (not shown here). Regarding the PPI benchmark, ArcMatch-lt
is much faster than the other systems, especially when there are a large number of
possible vertex labels, exceeding 64. ArcMatch-lt has an average speed-up of a factor
of 1337 and 1.68 with respect to DAF and VEQ, respectively. For the co-authorship
network, ArcMatch-lt exhibits the highest performance when the number of vertex
labels is between 100 and 1000. VEQ performs better in other cases. ArcMatch-lt has
an average speed-up of 429 and 1.45 concerning DAF and VEQ, respectively.
Similar results are shown for the email networks, for which btain an average speed-
up of 3.79 and 1.04 compared to DAF and VEQ, respectively.

4.4 Scalability tests on synthetic graphs

We performed a scalability analysis of the compared algorithms in order to
investigate how the running time of the algorithm depends on various properties of
the involved query and target graphs.

The number of target vertices is considered to be the most important factor
affecting the running time of SubGI algorithms (Aparo et al. 2019; Carletti et al.
2017a; McCreesh et al. 2018; Carletti et al. 2013, 2020; Han et al. 2019). For that
reason, we used synthetic graphs generated by means of specific random models:
Barabási and Albert (1999), the Erdos and Rényi (1959) and the Forest Fire
Leskovec et al. (2005) models. Such a collection was previously used in Aparo et al.
(2019). Target graphs were created by fixing the desired number of vertices of target
graphs, then varying the parameters of the random models which control the number
of edges and thus the density of the graph. Query graphs were extracted randomly for
target graphs. See (Aparo et al. 2019) for a detailed description of the benchmark.

We investigate the scalability of the monomorphism problem alone and only for
those algorithms which have no strict limitation on the number of return matches. For
that reason, VF3, VEQ and lt were excluded from the analysis. We also excluded the
Glasgow algorithm for the analysis of synthetic graphs because it is optimized for
search on unlabeled graphs.

For each benchmark, the running times of the algorithm were grouped by specific
properties of the involved graph in order to investigate the dependency of the

Fig. 10 The figure shows the algorithm with the lowest average running time, grouping queries by the
number of query vertices and the number of vertex labels for the PPI benchmark (subfigure a), for the co-
authorship benchmark (subfigure b), and for the email benchmark (subfigure c). lt outperforms the other
approaches for a sufficiently high number of vertex labels when they are uniformly distributed (thus
excluding the 11760-labels labeling of the co-authorship network) over the target graph vertices
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algorithm w.r.t. the specified properties. In particular, we took into account the
number of vertices of the target graph, the density of the target graph, the number of
distinct labels in the target graph and the number of vertices of the query graph.
These properties are most often used to compare the performance of SubGI
algorithms (Aparo et al. 2019; Carletti et al. 2017a; McCreesh et al. 2018; Carletti
et al. 2013, 2020; Han et al. 2019).

Results regarding the Barabási and Albert (1999), the Erdos and Rényi (1959) and
the Forest Fire (Leskovec et al. 2005) models are shown in Figs. 11, 12 and 13,
respectively. All the analyses show that the running time of oes not depend on the
number of target vertices and on variations in target density. By contrast, when the
number of distinct target labels is large, xploits the filtering power of vertex labels
very well. As a result, the running time of ecreases as the number of distinct target
labels increases. While all algorithms improve with large numbers of vertices, xploits
such information the best. Similarly, but with an opposite trend, all the algorithms
show a clear dependence on the number of query vertices. Each algorithm shows a
specific trend, but in general s the fastest algorithm for reasonable query sizes (up to
32).

