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Abstract

Information criteria for model choice are extended to thied@on of outliers
in regression models. For deletion of observations (hamthting) the family of
models is generated by monitoring properties of the fittedl@lsoas the trim-
ming level is varied. For soft trimming (downweighting ofsssvations), some
properties are monitored as the efficiency or breakdowntgithe robust re-
gression is varied. Least Trimmed Squares and the Forwantisare used to
monitor hard trimming, with MM- and S-estimation the metkddr soft trim-
ming. Bayesian Information Criteria (BIC) for both scearare developed and
results about their asymptotic properties provided. Ireagrent with the theory,
simulations and data analyses show good performance fonarge trimming
methods for outlier detection. Importantly, this is acle@wery simply, with-
out the need to specify either significance levels or decisibes for multiple
outliers.
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1. Introduction

We extend information criteria for model choice to the datecof outliers
in regression models. The resulting procedures are coriguddly straightfor-
ward and circumvent the construction of the complicatedsuequired for the
detection of multiple outliers, the properties of which nii@only approximately
known. We develop criteria for adaptive hard trimming instesgquares, together
with related criteria for MM- and S-estimation.

Hard trimming in regression requires specification in adeaof the propor-
tion of observations to be trimmed. Likewise M-estimatiormabust regression
and its extensions, such as S- and MM-estimation, requivarae specifica-
tion of the breakdown point or efficiency desired for therastion procedure.
In Section 2 we describe the idea of monitoring that leadsdata dependent
estimate of the trimming level or breakdown point. As a reseificient esti-
mates of the regression parameters are obtained that depehé actual level
of contamination in the data.

In 883.1 - 3.3 we introduce the three major components of ococquure,
respectively the BIC, customarily used in the choice of niedbe mean shift
outlier model and algebraic details of the forward sear@).(We combine these
components in 83.4, using the mean shift outlier model aedttiering of obser-
vations from the forward search, to extend BIC to the chofcgimming level
for outlier removal in least squares. We prove the conststerf the resulting
outlier detection procedure and, in 83.5, provide a procethr finite samples.

Results in 84.1 use the soft trimming of observations in Maggtion to
apply the mean shift outlier model to the development of anfof BIC indi-
cating the appropriate target asymptotic breakdown pairtffaciency for spe-
cific robust regression analyses. Section 4.2 provides af ofathe difference
between the asymptotic properties of BIC from soft and frandhtrimming.
Section 5 provides numerical procedure for outlier detector both MM- and
S-estimation.

Section 6 uses simulation to explore the relationship betwthe asymp-
totic results of 883 and 4. Hard trimming with the forward rebaprovides the
clearest indication of the number of outliers, especiatiyd larger number of
explanatory variables.
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Section 7 applies these methods to three regression exsingple small and
straightforward, one small but with a high proportion of lars and one with
1,405 observations and several outliers. The soft trimramayses use Tukey’s
biweight p function for both MM- and S-estimation, for which we intrantua
new method of estimation of error variance that is appro@fiar outlier detec-
tion. We arbitrarily classify as outliers those observasiovith a soft trimming
weight below a specified threshold. In the appendix we deweefurther forms
of BIC for soft trimming. Section 8 summarises the compaegtierformance of
these various forms of BIC on the three data examples.

In 89 we mention the potential extension of our work to moadtstion in
the presence of outliers. The role of statistical signifteatesting in outlier de-
tection is touched upon. Our overall conclusion is that noyed hard trimming
methods provide the sharpest removal of outliers and so tst efficient robust
parameter estimates. Of these, the computationally ssh@ehis paper’s ver-
sion of the forward search. This successfully detects ensthvithout requiring
either specification of the expected contamination leveéhendata or arbitrary
significance levels in, perhaps, arbitrary outlier idecdifion rules.

2. Hard and Soft Trimming

2.1. Three Classes of Estimators for Robust Regression

It is helpful to divide methods of robust regression intethclasses (Hampel
et al., 1986; Atkinson et al., 2004; Farcomeni and Greco5201

1. Hard{0,1} Trimming. In Least Trimmed Squares (LTS: Hampel, 1975;
Rousseeuw, 1984) the amount of trimmingrobbservations when the
linear model hag parameters is determined by the choice of the trimming
parameteh, [n/2] + [(p + 1)/2] < h < n, which is specified in advance.
The LTS estimate is intended to minimize the sum of squaréseofesid-
uals ofh observations. For least squargss n.

2. Adaptive Hard Trimming. In the Forward Search , the obsgons are
again hard trimmed, but the value bfis determined by the data, being
found adaptively by the search (Riani et al., 2014a). Alg&bdetails are
in 83.3.

3. Soft trimming (downweighting). M-estimation and dedvaethods, de-
pending upon the way in which the residual varianéés estimated. The
intention is that observations near the regression plamaénréheir value,
but the p function (84.1) ensures that increasingly remote obskenvat

have a weight that decreases with distance from the plane. d€kired
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value of either the asymptotic breakdown point (bdp) or ef ¢fficiency
has to be specified. This efficiency is that of estimation wihermethod
is applied to a sample from the normal distribution.

The FS starts from a small subset /of robustly chosen observations, by
default found using least median of squares (Rousseeuwl,) 198e purpose is
ensure thah, is outlier free. The search then moves forward incremerttieg
subset size by one until the final least squares fit is reackleen”, = n. In
this way parameter estimates are obtained for a range oévalih - typically
interestisini/2 < h < n. We avoid having to prespecify the valuefofor LTS
by monitoring the fit over a similar range of values.

We consider two derivatives of M-estimation. In S-estirat{Rousseeuw
and Yohai, 1984) the estimate of is found from a robust estimating equation
with specified bdp. The associated estimate of the vectoegression coeffi-
cients is called an S-estimator because it is derived frocale statistic, although
in an implicit way.

