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A B S T R A C T

Pangenomics was originally defined as the problem of comparing the composition of genes into gene families
within a set of bacterial isolates belonging to the same species. The problem requires the calculation of
sequence homology among such genes. When combined with metagenomics, namely for human microbiome
composition analysis, gene-oriented pangenome detection becomes a promising method to decipher ecosystem
functions and population-level evolution.

Established computational tools are able to investigate the genetic content of isolates for which a complete
genomic sequence is available. However, there is a plethora of incomplete genomes that are available on
public resources, which only a few tools may analyze. Incomplete means that the process for reconstructing
their genomic sequence is not complete, and only fragments of their sequence are currently available. However,
the information contained in these fragments may play an essential role in the analyses.

Here, we present PanDelos-frags, a computational tool which exploits and extends previous results in
analyzing complete genomes. It provides a new methodology for inferring missing genetic information and thus
for managing incomplete genomes. PanDelos-frags outperforms state-of-the-art approaches in reconstructing
gene families in synthetic benchmarks and in a real use case of metagenomics.

PanDelos-frags is publicly available at https://github.com/InfOmics/PanDelos-frags.
1. Introduction

In 2005, Tettelin and colleagues introduced the term pangenome
for describing the compositional set of genes in a genome dataset of
given species [1]. In particular, genes were divided into three main
categories: (i) core genes, shared by all genomes of the species and usu-
ally involved in essential cellular processes; (ii) accessory or dispensable
genes, present in some of the strains; (iii) singletons, restricted to a single
genome. The study of bacterial pangenomes has many applications
in the clinical field: e.g. it allows us to both analyze the pathogenic
potential and identify specific sequences to predict antigenic epitopes
in order to design vaccines [2–4].

In recent years, the number of pangenomic studies has significantly
increased [5], due to the reduced cost of genome sequencing and
the development of improved pangenome analysis tools. Computa-
tional tools able to deal with complete genomes have shown good
performance in analyzing both real and synthetic pangenomes, espe-
cially those combining alignment-free sequence similarity measures
with machine-learning techniques. A traditional tool is Roary [6],
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which combines alignment BLAST (Basic Local Alignment Search Tool)
scores with a pre-processing phase performed by means of CD-HIT
(Cluster Database at High Identity with Tolerance) [7] and MCL
(Markov Cluster Algorithm) clustering algorithms [8]. In this field, Pan-
Delos [9] has shown to be on average the tool that better recognizes the
homology relationships among genes belonging to different bacterial
genomes [10].

Unfortunately, the availability of complete genomes, and thus gene
sets, is not always guaranteed. A study regarding draft-quality genomes
revealed that fragmentation compromises more than 80% of predicted
open reading frames and that increased fragmentation correlated with
a decreased genome assembly quality, by producing false functional
gene annotation [11]. New technologies, such as long-read sequencing,
may improve the quality of draft genomes because they help in solving
assembly in the presence of repeat elements of the genome, and to
identify intragenomic heterogeneities, for example, different copies of
16S rRNA genes [12]. However, pangenomic studies aim at capturing
532-0464/© 2023 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).
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the complete genetic content of a genome. Unfortunately, discordant
results are obtained by comparing current technologies [13]. As a
result, technological advantages are still not enough to decipher the
complete genomic information [14]. This is especially true when data
coming from metagenomics experiments has to be analyzed, where
the sequences of multiple organisms all at once are captured with
increasing complexity in the reconstruction process making it even
more cumbersome to reconstruct individual complete genomes [15].
The frequency of specific sub-populations influences the formation of
chimeric contigs or produces assemblies with a greater frequency of
inversions and insertion/deletions [16]. In any case, there is a plethora
of draft-level genomes available in public resources made via short-
read low-coverage approaches, some of which are non-cultivable or
for which re-sequencing is an expensive operation, and may contain
crucial information [17]. Overall, the partial information contained in
the fragment of draft-level genomes could have a potentially crucial
role in pangenomic analysis. For example, the possibility of managing
incomplete information may turn out to be useful in fast and cheap
responses to bacterial epidemics [18]. Metagenomics has been widely
applied to characterize human-associated bacteria [19–21], allowing
to overcome difficulties in cultivating and isolating some bacterial
species. Pangenomic content discovery in metagenomics is a key step
for understanding the genetic composition of these bacteria and thus
their phenotype characterization and cultivar diversity [22]. In this
type of study, it is frequent that incomplete genomes are formed
by assembling sequencing data. Thus, methodologies able to better
recognize fragmented genetic information are key instruments for their
analysis.

When applied to incomplete genomes, tools such as Roary and Pan-
Delos suffer the lack of ability to reconstruct the missing information
that resides in uncovered portions of the genomes. For this reason, there
is a continuous need for genomic data analysis consistent pipelines, and
computational tools composing them. Some tools have already been
developed in order to overcome the issue of dealing with incomplete
genomes: for example GenAPI [23], Pan4Draft [24], and Panaroo [25].
GenAPI computes gene families by performing an initial cluster via CD-
HIT-EST [7]. Then a representative of each cluster is chosen to be the
gene with the longest sequences. GenAPI directly compares genetic
sequences in their incomplete form. As a result, it can only be applied to
analyze isolates belonging to the same species, and it may produce un-
expected results, especially in less related genomes. Pan4Draft receives
as input contigs produced by a preliminary assemble step, and the
raw sequencing reads. Such reads are used for trying to close the gap
between the contigs via de novo assembly of unmapped reads by means
of Spades [26]. Pan4Draft performs an online query for identifying
the reference known gene whose sequence is the most similar to the
incomplete one. Thus, gene clusters are formed according to such a
mapping after a consensus phase. The main issue in such an approach
is that genes belonging to the same incomplete genome are mapped to
known genes of different genomes. Panaroo merges the fragments of all
the input genome into a unified graph-based pangenome. In this way,
it is able to correct for intrinsic errors in the assembly and annotation
of the fragments producing a better annotation/phenotype calling of
the genes. The pangenomic graph is filtered by removing genes whose
neighborhood context is not consistent among the input genomes, but
such a behavior can potentially remove genes with low presence, such
as singletons, if all the involved genomes do not have a certain level of
similarity. This aggressive removal approach is mitigated by allowing
several parameters to be set by the user. The clustering performed via
CD-HIT and supported by context annotation coherence results in a
more error-prone grouping of the genes. These approaches introduce
specific procedures for dealing with fragmented information, but they
ignore previous results regarding the comparison of classical method-
ologies. In fact, once the missing information is retrieved, the key task
2

of a pangenomic tool is to compute sequence homology and to correctly
cluster genes into families, and none of these tools uses the clustering
approaches that, in recent years, have been shown to perform better.

In this work, we introduce PanDelos-frags, an extension of PanDelos
that allows fragmented genomes to be analyzed by a suitable recon-
struction of the missing information: the reference genome is selected in
such a way as to have the highest number of common nucleotides in the
mapping. PanDelos-frags extends PanDelos in two ways: (𝑖) it adds a pre-
processing phase for retrieving missing genomic information that is not
covered by input fragments, and (𝑖𝑖) it applies a new sequence similarity
measure to take into account the percentage of the genetic sequence
that has been inferred (see Table 1 for a statement fo significance).
In particular, the pre-processing phase aims at selecting a reference
genome from a collection of reference sequences and produces a recon-
structed version for the input draft genomes by arranging fragments to
the reference. Reference-base genome rearrangement is an established
technique for reconstructing genomes [27], here extended by an ad hoc
scoring for reference selection, specific management of clipped parts
and arrangement of unmapped fragments.

Compared to the other tools for fragmented genomes [23–25],
PanDelos-frags is potentially more powerful when the sequencing pro-
cess does not completely cover the entire genome. In fact, in contrast to
other approaches, it tries to reconstruct the missing regions between the
assembled fragments. These regions may contain the starting of genes,
that will not be captured by the other tools. The selection of a single ref-
erence genome, one for each of the input fragmented genomes, allows
PanDelos-frags to not mix information coming from multiple references.
This approach is also helpful in deciding the correct rearrangement of
fragments, even when the sequencing covers 100% of the sequenced
genome. Single reference-based approach is preferable to multiple-
reference reconstruction since a small portion of the bacterial genome
is estimated to come from horizontal transferring [28]. This means
that, under the assumption that the incomplete genome is close to an
already sequenced one, the portion of the sequence to be reconstructed
is with a high probability out of horizontally transferred regions. Thus
a reconstruction that takes into account the known genome that is the
most similar to the incomplete one is the most consistent approach.
Lastly, error correction is not embedded in the procedure, but correct-
ing errors at this level discards singletons, or less diffuse genes that can
be potential targets for pangenomic applications.