There is a slight anomaly regarding Barabási–Albert and Forest Fire networks. In
generators for that model, large target graphs have lower edge density because

Fig. 11 Scalability analysis for the synthetic benchmark built by means of the Barabási–Albert model.
Charts are drawn by grouping the running times of each algorithm according to the properties of the target
and query graphs. While the number of target vertices and overall target density do not affect the relative
computational requirements of the algorithms, the number of query vertices has a strong effect. onsistently
wins, often in a statistically significant manner (low p value)

Fig. 12 Scalability analysis for the synthetic benchmark built by means of the Erdos model. Charts are
drawn by grouping the running times of each algorithm according to properties of the target and query
graphs. Number of target vertices and target density do not affect trends in computational requirements of
the algorithms. Dependencies emerge for number of distinct target labels and number of query vertices.
onsistently wins, often with a low p value
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generating them with high-density values requires large computational resources.
That lower edge density is the reason the graphs show a decrease in running time as
the number of nodes in the target graph increases.

With respect to the Barabási–Albert model, as an average speed-up of a factor of
4185 and 96 compared with RI-DS and DAF, respectively. For the Erdos model, the
speed-up is a factor of 7109 and 864, and for the Forest Fire model, it is 1677 and
271, in comparison with RI-DS and DAF, respectively.

4.5 Induced subgraph isomorphism

Lastly, we compared the performance of nd vF3 in searching for induced subgraphs.
We used the collection of fully labelled PPI networks described in Sect. 4.1.

Figure 14 shows the results of the comparison. The VF3 strategy exploits
feasibility rules based on the topology of the query and is less dependent on the
arrangement of labels. By contrast, the euristic exploits labelled paths. It is relevant to
observe that the overhead due to the construction of edge domains does not capture
the topological properties of the query that can be exploited in the case of induced
subgraphs. Specifically, oes not capture the negative edges that are constraints for the
induced subgraph isomorphism. For these reasons, the VF3 strategy is better when
few vertex labels are present in the target graph, but VF3’s advantage is reduced for
increasing numbers of labels. Compared to vF3, for large numbers of labels, as a
speed-up as high as a factor of 29.

4.6 Comparison with multigraph-focused approaches

A multigraph is a pair G ¼ ðV ;EÞ in which V is the set of vertices and E is a multiset
of pairs of vertices. As for simple graphs, multigraphs can be equipped with vertex
and edge labelling functions. Switching from multigraphs to graphs entails merging
multiple edges between the same pair of vertices into a single edge. If labels are
assigned to an edge, then the co-domain of the labelling function for edges switches
from a single element of a set of labels to a subset of such a set of elements. A similar
switch can be done for graphs in which multiple labels are assigned to a single

Fig. 13 Scalability analysis for the synthetic benchmark built by means of the Forest Fire model. Charts
are drawn by grouping the running times of each algorithm according to properties of the target and query
graphs. Number of target vertices and target density do not affect trends in computational requirements of
the algorithms. Dependencies emerge for number of distinct target labels and number of query vertices.
onsistently wins, often with a low p value
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vertex. In this case, a trivial adaptation of the proposed approach can be obtained by
implementing a specific comparator function for the set assigned to vertices and
edges. The behavior of such a comparator depends on the specific application. It can
be a set inclusion operator or any other set-theoretical comparison. This approach
provides a solution for applying the proposed methodology to multigraphs, or to the
more generic structures called property graphs (Comyn-Wattiau and Akoka 2017).
However, specific indexing techniques for managing such type of graphs, besides the
strategic choices that drive the search process, may be developed in order to speed
the search process up. As a proof of potential methodological extension of o this type
of graphs, we compared the performance of nd Neo4j (version 4.4.29) in searching
for subgraph isomorphisms. We used the collection of the fully labelled Protein–
Protein Interaction networks described in Sect. 4.1. This type of graph does not
contain multiple edges between vertices, so the retrieved matches of Neo4j equal the
retrieved substructures of A Neo4j server instance was installed on the testing
machine. For each SubGI instance, the target graph was converted into the textual
input format of Neo4j and loaded into a blank Neo4j server instance. Labels are
attached to vertices and edges as attributes of such elements. The query graph was
translated into a Neo4j query according to the Cypher query language and passed to
Neo4j through the Neo4j cypher-shell command. The running time of the experiment
includes the loading of the target graph into the Neo4j instance and the search for the
matches, but it does not contain the time needed for the translation of the two graphs.