The asymptotic relationship between the breakdown poidtedficiency of
S-estimators is that as one increases, the other decréasasattempt to break
out of this relationship, Yohai (1987) introduced MM-esdition, which extends
S-estimation. In the first stage the breakdown point of tladesestimate is set at
0.5, thus providing a high breakdown point. This fixed estewd residual scale
is then used in the estimation Gfwith a specified high theoretical efficiency.

For both MM- and S-estimation, we again monitor the perforogaof our
outlier detection procedure over a range of values of thiingstof the robust
method. For S-estimation we monitor values of bdp from (hgé {talue giving
highest trimming) to a value of 0.01, whereas for MM-estimatve monitor
over values of the nominal efficiency of estimation&ffor which Maronna
et al. (2006, p. 126) recommend a value of 0.85, from 0.5 t8.0We observe
in some data analyses in 87, as did Riani et al. (2014a), peaifecation of too
high a value for this efficiency can lead to a failure of robess and to a least
squares fit. For all four methods of robust regression we tapthe values of
information criteria and the values of residuals or the Wisgf observations as
we move from very robust regression to least squares.

3. Information Criteria

3.1. BIC
There is a large literature on the use of a variety of inforamatriteria in
choosing the best model for a set of data. Claeskens and (2fa0d8) provide a

treatment with a nice combination of mathematics and dadéysis.
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Let L(0) be the loglikelihood of the: observations);, with the parameter
vectord of lengthp. With # the maximum likelihood estimate ¢f a general
form of information criterion iSC' = 2L(0) — k(p, n), wherek(p, n) is a func-
tion that penalizes more complicated models. For the Bapdsiformation Cri-
terion (BIC) introduced by Schwarz (1978)p, n) = plogn so that the penalty
increases with sample size. That model is selected for wBiiChs largest.

For the linear regression model with univariate responskiadependent
normal errors of constant varianeg, where@ is the least squares estimate of

the p parameterg of the linear model and () is the residual sum of squares
of they;,

BIC = —nlog{R(B)/n} — plogn, Q)
after constants irrelevant to the comparison of modelsgarered.

We recall that use of BIC provides consistent selection eftthe model, if
that is included in the set of models under consideratiorstiflzations of the
word ‘Bayesian’ in the name BIC are given, amongst others lag€kens and
Hjort (2008, p.78) and Bhat and Kumar (2010), expanding tigral presenta-
tion of Schwarz (1978).

In the use of BIC in the choice of a regression model, the coispa is
between models with different terms included or removeda/seliminary to
the results of 83.4 we consider BIC for nested regressionetsod_et the true
model be the linear model withx 1 parametep, andn x p matrix of explanatory
variablesX,. A model withg x 1 parameter,, ¢ < p will be calledfalseand
a model withr parametersy > p is calledcorrect but is not minimal. For
asymptotic results we require

Condition 1. XX, /n = My with det(Mx) # 0.

We first test a false model. The likelihood ratio test fpragainsts, has an
asymptotic non-centradf,,q distribution with non-centrality parametgr which
from Condition 1, increases as The BIC penalty for the comparison of these
two models igp—q) log n, increasing more slowly with, so that the true model
will be chosen as increases.

For a correct model the likelihood ratio test foy againsts, has asymptot-
ically a centralxz,p distribution and the BIC penalty i3 — p) logn. Thus, for
largen the true model will be preferred. Putting these two togetleenonstrates
the consistency of the BIC.

3.2. Mean Shift Outlier Model
Use of the forward search or least trimmed squares to prawdestness

against outliers leads to the comparison of fitted models differing numbers
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of observations. We render outlier detection and deletanpatible with BIC
through use of the mean shift outlier model in which deletbdeovations are
each fitted with an individual parameter, so having a zernolves.

Let there be) observations remaining in the fitted model. Then h obser-
vations will have been deleted. This can be expressed bingitite regression
model as

y=XB+ D¢ +e, (2)
where the errors have constant varianeg. HereD is ann x (n — h) matrix
with a single one in each of its columns andrin- h rows, all other entries
being zero. These entries specify the observations thatioanave individual
parameters or, equivalently, are to be deleted (Cook angb#f, 1982, p.20;
Insolia et al., 2020).

For deletion of the single observationD becomes a vector. The likelihood
ratio test forg, = 0 is the deletion residual’ which compares the observed
value ofy; with the predictionji, = =7 3,), wheref, is the least squares esti-
mate of 3 when observation is deleted. Results from the theory of regression
diagnostics (Cook and Weisberg, 1982, p.21; Atkinson, 198%3) show that
the null distribution ofr} is Student's onn — p — 1 degrees of freedom. This
statistic can then be used to tesyiiffor a specified € {1,...,n}, is an outlier.
Sometimes interest is in whether there is an outlier in tha.dgince the deletion
residuals are correlated, the distribution of the maximisoéute order statistic
for a sample of size from thet,_,_; distribution does not give the distribution
of the maximunv} for a sample. That can be approximated by use of the Bon-
ferroni inequality when max;| is tested usingd, , ,—,—1, although the power
of such a test may be poor. Usually interest is in the more rg¢g@estion as
to whether there are some outliers in the data, the numbagheispecified.
Buja and Rolke (2003) illustrate the large effect on test sidsing from such
simultaneous tests.

3.3. The Forward Search

The FS fits subsets of observations of sizéo the data, withhy < h <
n. Let S*(h) be the subset of size found by the FS, for which the matrix of
regressors iX (h). Least squares on this subset of observations yields pggame
estimates’(h). Residuals can be calculated for all observations inctuttinse
not in S*(h). The search moves forward with the augmented sufisgt + 1)
consisting of the observations with tlke+ 1 smallest absolute values of the
residuals. The outliers, if any, entét(h) towards the end of the search.