We assessed the performance of PanDelos-frags on synthetic bacterial
populations generated by simulating evolution and fragmentation with
PANPROVA [29]. Statistical evaluation over such synthetic benchmarks
shows that PanDelos-frags outperforms existing approaches, for both
complete and incomplete genomes, by better capturing the set of
homology relationships among the retrieved genes. Furthermore, an
application to real data coming from a previous study in metage-
nomics [15] shows that PanDelos-frags enables the discovery of the
presence of gene families in a wider range of metagenomic assemblies,
with respect to Roary, that was originally used or the analysis, and
to the other concurrent tools. The resultant families show to have a
functional coherence, that is, the genes included by PanDelos-frags have
a biological function similar to that of the genes composing the family.

The paper is structured in the following sections: Section 2 presents
a formalization of the problem of retrieving pangenomic content by
computing sequence homology for genetic sequences, Section 3 de-
scribes the proposed approach, Section 4 reports the results obtained
by computational experiments on both synthetically generated bacterial
populations and real metagenomic data, and Section 5 outlines some
conclusions.

2. Background and preliminaries

Basic notions

Let 𝛤 = {𝖠,𝖢,𝖦,𝖳} be the quaternary genomic alphabet, and let
𝛤 ∗ be the set of all strings, of any length, over 𝛤 , and let 𝛤+ to be
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Table 1
Statement of significance.

Summary Description

Problem A plethora of incomplete microbial genomes is available on
public resources but only a few tools can extract pangenomic
content from them.

What is already
known

When applied to incomplete genomes, classical tools suffer
the lack of ability to reconstruct the missing genomic
portions. Specialized solutions exist but they do not or only
partially reconstruct the missing information, thus they
potentially miss the recognition of some genes. Moreover,
such approaches tend to mix information coming from
multiple known organisms producing unrealistic
reconstructions.

What this paper
adds

The proposed approach, PanDelos-frags, introduces a novel
technique for detecting pangenome content among
incomplete genomes. It extends an existing approach,
PanDelos, which performs relatively better than other
approaches on complete sequences. It adds up a procedure
for reconstructing the incomplete genome by inferring
missing parts from one single reference sequence. In this
way, it detects genes that are partially uncovered in a more
realistic way than existing tools. as a result, it retrieves a
more feasible set of genetic families in the context of
isolated genomes as well as in metagenomic experiments.

𝛤 ∗ minus the empty string. Moreover, we denote with 𝛤 𝑘 the set of all
possible strings of length 𝑘 over 𝛤 . We abstract a genome to be a formal
tring 𝐺 ∈ 𝛤 ∗ having length 𝑚 = |𝐺|. We use the same length notation
or the cardinality of a collection  of genomes, for example, || = 𝑛 if
 = {𝐺1,… , 𝐺𝑛} as traditionally assumed in set theory, combinatorics
f words, and formal language theory [30,31].

The W-C complementarity C of DNA strings is the natural extension
o strings of the bijection over 𝛤 , whose square is the identity function,
ssociating 𝖠 with 𝖳 and 𝖢 with 𝖦. As an example, 𝐶(𝖠𝖳𝖢𝖦) = 𝖳𝖠𝖦𝖢.
he reverse of a string 𝑤 ∈ 𝛤 ∗ is the conventional function R which

nverts the reading sense of the string, then 𝑅(𝑎1𝑎2 … 𝑎𝑘) = 𝑎𝑘 … 𝑎2𝑎1.
The commutative composition of the two functions C and R is often
called 𝑀𝑖𝑟 (as a mirror function, whose square is the identity function
of 𝛤⋆), and used to compute the reverse complement of DNA double
strings [32], where the chemical orientation (corresponding to the
reading sense) of the upper and lower filaments are opposite. For
example, 𝑀𝑖𝑟(𝖠𝖳𝖢𝖦) = 𝖢𝖦𝖠𝖳.

Given two strings, 𝑣 = (𝑎1𝑎2 … 𝑎𝑘) and 𝑢 = (𝑏1𝑏2 … 𝑏𝑡), the sym-
bol ⋅ denotes the string concatenation operator, such that 𝑣 ⋅ 𝑢 =
(𝑎1𝑎2 … 𝑎𝑘𝑏1𝑏2 … 𝑏𝑡).

Given a genome 𝐺, a genomic region is either a substring of 𝐺, that is,
the string 𝐺[𝑖, 𝑗] from some position 𝑖 to some position 𝑗 of G, with 𝑖 ≤ 𝑗,
or its mirror string. Defined over genomic regions, we have the binary
function strand, which informs about the strand on which the region
resides: ‘‘+’’ stays for the upper filament and ‘‘-’’ for the lower filament,
and functions 𝑙𝑒𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡, which return the left and right coordinates
of the region (respectively 𝑖 and 𝑗), by referring to the 5′ − 3′ filament
of the genome, even if the region is located on the other filament.

Both a gene g and a fragment f are genomic regions of the given
genome 𝐺. We call 𝐺 the set of fragments extracted from 𝐺 and 𝐺
the collection of all its genes. A well-known concept in the context
of alignment-free methods is the genomic dictionary of 𝑘-mers, 𝐷𝑘(𝐺),
which are elements of 𝛤 𝑘 (i.e., strings of length 𝑘) appearing as
substrings of a given genome G [33,34]. More formally:

𝐷𝑘(𝐺) = {𝑣 ∈ 𝛤 𝑘 ∣ ∃𝑖, 1 ≤ 𝑖 ≤ |𝐺| − 𝑘 + 1 ∶ 𝐺[𝑖, 𝑖 + 𝑘 − 1] = 𝑣}.

Sequence similarity

From the literature, there are several (e.g., alignment-based) dis-
tances between sequences, such as the Hamming distance or Damerau–
Levenshtein (also known as edit) distance, which may be defined also
over two strings of possibly different length. Once we have established
3
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how to measure the distance 𝑑𝑖𝑠𝑡(𝑤1, 𝑤2) between two given strings 𝑤1
and 𝑤2, we may set a non-negative threshold 𝑑 and consider 𝑤1 and
𝑤2 similar when 𝑑𝑖𝑠𝑡(𝑤1, 𝑤2) ≤ 𝑑. We formally denote such similarity
by 𝑤1 ≃𝑑 𝑤2, a symmetric binary relation which is reduced to the exact
matching (i.e., the two strings are equal) in the case of 𝑑 = 0.

An optimal occurrence of the word 𝑤 is defined as the couple (𝑖, 𝑗)
corresponding to a genomic region (it may be helpful here to remind
that for each couple of indexes, we have two possible genomic regions,
those within the two filaments) 𝐺[𝑖, 𝑗] at a minimal distance from
𝑤, in particular, the couple with the minimum 𝑖 is taken among all
couples having this property. Genomic regions corresponding to such
an optimal occurrence are said to be optimally similar to 𝑤:

𝐺[𝑖, 𝑗] ≃⋆
𝑑 𝑤.

A sort of optimal approximate coverage may be now defined, by
mapping a set of words over a genome (each word occurring once)
by a non-exact matching. First, we define the word coverage of a word
𝑤 ∈ 𝛤 ∗ within a genome 𝐺 as (the set of positions engaged by the
optimal occurrence of 𝑤):

𝑐𝑜𝑣(𝑤,𝐺) = {𝑝 ∶ 𝑤 ≃⋆
𝑑 𝐺[𝑖, 𝑗], 1 ≤ 𝑖 ≤ 𝑝 ≤ 𝑗 ≤ |𝐺|}.

More in general, for a set of strings 𝑊 = {𝑤1, 𝑤2,… , 𝑤𝑛}, the
coverage of 𝑊 over a genome 𝐺 is

𝑐𝑜𝑣(𝑊 ,𝐺) =
⋃

𝑤∈𝑊
𝑐𝑜𝑣(𝑤,𝐺).

Multiple (even overlapping) occurrences of one string 𝑤 within a
given genome G are represented in the following collection:

𝑜𝑐𝑐(𝑤,𝐺) = {(𝑖, 𝑗) ∶ 𝐺[𝑖, 𝑗] ≃0 𝑤, 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝐺|}.

If we restrict ourselves to 𝑘-mers dictionaries, for a prefixed value
𝑘, we define the generalized Jaccard distance between two strings
𝑤1, 𝑤2 ∈ 𝛤 ∗:

𝐽𝑘(𝑤1, 𝑤2) =

∑

𝑙∈{𝐷𝑘(𝑤1)∪𝐷𝑘(𝑤2)} 𝑚𝑖𝑛(|𝑜𝑐𝑐(𝑙, 𝑤1)|, |𝑜𝑐𝑐(𝑙, 𝑤2)|)
∑

𝑙∈{𝐷𝑘(𝑤1)∪𝐷𝑘(𝑤2)} 𝑚𝑎𝑥(|𝑜𝑐𝑐(𝑙, 𝑤1)|, |𝑜𝑐𝑐(𝑙, 𝑤2)|)
.