Neo4j is a NoSQL database management system which includes several
capabilities besides the core subgraph search. It manages vertices and edges having
multiple labels, and constructs indexing data structures for their efficient scanning
once a query is run. This means that, on loading a target graph into the server
instance, Neo4j spends time in an indexing phase, which hopefully will reduce the
querying time. When such indexing structures are employed, it is reasonable to share
the indexing cost across multiple queries. However, indexing data structures are not
the goal of the proposed study. In addition, Neo4j is based on join operations that are
performed among elements of the query. This means that a query graph is split into a
series of filtering and join operations. The filtering operation corresponds to the

Fig. 14 Comparison of ith VF3 when searching for all the induced subgraph isomorphism occurrences of
queries over the Protein–Protein Interaction benchmark. Average running times are grouped by: a the
number of query vertices along with varying numbers of vertex and edge labels; b the number of vertex
labels along with varying numbers of query vertices and edge labels. c the number of edge labels along
with varying numbers of query vertices and vertex labels. When the number of vertex labels is greater than
8 or the number of query vertices is greater than 8, s faster, thanks to the effectiveness of its reduction
techniques
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search for target vertices or edges having a given label equal to an element of the
query graph. Then, such a set of substructures is joined to the set of temporary
structures that have been retrieved by the previous series of join operations. The
sequence of filtering and join operations is dynamically chosen according to
predictions on the size of the temporary sets of substructures. Figure 15 shows the
results of the comparison. Neo4j has an average running time which is close to 100 s.
On average (not shown in the figure) Neo4j requires 4 s to load the target graph (thus,
indexing it) and to internally parse the query graph (which is given according to the
Cypher query language).

5 Conclusions

In the context of subgraph isomorphism, where a query graph is searched within a
target graph, the domain of a query element such as a vertex is the set of compatible
elements in the target graph. Recently, the concept of edge domains has been the
focus of increasing interest (Han et al. 2019; Kim et al. 2021), especially when they
are combined with vertex domains into a unified data structure.

Using such a data structure, ntroduces a new technique for reducing domains
which exploits the topological relationship of domains, specifically, their correspon-
dence to paths of the query graph. This approach generalizes already existing
techniques for reducing domains, such as arc consistency, extending those techniques
from taking into account constraints coming from single edges to structural
constraints arising from paths of the query graph.

Tests on real networks have shown that combining these new approaches with
existing techniques effectively reduces running times when the number of distinct
labels on vertices and/or edges of the target graphs is high. A slight variant of called
ArcMatch-lt, performs better when few matches have to be retrieved.

The authors of state-of-the-art algorithms have studied the scalability of their
algorithms with respect to the number of target vertices (Aparo et al. 2019; McCreesh
et al. 2018; Carletti et al. 2013, 2017a, 2020; Han et al. 2019). By contrast, our
approach is most sensitive to the number of target labels and the query size.

Fig. 15 Comparison of ith Neo4j when searching all the induced subgraph isomorphism occurrences of
queries over the PPI (Protein–Protein Interaction) benchmark. Average running times are grouped by: a the
number of query vertices along with varying numbers of vertex and edge labels; b the number of vertex
labels along with varying numbers of query vertices and edge labels. c the number of edge labels along
with varying numbers of query vertices and vertex labels
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We have seen that there is a trade-off between computing constraints (which may
take substantial time) and matching time (which is reduced by constraints). In this
study, we propose two different versions of the proposed approach. When only a
limited number of matches is required instead of the complete set of query
embeddings, it is better to economize on the constraint enforcement. In future work,
we aim to further investigate possible improvements of the approach, in particularly
in searching for a way to auto-tune the selection for the best reduction configuration
according to the required output and the properties of the input graphs. In addition,
we also believe that the novel path-based reduction technique could be applied in
CSP solvers to improve their performance.