Above a threshold value dn often0.6n, a test is performed for the presence
of outliers before each incrementati%nﬁj’f(h). Because of the multiple testing



involved, Riani et al. (2009) propose a complicated ruleedasn quantiles of
order statistics which is intended to have a simultaneazes sf 1% for sam-
ples withn up to around 1,000. Examples of the use of this rule in moinigor
regression are in Riani et al. (2014a).

The consistency of the FS estimator when the data containuti®rs is
proved by Cerioli et al. (2014) for multivariate data and bizdnsen and Nielsen
(2016) for univariate regression. We now allow outliershe tlata generating
distribution.

Let the uncontaminated observations belong to thé-setf cardinality h*
and let the outliers belong #°, with H U H° containing all observations. The
number of outliers is then — h*, neither this number, nor their identity being
known. Asymptotically, we consider a fraction of contamethobservations
v=1-=h*/n, 0 < v < 0.5. The FS progresses by ordering the squared
residuals?(h);i € {1,...,n}.

Asymptotic distribution of squared residuals. The small-sample distribu-
tion of the residuals?() depends on the leverage= 7 { X (h)T X (h)}'x;.
From Condition 1/;-%0. Then, in the absence of outliers #f(h), e?(h) =3
o?x3. The individual outliers have asymptotically the noncehthi-squared
distributiono?y%(\s;). For asymptotic results about robustness we assume

Condition 2. For alli € H°, Ap; = o(n).

Condition 2 is a rather strong, although standard, separatndition which re-
quires outliers to be increasingly far from the clean obsgons as: grows, in
such a way that the non-centrality parameter of the reguttin-squared distri-
bution grows faster than. This condition is nevertheless slightly less stringent
than some similar ones already considered in the literatuge, the separation
condition in Cerioli et al. (2014) where it is required thaetprobability mass
for outliers is asymptotically concentrated exponentifdist in the tails of the
distribution of the clean observations. Here we simply assthat the the non-
centrality parametek,; grows as the square of the distance between the clean
data centroid and the centroid of the outlier generatintyidigion.

We call acorrectordering of the observations one in whi€h(h*) = H; that
is that at ste* there are no outlying observationssri(h*).

3.4. Extended BIC for Outlier detection

To incorporate deletion of observations in BIC (1), let tesidual sum of
squares for a parameter estimatehenn — h observations are deleted Bg(b),

7



To allow for the additional parameters in (2), BIC (1) is actingly replaced by
BICH = —nlog{Ry(fn)/h} — (p+n — h)logn. (3)

The rationale in (3) is that under the model all observataresstill included
in the estimation set (hence the usexpfbut onlyh are used for computation of
the residual sum of squares. Finally,+ n — h) is the number of parameters.

Theorem 1. Assume Conditions 1 and 2. Ligtdenote the cardinality of uncon-
taminated observations for a sample of sizeand assumém,, 7} /n = 1 — v
for somey < 0.5. The initial estimation set, of cardinality,,, is outlier free;
we assumém,, hg,/n > 0 andhy,/h’ < 1 for all n. Then, for hard trimming,
iy 28 max;,{—nlog(Ry(3,)/h) — (p+n — h)logn}

n n

that is, asn grows BICH is a maximum at an estimation set which does not
include outliers.

Proof of Theorem 1 Since the initjal set of,y, observations is outlier free by
assumption, antim,, ho,/n > 0, Bro, IS @ strongly consistent estimate 6f
Then,

lim 10g{ R, (B, )/ on} = 108 (on) %), @

whereo?(h) is a correction factor discussed in equation (6) of Sectién Bet
arg max,{—nlog(Rn(Bn)/h) — (p+n — h)logn} = hy.

We proceed by contradiction. Suppose that there is at lggsbatlier in
the estimation set based @ observations. By assumption, this implies that
h,, > hon, Since the initial set is outlier free. Due to Condition 2,

limlog{R;, (5;,)/(hn)} = ologn). (5)

Now compare the initial estimation set with the optimal setarms of BICH
difference, divided by:. Let

K = —log <w> —n"Yp+n— hy,)logn + log <M>

n hOn

+n Y p+n — hon) logn.



Simplifying and collecting terms we obtain

R;: (B )Yhon §
K = —log <M> +n"Y(hy, — hon) logn
Rh()n (ﬁhOn ) hn
R;: (B )Yhon
NN
RhOn (/BhOn ) hn

Combining (4) and (5) the first summand is seen to divergedinegly) at a
faster rate than the second one, which, since by assuniptiohm,, A, /n < 1,
diverges (positively) at the rat@(logn). There will then exist such that, for
n > n, BICH associated with the initial set will be larger than Bi@ssociated
with £,,. This contradicts the definition @f, as the maximum of BICH. Asymp-
totically, the optimal estimation set in terms of BICH musén be outlier free.
Since there are at mok}, uncontaminated observations,

) +n"Y(n — hon) logn.

i 218 max;,{—nlog(Ry(3,)/h) — (p+n — h)logn}

n n

which completes the proof. O

Let h' be the size of the subset for which the rescaled value of B)Gs(7
maximized. The theorem proves that asymptotic&ligh') will not include any
outliers. However, the asymptotic conditions may not besBatl for finite sam-
ple sizes and small separation of the outliers, as in thelations of Figures 3
and 4. ThenS*(h) may contain some outliers and miss some non-outlying ob-
servations.

Least Trimmed SquaregVe note that the theorem also applies to monitored
LTS, in which the best subsét (k) is found for a range of values @&f, rather
than for a single specified trimming value as in the origimajgpsal (Rousseeuw,
1984). The difference is then in the algorithms used forudating S*(h), h; <
h < n, whereh; is the lower limit of subset size that is of interest. If both
algorithms result in the same value 8f(h) over the range of., the residual
sums of squares will be identical as will be the values of BITbBl the best of
our knowledge formal conditions under which the two aldons give the same
S*(h) have not yet been studied.

