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Abstract

Insulating Glazing Units (IGUs) are glass panes held together by structural

edge seals, entrapping a gas for thermal and acoustic insulation. The bend-

ing of one pane induces pressure variations in the cavities, which produce the

load sharing through the gas with the other panes. Under mild hypotheses,

the whole IGU behaves as a linear elastic system. Hence, for IGUs with panes

and cavities of any number, shape, size and edge constraints, the Green’s func-

tions can be defined for the pressure variations and the pane displacements,

so that these quantities can be expressed as convolution integrals with any ap-

plied load. The proposed Green’s functions are calculated with a tailored used

of Betti’s reciprocal work theorem, referred to as Betti’s Analytical Method

(BAM), here generalized to multiple IGUs with N panes. Remarkably, the

Green’s functions for the pressure variations in the cavities are completely de-

termined by the deformation field of a simply-supported plate, with the same

shape of the IGU, under uniform pressure: this represents the universal expres-

sion, possibly tabulated, covering all possible cases. The proposed approach is
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validated through comparisons with prescriptions by standards and numerical

simulations. Parametric analyses show the effect of the IGU geometry on the

load sharing.

Keywords: Insulating Glazing Units (IGUs); composite structure; Green’s function;

analytical approach; Betti’s Analytical Method (BAM).
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1 Introduction

Insulating Glass Units (IGUs) consist of two or more glass panes, either monolithic

or laminated, held together by structural edge seals, separated by one or more air

or noble gas-filled spaces, used to reduce the heat transfer in the building envelope.

When composed by two or three glass panes they are respectively referred to as Double

Glazing Units (DGUs), or Triple Glazing Units (TGUs). When an IGU is subjected

to external loads, either concentrated or distributed, there is an interaction among the

glass panes and the gas filling the cavities, which redistributes the loads among the

glass panes. This effect, referred to as load sharing, depends upon the flexural stiffness

of the panes and the gas compressibility, since it is due to the pressure variation in the

interpane cavities consequent to the applied actions. Also changes in the barometric

pressure and in the gas temperature inside the cavity, with respect to the time of

sealing, unbalance the external and internal pressures, developing effects in all the

panes. Extensive research on the load sharing between the lites has been pursued for

DGUs, but the case of TGUs or multiple IGUs appears to be less investigated. Many

engineers often design TGUs by simply ignoring the contribution of the middle lite

to load sharing [24], but this approach may be too much conservative.

Various approximate methods have been proposed to evaluate the load sharing in

multiple IGUs. The simpler one is the “thickness cubed” method proposed by the

ASTM E1300 [1] for DGUs and TGUs under uniformly-distributed loads (wind, snow,

self weight). The method assumes the gas in the cavity to be incompressible, so that

the deflection of the glass panes is inversely proportional to the cube of their thickness.

Coefficients are proposed to account for the pressure variations in the cavities due to

changes in barometric pressure and temperature. A more refined method accounting

for the gas compressibility has been proposed by the European Norm EN 16612 [28],

based on the work by Siebert and Maniatis [30]. By requiring that the sealed spaces

are in equilibrium under the ideal gas law, insulating-unit factors for calculation are

presented in tables for DGUs and TGUs under external uniform pressure and changes

in barometric pressure and temperature. Both the aforementioned Standards do not

provide any formula for the calculation of IGUs other than rectangular and simply

supported at the borders, and they cover neither the case of more than three glass
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panes, nor line-distributed or concentrated loads.

To our knowledge, the only method to design IGUs composed by an arbitrary

number of glass panes is that proposed by Feldmeier [10, 12], which requires to deter-

mine, either numerically or analytically, the volume enclosed between the deformed

plate under the considered action. This allows to define coefficients, which have been

tabulated in [13] for rectangular DGUs as a function of the aspect ratio of the panes,

supposed linear elastic, simply supported at the borders, under either line distributed

or concentrated loads. Based on results from [11], formulas and coefficients to cal-

culate circular and triangular shaped geometries are recorded in [30]. Additionally,

iterative numerical methods [34, 35, 39], in general implemented with Finite Elements

[37], have been proposed. A comparison of the different approaches is presented in

[24].

More recently, the “Betti’s Analytical Method” (BAM), based on a tailored use of

the Reciprocal Work Theorem [32] by Enrico Betti [4], has been proposed in [16] to

evaluate the load sharing in DGUs when the glass panes are modelled as Kirchhoff-

Love plates [33]. The strength of this approach is that, in order to calculate the

internal gas pressure for DGUs of any size, shape, boundary and load conditions, there

is no need to solve the elastic problem for each specific external load condition. The

method simply requires to evaluate the deformation of a simply supported plate, of the

same shape of the DGU, under uniform pressure. This represents a strong advantage

with respect to the method by Feldmeier, which requires a table of coefficients for

each kind of loading. It has been verified [17] that, when the effects of the geometric

nonlinearities plays an important role (large and thin plates), the BAM approach,

despite being based on linear elasticity theory, still allows to capture, with very good

accuracy, the pressure variation in the cavity. The effective state of stress can be

determined a posteriori, performing a non-linear geometric numerical analysis of each

plate, loaded by the external action and the internal pressure variation.

Here, our major result is that, under mild hypotheses, an IGU of arbitrary geom-

etry and with various types of external restraints at the borders, composed by any

number of panes entrapping a perfect gas, responds as a linear elastic system, so that

one can calculate the corresponding Green’s functions for the pressure variations in
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the gas and the displacement of the glass panes. A Green’s function for a linear elastic

plate [22, 29], possibly laminated [38], corresponds to its out-of-plane deflection re-

sulting from the action of an unitary concentrated force applied on an arbitrary point

in the interior of the plate. Green’s function are also used for studying the dynamic

response of plates [26, 21], especially under impulsive loadings. Green’s functions

and impulse responses are formally identical, except that the former are used to solve

boundary value problems, whereas the latter are involved in initial value problems

[27]. The major advantage is that, also for IGUs, once the Green’s function is known,

the solution for any arbitrary forcing function can be expressed as the convolution

integral [20, 19, 25] of the Green’s functions and the load distribution itself.

The presented formulation assumes that the spacer connections are stiff, although

it has been proved [2] that their deformation may influence the gross response of

the IGU. There is no difficulty in incorporating, within the theoretical framework of

BAM, the compliance of the spacer joints, at least when it is determined by a linear

elastic constitutive law. However, this is not done here but postponed to future

work, because the description of the degree of constraint offered by the spacers, in

terms of elongation and bending, would require the discussion of a great number of

possible design details for the insulated elements. This would imply the consideration

of many possible subcases, adding a noteworthy complication to the equations, but

no significant achievement from a theoretical point of view.

To calculate the Green’s functions, we show that the BAM approach can be gen-

eralized to cover IGUs with by an arbitrary number of glass panes. This is presented

in Section 2 for TGUs and extended in Section 3 to IGUs with N > 3 glass panes,

requires the use of N − 1 auxiliary systems to apply Betti’s Theorem. The method

allows to evaluate the pressure variations in all the chambers, for any type of edge

constraint and external actions, as well as for climatic loads. Remarkably, also for

multiple IGUs, all the relevant expressions depend only upon the deformation of a

simply supported plate, of the same shape of the DGU, under uniform pressure, which

thus represents a “universal” function for this type of problems. In Section 4, the

accuracy of the Green’s function approach for TGUs is demonstrated by comparisons

with the formulae proposed in standards, for the simple cases that these methods can

handle, and with numerical analyses, performed with MEPLA ISO software [5], for
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more general cases. Parametric analyses are presented to illustrate the influence on

the load-sharing capacity of the size and shape of the IGU, glass and spacer thickness

and type of loading.