Recent studies have shown a good performance of such a measure
or retrieving homology among genetic sequences belonging to a set of
enomes [35].

ene families

Genes are transmitted in a vertical way from an ancestor to its
escendants, by means of reproduction. Alternatively, genes may be
ransmitted in a horizontal way from one living organism to another
ithout a direct relationship [36]. Horizontal transmission is com-
on between bacteria. Indeed, a relatively large portion of bacterial

enomes is composed of horizontally transferred genes [37].
Roughly speaking, two genes are homologous if they ‘‘implement’’

common biological function, and often this property corresponds to
structural similarity in their sequence. In this study, we consider

wo genes homologous if their sequences are similar (under some
hreshold 𝑑), in the sense defined in the above section, and such a
imilarity, combined with statistical evaluation, represents a proof of
omology [38].

In particular, two genes respectively located within two different
enomes are considered homologous if one is considered the product
f transmission of the other, from one genome to the other. The
ransmitted gene may be an exact copy of the ancestor gene, or it may
resent some alterations. The two genes are also said to belong to the
ame gene family. More in general, a gene family is composed of a set
f genes for which a direct or indirect relation of transmission exists.
n the other hand, genes belonging to different gene families may
ave a relatively high sequence similarity. Thus, sequence similarity
tself is not sufficient to ensure homology. Moreover, the higher the

hylogenetic distance between two genomes is, the more permissive
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Fig. 1. Workflow of PanDelos-frags. The tool takes as input a set of complete and/or fragmented genomes and returns as output the set of reconstructed gene families, namely the
pangenome of the set of input genomes. The workflow is mainly divided into two steps: (𝑖) reconstruction and detection of the genetic content of the input genomes; (𝑖𝑖) detection
of the pangenomic content which results in the set of recognized gene families.
the parameter 𝑑 should be. In fact, a copy of a gene 𝑔 which has been
acquired by means of multiple transmission is led to show a higher level
of alterations with respect to 𝑔 than to its direct ancestor.

In pangenomic analysis, usually, we are not aware of the phylo-
genetic relationships among the genomes of interest. Therefore, here
we represent the homology relationship between two genes 𝑔 and ℎ
as 𝑔 ≐ ℎ, which implies 𝑔 ≃𝑑 ℎ, for some value 𝑑, but the vice-versa
is not true. In this way, we are able to model homologous relations
such as orthologs (derived from speciation events), paralogs (derived
from a gene duplication event, internally to one genome), and xenologs
(derived from horizontal transfer or lineage fusion).

Given a set of genomes  = {𝐺1,… , 𝐺𝑛}, a gene family 𝐹 is
composed of genes from the genomes in  being pairwise homologous.
That is, inside a gene family each gene corresponds to a different
homologous one. Since a gene belongs to only one gene family and to
only one genome, we define string functions 𝑔𝑒𝑛𝑜𝑚𝑒(𝑔) and 𝑓𝑎𝑚𝑖𝑙𝑦(𝑔)
respectively as the genome and the family to which the gene 𝑔 belongs,
respectively. We define the diffusivity of a gene family 𝐹 as the number
of genomes  to which the genes in 𝐹 belong to. More formally:

𝛿(𝐹 ) = |

⋃

𝑔∈𝐹
𝑔𝑒𝑛𝑜𝑚𝑒(𝑔)|.

Given a set of genomes  = {𝐺1, 𝐺2,… , 𝐺𝑚}, the pangenome 𝑃 () is
a set of gene families {𝐹1, 𝐹2,… , 𝐹𝑛} such that ⋃𝐹𝑖∈𝑃 () 𝐹𝑖 =

⋃

𝐺𝑗∈ 𝐺𝑗 .

3. Methods

Fig. 1 shows the workflow of the proposed approach. PanDelos-
frags takes as input a collection of input genomes. Such genomes
may be complete, namely, the entire genomic sequence is known,
or fragmented. Fragmented genomes come in the form of a set of
genomic sequences, called fragments, that compose a specific genome.
The association between a fragment and its genome is a required input.

For what concerns complete genomes, a gene detection procedure
is run in order to recognize the coordinates of the genes and to extract
their sequence, while fragmented genomes follow a different flow.
4

In the case of fragmented genomes, since portions of the genes of
a fragmented genome may reside in regions that are not covered by
the fragments of such a genome, a specialized reconstruction procedure
is applied. The aim is to reconstruct the alleged complete sequence of
the genome, and thus the sequence of the genes contained in it. The
procedure starts by selecting, from a collection of complete reference
genomes, the one that better aligns with the set of fragments of a given
fragmented genome. Once a reference genome is chosen, the genomic
sequence of the genome is reconstructed. Then, a specialized gene
detection procedure is applied in order to recognize genes within such a
reconstructed genome. For each gene, we keep track of the percentage
of its sequence that has been inferred from the reference genome.

At this point, a set of genes composing the genetic content of each
input genome is available and can be used as input for a revised
approach for detecting the pangenomic content of a set of complete
genomes. For this task, we employed a software called PanDelos [9],
where we needed to adjust the sequence similarity measure in order
to take into account the information regarding the portion of each re-
constructed gene that does not overlap the input fragments. According
to PanDelos methodology, an orthologous detection phase is performed
by searching for bidirectional best hits in a two-by-two genome com-
parison. Then, a paralogous detection phase exploits the information
regarding sequence similarity between orthologous for selecting the
minimum level of sequence similarity between paralogous genes. The
retrieved homology (orthologous and paralogous) relationships are
integrated into a unified homology network which is refined in order to
discard unfeasible homologies. As a result, the connected components
of such a refined network identify the gene families that compose the
requested pangenomic information.

In what follows, Section 3.1 gives details on the pre-processing
phase of PanDelos-frags, which is aimed at both reconstructing the ge-
nomic sequences of fragmented genomes and detecting the genetic con-
tent of all input genomes, while Section 3.2 describes the pangenomic
detection phase, which performs homology detection.
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Fig. 2. Pre-processing phase of PanDelos-frags for reconstructing genetic content of a fragmented genome by inferring the missing genomic portions from a selected reference
genome.
e

3.1. Genetic content detection and reconstruction

It is supposed that a genome has been sequenced in such a way that
the produced reads are assembled into fragments. Such fragments are
the input of the pre-processing procedure of PanDelos-frags.

Given a collection of genomes, the aim is to recognize the genes
from each input genome and to pass such information to the successive
phase. If a genome is given in a fragmented format, then it is processed
in order to reconstruct the complete sequence of the genome. The
reconstruction procedure infers both the missing regions of the genome
and the order of the fragments, by retrieving the necessary information
for a selected reference genome. To this purpose, a collection  of
relevant reference genomes is selected. Such a collection must contain
only complete genomes. This means that only one reference genome
is used for the reconstruction of the potentially missing portions of
the sequenced genome. In this way, we avoid as much as possible
the mixing of multiple genomic sequences which will diverge from a
plausible reconstructed sequence.

Given a fragmented genome 𝐺 (as a set of fragments extracted from
the original 𝐺), the reference genome 𝑅𝐺 which is the most similar
to 𝐺 is retrieved from . To recognize 𝑅𝐺, every fragment of 𝐺 is
aligned to . The alignment is performed by constructing a BLAST
database of  [39]. Default parameters are used to find all the feasible
alignments of a fragment within genomes of . The reference genome
which maximizes the coverage of the alignments with fragments is
selected:

𝑅𝐺 = max
𝑅∈

|𝑐𝑜𝑣(𝐺,𝑅)|

Once a reference genome is selected, the actual reconstruction
procedure is applied. Fig. 2 shows the key aspects of the procedure.
Fragments of 𝐺 are aligned to 𝑅𝐺 by means of the BWA algorithm with
default parameters [40]. For each fragment 𝑓 ∈ 𝐺, we search for the
optimal occurrence of 𝑓 in 𝑅𝐺 for some threshold parameter 𝑑.

Fragments for which an occurrence has not been found are concate-
nated at the beginning of the 5′−3′ strand of the reconstructed genome.
Since the actual order of such fragments is unknown, the fragments
are lined up according to the increasing order of their length. A fixed
number of 𝑁 symbols (specifically 200) is inserted between each pair
of unmapped fragments, and between the last unmapped fragment and
the being of the portion of the reconstructed genome that contains
mapped fragments. These 𝑁 symbols are necessary in order to avoid
the recognition of genes straddling two unmapped fragments.