3.5. Finite Sample Extended BIC for Outlier Detection

We now consider two further points arising from the applmabf BICH to

finite samples.
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3.5.1. Estimation of?

In (3) o2 is estimated by R,,((3,)/h}. To find then—h outlying observations,
the FS or LTS deletes the observations most remote from tied fihodel. If
there are no outliers the value m(ﬁn) leads to an asymptotically unbiased
estimate ofr2. Then the deletion of the— most remote observations yields the
parameter estimaté, and the residual sum of squarEg(Bh), which provides
a too small estimate ef? since it is calculated from the centraresiduals. The
variance of the truncated normal distribution containimg ¢tentral/n portion
of the full distribution is.

o () () e

whereg(.) and®(.) are respectively the standard normal density and c.d.f, See
for example, Johnson et al. (1994, pp. 156-162). We scaleaipaiue ofR,(5;,)
to obtain the corrected BIC

—nlog[Ru(By)/{ho*(h)}] = (p + n — h)logn. 7

This consistency correction is standard in robust regpegftousseeuw and
Leroy, 1987, p.130). The correctiar?(h) in (6) is the one-dimensional case
of the general result in Tallis (1963) on elliptical truncatin the multivariate
normal distribution.

For hard trimming (7) can be rewritten with weights = 0,7 € n — h and
one otherwise as

BICW = —nlog | Ry( ﬁh /{o*(h Zwl ] — {p%—i(l—wﬁ}logn, (8)

where) " w; = h.
In 84.1 we rewrite BICH (3) in a weighted form for soft trimngin

3.5.2. Masking

The proof of Theorem 1 relies on Condition 2 for gl € H°, particularly
through the distribution of the residuals. In the analy$idaia the outliers may
not be very large and outlying observations will appear &sss the FS pro-
gresses and the parameter estimates are corrupted oniegsoaite included in
S*(h). Although the value of?,,(3,) will continue to increase with it may not
do so sufficiently fast to outweigh the decrease in the pgrdlt-hlogn. As
a consequence, the value of BICW may increaseifor hf + 1. We see an

example in 8§7.2.
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4, Soft Trimming

4.1. BIC for Soft Trimming
We now extend the idea of downweighting in BICW (8) to inclwddt trim-
ming such as S- and MM-estimation. The S-estimator of theessgon parame-

ters is defined as .
fo=min-p (1)), ©
=1

wheree; = y;, — BTxi is thei-th unscaled residual ardd; is the robust estimate of
o found by minimizing the dispersion of the residuals as defing Rousseeuw
and Yohai (1984). A consistency factor is appliedto S- and MM-estimation
differ in the choice of.

Let ) (u) = dp(u)/du. Then, in the iterative least squares algorithm for M-
estimation, the weights are taken @su) = ¥ (u)/u, that isw; = w(u;) =
w(e;/d). Itis required thaty; = 1 for observations that are not to be down-
weighted. Since for least squares the bdp is zero, no olismrgaare down-
weighted and all have the same weight)). We can then simply rescale and
set

€;
Os

w; = w; /w(0). (10)

We can now adapt the BICH (3) for hard trimming to soft trimgirEach ob-
servation will have a weight); € [0, 1], smoothly varying from 1 to O as the
observation becomes more outlying. We obtain

BICW, = —nlog {R(Bp)/zwi} - {p+ Z(l — wi)} logn,  (11)

WhereR(Bp) is the weighted sum of squared residugls The expression for
BICW (8) specifically shows the consistency correctdih), whereas, in (11),
R(B,) has already been corrected to provide a consistent estimate

4.2. BIC for Soft Trimming versus Hard Trimming

For hard trimming the bdg = 1 — h/n. Theorem 1 shows that, eventually,
use of BIC for the FS produced a valuedjf- > 1— h*/n. This section provides
a proof that the bdp from use of the functipfu) (9) to remove outliers leads to
the same result under the separation condition. We als@ avhy we expect in
general downweighting to lead to a value of bdp greater tham.*/n, and so
to parameter estimates of reduced efficiency.

Condition 3. Let w(u) be such that
11



1. Foranylu| > 0, w(u) < w(0);
2. For|u| > ¢,w(u) = 0.

Tukey’s biweight (Beaton and Tukey, 1974), which we use inrmumerical
examples, satisfies these conditions.

Theorem 2. Let the estimate af maximizing BICVyfor soft downweighting be
d’s. Then, under Conditions 1 - Bm,, d)s = lim,, d} ;.

Proof of Theorem 2 For least square$ = 0 and, in Condition 3¢ = co. As

d is increasedg¢ decreases. Combining Condition 2 with Condition 3 it can be
seen that there exists such that fom > n* w; = 0 for i € H°. Hence, for

n > n*, FS and downweighting are equivalent. The proof is thenvedgmt to
that of Theorem 1. O

When we relax Condition 2 we often can expéet, d’s > ~. Indeed,
when the outliers are less extreme, the weights (10) of theecaimay not all be
zero, even though they may be the most appreciably downwezlgibservations.
The monitoring plots of weights in 87 illustrate this poir8election of an M-
estimator with unnecessarily high bdp, leads to a loss dieffcy in estimation.
Figure 5 and 6 of Riani et al. (2020) plot the relationshipasstn breakdown
point and efficiency for several well-known forms falru).