2 The use of Green’s functions for triple glazing

units

Betti’s Analytical Method (BAM), presented in [16], is here generalized and extended

to derive the Green’s functions for Triple Glazing Units (TGUs).

2.1 Green’s function for monolithic plates

The Green’s function for a linear-elastic Kirchhoff-Love plate [33] provides its out-of-

plane displacement field consequent to the action of a concentrated unitary force at a

generic point [29]. Once the Green’s function is known, the solution for any arbitrary

load can be expressed as a convolution integral.

For a plate of thickness h, introduce a reference system with the axes (x, y) lying

in its middle plane and the axis z in the out-of-plane direction. If the forces per unit

area f(x) are applied at x = (x, y), the out-of-plane displacement w(x) solves the

Germain-Lagrange plate equation [33]

∆∆w(x) =
f(x)

D
, (2.1)

where D = Eh3

12(1−ν2)
is the plate bending stiffness, with E the Young’s modulus and ν

the Poisson’s ratio, and ∆∆(·) = ∂4(·)/∂x4+2∂4(·)/(∂x2∂y2)+∂4(·)/∂y4 is the double

Laplacian operator. The Green’s function G(x,x∗) for the out-of-plane displacement

is the solution of

∆∆G(x,x∗) =
δ(x− x∗)

D
, (2.2)
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where δ(x − x∗) is the two-dimension Dirac Delta function [9], representing a con-

centrated unitary out-of-plane force acting at x∗. The non-dimensional counterpart

ζ(x,x∗) of G(x,x∗) is obtained by writing

G(x,x∗) =
A

D
ζ(x,x∗) , (2.3)

where A denotes the plate area.

Thanks to the linearity of the problem, the solution of (2.1) can be written in the

form

w(x) = G(x,x∗) ∗ f(x) =

∫
Ω

G(x,x∗)f(x∗) dx∗ , (2.4)

where “∗” denotes convolution, and Ω is the reference domain of the plate in the

(x, y) plane.

When the plate is subjected to a uniform pressure q, the out-of-plane displacement

can be written as

wq(x) = G(x,x∗) ∗ q = q
A

D

∫
Ω

ζ(x,x∗) dx∗ = q
A2

D
φ(x) , (2.5)

with

φ(x) =
1

A

∫
Ω

ζ(x,x∗) dx∗ . (2.6)

This is the non-dimensional shape function for the deflection of the plate under a

uniform pressure, which depends only upon the shape of the plate and its boundary

conditions. For a great number of cases, its form is recorded in the technical literature

[33].
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2.2 Green’s functions for triple glazing units via Betti’s an-

alytical method

Consider a Triple Glazing Unit (TGU) of arbitrary shape formed by three glass panes

labelled as “1”,“2” and “3”, of thickness hi, i = 1, 2, 3, confining two hermetic gas-

filled cavities of thickness sj, j = 1, 2, for which the out-of-plane displacement is

variously constrained1, as schematically indicated in Figure 1. Consider, again, a

reference system with the (x, y) axes parallel to the plane of the panes and z at right

angle to that.

The reference state at the time of sealing is defined by V0j, the reference volume

of the j-th cavity for j = 1, 2, and by p0, the internal glass pressure that equals

the external atmospheric pressure. When external loads are applied the gas volume

varies, producing a pressure variation of the gas in the j-th cavity ∆pj, j = 1, 2, which

sums up with the applied loads and contributes to the panels deformation. This effect

is in general beneficial, because it allows to share the applied loads on all the panes.

The load sharing, associated with the pressure variation in the two cavities, is now

evaluated by extending to this case the “BAM” approach [16].

In order to account for loads of any type, the key point is to evaluate the Green’s

function for the whole TGU. Consider then, as shown in Figure 2a, the action of

a concentrated unitary load, identified by the two-dimensional Dirac Delta function

δ1(x−x∗), applied on glass pane “1” at point x∗ = (x∗, y∗). No particular hypotheses

are made about the type of boundary conditions for the out-of-plane displacement

at the borders of the TGU, which can be simply or elastically supported, either

continuously or point-wise2.

Betti’s Reciprocal Work Theorem [4, 32] states that, for a linear elastic structure

under two equilibrated sets of force, the work done by the first load set through the

displacements produced by the second set is equal to the work done by the second

1The spacer joints are assumed to provide an internal constraint to the panes equivalent to a
reciprocal simple support, i.e., rotations are not refrained, while the out-of-plane displacement at
the borders is constrained to be the same in all the panels. Hence, external restraints that prevent
the out-of-plane displacement can be applied indifferently on one pane or another.

2As discussed in [16], only the cases of clamped edges and of IGUs supported in an interior point
cannot be handled with this simple method.
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s1

s2

��(x-x*)

Figure 1: Triple Glazing Unit of arbitrary shape, arbitrarily supported at the borders: a) axono-
metric view and b) section of the unit (not in the same scale).

load set through the displacements produced by the first set. We consider the TGU

subjected to three load sets, referred to as A, B1 and B2, as represented in Figure 2.

z

a) b) c)
��(x-x*)

�p2

�p1

w2,A(x)

w1,A(x)

w3,A(x)
z

q1

w2,B1(x)

w1,B1(x)

w3,B1(x)

1 2

z

q2
w2,B2(x)

w1,B2(x)

w3,B2(x)

Figure 2: Schematic representation of the load systems A, B1 and B1 for the application of Betti’s
theorem.

The load set A, shown in Figure 2a, consists of the unitary concentrated load

δ1(x− x∗) and the consequent (unknown) pressure variations ∆p1 and ∆p2. Denote

by wi,A(x) the out-of-plane displacement in the positive z direction of the point (x) on

the i-th plate, i = 1, 2, 3. The auxiliary systems B1 and B2, shown in Figures 2b and
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2c, respectively, correspond to the application of the fictitious internal pressures q1

and q2, acting in the gas cavities “1” and “2”. Indicate with wi,Bj
(x) the corresponding

out-of-plane displacement of the i-th plate, i = 1, 2, 3, in the configuration Bj, j = 1, 2.

As demonstrated in [16], in the auxiliary systems the external constraint reactions

are null since the effect of the internal pressure on two facing panes is counterbal-

anced by mutual internal constrain represented by the edge spacer. We neglect the

extensional deformation of the edge seal3, so that the constraint offered by the edge

spacers can be schematized by a continuous line distribution of simple pendulums

along the edges, as indicated in Figure 2.

The mutual works of systems A and B1, considering that w3,B1(x) = 0, read

LAB1 = w1,B1(x
∗) + ∆p1

∫
Ω

[w2,B1(x) − w1,B1(x)] dx− ∆p2

∫
Ω

w2,B1(x) dx ,

LB1A = q1

∫
Ω

[w2,A(x) − w1,A(x)] dx , (2.7)

where, again, Ω denotes the reference domain in the (x, y) plane. Analogously, the

mutual works of systems A and B2 (considering that w1,B2(x) = 0) take the form

LAB2 = ∆p1

∫
Ω

w2,B2(x) dx + ∆p2

∫
Ω

[w3,B2(x) − w2,B2(x)] dx ,

LB2A = q2

∫
Ω

[w3,A(x) − w2,A(x)] dx . (2.8)

Observe that [16] the integrals appearing in LB1A and LB2A correspond to the

volume variations, in system A, of cavities “1” and “2”, respectively. These are

related to the pressure variation in the same cavities, supposed to respect the Ideal

Gas Law. By considering isothermal transformations, one has

3According to [7], this assumption usually leads to conservative results in the evaluation of the
stress state in the glass plies.
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∫
Ω

[w2,A(x) − w1,A(x)] dx = − ∆p1
p0 + ∆p1

V01 ≃ −∆p1
p0

V01 ,∫
Ω

[w3,A(x) − w2,A(x)] dx = − ∆p2
p0 + ∆p2

V02 ≃ −∆p2
p0

V02 . (2.9)

The approximation that has been done here comes from the observation that ∆p1

and ∆p2 are much smaller than p0. In fact, the pressure variation is usually of the

order of 1 kPa, whereas the atmospheric pressure p0 is of the order of 100 kPa, so that

the error is the order of 1%. The simplification in (2.9) is of paramount importance

because it states that the volume variation in the cavity is a linear function of the

pressure variation. This implies that the system composed by the glass panes and

the gas trapped in a cavity is “approximately” a linear elastic system, for which a

Green’s function can be defined.