For what concerns aligned fragments, we recall that an alignment
produces gaps and/or it may clip leading or trailing parts of the frag-
ment. In general, a cut-and-paste approach is applied to replace regions
of the reference genome with the mapping fragments, by ignoring gaps
and clippings of the alignment. More precisely, given a fragment 𝑓 and
5

its mapping coordinates (𝑖, 𝑗) = 𝑜𝑝𝑡𝑑 (𝑓,𝑅) on the reference genome 𝑅,
the resultant genomic string is given by 𝑅[1, 𝑖 − 1] ⋅ 𝑓 ⋅ 𝑅[𝑗 + 1, |𝑅|].
An exception arises when the alignments of multiple fragments overlap
(on the same reference genome 𝑅). In this case, we proceed pairwise as
in the following. Given two fragments, 𝑓 and 𝑓 ′, and their alignment
coordinates (𝑖, 𝑗) and (𝑖′, 𝑗′), respectively, such that 𝑖 ≤ 𝑖′ ≤ 𝑗 ≤ 𝑗′, the
resultant genome is given by 𝑅[1, 𝑖 − 1] ⋅ 𝑓 ⋅ 𝑓 ′[𝑗 + 1, 𝑗′] ⋅ 𝑅[𝑗′ + 1, |𝑅|].
Namely, we resolve the overlap by keeping the portion of the left
fragment that overlaps and by discarding the overlapping part of the
right fragment. Such a procedure is iteratively applied from left to right
to sequences of overlapping fragments.

Once a reconstructed genome is obtained, a gene recognition tool
searches for genes within it. By default, we use PRODIGAL (PROkary-
otic DYnamic programming Gene-finding ALgorithm) for this phase
[41], which is a well-established algorithm for automated gene pre-
diction in microbial organisms. From the output, we discard the genes
that entirely reside in regions that are not covered by given fragments
and keep genes that entirely or partially reside in regions obtained by
mapping fragments within the reference genome. Intuitively, if a gene
recognized by PRODIGAL is not at least partially covered by an input
fragment (that is, there is no overlapping of a significant length), we
do have not enough information to assume that such a gene is present
in the sequenced genome, and we discard it.

For what concerns the complete genomes, gene recognition is per-
formed on the input genome without running the reconstruction pro-
cedure, then any recognized gene is kept for the successive phase.

3.2. Pangenome detection

PanDelos-frags inherits from PanDelos [9] the procedure for pangenom
detection. PanDelos takes as an input a set of genomes. This implies
that the coordinates of genes are already known and no gene detection
phase is run by the methodology. Sequence similarity is computed
by means of the generalized Jaccard’s similarity distance reported in
Section 2.

The reconstruction procedure may produce genes that just partially
reside on the fragments of input genomes. Thus, a portion of such genes
is inferred from the reference genome, and we cannot ensure that such
a portion is contained exactly in the sequenced genome. For this reason,
we need to apply a modified Jaccard’s similarity distance which takes
into account our confidence with the reconstructed gene sequence.
Such confidence is encoded by a scaling factor that evaluates the
percentage of the sequence that has been inferred from the reference
genome.

Given a gene 𝑔, we denote with |𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑(𝑔)| the number of nu-
cleotides of 𝑔 inferred from the reference genome. Formally, let 𝐺 =
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q
{

(

𝐽

{𝑓1, 𝑓2,… , 𝑓𝑛} be a fragmented genome and 𝐺′ the reconstructed se-
uences of it, and let 𝐺′[𝑖, 𝑗] = 𝑔 for some 𝑖 and 𝑗, then 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑(𝑔) =
𝑝 ∶ 𝑖 ≤ 𝑝 ≤ 𝑗} ⧵ 𝑐𝑜𝑣(𝐺,𝐺′).

Given two genes, 𝑔 and 𝑔′, the modified Jaccard’s similarity distance
for some parameter 𝑘) is defined as:

′
𝑘(𝑔, 𝑔

′) = 𝐽𝑘(𝑔, 𝑔′) ⋅ (1 −
|𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑(𝑔)| + |𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑(𝑔′)|

|𝑔| + |𝑔′|
).

The value of 𝑘 is chosen according to the total length of all genes.
Such a choice is made in accordance with theoretical results regard-
ing the comparison between real genomes and random strings [42].
Specifically:

𝑘 = ⌈𝑙𝑜𝑔
|𝛤 |

∑

𝑔∈𝐺,𝐺∈

|𝑔|⌉.

The extraction of pairs of genes candidate to be homologous is
computed by taking into account genomes in a pairwise way. For each
pair of different genomes 𝐺1 and 𝐺2 the tool evaluates the homology
between each pair of genes (𝑔1, 𝑔2) ∈ 𝐺1 × 𝐺2 (while × being the
Cartesian product of the two sets of genes). Jaccard-based similarities
are computed in order to discover bidirectional hits. Namely, for each
gene in one of the two genomes, we search for the most similar genes
within the other genome. Formally, for one gene of one genome 𝑔1 ∈ 𝐺1
the set of best hits with respect to another genome 𝐺2 is defined as

𝐵𝐻(𝑔1, 𝐺2) = {𝑔⋆ ∈ 𝐺2 ∶ 𝐽 ′
𝑘(𝑔1, 𝑔

⋆) ≥ 𝐽 ′
𝑘(𝑔1, 𝑔), 𝑔 ∈ 𝐺2}.

The set of bidirectional best hits between two genomes is naturally
given by

𝐵𝐵𝐻(𝐺1, 𝐺2) = {(𝑔1, 𝑔2) ∈ 𝐺1×𝐺2 ∶ 𝑔1 ∈ 𝐵𝐻(𝑔2, 𝐺1)∧𝑔2 ∈ 𝐵𝐻(𝑔1, 𝐺2)}.

The 𝐵𝐵𝐻(𝐺1, 𝐺2) is filtered by applying a threshold 𝑘 ensuring that
the involved sequences share a minimum amount of 𝑘-mers. In partic-
ular, (𝑔1, 𝑔2) ∈ 𝐵𝐵𝐻(𝐺1, 𝐺2) must satisfies the following conditions:
∑

𝑤∈𝐷𝑘(𝑔1)∩𝐷𝑘(𝑔2) |𝑜𝑐𝑐(𝑤, 𝑔1)|

|𝑔1| − 𝑘 + 1
≥ 2

𝑘

and
∑

𝑤∈𝐷𝑘(𝑔1)∩𝐷𝑘(𝑔2) |𝑜𝑐𝑐(𝑤, 𝑔2)|

|𝑔2| − 𝑘 + 1
≥ 2

𝑘
.

The resultant set is referred to as 𝐵𝐵𝐻(𝐺1, 𝐺2). Once 𝐵𝐵𝐻(𝐺1, 𝐺2)
is retrieved, a specialized procedure detects paralogous genes. For
each genome 𝐺, a similarity threshold 𝑝 for considering two genes
paralogous is computed, such that:

𝑝(𝐺) = min
𝑔∈𝐺,𝑔′∈𝐺′,𝐺≠𝐺′

𝐽 ′
𝑘(𝑔, 𝑔

′).

The set of paralogous relationships between genes of a genome 𝐺 is
defined as:

𝑃𝐴𝑅(𝐺) = {(𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 ∶ 𝐽 ′
𝑘(𝑔1, 𝑔2) ≥ 𝑝(𝐺)}.

Finally, we build up a homology network, as an undirected graph
(𝑉 ,𝐸) in which vertices are all the genes within the genomes of ,
namely 𝑉 =

⋃

𝑔∈𝐺, 𝐺∈ 𝑔, and edges represent homology relationships
between such genes, that is 𝐸 =

{

⋃

𝐺∈ 𝑃𝐴𝑅(𝐺)
}

⋃

{

⋃

𝐺1 ,𝐺2∈ ∶ 𝐺1≠𝐺2
𝐵𝐵𝐻(𝐺1, 𝐺2)

}

.
A connected component is said to be inconsistent if it contains two

distinct genes, 𝑔1, 𝑔2, within one same genome 𝐺, such that (𝑔1, 𝑔2) ∉
𝑃𝐴𝑅(𝐺). Otherwise, the component is said to be consistent. Inspired by
the Girvan–Newman algorithm for community detection [43], we scan
for inconsistent components and iteratively remove edges from incon-
sistent components until they become consistent. At each iteration, the
algorithm selects the edge within an inconsistent component with the
highest edge betweenness, defined as the number of the shortest paths
crossing through an edge in a graph [43]. After the removal of such
inconsistencies, each connected component of the graph is given as a
specific gene family output.
6

In summary, with respect to PanDelos, the proposed approach intro-
duces the genetic content detection and reconstruction phase which is
necessary for managing fragmented genomes. Moreover, it modifies the
previous pangenome detection strategy. It introduces in the sequence
similarity measure a factor that takes into account the percentage of
genetic sequence that has been reconstructed (details are given in what
follows). Moreover, since portions of genetic sequences are inferred
from reference genomes, the proposed approach discards a filtering
strategy presented in PanDelos which forces two sequences to share a
given amount of k-mer content (see [9]). In the same fashion as PanDe-
los, the pangenome detection strategy is parameter-free. However, the
tool has inner parameters due to the application of BLAST for reference
recognition, the mapping fragments to the reference via BWA, the use
of PRODIGAL for gene detection, and the length (200) of the 𝑁 islands
that are inserted between unmapped fragments.