Appendix A: Detailed comparison of the techniques involved
in ArcMatch

In what follows, we evaluate the advantage that each feature gives to A baseline
version of the methodology is included: it builds vertex and edge domains, reduces
vertex domains with a single run of arc consistency, computes the variable ordering
as in Bonnici et al. (2013) (measures N1, N2 and N3 are used), but it does not apply
further techniques. In the baseline version, the search process is not performed on top
of the domain graph as described in Sect. 3.3. In this way, the baseline is very close
to the RI-DS algorithm with the difference that it computes the initial content of edge
domains. The baseline version is then augmented with the following features in order
to determine both the advantage/disadvantage of each feature individually and in
combination.

The features are:

● NS: the variable ordering is performed by also using measures N4 and N5 (see
Sect. 3.2).

● ED: the search process is driven by the domain graph. Thus, candidates are
extracted from edge domains (see Sect. 3.3). However, no dynamic parent
selection is performed. Parents are chosen statically before the search process
begins as in Bonnici et al. (2013).

● DY: as for ED but dynamic parent selection is enabled (see Sect. 3.3).

● VC: arc consistency is applied to vertex domains until convergence (see
Sect. 2.3.2).

● RE: apply path reduction procedure (PathReduction) as it is described in
Sect. 3.1, but disable the call to the function RefineDomains, which reduces
edge domains.

● RR: reduce edge domains by also enabling RefineDomains

● PV: enable the management of peripheral vertices by using the procedure
described in Sect. 3.2.1.
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16 versions of ere obtained by combining the different features (NS, ED, DY, VC,
RE, RR and PV). Table 5 shows the number of queries that were finished within the
600 s timeout by the tested solutions.

Results are grouped by number of target vertex labels (from 1 to 1024). In that
grouping, graphs having more than one edge label are discarded. In subsequent tests,
only instances regarding target graphs having one vertex label are taken into account,
and they are grouped by number of edge labels (from 1 to 1024). The last column
reports the total number of finished instances, as a function of the number of labels
that are assigned to vertices or edges. Each reported grouping is composed of a total
of 250 instances except for the all grouping that includes all the corresponding
instances. For each column, the solution that solved the maximum number of
instances is highlighted in bold.

The table shows that RI-DS and Glasgow are always outperformed by at least one
olution. As expected, all the approaches are more effective with increasing numbers
of labels, regardless of whether the labels are assigned to vertices or edges. The
reason is that increasing the number of labels decreases the number of target vertices
(edges) that are compatible with a given query vertex (edge). With more that 32
labels, almost every instance is solved by all the approaches within the timeout. 7 is
the configuration that performs best overall. It finished a total of 8761 instances. Such
a configuration does not go to convergence when reducing vertex domains. Thus, it
postpones a more accurate filtering of domains to path-based reduction. This result
shows the advantages of using vertex and edges domains but without forcing their
reduction to convergence.

Similarly, when there are no labels or, equivalently, the same label for all vertices
and the same label for all edges, solutions that do not exploit complex techniques,
such as domain reduction, enjoy substantial advantages (see for example 1). When
there are a small number of labels, the filtering power of reduction techniques is
minimal, so their benefits are not worth their computational costs.

When the number of vertex/edge candidates is high, a specialized procedure for
managing peripheral query vertices is worthless. The technique can only exploit
domains that do not overlap, but, with a few labels, domains tend to have non-null
intersections. Thus, overriding the general ordering strategy by postponing the
processing of peripheral vertices is counterproductive.

The second configuration that performs well overall is 13. It does not reduce edge
domains but it exploits them during the searching process. Moreover, it reduces
vertex domains until convergence to make up for the reduced candidate filtering
power.