Furthermore, it is important to observe that the displacement fields w1,B1(x) and

w2,B1(x), for system B1, and w2,B2(x) and w3,B2(x), for system B2, all correspond

to the deformation of simply supported plates under the uniform pressures q1 and

q2, respectively, whatever the edge conditions of the IGU. In fact, it is possible to

demonstrate that the internal pressure acting in the cavity of each auxiliary system

is supported by the internal constraint offered by the edge seal only. This is because

both panes confining the pressurized cavity are in equilibrium under the same bending

moments per unit length and edge reactions, even if the deformation and the state of

stress in each pane scale according to third and second power of the pane thickness,

respectively. Due to the similarity in the deformations in pressurized plates of different

thickness, there is no warping of the edges, so that the external constraints of the

IGU remain inactive. Thus, the displacements can be written as

w1,B1(x) = − q1
D1

A2φ(x) , w2,B1(x) =
q1
D2

A2φ(x) ,

w2,B2(x) = − q2
D2

A2φ(x) , w3,B2(x) =
q2
D3

A2φ(x) , (2.10)
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where Di =
Eh3

i

12(1−ν2)
is the flexural stiffness of the i-th plate, i = 1, 2, 3, and φ(x) is

the non-dimensional shape function, defined by (2.6).

Betti’s theorem states that LAB1 = LB1A and LAB2 = LB2A. Denoting with φA

the mean value of the shape function on the plate area A, i.e., φA := 1
A

∫
Ω
φ(x)dx,

by using (2.9) and (2.10) the aforementioned equalities read

− A2

D1

φ(x∗) + ∆p1

(
1

D1

+
1

D2

)
A3φ̄A − ∆p2

A3

D2

φ̄A = −∆p1
p0

V01 ,

− ∆p1
A3

D2

φ̄A + ∆p2

(
1

D2

+
1

D3

)
A3 φ̄A = −∆p2

p0
V02 . (2.11)

If the gas was incompressible, ∆V0i = 0, and the second terms of (2.11) would be

null. This leads to a strong simplification of (2.11), in the form

∆p1,δ1 =
D2 + D3

φ̄A (D1 + D2 + D3)

φ(x∗)

A
, ∆p2,δ1 =

D3

φ̄A (D1 + D2 + D3)

φ(x∗)

A
. (2.12)

In words, the load sharing depends only on the plates stiffness if the gas is incom-

pressible.

However, the gas compressibility usually plays a relevant role. To solve the system

(2.11), it is useful to define the non-dimensional coefficients4

µ−
1 =

A3

D1

p0
V01

, µ+
1 =

A3

D2

p0
V01

,

µ−
2 =

A3

D2

p0
V02

, µ+
2 =

A3

D3

p0
V02

. (2.13)

By solving the system (2.11), one finds

4These are qualitatively similar to the coefficients α−
k e α+

k defined in [28].
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∆p1,δ1 =
K1,δ1

A
φ(x∗) , ∆p2,δ1 =

K2,δ1

A
φ(x∗) , (2.14)

where K1,δ1 and K2,δ1 are non dimensional coefficients5, which read

K1,δ1 =
µ−
1 [φ̄A(µ−

2 + µ+
2 ) + 1]

φ̄2
A(µ−

1 µ
−
2 + µ+

1 µ
+
2 + µ−

1 µ
+
2 ) + φ̄A(µ−

1 + µ+
1 + µ−

2 + µ+
2 ) + 1

,

K2,δ1 =
φ̄Aµ

−
1 µ

−
2

φ̄2
A(µ−

1 µ
−
2 + µ+

1 µ
+
2 + µ−

1 µ
+
2 ) + φ̄A(µ−

1 + µ+
1 + µ−

2 + µ+
2 ) + 1

. (2.15)

It is thus evident that the pressure variations depend upon the external loading,

the IGU shape and size, the bending stiffness of the glass panes, but not upon the

fictitious arbitrary loads q1 and q2 used in Betti’s theorem.

When D3 → 0, so that µ+
2 → ∞, one obtains

∆p1,δ1 =
µ−
1

φ̄A(µ+
1 + µ−

1 ) + 1

φ(x∗)

A
, ∆p2,δ1 = 0 , (2.16)

which coincides with the expressions presented in [16] for the case of DGUs under

concentrated unitary force.

The expressions (2.14), which provide the pressure variations due to an unitary

concentrated action, represent the Green’s functions for the pressure variations in the

TGU. Consequently, when a generic load per unit area f1(x) is applied on plate “1”,

the consequent pressure variations may be evaluated as

∆pj,f1 = ∆pj,δ1 ∗ f1(x) =
Kj,δ1

A

∫
Ω

φ(x∗)f1(x
∗) dx∗ , j = 1, 2 . (2.17)

Once ∆pj,δ1, j = 1, 2, are known from (2.14), it is possible to evaluate the out-

of-plane displacement of all panels. Panel “1” is subjected to the concentrated force

5The first index denotes the cavity where the pressure variation arises, while the second indicates
that the unitary concentrated load acts on plate 1.
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and to −∆p1,δ1; panel “2” is bent by the pressure resultant ∆p1,δ1−∆p2,δ1; panel “3”

is under ∆p2,δ1. These displacement fields are consequent to a concentrated unitary

force δ1(x − x∗) applied on pane “1”. Therefore, they correspond to the Green’s

functions for displacements and they will be denoted with Gi,δ1(x,x
∗), i = 1, 2, 3.

Remarkably, the expressions (2.14) are valid whatever the edge condition of the

IGU. In the particular case in which the IGU is simply supported along the whole

border, from (2.3) and (2.14) one obtains

G1,δ1(x,x
∗) =

A

D1

ζ(x,x∗) − ∆p1,δ1
D1

A2 φ(x) =
A

D1

[ζ(x,x∗) −K1,δ1 φ(x) φ(x∗)] ,

G2,δ1(x,x
∗) =

A

D2

(K1,δ1 −K2,δ1) φ(x) φ(x∗) ,

G3,δ1(x,x
∗) =

A

D3

K2,δ1 φ(x) φ(x∗) . (2.18)

When an arbitrary load per unit area f1(x) is applied on glass pane “1”, the

corresponding out-of-plane displacements of the glass panes can be evaluated as the

convolution integral of the Green’s functions and the external load, as per eq. (2.4).

Under diverse boundary conditions for the IGU, the Green’s functions for displace-

ments shall take into account the actual effect of the constraints at the edges. They

could be directly calculated by considering the package of panes loaded by pressure

variations in the cavities and the external concentrated force.