5. Implementation of MM - and S-estimation

In our numerical examples we use Tukey’'s biweight (Beatod &nkey,
1974) in which the boundary of the central region of gh&unction is defined
by the parametet. Asc — oo, p(.) approaches a quadratic and the fitted model
becomes that from least squares: the Bdp 0 and the efficienceff — 1. We
monitor the behaviour of BICWas the values of these parameters change. Riani
et al. (2014b) give computationally fast procedures foedatning the value of
c for Tukey’s biweight which yields specified values®br of eff. Use of MM-
estimation provides estimates@for a fixed, although data dependent, value of
o aseffvaries. On the other hand, S-estimation (Rousseeuw and,Yb24)
provides simultaneous robust estimateg @ndo? asd varies.

In our robust calculations for MM we typically take 50 valuefseff over
the range 0.5 to 0.99. The value maximizing BICW denotedeff'. For S-
estimation we varyl over a setD such that bdp varies from 0.5 to 0.01, giving

the maximizing valuel'. In both cases we also include L&+ 0 oreff=1.) to
12



cover the absence of any outliers. The procedure for MMyegton is straight-
forward because, throughout we use a very robust estimat& d¢dowever, for
S-estimation, eacti € D yields parameter estimatgs ands?, leading to raw
residualsey; = vy; — xfﬁd But, if d is too small, the estimate ef’ may be
inflated due to contamination by outliers, evewjf< 1 for i € H°. To obtain a
consistent estimate of in the presence of contamination we use the very robust
estimates? , which is the value 062 for d = 0.5. We then rescale the residuals
used in calculating BICWto obtainry, = eq;/d9, SO avoiding the effect of too
large an estimate aof on the scaled residuals. Monitoring the value of BIC over
D leads to the maximizing valué’. However, because of the use &, this
procedure does not completely reflect the downweightingudfers.

We follow the reasoning of Rousseeuw and Yohai (1984) irr tthedivation
of S-estimation, but allow the data to determine the estroét>. At the value
d' let the residuals scaled by, be rgi. To model the effect of downweighting
outliers we find the residualg; from S-estimation, that is using; as an es-
timate of - and calculate their distance fron),. The minimum value of this
distance oveD gives us a new estimated maximizing bdp depending on the
S-estimates off ando calculated with the same value @f We found a useful
measure of distance to be the weighted sum of squares

SSD(d) =Y " wh(Fa — 18)°, (12)
=1

where thewgl. are the weights; (10) associated with the residuagg. Then

d* = arg max SSD(d). (13)

6. Simulations

We now use numerical simulation to illustrate some of theprtes of our
procedure for small samples. We are interested in beha@asw@fficiency in-
creases. For the FS we monitor performance as the valherafreases, one
observation at a time. The other three methods were orlgidafined either by
specifying efficiency or bdp, and we monitor them for 50 valatthese. Table 1
presents expressions for the two weighted forms of the Bé@ely BICW and
BICW, that are important in our simulations.

We begin in Figure 1 with the distribution of trajectoriesloé values of BIC
for four forms of outlier detection. The simulations are o 200, with four
explanatory variableg(= 5) simulated from standard normal distributions (the



Table 1: Two different forms of BIC

Criterion Equation Estimation Formula
BICW (8) LS —nllog Rp(By)/{o?(h) Y71, wi}]
—{p+2L.(1 —wi)}logn

~

BICW,  (11) MM&S —nlog { R(3,)/ S wi}
—{p+>,(1—wy)}logn

procedures are invariant to the values of the regressianpeters, so these are
set to zero). The observational errors are independendatdmormal with a
shift of 9 = 5 added to 20 observations, so that there is 10% contaminalian
is~y = 0.1. There are 200 simulations; we plot the 1, 50 and 99% quardfles
the estimated values of BICW. The top row of the figure showsttajectories
of BICW for the two hard trimming methods, monitored LTS ahd &S, with
BICW,, for the two soft trimming procedures, S and MM, in the lowerrdll
curves have a similar shape, at first increasing almostriynéa a maximum
before decreasing more or less sharply.

Since we monitor from/2 to n, whenn > 100 we evaluate at fewer values
of h for LTS than we do for the FS. We also start LTS estimation afmw
eachh. We could modify monitored LTS by evaluating at each valué of
n/2 and using the parameter estimates fréfih) to provide starting values
for estimation forS*(h + 1). These modifications would reduce some of the
differences our simulations show between LTS and the FS. Mdese not to
do this, as we are not intending to develop new hybrid algord, but rather to
compare those already in the literature.

The curves for hard trimming have a wider range of trajeci@yes than
those for soft trimming, but the feature of main interesthis position of the
maximum of the curves and so the indicated degree of trimmittg the hard
trimming methods the maxima are close to 0.1, correctlycatiing 10% con-
tamination. For S-estimation the maximum is near a bdp of @l&reas for
MM-estimation the maximum is close to a high efficiency of3.9n all cases
the presence of some outliers is indicated. In results notvshhere we ran
simulations for a smaller proportion of outliers and whearéhwere none. In
this latter case the trajectories for all four proceduresaase linearly with the
maximum at non-robust least squares estimation.