4. Experiments and discussion

Our experimental setup is here reported, along with a discussion on
the results of the experiments designed to prove the effectiveness of
PanDelos-frags in detecting pangenomic content, among both complete
and incomplete genomes.

In Section 4.1, we present a performance analysis of the proposed
approach, with respect to the competing methodologies, by means of
artificially generated benchmarks. We created three synthetic bacte-
rial populations and simulated fragmentation at varying levels. The
use of such synthetic data allows us to systematically evaluate the
performance of the tools in varying experimental settings, such as
the percentage of the genome that is sequenced, as for usual reverse
engineering analysis.

In Section 4.2, we show the application of the proposed methodol-
ogy to a previously published study in the field of metagenomics [15].
Thank to pangenomic analyses, Pasolli et al. discovered thousands of
microbial genomes from yet-to-be-named species. We perform pange-
nomic analysis on three sets of metagenomic assembled genomes be-
longing to different species and explore the obtained results in com-
parison to competing pangenomic tools.

4.1. Synthetic data

In order to assess in a systematic way the performance of PanDelos-
frags, we performed an evaluation on synthetic data as well. The
advantage of this type of data is that input genomes are generated by
means of a procedure such that we always know which is the expected
output (for a pangenomic discovery content methodology). In this way,
we can compare the expected output with the output obtained by
running a tool, and calculate performance statistics.

4.1.1. Experimental setup
Synthetic benchmarks were generated by means of PANPROVA

[29], a tool that generates a population of synthetic genomes by
simulating an evolution starting from a single root genome. Genomic
sequence alterations and variations in the gene set of a genome are
taken into account for simulating the evolution. At each step of the
simulation, a genome that currently composes the synthetic population
is selected for being reproduced. The genomic sequence of the ancestor
genome is modified by deleting or duplicating genes that are present
in it. Subsequently, new genes are added to the sequence in random
positions of the genome, in order to simulate horizontal gene transfer.
Such new genes are extracted from a pool of genes built before the
evolution process. Each time a gene is extracted from the pool, it is
also removed from it. Then, insertions, deletions and alterations are
applied to its genomics sequence in order to obtain the final sequence of
the new genome. Single-nucleotide variations are applied to intergenic
portions of the genome, while single-codon variations are applied to
genetic regions in order to avoid frame-shifting effects. Each process of
gene set modification or genomic sequence alteration is driven by some
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Table 2
Total number of genes contained in the synthetic benchmarks, produced by means of PANPROVA, and retrieved by the compared tools. (all)
reports the complete set of genes recognized by a tool. (PP) identifies the genes retrieved by the tool that have a correspondence with PANPROVA
genes.
Species P. aeruginosa M. genitalium E. coli

Sequenced perc. 50 80 100 50 80 100 50 80 100

PANPROVA 29,445 46,482 57,346 3270 4606 4,903 27,437 43,361 53,534

PanDelos-frags (all) 37,310 59,468 74,430 6280 9597 11,170 34,698 55,123 69,100
PanDelos-frags (PP) 26,460 41,994 52,327 1697 2461 2,674 23,414 36,692 45,614

Roary (all) 37,041 59,154 74,214 5275 8644 10,811 34,358 54,728 68,798
Roary (PP) 25,721 41,304 52,029 1099 1921 2,440 22,565 35,937 45,281

GenAPI (all) 37,428 59,830 75,046 5448 8962 11,195 35,022 55,713 70,077
GenAPI (PP) 25,721 41,304 52,029 1099 1921 2,440 22,565 35,937 45,281

Panaroo (all) 34,580 57,396 73,317 2953 6823 9,424 29,758 52,833 67,168
Panaroo (PP) 25,721 41,304 52,029 1099 1921 2,440 22,565 35,937 45,281
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u
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w
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fixed parameters that define the level of alteration that is reached at
each evolutionary step.

For this study, we generated 3 synthetic bacterial populations start-
ing from 3 root genomes belonging to different species, that are Es-
herichia coli, Mycoplasma genitalium and Pseudomonas aeruginosa. For
he population generated starting for the M .genitalium and P. aeruginosa
enome, we built a pool of HGT (Horizontal Gene Transfer) genes
rom 6 other species. Instead, the pool used for the E. coli populations
as built by extracting genes from other Escherichia species. Popula-

tions having a total of 100 genomes were generated. Subsequently, 10
genomes were selected from such populations. The selection was made
with two different approaches. The first approach extracts the genomes
that are the most phylogenetic related to the root, and for this reason,
we refer to these benchmarks as root benchmarks. The second approach
randomly selects from the population a given number of genomes that
have not been reproduced during evolution. In the phylogenetic tree of
the population, such genomes are the leaves, and for this reason, the
benchmarks are called leaves benchmarks. Then, for each selected group
of genomes, we simulated the fragmentation by randomly extracting
fragments of variable length from the genomes. The fragmentation was
simulated for different levels of coverage of the resultant fragment set
over the genome from which they were extracted. The percentages were
varied from 50% to 100% by steps of 10%.

4.1.2. Genes and gene families
We evaluated the ability of PanDelos-frags to reconstruct the pange-

nomic content of the genes that were partially or completely kept
during the fragmentation by PANPROVA. In order to do this, we first
mapped the genes reconstructed by PanDelos-frags against the original
set of gene sequences, which are the genes of the synthetic population
before fragmentation. For this purpose, we used BLASTN, with param-
eter -qcov 50, to make sure that at least more than half of the gene was
being mapped to the original gene. Then, we repeated the approach
in the opposite direction, using the original genes as queries and the
reconstructed genes as databases. We considered as mapped only the
genes that had a bidirectional best hit with their mapping gene.

Table 2 reports the total number of genes that are originally con-
tained in the benchmarks produced with PANPROVA and that are
retrieved by the compared tools. The annotation of the input genomes
used as root in PANPROVA is retrieved from public resources.1. The an-
notation is very accurate and partially manually curated. In fact, if we
run PRODIGAL on them then a large number of genes is recognized. We
decided to keep curated annotations rather than automatic predictions
produced by PROKKA in order to make the comparison fair to the tool
that uses error correction procedures. The number of genes that result
from the synthetic evolution and that survived, completely or partially,
the fragmentation is reported as PANPROVA in Table 2. Roary, GenAPI

1 https://www.ncbi.nlm.nih.gov/
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and Panaroo take as input annotated fragments, which we produced
by applying PROKKA to the fragments, and then they run specific
procedures for evaluating the annotation. PanDelos-frags takes as input
unannotated fragments that will be rearranged in the reconstructed
genome. The annotation is then retrieved by running PRODIGAL on
the genomic sequence. The rows of the table labeled as all report the
complete pangenomic content discovered by each tool. On the contrary,
the rows labeled as PP inform about the number of genes for which
we found a correspondence with the output of PANPROVA. PanDelos-
frags is the tool that on average generates the highest number of genes,
but it is also the tool that has always the highest correspondence with
PANPROVA. Roary, GenAPI and Panaroo generate a variable number
of genes because they apply different strategies, but they have the same
corresponding genes. This behavior is due to the fact that none of these
tools reconstruct the mission regions, and the annotation only relies on
the fragment content, which is the same for all of them.

4.1.3. Homology relationships
Let  be the set of genomes of a synthetic population. Let 𝑃 ′()

be the pangenome extracted by a computational tool. The aim of a
systematic evaluation is to compare 𝑃 () with 𝑃 ′(). There are two key
actors that can lead a tool to produce a pangenome 𝑃 ′() which is
ifferent from the real pangenome 𝑃 (). The first factor is due to the
navailability of portions of the genomic sequences which may cause
he loss of some genes. This situation arises in fragmented genomes
hen the set of fragments does not totally cover the original genome.
he second factor is implicitly due to the methodology of a tool.
n particular, a tool may be led to merge or divide gene families
n discordance with effective homology relationships. Thus, we are
nterested in evaluating the difference between 𝑃 () and 𝑃 ′() in terms
f homology relationships. To this purpose, we compare the homology
etworks 𝑊 (𝑉 ,𝐸) and 𝑊 ′(𝑉 ,𝐸′) built up from the two pangenomes.
e notice that the set of nodes 𝑉 is the same since the two pangenomes

egard the same genomes, and thus the same set of genes. We are to
ompare the respective sets of edges: 𝐸 = {(𝑔, 𝑔′) ∈ 𝑉 ×𝑉 ∣ ∃𝐹 ∈ 𝑃 () ∶
∈ 𝐹 ∧𝑔′ ∈ 𝐹 } and 𝐸′ = {(𝑔, 𝑔′) ∈ 𝑉 ×𝑉 ∣ ∃𝐹 ∈ 𝑃 ′() ∶ 𝑔 ∈ 𝐹 ∧𝑔′ ∈ 𝐹 }.