If the TGU is subjected to a unitary concentrated load δ3(x − x∗), applied on

pane “3” and acting in the direction of positive z, the same procedure presented

above provides the gas pressure variations

∆pj,δ3 =
Kj,δ3

A
φ(x∗) , j = 1, 2 , (2.19)

with
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K1,δ3 = − µ+
1 µ

+
2 φ̄A

φ̄2
A(µ−

1 µ
−
2 + µ+

1 µ
+
2 + µ−

1 µ
+
2 ) + φ̄A(µ−

1 + µ+
1 + µ−

2 + µ+
2 ) + 1

,

K2,δ3 = − µ+
2 [φ̄A(µ−

1 + µ+
1 ) + 1]

φ̄2
A(µ−

1 µ
−
2 + µ+

1 µ
+
2 + µ−

1 µ
+
2 ) + φ̄A(µ−

1 + µ+
1 + µ−

2 + µ+
2 ) + 1

. (2.20)

where the minus sign is due to the fact that the concentrated force is directed out-

wards. Correspondingly, the Green’s functions for displacements, when the IGU is

simply supported at the border, may be written as

G1,δ3(x,x
∗) = − A

D1

K1,δ3 φ(x) φ(x∗) ,

G2,δ3(x,x
∗) =

A

D2

(K1,δ3 −K2,δ3) φ(x) φ(x∗) ,

G3,δ3(x,x
∗) =

A

D3

[ζ(x,x∗) + K2,δ3 φ(x) φ(x∗)] . (2.21)

If a generic distributed load per unit area f3(x) is applied on glass pane “3”,

the pressure variations and out-of-plane displacement fields can be evaluated through

expressions analogous to (2.17) and (2.4), respectively.

2.3 The effect of arbitrary external loads

The most common case in the design practice is that of a uniformly distributed

external load, i.e. f1(x) = p. In this case, from (2.17), one has

∆p1 = K1,δ1 φ̄A p , ∆p2 = K2,δ1 φ̄A p , (2.22)

where, again, φ̄A is the mean value of φ(x) on the plate area. Graphs and tables for

the evaluation of φ̄A for plates with different shapes are recorded in [14].

The displacement fields are calculated as the convolution integral of the Green’s
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functions and the external load. For a simply supported IGU, recalling (2.6) and

(2.18), one obtains

w1(x) = p
A

D1

[∫
Ω

ζ(x,x∗)dx∗ −K1,δ1φ(x)

∫
Ω

φ(x∗)dx∗
]

= p
A2

D1

[1 −K1,δ1φ̄A] φ(x) ,

w2(x) = p
A2

D2

(K1,δ1 −K2,δ1) φ̄A φ(x) ,

w3(x) = p
A2

D3

K2,δ1 φ̄A φ(x) . (2.23)

In the ideal case in which the gas filling the cavities is incompressible, ∆p1,δ1 and

∆p2,δ1, by using (2.12), are given by

∆p1,δ1 =
D2 + D3

(D1 + D2 + D3)
p , ∆p2,δ1 =

D3

(D1 + D2 + D3)
p . (2.24)

Therefore, the pressure resultant of the uniformly-distributed loads on panes “1”, “2”

and “3” reads

r1 = p− ∆p1 =
D1

(D1 + D2 + D3)
p ,

r2 = ∆p1 − ∆p2 =
D2

(D1 + D2 + D3)
p ,

r3 = ∆p2 =
D3

(D1 + D2 + D3)
p . (2.25)

These expressions coincide with the so-called “thickness cubed” method [1], according

to which each pane carries a part of the total load proportional to its flexural stiffness.

Consider now the case of a uniformly line-distributed load H, acting on a smooth

curve Σ of length L. If l denotes a curvilinear abscissa on Σ, with 0 ≤ l ≤ L, and

x = x̃(l) the point of the curve at l, following [31, 36, 42] it is possible to define a

“line Delta function” δΣ, associated with the curve Σ, such that for any test function
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g(x) ∫
Ω

δΣ(x∗ − x̃(l))g(x∗) dx∗ =

∫
Σ

g(x̃(l)) dl . (2.26)

By writing the uniformly curve-distributed load on pane “1” as f1(x) = HδΣ(x−
x̃), the pressure variations, evaluated as per (2.17), are

∆p1 = K1,δ1 φ̄Σ
HL

A
, ∆p2 = K2,δ1 φ̄Σ

HL

A
, (2.27)

where φ̄Σ := 1
L

∫
Σ
φ(x̃(l)) dl is the mean value of the non-dimensional shape function

φ(x) on the curve Σ where the load is applied. Values of φ̄Σ for triangular and

rectangular plates with different aspect ratio are recorded in [14] when Σ is a generic

straight line.

The out-of-plane displacements are evaluated with (2.4). Acconting for (2.18), for

a simply supported IGU they read

w1(x) = H
A

D1

[∫
Ω

ζ(x,x∗)δΣ(x− x̃)dx∗ −K1,δ1φ(x)

∫
Ω

φ(x∗)δΣ(x− x̃)dx∗
]

= H
A

D1

[∫
Σ

ζ(x, x̃(l))dl −K1,δ1φ(x) Lφ̄Σ

]
,

w2(x) = H
A

D2

(K1,δ1 −K2,δ1) Lφ̄Σ φ(x) ,

w3(x) = H
A

D3

K2,δ1 Lφ̄Σ φ(x) , (2.28)

Observe that the integral appearing in the expression for w1(x) represents the shape

function for the out-of-plane displacement due to the line-distributed load.

When panel “1” of the TGU is subjected to the concentrated force F1 at x∗, the

pressure variations are given by

∆pj = Kj,δ1φ(x∗)
F1

A
, j = 1, 2 . (2.29)
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The out-of-plane displacement fields obviously correspond to the Green’s functions

multiplied by F1.

It can be directly verified that, by setting D3 → 0 (equivalently, µ+
2 → ∞) in

(2.22), (2.27) and (2.29), the equations obtained in [16] for IGUs composed by only

two glass panes are recovered.

It should be remarked that, to evaluate the pressure variation in the cavities of

an IGU of arbitrary geometry and edge conditions, due to the application of external

loads of any kind, what is necessary is only to evaluate the deformation φ(x) of a

simply supported plate under uniform pressure. This represents, in our opinion, a

noteworthy advancement with respect to the approach by Feldmeier [10, 13], where

the deformation of the pane under the effective external loads needs to be calculated.

2.4 The effect of climatic actions

Variations of the barometric pressure ∆p with respect to the sealing site, as well as

of the environmental temperature ∆T with respect to the absolute temperature T0

at the time of sealing, may also produce the deflection of the glass panes.

The former case may be treated by considering an external uniform pressure ∆p

acting on both the outer glass panes, considered positive if the actual pressure is

higher than p0. This case may be studied by considering the uniformly distributed

load f1(x) = ∆p on pane “1” and f3(x) = −∆p on pane “3”, and superposing the

effects. Hence, the pressure variation in the j-th cavity, j = 1, 2, can be evaluated as

∆pj = ∆pj,δ1 ∗ f1(x) + ∆pj,δ3 ∗ f3(x) = (Kj,δ1 −Kj,δ3) φ̄A ∆p . (2.30)

Under balanced external pressures, for the same argument used while discussing

(2.10), the edge constraints of the IGU are inactive, and each pane behaves as if it

was simply supported on the edge seal. Therefore, the displacement fields may be

evaluated as wi(x) = Gi,δ1 ∗f1(x)+Gi,δ3 ∗f3(x) = (Gi,δ1−Gi,δ3)∗∆p, i = 1, 2, 3. Using
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(2.6), (2.18) and (2.21), one obtains

w1(x) = ∆p
A2

D1

[1 − (K1,δ1 −K1,δ3) φ̄A]φ(x) ,

w2(x) = ∆p
A2

D2

(K1,δ1 −K2,δ1 −K1,δ3 + K2,δ3) φ̄A φ(x) ,

w3(x) = ∆p
A2

D3

[−1 + (K2,δ1 −K2,δ3) φ̄A]φ(x) . (2.31)

It may be verified that, for an incompressible gas, expressions analogue to (2.25)

are recovered.