Figure 2 shows boxplots of the position of the maxima for tagettories of

the four versions of BIC plotted in Figure 1. We see that thephats for the
14
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Figure 1: Distribution of trajectories of BIC for outlier teetion wherp = 5; 10% contamina-
tion. Upper row, BICW for hard trimming; lower row BICYor soft trimming. 200 simulations,
n = 200, 1, 50 and 99% points of the distribution

two hard trimming methods in the upper row are both centeredral detecting
10% of outliers, but that the variability for LTS is greatban that for the FS.
The scatter for both soft trimming methods is greater than tbr the FS. As
noted by a referee, the S-estimator is always computed witlpagreater than
the actual contamination level, which makes it more restdtacontamination.
For the remainder of this simulation section we focus on h@amming methods.
The outlier detection properties of the two hard trimmingtmoels depend
on the numerical details of the algorithms we have used. &dn simulated set
of 200 observations when using LTS we calculated BICW for &lues ofh
from 0.5: to 0.9%. The calculations for the different values lofare indepen-
dent, using 1,000 elemental subsets with concentratigs gfRousseeuw and
Van Driessen, 1999) to find the estimates of the regressitanpaers for each
15
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Figure 2: Boxplots of position of maxima of BIC outlier detien trajectories plotted in Figure 1;
p = 5, 10% contamination. Upper row, BICW for hard trimming; lawew BICW, for soft
trimming. 200 simulations; = 200
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value ofh. Whenn = 200 the number of observations inchanges in steps of
two, so that the proportion of outliers found can only chamgsteps of 0.01.
For the FS we take 1,000 elemental subsets of abservations, calculate the
value of the LTS criterion with bdp 50% for each subset ane @k the initial
subset for the FS that yielding the minimum of the LTS crderi Use of LTS,
rather than the default LMS, at this point has no effect omilnaerical results.
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Figure 3: Boxplots of the proportion of observations demthas outliers as the outlier shift
increasesp = 5, 10% contamination. Left-hand panel: LTS, right-hand p&$en = 200

We now look at the proportion of observations declared aleositas the
shift y in the twenty outliers increases. Boxplots for these resark in Figure 3.
The median number of outliers for each shift is shown, in thine version,
as a red horizontal line. This shows that wher= 4.5, the median number
of outliers declared by LTS is around 0.01, whereas it istielless than 0.1
for the FS. In general, agincreases from 4.5 to 8.0, the proportion of outliers
detected for both LTS and the FS is around 0.1. The figuretidtess in three
ways the improvementin using the FS compared to monitor&l tffe detection
of outliers occurs for a lower value of the mean results are more stable for
largeré as indicated by the width of the boxplots and there are fewaulations
leading to false declarations of extra outliers. The pldsé® a&how the effect
for LTS of increments in the proportion of outliers detectedteps of 0.01, as
opposed to 0.005 for the FS.

We now finally, for these simulations with = 200, look at the number of
good observations declared as outliers and the number lérsutorrectly de-
tected, again as the shift in the outliers increases. Theageaesults over 200
simulations for bothh = 200 and 500 are in Table 2. As the outlier shift

increases from 4.5 to 8.0 both LTS and the FS detect all ositligith the FS
17



detecting more for lower values, especially 4.5 and 5 whea 500. As ¢ in-
creases, the number of false declarations also increalsesyugh the average
number is smaller for the FS. When= 500 the value ofh for LTS is incre-
mented by 5 observations. It is interesting that whea 8 the average number
of false declarations for the FS is 0.9, whereas it is 3.4 =HB® for LTS, 5/2
being half of the increment size for the valuesah this simulation.

Table 2: Average number of correct and incorrect declamataf outliers for LTS and the FS as
a function of outlier shifty and sample sizej = 5, 10% contamination
n = 200 n = 500
) LTS FS LTS FS
Outliers Good Outliers Good Outliers Good Outliers Good

45 8.84 0.58 1331 042 3.10 0.10 13.60 0.14

5 16.38 125 1850 0.63 32.6 1.3 4550 0.73
55 1942 150 1984 063 4757 280 4940 0.85
6 1985 163 1996 0.62 4954 316 49.84 0.89
6.5 1994 166 1999 146 4981 324 4996 0.90
7 19.99 1.95 20 066 4994 334 50.00 0.90
7.5 20 1.99 20 0.72 4998 3.32 50 0.90
8 20 1.84 20 0.72 50 3.4 50 0.90

Figure 3 and the related Table 2 provide a nice illustratibthe result of
Theorem 1. As botlk andn increase all the outliers are identified, both by LTS
and the FS. However, there is always a small number of gooeredtsons that
are mistakenly declared to be outliers. The results so fashaov that the FS
performs better on all measures than LTS, although therdiifee is not large
providedé > 5. We also considered the performance of the two methods when
the number of explanatory variables increases, both fer200 and 500, withp
increased to 15. In summary, for this increased number daaegpory variables,
LTS detected a maximum of four outliers urdti= 7.5. Ford = 8 too many were
detected. The unsatisfactory behaviour of LTS when 15 was unexpected. We
accordingly repeated the simulation with initial LTS suissef 10,000, rather
than 1,000, observations. There was little improvement.

In all these simulations the outlying responses have beénnithe range
of the explanatory variables. As a final extension of our stigation, we con-
sider outliers at leverage points. The 14 explanatory éegawere simulated
independently but were generated to have an average valié ef 0.8 before
contamination. We kept at 500, including 50 outliers so thatremained at 0.1.

18
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Figure 4: The effect of outliers at leverage points, comtiwéh a larger number of explanatory
variables. Boxplots of the proportion of observations desdl as outliers as the outlier shift and
explanatory variable remotenessncreases when = 500 andp = 15; 10% contamination.
Left-hand panel: LTS, initial subsets of 1,000 observatjoight-hand panel FS

For each value of not only was this value added to the 50 outlying responses
but also to all explanatory variables. We thus generatelicosiait extreme lever-
age points. Boxplots for the results are in Figure 4. TheHeaftd panel of the
figure shows that LTS completely fails to detect the manyiexsj the medians
of the boxplots are all at zero, as shown in the online versidhe plot by the
red lines at this value. On the other hand, the FS revealbalbttliers, with a
few extra, for all values of. This figure leads to the same conclusions as those
for the two simulations witlp = 15 mentioned above, in which the outliers were
not at leverage points and the initial subsets for LTS wersz# either 1,000 or
10,000.