Table 6 reports the running time of the compared solutions. Average (and standard
deviation) on running times for different groupings are reported. Results are grouped
by vertex labels by taking into account only instances with one edge label. Instances
with one label have an average running time close to 600 because a timeout of 600 s
is applied and most of the instances reached the timeout. The average running time
correlates with the number of finished instances (see Table 8). With 128 and more
labels, the instances are solved in less than 1 s. In Table 9, all instances are grouped
by the number of query vertices, independently of from the number of target labels.
The table shows that the running time depends on the number of query vertices. For
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some algorithms, there is an order of magnitude increase from 4 to 32 query vertices
(for example 1 and 10), while other configurations just double their time. The
predominance of 7 is very clear. Such a configuration is always the best solution
except for instances with only one label and for queries with just 4 vertices. These
types of instances are too simple to benefit from the advantages of sophisticated
filtering techniques, such as edge domain reduction. In fact, configurations that do
not reduce edge domains are the fastest ones on queries with four vertices. Similar
considerations apply when no edge labels are present, as it is shown in Table 7
(Tables 8, 9).

Lastly, we evaluated the significance of the features in searching for the first 100k
matches. Results are shown in Table 10. Combinations of features that do not exploit
complex reduction techniques outperform more sophisticated approaches. For this
number of matches, 8, which exploits arc-consistency only, is the fastest solution,
and 7 is slower. More generally, combinations that exploit edge domains enjoy
significant advantages when there are no labels. When there are many labels, gaps
between the studied solutions shrink. From 32 labels on, all solutions have
compatible running times.

In conclusion, we select 7 as the main version of the proposed approach and
propose 13 as a light version that can be used, for example, for finding the first 100k
matches.

Appendix B: Relation between arc consistency and path-based
reduction

In the constraint satisfaction field, the concept of arc consistency is extended to path
consistency (Dechter et al. 2003). The reader might think there is a correspondence
between the path-based reduction technique proposed in this study and path
consistency. They differ, however. Path consistency is defined only in terms of the
CSP (Constraint Satisfaction Problem) and aims to verify the entire set of rules
relating to two or more variables. Translated into a graph theory formulation, such a
concept will check for the correspondence of the subgraph between a given query
vertex and a target vertex. In our path-based reduction, we are interested in verifying
only that there is a corresponding path starting from the two vertices. No edges
(rules) between vertices (variables) are examined outside of the path. Path
consistency also differs from the reduction presented in Han et al. (2019), since
DAF checks for non-induced substructures, rather than simple paths. Thus, DAF
requires higher computational costs, it is potentially more effective in reducing
domains but there is no guarantee of such performance.

Given two query vertices, vq and uq, connected by the edge ðvq; uqÞ, arc
consistency verifies that each target vertex vt 2 DðvqÞ is consistent with respect to
such a constraint. Thus, vt must be connected with at least one vertex in DðuqÞ. If vt
makes DðvqÞ inconsistent, than vt is removed from DðvqÞ, namely DðvqÞ is reduced.
The removal may have a cascading effect on the other domains. Thus the reduction
of DðvqÞ propagates to the other domains. The propagation can be performed in two
different ways: i) in conjunction with the domain reduction; (ii) or it can be
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performed by multiple runs of arc-consistency. In the first case, each removal is
systematically propagated to the other domains. In the second, case, each run is
performed over the result of the previous one, and the process is repeated until
convergence. In any case, the two approaches produce the same effects. In the first
solution is adopted, and it is implemented by the procedure RefineDomains.

PathReduction generalizes the concept of arc consistency by imposing
consistency not at the edge level but at the path level. For each path x such that
x½1� ¼ vq, each target vertex in DðvqÞ must be the starting vertex of a corresponding
path supported by the current state of the domains. Thus, it is trivial to show that
PathReduction is equivalent to arc-consistency when lp ¼ 2, namely when
paths composed of only one edge are taken into account.

Note that the propagation is an additional feature with respect to one simple
application of arc-consistency. In some situations, propagation is a costly operation
whose benefits are not worth the cost. Given a query graph Gq ¼ ðVq;EqÞ, the cost of
each run of arc-consistency is proportional to jEqj because edges are scanned. By
contrast, the cost of PathReduction is proportional to the number of query paths,
which may grow exponentially with respect to jEqj.