Likewise, changes in the temperature of the gas in the cavities, with respect to the

absolute temperature T0 at the time of sealing, can produce an increase of internal

pressure which deforms the glass panes. According to [28], the temperature in the

cavities in the steady state can be calculated as a function of the temperatures of the

inner and outer glass panes, as well as of the heat transfer coefficient of the glass plies

and of the cavity.

Here, for completeness, we record the relevant expressions. Consider the TGU of

Figure 1, subjected to temperature variations ∆T 1 and ∆T 2 in cavities “1” and “2”,

respectively. For a compressible ideal gas, the volume, absolute pressure and absolute

temperature variations are related by the Ideal Gas Law, so that

p0 V01

(p0 + ∆p1)(V01 + ∆V1)
=

T0

T0 + ∆T 1

,

p0 V02

(p0 + ∆p2)(V02 + ∆V2)
=

T0

T0 + ∆T 2

. (2.32)

Here, ∆V1 and ∆V2 are the volume variations due to the deflection of the glass panes

under the action of the pressure variations ∆p1 and ∆p2. Again, under balanced

pressures the edge constraints of the IGU are inactive, as indicated while discussing

(2.10). Thus, recalling that
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w1(x) = −∆p1
A2

D1

φ(x) , w2(x) = (∆p1 − ∆p2)
A2

D2

φ(x) , w3(x) = ∆p2
A2

D3

φ(x) ,

(2.33)

using the quantities defined in (2.13), one obtains

∆V1 =

∫
Ω

[w2(x) − w1(x)] dx =
V01

p0

[
(µ−

1 + µ+
1 )∆p1 − µ+

1 ∆p2
]
φ̄A ,

∆V2 =

∫
Ω

[w3(x) − w2(x)] dx =
V02

p0

[
(µ−

2 + µ+
2 )∆p2 − µ−

2 ∆p1
]
φ̄A . (2.34)

The non-linear system of equations obtained by substituting (2.34) into (2.32) is

difficult to solve. However, it can be observed that the terms of the type ∆pj∆pk,

j, k = 1, 2, are much smaller than those of types ∆pjp0 and p20, and hence they can

be neglected. Therefore, an approximated solution can be found in the form

∆pj =
p0
T0

[
Kj,δ1

µ−
1

∆T 1 −
Kj,δ3

µ+
2

∆T 2

]
, j = 1, 2 . (2.35)

Once the pressure variations are known, the out-of-plane displacement may be

found through equations (2.33).

It may be verified that, for D3 → 0, eq.s (2.30) and (2.35) allow to recover the

expression obtained in [14] for DGUs.

3 Extension to insulating units with arbitrary num-

ber of glass panes

We now show how the method can be extended to Insulating Glazing Units (IGUs)

composed by an arbitrary number of panes. The relevant Green’s functions are explic-

itly calculated for symmetric IGUs with four panes and for IGUs with five identical

glass panes, with edge spacers all of the same thickness.
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3.1 Generalization of Betti’s analytical method

Consider an IGU with arbitrary shape and edge constraints, composed by N glass

panes, of thickness hi, i = 1 . . . N , connected by N − 1 spacers of thickness sj,

j = 1 . . . N − 1. Introduce a reference system similar to that indicated in Figure

1. As in Section 2.2, in the configuration A panel “1” of the IGU is subjected to

a concentrated unitary force δ1(x − x∗) at the generic point x∗ and undergoes the

pressure variation ∆pj in the j-th cavity, j = 1 . . . N − 1. In the framework of the

BAM approach, the load sharing is determined by considering the N − 1 auxiliary

load sets shown in Figure 3, referred to as Bj, j = 1 . . . N −1. In the j-th system, the

IGU is subjected to a self-equilibrated load distribution given by a fictitious uniform

pressure qj, acting in the j-th cavity.

...

1

�p1

z

��(x-x*)

�p2

�pN-1

w2,A(x)

w1,A(x)

w3,A(x)

wN-1,A(x)

wN,A(x)

...

z

q1 w1,B1(x)

w3,B1(x)

w2,B1(x)

wN-1,B1(x)

wN,B1(x)

2

...

z

q2

w1,B2(x)

w3,B2(x)

w2,B2(x)

wN-1,B2(x)

wN,B2(x)
N-1

...

z

qN-1

w1,BN-1(x)

w3,BN-1(x)

w2,BN-1(x)

wN-1,BN-1(x)

wN,BN-1(x)

...

Figure 3: Schematic representation of the load systems for the application of Betti’s theorem.

Let wi,Bj
(x) represent the displacement field in the i-th glass pane, i = 1 . . . N ,
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for the Bj load set, j = 1 . . . N − 1. The mutual works LABj
done by the load set A

through the displacements produced by the load set Bj, j = 1 . . . N − 1, are given by

LAB1 = w1,B1(x
∗) + ∆p1

∫
Ω

[w2,B1(x) − w1,B1(x)] dx− ∆p2

∫
Ω

w2,B2(x) dx ,

LABj
= ∆pj−1

∫
Ω

wj,Bj
(x) + ∆pj

∫
Ω

[wj+1,Bj
(x) − wj,Bj

(x)] dx

− ∆pj+1

∫
Ω

wj+1,Bj
(x) dx , j = 2 . . . N − 2 ,

LABN−1
=∆pN−2

∫
Ω

wN−1,BN−1
(x) + ∆pN−1

∫
Ω

[wN,BN−1
(x) − wN−1,BN−1

(x)] dx .

(3.1)

On the other hand, by recalling (2.9), the mutual work LBjA, done by the j-th

load set Bj through the displacements in system A, can be written as

LBjA = qj

∫
Ω

[wj+1,A(x) − wj,A(x)] dx ≃ −∆pj
p0

V0j , j = 1 . . . N − 1 , (3.2)

where the same simplification of (2.9) has been made.

The N−1 equalities LABj
= LBjA of the mutual works, can be written in compact

form by defining, in analogy with (2.13), the following coefficients for the j-th cavity

µ−
j =

A3

Dj

p0
V0j

, µ+
j =

A3

Dj+1

p0
V0j

, j = 1 . . . N − 1 , (3.3)

and read
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µ−
1

φ(x∗)

A
+ ∆p1(µ

−
1 + µ+

1 )φ̄A − ∆p2 µ+
1 φ̄A = −∆p1 ,[

∆pj−1µ
−
j + ∆pj(µ

−
j + µ+

j ) − ∆pj+1µ
+
j

]
φ̄A = −∆pj , j = 2 . . . N − 2 ,[

∆pN−2 µ−
N−1 + ∆pN−1(µ

−
N−1 + µ+

N−1)
]
φ̄A = −∆pN−1 . (3.4)

The solution of this system provides the pressure variations ∆pj, j = 1 . . . N − 1,

for IGUs composed by an arbitrary number N of glass plies. When the pressure

variations ∆pj, j = 1 . . . N − 1 are known, the Green’s function for the out-of-plate

displacements could be found, following the same procedure illustrated in Section 2.2.