We have no explanation for the surprisingly poor behavidlif& whenp =
15. As Olive (2020) stresses, a complex estimator, such as wiatmpse used
in robustness, depends not only on the mathematical fotranland theoretical
properties of the estimator, but also on the details of therghm used to provide
numerical values of estimators. The good performance oF$h&henp = 15
suggests one approach to an improved LTS algorithm.

7. Examples

We now illustrate the finite-sample properties of the pracedhrough the
analysis of three distinct examples. We compare LTS and $hwith MM- and
S-estimation. Since the purpose of our paper is to providethod of outlier
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Figure 5: Mental illness data. Monitoring plots of BICW. t-&fand panel, Least trimmed squares
(LTS); right-hand panel, Forward Search (FS). The stepfangTS arise from a search over 50
values ofh

detection we need to define an outlier in soft trimming, wvigharbitrarily take
as an observation for which; < 0.01.We then count the number of outliers at
the BIC maximizing valuea', ¢ff', d" andd*. In our examples we use monitor-
ing plots of residuals and weights to illuminate the proced&ut, for automatic
outlier detection, we are not initially interested in manihg over a series of
grids, but in selecting a single value for further invediiga

In the first example there are data on 53 patients, the respafnhree of
which are contaminated. The remaining data follow a nornsfidution. In the
second example, the ‘Stars’ data, there are only 47 obsengabut the structure
of outliers is more complicated; monitoring plots of resithshow a clear switch
from a robust to a non-robust fit when the target bdp is too Tdve third data set
has 1,405 observations. The responses in two of these egamggjuire trans-
formation; in all cases we work with a suitable responsesfiammation found
outside this paper. The two forms of BIC are listed in Tablavith a summary
of the outliers detected for the three examples in Table 3.

7.1. Example 1: Mental lliness Data

Kleinbaum and Kupper (1978, p.148) describe observatidata on the as-
sessment of mental illness of 53 patients. The data come drpsychiatrist’'s
assessment of mental retardation and degree of distrusictdrd in newly hos-
pitalized patients. After six months of treatment, a valsiessigned for the
degree of illness of each patient. Atkinson et al. (2021 &tbthat when degree
of illness is regressed on the two initial assessments ikestrong evidence for
transformation of the response. The Box-Cox transformaitidicates the log
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transformation. After transformation the data are welldwd. We study the ef-
fect of outliers by modifying three of the smallest obseiosd (17, 30 and 53),
setting them equal to one. This contamination causes the#dogformation to
be rejected.

We start with least squares analysis of the logged contdedndata. The
left-hand panel of Figure 5 shows the plot of BICW for LTS ewsition and
the right-hand panel that for FS. Both show the almost lineerease as more
observations are included in the fit, as indicated by Thedreumtil a peak for:
nearn, after which there is a sharp decline. For the FS the peakiis-at0. For
LTS the bdp at the maximum is 0.07, which corresponds te 50. Here both
LTS and the FS have correctly identified the 3 outliers withibe need for a
complicated outlier detection rule such as that of Riani.g809) and without
the need of specifying subjective confidence bands. Theistgpf LTS arises
because, for breakdown poidth is found asin(1 — d)].

SSD(d)

1 1 1 1 1

0.45 0.4 0.35 0.3 0.25 0.2 0.15

Figure 6: Logged mental illness data. Upper panel: Moniwplot of BIC, for S-estimation
usingéo; df = 0.14; lower panel: weighted sum of squares $8Pof the differences of the
residuals’y; andrgg;; d* = 0.23.

The monitoring plots of BIC from MM- and S-estimation are ganin shape
to that for the FS in Figure 5. The maximum for MM édf = 0.96. For S-
21
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Figure 7: Logged mental illness data. Monitoring plot of glgs«w;. Left-hand panel MM-
estimationeff = 0.96. Right-hand panel S-estimation with scale estingatel* = 0.23, d" =
0.14

estimation the maximizing value whenis estimated by, is d' = 0.14. The
trajectory for BIG, using this estimate is plotted in the upper panel of Figure 6.
The lower panel of the figure shows the trajectory of the wigidlsum of squared
residuals SSDJ) (12), the minimum of which gives the estimated optimum bdp
d* = 0.23, greater than the value @f. For LTS and the FS the efficiency when
the three outliers are deleted is 0.943, so that the bdp &70.0hese results
for S-estimation are in line with the comment following Them 2 that often
d' > v = 0.057. For small outlier displacementsand small sample sizes,
some soft trimming methods may, as in the other examples$éttion, fail to
detect all the outliers. Then the inequality may not holdnig&ir remarks, with
sign reversed, hold for comparisons of the valuesfpf

To determine the outliers from soft trimming and to intetghe results we
look at monitoring plots of the weights; over the range of values efff or d.
The left-hand panel of Figure 7, for MM-estimation showsghwll weights for
the three outliers. Forff = 0.95, three outliers are detected butegt' (= 0.96)
only two are found. The right-hand panel of the figure shoveswvileights for
S-estimation. The weights of the three outliers are smtikm 0.01 by a bdp of
0.14, which is the valué'. The three outliers, only, are also detected*at

7.2. Example 2: Stars Data

We continue with a small example with a more complicatedcstme than
that of 87.1. The data are taken from Rousseeuw and Leroy/(3287) and
have been much used to illustrate the properties of variousd of robust re-
gression. They form part of a Hertzsprung-Russell diagrestems. This log-log

plot has the effective surface temperature of the star asxpkanatory variable
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and (logged) light intensity as the response. A typical plas around 30,000
stars which fall into groups including “the main sequen¢ehite dwarves” and

“giants” of several kinds. However, in our example, there @nly 47 observa-
tions.
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Figure 8: Monitoring plots of BICW using the FS. Left-hande§ stars data; right-hand panel,
transformed balance sheet data
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Figure 9: Stars data. Left-hand panel; least squares grefines: dashed line, all observa-
tions; continuous line, four extreme outliers deleted;-filashed line, six observations deleted.
Right-hand panel, monitoring plot of scaled FS residuals: 41