With this aim, we calculated the following four sets:

• 𝑇𝑃 = {𝐸 ∪𝐸′}, that is the set of homology relationships that are
in common between the two pangenomes. This set is also referred
to as the true positive homologies.

• 𝐹𝑃 = {𝐸′ ⧵𝐸}, that is the set of homologies reported by the com-
putational tool that do not belong to the true set of homologies.
This set is also referred to as false positive homologies.

• 𝐹𝑁 = {𝐸⧵𝐸′}, that is the set of homology relationships that have
been missed by the computational tool. This set is also referred
to as false negative homologies.

• 𝑇𝑁 = {𝑉 ×𝑉 ⧵𝐸∪𝐸′}, that is the set of homologies relations that
are not in both 𝐸 and 𝐸′. This set is also referred to as the true
negative homologies.
n top of these four sets, well-known statistics are computed.

https://www.ncbi.nlm.nih.gov/


Journal of Biomedical Informatics 148 (2023) 104552V. Bonnici et al.

.

v
v

s
e
s

t
w

h
a
a

t
P
d

m

o
w
a
s
R
f
a
s
t
e

t
o
a
a
I
o
o
t
t
2
p
G
t
a
m

4

c
T
t
a
c
b
t
u
a
o
s
a
a
e
t
d
E
a
+

Table 3
F1-score of PanDelos-frags over the synthetic benchmarks obtained by varying the
genome used as root and the percentage of genomic sequence that is virtually sequenced

Species Type Percentage of sequenced sequence

50 60 70 80 90 100

M. gen. leaf 0.98 0.99 0.99 0.99 0.99 0.99
M. gen. root 0.99 0.99 0.99 0.99 0.99 0.99
E. coli leaf 0.95 0.95 0.96 0.96 0.97 0.97
E. coli root 0.98 0.98 0.97 0.98 0.98 0.98
P. aer. leaf 0.97 0.97 0.97 0.97 0.97 0.97
P. aer. root 0.99 0.99 0.99 0.99 0.99 0.99

Table 4
False discovery rate of PanDelos-frags over the synthetic benchmarks obtained by
arying the genome used as root, and the percentage of genomic sequence that is
irtually sequenced.
Species Type Percentage of sequenced sequence

50 60 70 80 90 100

M. gen. leaf 0.008 0.003 0.002 0.001 0.001 0.001
M. gen. root 0.002 0.014 0.002 0.001 0.001 <0.001
E. coli leaf 0.044 0.035 0.027 0.021 0.015 0.011
E. coli root 0.013 0.012 0.011 0.011 0.008 0.006
P. aer. leaf 0.006 0.006 0.005 0.004 0.003 0.002
P. aer. root 0.002 0.002 0.001 0.001 0.001 <0.001

It has to be noticed that this type of homology network is very
parse. In fact, families compose cliques within the network but no
dges are among these cliques. Thus, the effective set of edges is very
mall compared to the possible one 𝑉 × 𝑉 . Such missing relationships

highly relate to 𝑇𝑁 , and for this reason, measures based on 𝑇𝑁 could
be not so much informative. Thus, we avoid the calculation of measures
such as accuracy and true negative rate, which are based on 𝑇𝑁 . On
he other hand, we computed F1-score and false discovery rate (FDR)
hich are described in what follows.

The F1-score is a combination of the precision and recall by their
armonic mean. The precision is defined as |𝑇𝑃 |

|𝑇𝑃 |+|𝐹𝑃 | , and it informs
bout the portion of homologies relations output by the tool that
re known (real) homologies. The recall is defined as |𝑇𝑃 |

|𝑇𝑃 |+|𝐹𝑁|

, and
it informs about the portion of true positive relationships that have
been output by the tool. The F1-score is defined as 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 =
2⋅|𝑇𝑃 |

2⋅|𝑇𝑃 |+|𝐹𝑃 |+|𝐹𝑁|

. The FDR measure informs about the portion of rela-
tions output by the tool that are not true relations: it is defined as

|𝐹𝑃 |
|𝐹𝑃 |+|𝑇𝑃 | .

We evaluated the homology relationships only between the genes
hat were partially or completely kept during the fragmentation by
ANPROVA and that we were able to match by means of the procedure
escribed in the previous section.

Table 3 reports F1-scores of PanDelos-frags over the synthetic bench-
arks. As expected, the approach has better performance on root

benchmarks, because the involved genomes are very similar to each
other. However, it is interesting to notice that such performance is not
affected by the percentage of the genome that is virtually sequenced.
PanDelos-frags is able to capture the greatest portion of homology
relations between genes that are not completely discarded by fragmen-
tation. For what concerns leaf benchmarks, PanDelos-frags still shows
good performance. Low sequencing percentage affects the ability of
the proposed approach to retrieve the correct set of homology relation-
ships, however, an average F1-score of 0.96 is obtained. Table 4 shows
FDR values. These results follow the trend of F1-scores, with a maxi-
mum FDR value of 0.044 obtained for the leaf benchmark built from
the E. coli genome and by simulating a 50% of sequencing covering.

4.1.4. Diffusivity and core genes
We also compared the pangenomes detected by the different tools

by running the same analyses on the three leaves benchmarks because
these benchmarks are the ones that most reflect a realistic situation.
8

Figs. 3, 4, and 5 show the diffusivity retrieved by each tool in
analyzing respectively the M. genitalium, E. coli and P. aeruginosa bench-
marks by simulating 50%, 80% and 100% of sequencing coverage. The
pairwise comparison of the retrieved diffusivity between PanDelos-frags
and the other tools is reported in Appendix Figs. A.1, A.2, and A.3.of
The charts show the actual diffusivity distribution of the population
as it is obtained by the generation via PANPROVA and after the
simulation of the sequencing phase. Thus, genes that were discarded
by the sequencing process are not included in computing the diffusivity
of gene families. Such a diffusivity distribution is to be considered the
golden truth of the analysis. Namely, the tool that retrieves a diffusivity
distribution which is the most similar to the PANPROVA distribution
is intended to be the best approach. In addition, the charts report the
F1-score of each tool on the legend of the figure.

PanDelos-frags is generally the approach that recognizes a number
f core families, or families with a diffusivity similar to the core ones,
hich better approximated the actual distribution of PANPROVA, with
few exceptions. As expected, GenAPI and Panaroo are the tools that

how the most similar performance to PanDelos-frags. The reason is that
oary can only detect genes that are entirely included in the input

ragments, and no reconstruction phases are performed by the tool. As
result, Roary has an average F1-score of 0.42. GenAPI and Panaroo

how F1-score between 0.73 and 0.96, which are in any case lower
han the PanDelos-frags’s values. The F1-scores of the homologies of
ach experiment are reported in the legends of Figs. 3, 4, and 5.

We compute an index to evaluate the ability of a tool to retrieve
he actual number of core gene families. Let 𝑐 be the actual number
f core families, and let 𝑛 be the number of core families identified by
tool, the index is defined as 𝑎𝑏𝑠(𝑛 − 𝑐)∕𝑐 ⋅ 100, where 𝑎𝑏𝑠 means the

bsolute value. We call this index the absolute percentage difference.
ntuitively, a lower index indicates a smaller difference in the number
f core genes identified by the tool compared to the actual number
f core gene families. We calculate for each tool the mean value of
he index over the six different fragmentation levels. In M. genitalium
he absolute percentage differences for the four tools are PanDelos-frags
6.8%, Roary 94.2%, GenAPI 87.5%, and Panaroo 83.5%. In E. coli the
ercentages for the four tools are PanDelos-frags 12.2%, Roary 98.5%,
enAPI 32.6%, and Panaroo 36.8%. In P. aeruginosa the percentages for

he four tools are PanDelos-frags 6.5%, Roary 96.9%, GenAPI 41.6%,
nd Panaroo 20.8%. In all three cases, PanDelos-frags is the tool that
ost closely resembles the true size of core gene families.