The solution of (3.4) can be found in closed forms, but it is quite lengthy because,

analogously to (2.15), it entails terms of the N −1 order in φ̄A and µ−
j , µ+

j . However,

great simplifications can be obtained for N = 4 when the IGU is symmetrically

composed, as well as for N = 5 when the thickness is the same for all glass panes.

3.2 Green’s Function for symmetric insulating units with

four glass panes

Consider a symmetric IGU composed by four glass panes, the two external ones of

thickness h1 = h4, and the inner ones of thickness h2 = h3. In order to obtain compact

formulae, denote with D2 = D3 = D the flexural stiffness of the inner panes, and by

D1 = D4 = D/α that of the outer panes. Moreover, indicate the initial volume of the

cavity comprised between panes “2” and “3” with V0, and that between panes “1”

and “2”, equal to the cavity between panes “3” and “4”, with V0/β.

By defining µ = A3

D
p0
V0

, in agreement with (3.3) the non dimensional coefficients

may be written as

µ−
1 = αβµ , µ+

1 = βµ , µ−
2 = µ+

2 = µ , µ−
3 = βµ , µ+

3 = αβµ . (3.5)
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Under these assumptions, the system of equations (3.4) may be solved to obtain

∆pj,δ1 =
Kj,δ1

A
φ(x∗) , j = 1 . . . 3 , (3.6)

where

K1,δ1 =
[βµ2φ̄2

A (2α + 1) + µ φ̄A (α β + β + 2) + 1]µ α β

2αβ2µ3φ̄3
A (α + 1) + β µ2φ̄2

A (α2β + 2 α β + 4α + β + 2) + 2µ φ̄A (αβ + β + 1) + 1

K2,δ1 =
α φ̄A µ2β

2αβ µ2φ̄2
A + µ φ̄A (αβ + β + 2) + 1

,

K3,δ1 =
β2µ3φ̄2

Aα

2αβ2µ3φ̄3
A (α + 1) + β µ2φ̄2

A (α2β + 2αβ + 4α + β + 2) + 2µ φ̄A (αβ + β + 1) + 1
.

(3.7)

In the particular case of a simply supported IGU, the corresponding Green’s func-

tions for the out-of-plane displacement of panes are

G1,δ1(x,x
∗) =

A

D
[ζ(x,x∗) −K1,δ1 φ(x) φ(x∗)] ,

G2,δ1(x,x
∗) =

αA

D
(K1,δ1 −K2,δ1) φ(x) φ(x∗) ,

G3,δ1(x,x
∗) =

αA

D
(K2,δ1 −K3,δ1) φ(x) φ(x∗) ,

G4,δ1(x,x
∗) =

A

D
K3,δ1 φ(x) φ(x∗) . (3.8)

Once the Green’s functions are known, the out-of-plane deflection of the glass

panes under arbitrary external loading and under climatic6 actions may be evalu-

ated by following a procedure analogue to that presented in Sections 2.3 and 2.4,

respectively.

6To our knowledge, current standards do not provide explicit formulae to evaluate the temper-
ature changes in the different cavities for IGUs composed by more than 3 glass panes subjected to
temperature gradients. As observed in [40], in this case software tools are needed.
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3.3 Green’s Function for insulating units with five identical

glass panes

Consider an IGU composed by five glass panes with the same thickness h and equal

cavities, with identical edge spacers. Denote by D the flexural stiffness of each glass

pane, and by V0 the reference volume of the cavities. In this case, one has µ−
j = µ+

j =

µ = A3

D
p0
V0

, j = 1 . . . 4, and the equation system (3.4) can be strongly simplified. The

resulting formulae for the pressure variation are identical to (3.6) but with j = 1 . . . 4,

where the non dimensional coefficients Kj,δ1 take the form

K1,δ1 =
µ (2µ φ̄A + 1) (2µ2φ̄2

A + 4µ φ̄A + 1)

(µ2φ̄2
A + 3µ φ̄A + 1) (5µ2φ̄2

A + 5µ φ̄A + 1)

K2,δ1 =
µ2φ̄A (µ φ̄A + 1) (3µ φ̄A + 1)

(µ2φ̄2
A + 3µ φ̄A + 1) (5µ2φ̄2

A + 5µ φ̄A + 1)
,

K3,δ1 =
µ3φ̄2

A (2µ φ̄A + 1)

(µ2φ̄2
A + 3µ φ̄A + 1) (5µ2φ̄2

A + 5µ φ̄A + 1)
,

K4,δ1 =
µ4φ̄3

A

(µ2φ̄2
A + 3µ φ̄A + 1) (5µ2φ̄2

A + 5µ φ̄A + 1)
. (3.9)

For simply supported IGUs, the Green’s functions are analogous to (3.8) and read

G1,δ1(x,x
∗) =

A

D
[ζ(x,x∗) −K1,δ1 φ(x) φ(x∗)] ,

Gi,δ1(x,x
∗) =

A

D
(Ki−1,δ1 −Ki,δ1) φ(x) φ(x∗) , i = 2, 3, 4 ,

G5,δ1(x,x
∗) =

A

D
K4,δ1 φ(x) φ(x∗) . (3.10)

Again, the out-of-plane deflection of the glass panes may be evaluated with the

convolutions of the Green’s functions with the external loads or climatic actions, by

following the same procedure illustrated in Sections 2.3 and 2.4, respectively.
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4 Examples and comparisons

The analytical results obtained in the previous Sections are now compared with those

obtainable with either the recommendations by current Standards, in particular the

European Norm EN 16612 [28], and the freeware software MEPLA ISO [5]. Reference

is made to a rectangular TGUs because, whereas the BAM approach can be used for

IGUs of any shape, composition and type of constraint, neither the EN 16612, nor

MEPLA ISO, can consider shapes other than rectangular and packages with more

than three glass panes. All the aforementioned approaches consider rigid spacer

joints that constrain the relative out-of-plane displacement of the glass panes. This is

somehow a limitation, since the spacer may have relevant effects on the gross bending

response of glass panels in IGUs, as indicated in [2], where original experimental

tests were proposed for IGUs with different types of spacer connections. However, a

detailed discussion of this aspect goes beyond our scope here.

For an a × b rectangular TGU, simply supported on the four sides, consider two

different packages7: a symmetric TGU, with h1 = h3 = 10 mm, h2 = 6 mm, s1 =

s2 = 12 mm, hereafter referred to as the “S-TGU ”, and an uneven TGU, with h1 = 6

mm, h2 = 8 mm, h3 = 10 mm, s1 = 12 mm, s2 = 16 mm, denoted in the sequel as the

“U-TGU ”. Gas pressure at the time of sealing is considered equal to the standard

atmospheric pressure p0 = 101325 Pa, and the initial volumes of the cavities are

V0j = sj A, j = 1, 2.

4.1 Comparisons with consolidated methods proposed by stan-

dards

The European Norm EN 16612 [28] covers only simply supported IGUs under uniformly-

distributed loads, also associated with barometric pressure variations and temperature

changes. Since the standard does not provide formulae for deflections, the compar-

7Usually, the inner glass ply of a TGU is thinner than the other ones, since its predominant task is
to seperate the cavities to improve the thermal properties, while the outer panes are subject to wind
(outside) and balustrade (inner) loads. The selected geometries are of interest from a theoretical
point of view.
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isons are made in terms of the load resultant on the different glass panes.