A question arises: if no propagation is performed, is PathReduction more
powerful than arc-consistency?

In what follows, we refer to rvtvq as the operation which removes the target vertex vt
from DðvqÞ. Given a query graph Gq and a target graph Gt, RACðGq;GtÞ represents
the set of removal operations that are performed by a single run of arc-consistency
over the initial domains. Ri

ACðGq;GtÞ represents the set of removal operations
obtained in i runs of arc-consistency. Lastly, RFCðGq;Gt; lpÞ represents the set of
removal operations that are performed by a single run of PathReduction without
propagation, namely by discarding the call to the procedure RefineDomains.

Theorem 6 Given a query graph Gq and a target graph Gt , RACðGq;GtÞ � RFCðGq;Gt ; lpÞ if lp[ 2.

Fig. 16 Example of possible differences between arc-consistency and PathReduction
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Proof If lp ¼ 2, RFCðGq;Gt ; 2Þ equals RACðGq;GtÞ, because the two techniques both scan for edges and
produce the same result (Figs. 16, 17).
Thus, if no propagation is applied, arc consistency is equivalent to PathReduction with lp ¼ 2, namely
RACðGq;GtÞ � RFCðGq;Gt ; 2Þ. However, Theorem 1 states that RFCðGq;Gt ; lp1Þ � RFCðGq;Gt ; lp2Þ with
lp1\lp2. Thus, RACðGq;GtÞ � RFCðGq;Gt ; 2Þ � RFCðGq;Gt ; lp[ 2Þ. h

Appendix C: Statistical significance

We tested the statistical significance of the difference between nd the competitors. To
do so, we applied the empirical non-parametric paired test described in Katari et al.
(2021). Given a set of n queries, we construct two vectors, v1 and v2, of length n
reporting the corresponding running time of two algorithms. The running time
corresponding to the ith query is reported at position i of both vectors. Let’s suppose
v1 to be the algorithm with the highest average value. We want to test whether
algorithm 2 (which has the lowest average value) is statistically significantly faster.
Let d ¼Pn

i¼1ðv1½i� � v2½i�Þ, where v[i] is the ith value of v. For a given number N of
iterations, we build two vectors v01 and v02 such that, for each position 1� i� n,
v01½i� ¼ v1½i� and v02½i� ¼ v2½i� with probability 0.5, and with probability 0.5 v01½i� ¼
v2½i� and v02½i� ¼ v1½i�. Namely, with probability 0.5 we exchange the values of the
two vectors. Thus, we count how many times

Pn
i¼1ðv01½i� � v02½i�Þ[ d. We chose N

equal to 1000. The resultant p value is the count divided by N. (If the count value is
0, then we say that the p value is less than 1/N (1/1000 in our case).) If the p value is
small, then it’s unlikely that algorithm 2 was shown to be faster than algorithm 1 by
chance.

Fig. 17 Example of possible differences between arc-consistency and PathReduction
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Appendix D: Memory scalability

We computed the average memory footprints of the compared algorithms on the three
synthetic benchmarks in order to analyse the scalability of the approaches. The
analysis was conducted by varying the number of target vertices, the number of
vertex labels and the number of query vertices. Results for the Barabási–Albert,
Erdos and Forest Fire models are shown in Figs. 18, 19 and 20, respectively.

Fig. 19 Memory scalability analysis for the synthetic benchmark built by means of the Erdos model.
Charts are drawn by grouping the memory footprints of each algorithm according to the properties of the
target and query graphs

Fig. 18 Memory scalability analysis for the synthetic benchmark built by means of the Barabási–Albert
model. Charts are drawn by grouping the memory footprints of each algorithm according to the properties
of the target and query graphs

Fig. 20 Memory scalability analysis for the synthetic benchmark built by means of the Forest Fire model.
Charts are drawn by grouping the memory footprints of each algorithm according to the properties of the
target and query graphs
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