.1.5. Phylogenetic inference
Lastly, we aimed to evaluate the impact of retrieving a set of

ore genes that does not reflect the actual core genes of a species.
heir presence in all genomes under investigation allows us to study
he evolutionary relationship between genomes. In fact, core genes
re often employed to build phylogenetic trees of species [44]. We
ompute the true phylogeny of each of the three synthetic species by
uilding a binary, unrooted tree from the single copy core genes from
he original complete genomes of PANPROVA. Core genes are aligned
sing MAFFT (Multiple Alignment using Fast Fourier Transform) [45]
s multiple sequence aligner and a maximum likelihood tree is built
n the concatenated alignments using FastTree [46] with the popular
ubstitution model for nucleotides GTR+CAT [47]. The same process is
pplied to the core genes reconstructed and detected by the four tools
t the percentages of sequenced sequences of 50%, 80% and 100%. To
valuate the distance between phylogenies retrieved by the tools and
he actual phylogeny we use the normalized Robinson–Foulds (nRF)
istance metric [48] computed using the computational framework of
TE3 toolkit [49]. Formally, given two phylogenetic trees named 𝑇1
nd 𝑇2 the Robinson–Foulds (RF) metric is defined as 𝑑𝑖𝑠𝑡(𝑇1, 𝑇2) = i(𝑇1)
i(𝑇2) −2v(𝑇1, 𝑇2), where i(𝑇1) denotes the number of internal edges,

while v(𝑇1, 𝑇2) indicates the number of internal splits shared by the
two trees. The nRF distance is derived by dividing RF by the maximal

possible distance i(𝑇1) + i(𝑇2). Intuitively, the maximum distance is
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Fig. 3. Diffusivity distributions and F1-scores of the compared tools for the M. genitalium synthetic dataset, by varying the percentage of genomic sequence that is virtually
sequenced.
Fig. 4. Diffusivity distributions and F1-scores of the compared tools for the E. coli synthetic benchmark, by varying the percentage of genomic sequence that is virtually sequenced.
Fig. 5. Diffusivity distributions and F1-scores of the compared tools for the P. aeruginosa synthetic benchmark, by varying the percentage of genomic sequence that is virtually
sequenced.
given by an nRF of 1, when none of the splits corresponds between two
trees, while the minimum value is 0 for topologically identical trees.
Table 5 shows the nRF of the experiments. When the percentage of
the sequenced genome is 100% the tools perform mostly the same but
with the decreasing of the sequenced genome we can appreciate some
differences. As expected, Roary is the tool which most suffers from the
fragmentation of the analyzed genomes, while PanDelos-frags is the tool
which resembles more closely the true phylogeny in almost all cases.

4.2. Metagenome

The characterization of human-associated bacteria is hindered by
the difficulty in isolating and cultivating certain species that are preva-
lent in samples [50]. The advent of metagenome shotgun sequencing
made it possible to perform culture-independent analyses, and recon-
struct nearly complete genomes without the need for reference genomes
that are referred to as metagenomic assembled genomes (MAGs) [51].
MAGs are obtained from metagenome shotgun sequencing by first
collecting a sample of DNA from an environmental source, which can
also be the human body. This DNA is fragmented into smaller pieces
and sequenced using a shotgun sequencing method. The resulting short
reads are then assembled into longer contiguous sequences (contigs)
using specialized assembly software. Contigs are binned into genomic
9

Table 5
Normalized Robinson–Foulds distance between golden-truth phylogenetic trees gener-
ated by PANPROVA and trees reconstructed by means of the gene families recognized
by the computational tools on varying the percentage of sequenced sequence for the
genomes composing the given populations.

Species Type Sequenced percentage PanDelos-frags Roary GenAPI Panaroo

M. gen. leaf 50% 0.43 0.83 0.71 1
M. gen. leaf 80% 0.57 0.71 0.43 0.57
M. gen. leaf 100% 0.57 0.57 0.57 0.57
E. coli leaf 50% 0.71 0.86 0.86 0.86
E. coli leaf 80% 0.43 0.71 0.71 0.57
E. coli leaf 100% 0.57 0.57 0.57 0.57
P. aer. leaf 50% 0.57 0.71 0.57 0.57
P. aer. leaf 80% 0.57 0.57 0.57 0.57
P. aer. leaf 100% 0.57 0.71 0.57 0.57

groups based on their similarities, and annotated with functional infor-
mation, to provide a comprehensive picture of the genomic information
present in the environmental sample.

Metagenomic assembly allows us to reconstruct genomic informa-
tion of microorganisms present in environmental samples, which in
turn led to a great increase in the number of human-associated bacterial
genomes obtained using this technique [19–21]. Although this repre-
sents a great resource for studying the relationship between bacterial
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Table 6
Number of genes and gene families retrieved by the compared tools on the metagenomics benchmark.

Genes Gene families

A. defectiva B. nordii P. aeruginosa A. defectiva B. nordii P. aeruginosa

PanDelos-frags 26,080 120,835 212,287 2963 19,623 11,375
Roary 12,965 40,684 50,363 3078 22,478 13,273
GenAPI 14,633 41,663 54,878 2659 19,777 9,179
Panaroo 12,824 36,320 50,413 2320 8,603 8,496
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species and their gene families’ evolution, recent studies have shown
that even MAGs reflecting the highest quality standards, according
to recent guidelines for MAGs quality (completeness >95%, contam-
ination <5%) [52], are subject to biases when their pangenomes are
investigated using tools for pangenomic analysis that were originally in-
tended for complete genomes [53]. These include loss of core genes and
overestimation of pangenome size [44]. Namely, the study by Pasolli
et al. [15] focuses on a systematic reconstruction of human-associated
bacterial genomes via a single-sample assembly of 9,428 metagenomic
samples, from which 154,723 microbial genomes are reconstructed.
The reconstructed genomes all respect quality control criteria and
exceed the thresholds for medium quality MAGs (completeness >50%,
contamination <5%).

In our study, we consider MAGs from three species belonging to
different phyla that were reconstructed, annotated, and made available
online [15,54]. All the genomes we selected were assigned a taxo-
nomic annotation up to species level, as we require to include in the
analysis one reference genome to be able to compare gene families
in downstream analyses, although the presence of a reference is not
strictly required for running the pangenomic analysis. The datasets of
the metagenomic experiments are composed of 17 Abiotrophia defectiva
MAGs, 29 Bacteroides nordii MAGs, and 39 Pseudomonas aeruginosa

AGs. The aim of this analysis is to compare the pangenomes of
he three species obtained using PanDelos-frags with the pangenomes
roduced by three other tools for pangenomic analysis: Roary, which is
ne of the most popular tools for pangenome analysis (which however
oes not take into account the fragmentation of genes), GenAPI and
anaroo, two more recent tools that can deal with fragmented genomes.
an4Draft has been built to perform pangenomics analysis on draft
enomes as well, by creating an assembly of unmapped reads that are
apped back on the assembled genes. However, since it requires the

ssembled contigs as input, as well as the raw-reads files, we could not
est the tool on MAGs.

Table 6 reports the number of genes and gene families retrieved by
he compared approaches along the metagenomic benchmark. PanDelos-
rags is the tool that retrieves the highest number of genes. The
AGs have completeness >50%, thus the strategy of reconstructing the
issing portions of the genomes gives PanDelos-frags ad advantage in

ecognizing broken genes. The error-correction approach of Panaroo
akes such a tool to be the one with the lowest number of identified

enes and, consequently, gene families. The number of genes found by
anDelos-frags may seem an overestimation of the real amount of genes.
owever, the assembled reference genomes of A defectiva, B. nordii
nd P. aeruginosa reported in NCBI (National Center for Biotechnology
nformation)2 have 1,897, 4,357 and 5,697 genes, respectively, that
ultiplied by the number of MAGs of each species is equal to 32,249,
26,353 and 222,183, respectively. This means that the count of
anDelos-frags is very close to the expected one. Moreover, such a
ount is made by taking into account genes that are totally or partially
ontained in input fragments, making it even more reasonable because
enes in reference-only regions were excluded.

We have defined in Section 2 the concept of diffusivity, as the
cardinality of the) set of genomes to which the genes of a family belong

2 https://www.ncbi.nlm.nih.gov/datasets/taxonomy/46125/, https:
/www.ncbi.nlm.nih.gov/datasets/taxonomy/291645/ and https://www.
cbi.nlm.nih.gov/datasets/taxonomy/287/
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to. We use this notion in Figs. 6a, 7a, and 8a to describe how the
gene families extracted via pangenomic analysis are represented across
multiple genomes, and to visualize the overall pangenome distribution.
In all three species, the tools show a common trend in their distribution.
The highest peaks of the distributions are found on the far-most left
side of the distribution, where singletons are represented, and on
the far-most right side, where core gene families are. Although the
number of singletons is comparable across tools, we see that in all three
experiments PanDelos-frags is able to retrieve a greater number of core
gene families than all the other tools.

For this type of study, we are not aware of the actual diffusivity
distribution for the involved genomes. Thus, we perform a comparison
between the tools by defining a mapping between the gene families
retrieved by one tool with the gene families retrieved by the other tools.
The mapping is performed according to the genes that are present in
the reference genomes which we have included for the analysis. Since
Roary was used in the original study, we perform this comparison be-
tween PanDelos-frags and Roary, in order to show potential differences
in the results of the same study.