4.1.1 TGUs under external uniform pressure

Consider the action of a uniform pressure p = 1 kPa, for which the pressure variations

∆p1 and ∆p2 are obtained from (2.22). For the symmetric S-TGU simply supported

on the four sides, Figure 4a shows the resulting uniformly distributed loads8 r1 =

p−∆p1 on pane “1”, r2 = ∆p1 −∆p2 on pane “2” and r3 = ∆p2 on pane “3”. These

are plotted for square panels of different size as a function of A = ab, varying between

1 m2 and 6 m2. Figure 4b records the same quantities for a fixed area A = 4 m2 as

a function of the TGU aspect ratio λ = a/b, with 0.1 ≤ λ ≤ 1. The comparison

is between the results from the BAM method and the formula suggested by [28],

evidenced with circular dots. The agreement is excellent.
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Figure 4: S-TGU s under uniform pressure p = 1 kPa. Load resultant on the different panes for a)
λ = a/b = 1, as a function of A = ab and b) A = 4 m2, as a function of λ. Comparison between the
proposed approach (lines) and EN 16612 (circles).

Observe that, in agreement with [16, 14], the higher the compliance of the con-

stituent panes is, the lower is the influence of the gas deformation. In fact, for high

values of A and λ (large panels, approximately square), the load resultants tend to

those for isochoric gas transformations (r1 = r3 = 0.4513 p and r2 = 0.0975 p), evalu-

ated with the “thickness cubed method” [1] and re-obtained in (2.25) as a particular

8Here, the uniform loads are assumed to be positive if in the direction of positive z, as per Figure
1.
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case. Notice that this limit is attained for values of A higher than 6 m2. For low

values of A and/or λ, the gas compressibility does not allow for the optimal sharing

of the loads among the different panes: as A and/or λ are diminished, r1 increases

(directly loaded pane), while r3 decreases. It may be verified that also r2 (central

pane) decreases but, because of symmetry, the variation is very small.

The same comparison is made for the uneven U-TGU, for which it is of interest

to consider loads applied on pane “1”, as before, or on pane “3”, for which the

pressure variations come from (2.19). These two cases are illustrated in Figures 5a

and 5b, respectively, for square U-TGU s (λ = 1) as a function of the area A. As

already discussed, for large A the load resultants tend to those for incompressible gas

(r1 = 0.125 p, r2 = 0.2963 p and r3 = 0.5787 p), evaluated with (2.25). In small

TGUs, on the contrary, the directly-loaded pane carries the higher percentage of the

external load. In general, if the directly loaded panel is the thick one, the load sharing

reduces because its deformation is small, and viceversa. The uneven deformability

of the panes also affects the resultant r2 on the central pane. A qualitatively similar

trend may be recognized in graphs in Figure 6, referring to U-TGUs with area A = 4

m2 and varying aspect ratio λ. In any case, there is an excellent agreement between

the results from the proposed approach and the method of EN 16612.
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Figure 5: Load resultant on the different panes of the U-TGU from uniformly distributed load
p = 1 kPa applied on a) pane “1” or b) pane “3”, for λ = 1 and varying A. Comparison between
the proposed approach (lines) and EN 16612 (circles).
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Figure 6: Load resultant on the different panes of the U-TGU from uniformly distributed load p = 1
kPa applied on a) pane “1” or b) pane “3”, for A = 4 m2 and varying λ. Comparison between the
proposed approach (lines) and EN 16612 (circles).

4.1.2 TGUs under barometric pressure variations

A barometric pressure variation ∆p = 5 · 10−3 MPa produces the pressure variations

inside cavities ∆p1 and ∆p2 as per (2.30). We again compare the resultants of the

load per unit area r1 = ∆p− ∆p1, r2 = ∆p1 − ∆p2 and r3 = ∆p3 − ∆p.

Figure 7a is the counterpart of Figure 4a for the symmetric package S-TGU with

λ = 1 and varying A. Because of symmetry, the pressure variations in the two cavities

coincide and their resultant on the inner pane is null. Figure 7b, which refers to the

asymmetric case U-TGU, shows that the pressure variations are not equal because of

the different stiffness of the glass plates, so that the central pane is stressed. Again,

the more compliant the glass panes (large A), the higher the pressure variations in

the cavities, which equilibrate the barometric pressure and release the glass panes.

To investigate the influence of the aspect ratio, Figure 8a and Figure 8b refer

to the case A = 4 m2 and varying λ for S-TGU and U-TGU, respectively. Also in

this case, symmetry annihilates the load on the inner lite. The stress in the panes

diminishes by increasing the aspect ratio of the TGU, being minimum for square

elements.

Again, there is an excellent agreement between the results from the proposed

method and the EN 16612 approach.
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Figure 7: Load acting on the different panes for a barometric pressure variation ∆p = 5 · 10−3 MPa
in TGUs with λ = 1 and varying A: a) S-TGU and b) U-TGU. Comparison between the proposed
approach (lines) and EN 16612 methods (circles).
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Figure 8: Load acting on the different panels for a barometric pressure variation ∆p = 5 · 10−3

MPa in TGUs with A = 4 m2 and varying λ: a) S-TGU and b) U-TGU. Comparison between the
proposed approach (lines) and EN 16612 methods (circles).
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4.1.3 TGUs under temperature variations

Suppose that the gas trapped in the cavities “1” and “2” undergoes two different

temperature variations ∆T 1 = 30◦C and ∆T 2 = 20◦C, respectively. In this case, the

pressure variations ∆p1 and ∆p2 are evaluated through (2.35).

In Figures 9a and 9b, r1 = −∆p1, r2 = ∆p1 − ∆p2, and r3 = ∆p3 are plotted for

S-TGU s and U-TGU s, respectively, for λ = 1 and varying A. The stiffer the panes

(small A), the higher they are stressed. In U-TGU s the stiffer panes carry the most

of the temperature-induced pressure change.
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Figure 9: Load acting on the different panes for ∆T 1 = 30◦C and ∆T 2 = 20◦C in TGUs with λ = 1
and varying A: a) S-TGU and b) U-TGU. Comparison between the proposed approach (lines) and
EN 16612 methods (circles).

A similar behavior can be observed in Figure 10, which shows results for S-TGU s

and U-TGU s with the same area A = 4 m2 with different aspect ratio λ. The effect

of the climatic actions is confirmed to be higher for small IGUs and for low aspect

ratios.

One should observe that, even if the variation of internal pressure due to climatic

actions is much higher than the effects of wind and snow, typically of the order of

1 kPa, the assumption ∆p1,∆p2 ≪ p0, which is at the base of the simplification

(2.9) and used to evaluate (2.35), is fully satisfied. This is confirmed by the excellent

agreement between the considered approaches.
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Figure 10: Load acting on the different panes for ∆T 1 = 30◦C and ∆T 2 = 20◦C in TGUs with
A = 4 m2 and varying λ: a) S-TGU and b) U-TGU. Comparison between the proposed approach
(lines) and EN 16612 methods (circles).

4.2 Comparisons with numerical results

Since current standards do not provide compact formulae for the load sharing in IGUs

under loads either than uniformly distributed, for such cases the comparison is now

made with the results from MEPLA ISO [5], in terms of out-of-plane displacement

of the panes, consistently with the output of the software. The external load is

applied on pane “1”, and the maximum deflection of panes “2” and “3”, subjected to

(∆p1 −∆p2) and ∆p2, respectibely is calculated. We consider the same S-TGU s and

U-TGU s, under a uniformly-distributed line-load in the x direction (Figure 11a), a

concentrated force (Figure 11b) and, for the sake of comparison with the FEM code,

under uniform pressure. The numerical analyses have been performed by meshing

the panes with 30 mm × 30 mm elements.

4.2.1 TGUs under external uniform pressure

Consider the action of a uniform pressure p = 1 kPa. In the proposed approach, the

out-of-plane displacement is evaluated via the Green’s function as per (2.23). For

S-DGU s and U-TGU s with area of A = 4 m2 and variable λ, Figure 12 shows the

comparison in terms of wmax;2 and wmax;3, i.e., the maximum deflection of panes “2”

and “3”, respectively.
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Figure 11: Rectangular TGU under a) uniformly-distributed line-load and b) point load used in the
numerical analysis.
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Figure 12: Out-of-plane displacements of panes “2” and “3” in a) S-TGU s and b) U-TGU s, under
uniform pressure p = 1 kPa acting on pane “1”, for A = 4 m2 and varying λ. Proposed approach
(lines) and MEPLA ISO (triangles).
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It is evident that, due to the load sharing, the maximum deflections of panes “2”

and “3” are very similar, for all the considered geometries. In the ideal situation of

incompressible gas response, each of the three glass ply carries a part of the distributed

load proportional to the flexural stiffness as per (2.25) and, hence, their deflection are

identical. The little difference here recorded is due to the gas compressibility. The

difference between numerical and analytical results is less than 0.7%.

4.2.2 TGUs under external line-distributed load

With reference to Figure 11a, consider a uniformly-distributed line-load H = 1 kN/m,

applied on the straight line y = h = η b, with η ∈ [0, 1]. The pressure variations are

given by (2.27) and the out-of-plane displacements of the glass panes are evaluated

with (2.28).

Considered first the case η = 1/2 for TGUs with A = 4 m2 and variable λ: when

λ < 1 (λ > 1) the line load is applied on the short (long) side. Figure 13a and

13b show the maximum deflections of panes “2” and “3”, for S-TGU and U-TGU,

respectively. In order to investigate the effect of the load position, in Figure 14 the

maximum deflection of pane “3” is plotted as a function of the parameter η, for IGU

with A = 4 m2 and different aspect ratio (λ = 0.5, λ = 1 and λ = 2).
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Figure 13: Out-of-plane displacements of panes “2” and “3” in a) S-TGU s and b) U-TGU s under
the uniformly-distributed line-load H = 1 kN/m acting on pane “1” at mid-height, for A = 4 m2

and varying λ. Proposed approach (lines) and MEPLA ISO (triangles).
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Figure 14: Out-of-plane displacement of pane “3” in a) S-TGU s and b) U-TGU s under the
uniformly-distributed line-load H = 1 kN/m, for A = 4 m2, λ = 0.5, 1, 2 and varying η. Pro-
posed approach (lines) and MEPLA ISO (triangles).

Also in this case, there is an excellent agreement between analytical and numerical

results, with maximum error lower than 0.7%.

4.2.3 TGUs under concentrated load

Consider now the case of Figure 11b, where a concentrated load F = 1 kN is applied

at (x∗ = a/2, y∗ = h = η b), with η ∈ [0, 1]. The pressure variations ∆p1 and ∆p2 are

evaluated with (2.29), while the out-of-plane displacements correspond to the Green’s

functions (2.18), multiplied by the value of F . In the numerical analyses, the load

has been modelled as smeared on a 20 mm × 20 mm square, centered at (x∗, y∗).

For a concentrated load applied at the plate center (η = 1/2), Figure 15 shows

the maximum deflections of panes “2” and “3” in S-TGU s and U-TGU s, evaluated

with the BAM approach and through MEPLA ISO, plotted as a function of λ when

A = 4 m2. Then, to investigate the influence of the load position, η is varied between

0.1 and 0.5. Figures 16a and 16b are the counterparts of Figure 14. Obviously, the

cases λ = 0.5 and λ = 2 coincides for η = 0.5, since the load is applied at the plate

center.

Also under concentrated load, the maximum error is very low, of the order of

0.6%, confirming the high accuracy of the proposed approach.



36 L. Galuppi & G. Royer-Carfagni

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

(a)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

(b)

Figure 15: Out-of-plane displacements of panes “2” and “3” in a) S-TGU s and b) U-TGU s under
a concentrated load F = 1 kN at the center of pane “1”, for A = 4 m2 and varying λ. Proposed
approach (lines) and MEPLA ISO (triangles).
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Figure 16: Out-of-plane displacements of pane “3” in a) S-TGU s and b) U-TGU s under ua concen-
trated load F = 1 kN at the center of pane “1”, for A = 4 m2, λ = 0.5, 1, 2 and varying η. Proposed
approach (lines) and MEPLA ISO (triangles).
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5 Conclusions

Insulating Glazing Units (IGUs) are schematized as the assembly of edge-sealed

Kirchhoff-Love glass plates entrapping an ideal gas. Under mild simplifying hypothe-

ses, i.e., the pressure variations inside the cavities consequent to applied external

loads are small with respect to the atmospheric pressure, the whole IGU behaves as

a linear elastic system. Therefore, the Green’s functions for the pressure variations

and the out-of-plane displacements of the glass panes, associated with the effects of

a concentrated force applied on one external pane, can be defined. Once the Green’s

functions are known, the effect of any arbitrary load field can be evaluated as the

convolution integral of the Green’s functions and the load itself. To calculate the

Green’s functions, Betti’s Analytical Method (BAM), recently proposed in [16] for

Double Glazing Units (DGUs) only, has been extended to multiple IGUs, composed

by an arbitrary number of glass panes. Remarkably, for any shape, type of loading

and edge-constraint of the IGU, the Green’s function for the pressure variation in the

cavities can be expressed as a function of the deformation under uniform pressure of

a simply-supported plate, with the same shape of the IGU. Because of this, we repute

that this approach represents an improvement with respect to other methods pro-

posed in the technical literature [13], which require to determine the pane deflections

under the specific external load and an iterative procedure to calculate the volume

change in the cavities.

For rectangular Triple Gazing Units (TGUs) under uniformly distributed load, or

subjected to a variation in barometric pressure or environmental temperature with

respect to time of sealing, the results from the Green’s function method are in excel-

lent agreement with the formulae proposed by current standards [28]. The efficiency

of the proposed approach is also confirmed by comparisons with the numerical re-

sults performed with a dedicated software [5], for which the maximum differences are

less then 0.7% for TGUs of various size and aspect ratio, under either uniform, line

distributed or concentrated external actions.

The proposed approach, which strongly exploits the properties of the Green’s

functions, could be of particular interest also in the study of the dynamic response

of IGUs subjected to the impact of objects or people, including the modelling of the
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pendulum test [6, 8, 23], as well as to blast loading [3, 18, 41]. The potentiality of

the method in the dynamical case are yet to be fully appreciated.

Of course the results here presented only refer to monolithic glass panes, consid-

ered as linear-elastic Kirchhoff-Love plates. However, recent numerical experiments

[17] on DGUs have shown, albeit tentatively, that the variation of the internal glass

pressure due to the application of external loads is only marginally effected by the

geometric non-linearity of the glass plates. Hence, one could consider the proposed

method, based on Green’s functions, to determine the internal pressure variations,

using such values to calculate, a posteriori, the deflection and stress in the glass panes

taking into account membrane effects. Furthermore, laminated-glass panes could be

covered in this approach by considering them as monolithic plates characterized by

the corresponding effective thickness in terms of deflection [15]. The design details of

the insulated elements, in particular the various possible shapes of the spacer joints,

have not been considered here although it has been demonstrated [2] that they can

have a great influence for the state of stress and deflection of the IGU. With a more

in-depth analysis of the technological aspects, it will be possible to proceed with a

validation of the BAM analytical approach with a dedicated experimental campaign.

All these aspects will be the subject of further work.
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