For each gene 𝑔𝑟 in the reference genome, we identify with 𝐹𝑅(𝑔𝑟)
the gene family of 𝑔𝑟 according to Roary, and with 𝐹 𝑃 (𝑔𝑟) the gene fam-
ily of 𝑔𝑟 according to PanDelos-frags. Thus, we built a bijective mapping
f the families extracted by a tool to the families extracted by the other
ool. Given that, a tool may assign to the same family two (or more)
ifferent reference genes, we duplicate such families to obtain the bijec-
ion. Let 𝛿 be the diffusivity, which will have different values according
o Roary and according to PanDelos-frags. The goal is to compare
(𝐹𝑅(𝑔𝑟)) and 𝛿(𝐹 𝑃 (𝑔𝑟)) for each reference gene 𝑔𝑟. For the comparison,
e employ a matrix 𝑀 such that, given a set of 𝑚 input genomes

ontaining a reference genome 𝐺𝑟, the matrix has 𝑚 row and 𝑚 columns.
he rows identify the diffusivity assigned by Roary, and the columns

dentify the diffusivity assigned by PanDelos-frags. Thus, 𝑀[𝑖, 𝑗] is given
y |{𝑔𝑟 ∈ 𝐺𝑟 ∶ 𝛿(𝐹 𝑃 (𝑔𝑟)) = 𝑖}

⋃

{𝑔𝑟 ∈ 𝐺𝑟 ∶ 𝛿(𝐹𝑅(𝑔𝑟)) = 𝑗}|.
Namely, 𝑀[𝑖, 𝑗] reports the number of reference genes for which

anDelos-frags has assigned diffusivity 𝑖 to the corresponding family,
nd Roary diffusivity 𝑗. The secondary diagonal of 𝑀 identifies the ref-
rence genes, and thus the families, for which PanDelos-frags and Roary
re in accordance with their diffusivity. Cells above the secondary
iagonal identify families for which Roary was able to retrieve a bigger
with higher diffusivity value) family of PanDelos-frags. While cells
elow the secondary diagonal identify families for which PanDelos-frags
ssigns a bigger diffusivity. In Figs. 6b, 7b, and 8b we plot the matrix
f diffusivity computed on the three metagenomics datasets. To under-
tand how the matrix should be interpreted, we focus for example on
ig. 6b. The number in the upper right corner cell indicates that there
xist 93 core gene families (diffusivity equal to the number of genomes
n the experiment, e.g. 18) identified both by PanDelos-frags and Roary.
owever, PanDelos-frags identifies in total 204 core gene families,
eaning that, apart from the 93 core gene families that correspond in

oth tools, all the other gene families that PanDelos-frags identified as
ore gene families were assigned a lower diffusivity by Roary. More
pecifically, the distribution of their lower diffusivity can be appreci-
ted in all the cells in column 18, distributed over the different rows.

In A. defectiva (Fig. 6b), out of 1,831 gene families, 931 (50.8%)
ave bigger diffusivity in PanDelos-frags, 890 (48.6%) have the same
iffusivity, and 10 (0.5%) have bigger diffusivity in Roary. Respec-
ively, in B. nordii (Fig. 7b), out of 4,335 matching gene families, the

https://www.ncbi.nlm.nih.gov/datasets/taxonomy/46125/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/291645/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/291645/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/287/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/287/
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Fig. 6. Diffusivity in of gene families in A. defectiva metagenomic data. (a) Diffusivity distributions retrieved by the compared tools. (b) Diffusivity concordance between
PanDelos-frags and Roary.
number of gene families in the three categories is 2,439 (56.3%), 1,852
(42.7%), and 44 (1%). In P. aeruginosa (Fig. 8b), out of 5,655 matching
gene families, the numbers are 4,494 (79.5%), 1,110 (19.6%), and
51 (0.9%). In general, we associate a bigger diffusivity with a better
performance of the tool. However, since in a metagenomic setting, we
are not able to know which is the actual family size, we validated
the relevance of the genes included by PanDelos-frags and excluded by
Roary by means of functional annotation. Specifically, we investigated
whether the genes that belonged to a family with a larger diffusivity
in PanDelos-frags than in Roary were functionally coherent with the
rest of the family they had been assigned to. We took all the families
where PanDelos-frags had a greater diffusivity than Roary, which is for
the three species, respectively 931, 2,439, and 4,494 gene families, and
we mapped the genes to the set of annotated coding sequences of the
reference genome of the investigated species. This was achieved using
Diamond [55] with default parameters. We compared the function that
was assigned to the PanDelos-frags specific genes, defined as all the
genes in the family that were assigned to a certain family by PanDelos-
frags and not by Roary, to those of the majority of the remaining genes
11
in the family. We found that respectively in A. defectiva, B. nordii, and
P. aeruginosa the function was coherent in 97%, 90.3%, and 94.5% of
the families. On the opposite, when we look at the functions assigned
to the genes in the families that have greater diffusivity in Roary than
in PanDelos-frags, which are for the three species 10, 44 and 51, we
report that the percentage of families where the genes identified only
by Roary having a coherent function with the rest of the family is 70%,
86.4%, and 84.3%. These experiments suggest that PanDelos-frags is
able to identify a greater number of core gene families, and overall
families which are more diffused across the genomes, thus giving a
complete description of the pangenomes of the analyzed species. By
investigating the function of the genes that are assigned to a family
only by PanDelos-frags we are able to see that in more than 90% of
cases, the genes detected are functionally coherent with the rest of the
family, suggesting that the genes are correctly assigned to the families.

5. Conclusions

Extraction of pangenomic content from metagenome samples is
a key step in the investigation of human microbiome composition.
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Fig. 7. Diffusivity in of gene families in B. nordii metagenomic data. (a) Diffusivity distributions retrieved by the compared tools. (b) Diffusivity concordance between PanDelos-frags

and Roary.
Several tools exist for extracting the pangenomic content of a group
of genomes for which the complete sequence is available. However,
when analyzing data from metagenome experiments, usually it is not
possible to assemble genomes at their complete stage, while fragments
are retrieved. It is then crucial to develop specialized computational
tools that are able to extract pangenomic content from such fragmented
information.

Most of the existing approaches able to deal with fragmented
genomes lack in exploiting previous results obtained for complete
genomes in which alignment-free methodologies have shown the best
performance. In fact, it is shown that approaches combining alignment-
free sequence similarity with artificial intelligence techniques better
12
solve the problem of grouping genes into gene families. Here, we
presented PanDelos-frags, a computational tool that extends a state-of-
the-art algorithm in order to work on fragmented genomes. It includes
a specialized procedure for inferring the missing piece of information
by reconstructing genomic sequences according to a genomic reference
database. This allows the proposed approach to recognize genes that
were partially corrupted by the fragmentation, because of low-coverage
sequencing or arrangement ambiguity due to repeated portions of the
genomes. However, this approach comes with the limitation of assum-
ing that a closely-related completely-assembled reference genome is
available. A suitable sequence similarity measure is also defined, to
tackle the fact that a portion of the genetic sequences is inferred. As
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Fig. 8. Diffusivity in of gene families in P. aeruginosa metagenomic data. (a) Diffusivity distributions retrieved by the compared tools. (b) Diffusivity concordance between
PanDelos-frags and Roary.
a result, PanDelos-frags shows better performance compared to existing
tools in reconstructing gene families, thus the pangenomic content.
Tests on real metagenomic data coming from previous experiments
show that by means of PanDelos-frags: (𝑖) a more complete set of genes
is extracted from fragmented genomes; (𝑖𝑖) the presence of a gene
family spans across a bigger set of input genomes; and (𝑖𝑖𝑖) the resultant
enlarged gene families still show functional coherence. In addition, the
performance of PanDelos-frags was systematically evaluated by means
of synthetic benchmarks. The PANPROVA tool was used to create a
set of synthetic bacterial populations, by simulating evolution with
specific parameters of sequence variation and horizontal gene transfer.
A statistical evaluation shows that PanDelos-frags better captures the
set of homology relationships among genes, when compared to existing
approaches, and enables a better phylogenetic analysis of gene families.
13
These results are shown by varying the percentage of genomic sequence
that has been virtually sequenced.

As a future development, we aim to reduce the limitation due to
the fact that a reference genome similar to the sequenced one must be
available. A possible solution could be the development and training
of modern generative machine-learning models, able to deal with the
risk of producing unrealistic sequences generated as a consensus of
the genomes used to train the model, that in our case will be used
to fill the gap between fragments. Moreover, we plan to introduce
error correction procedures by enabling users to switch them on/off
according to the suspected presence of a specific error type. Lastly, we
plan the development of a user-friendly interface, especially focused on
downstream analyses.
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Appendix. Supplementary figures

See Figs. A.1–A.3.
Fig. A.1. Diffusivity concordance between PanDelos-frags and other tools in M. genitalium synthetic data.
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Fig. A.2. Diffusivity concordance between PanDelos-frags and other tools in E. coli synthetic data.
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Fig. A.3. Diffusivity concordance between PanDelos-frags and other tools in P. aeruginosa synthetic data.
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