The left-hand panel of Figure 8 shows that the monitoring pt&ICW for
the FS again increases almost linearly witlwith a peak at, = 41. When LTS
is monitored in steps di corresponding to the addition of a single observation,
the peak is at a bdp of 0.14, when the same six observationdedeted. In

both plots the peak is well defined but is followed, as bdp e&ses, by a small
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decline and then an increase, a more complicated shape &haave seen before,
which is caused by masking. The structure of the data and dh@exof the
outliers is clarified by the FS analysis. The left-hand padtigure 9 shows
a scatterplot of the data and three different least squaggession line. There
are four obvious outliers at values remote from the rest of the data. These four
observations cause the regression line to have a slightiygradient. When
they are deleted the slope of the regression line is negdte@ming more so
when two further outliers are deleted. This is the regresBiee produced by
LTS and the FS combined with monitoring BICW. The right-hgrashel of the
figure is a forward plot of the scaled FS residuals. The dietif 6 outliers
follows from the value of 41 fohf, at which point the groups of extreme and
intermediate outliers are well separated. The transitietwben the regions of
robust and non-robust estimation is clear.

We now turn to MM-estimation. The monitoring plot of BICWives a value
of 0.82 foreff (it is 0.86 for the two hard-trimming methods). For S-estiima
the value ofd' is 0.25, appreciably greater than that from hard trimminge T
monitoring plots of BICW for both MM and S-estimation show a similar shape
to that for the FS; a peak followed by a decline and then areas®. To interpret
these maximum values we look at monitoring plots of the wsigirhose for
MM-estimation are in the left-hand panel of Figure 10. THisws that the four
extreme outliers are detected at an efficiency of 0.98. Hewelie weights for
the two intermediate outliers decrease very slowly as thaexficy decreases, all
six outliers receiving sufficiently small weights to be d#ésl only whereff =
0.64. Just four outliers are detectedk#it.
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Figure 10: Stars data. Monitoring plot of weights. Left-hand panel MM-estimatioreff’ =
0.82. Right-hand panel S-estimation with scale estindated* = 0.33,d" = 0.25

For S-estimation” = 0.25 and{* = 0.33. The monitoring plot of the weights
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for S-estimation in the right-hand panel of Figure 10 shdves the four extreme
outliers have a weight 0.01 from a bdp of 0.17. At 0.25d() five observations
have small weights and fat < 0.32 six observations are detected as outlying.
Sod* finds the same outliers as the hard trimming methods.

7.3. Example 3: Balance Sheet Data

Our final example has more observations and several explgnadriables.
The data are taken from a larger set giving balance sheemiaton on lim-
ited liability companies. The response is profitability mdividual firms in Italy.
There are 998 observations with positive response and 40V neigative re-
sponse, making 1,405 observations in all. There are fiveaeapbry variables
which are measures of financial properties of the firms, tleerh@st important
being the ratio of labour cost to value added and the ratiargdible fixed assets
to value added. The aim is to explain the profitability by esgion on the five
explanatory variables.

The data were introduced by Atkinson et al. (2021) who givéher details.
They show that the data need to be transformed to achievexapyate normal-
ity. Since 407 of the observations are negative, they useektansion of the
transformation of Yeo and Johnson (2000). Atkinson et @2(3 found that the
positive observations should have a power transformatitim parameter value
0.5, whereas the negative observations required a valué oi\le work through-
out with this transformation.

The right-hand panel of Figure 8 shows the monitoring ploBEW from
the FS. This is similar in shape to those in Figure 5 for the $wller sets of
data. In this case there is slight curvature as the value G¥BIncreases with
h, with a sharp peak. The maximum occurs whegn 1396. For LTS, again not
shown, the maximum is at = 0.007 when agaim. = 1396 (aboved = 0.01 a
finer grid of values in steps of 0.001 was used for monitoring)e indication
is that there are only nine outliers, that is less than 1%uréid 4 of Atkinson
et al. (2021) has scatter plots of the residuals and showsffilset of outliers on
the estimated parameters of the linear model.

For MM-estimation monitored over efficiency steps of 0.effi = 0.99.
Monitoring over a finer grid shows that the value of Bl€bntinues to increase
to eff = 0.999 before decreasing sharply whefh= 1. The left-hand panel of
Figure 11 shows that only three observations have zero waigffi = 0.99.
Although the figure suggests a group of nine residuals witallsweights that
seems separate from the other residuals, all nine do notizeaeeveight untieff
has decreased to 0.95.
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Figure 11: Balance sheet data. Zooms of monitoring plot afats w;. Left-hand panel MM-
estimationeff = 0.99. Right-hand panel S-estimation with scale estingatel* = 0.13, d" =
0.02

The results for S-estimation are in the right-hand paneheffigure. For
these datal’ = 0.02. The figure shows that at this value of bdp only one ob-
servations has weight 0.01. The value ofd* is a much larger 0.13. At this
value all the nine outliers are the only observations witlalsmeights, so, for
this example, S-estimation of this form agrees with hardrming.

7.4. Summary of Analysis of Examples

Table 3: Number of outliers detected by five methods for theglexamples of §7

Example lliness Stars Balance Sheet
Method Estimate
LTS/IFS n—h' 3 6 9
MM eff! 2 4 3
S df 3 4 1
S d* 3 6 9

Table 3 shows the number of outliers detected by the hard@trisnming
procedures of our paper when applied to the examples in¢bisos. All, apart
from MM, find the three introduced outliers in the contamathillness data.
S-estimation using the valu& (13) agrees with the two hard trimming meth-
ods, although the parameter estimates are found with mionentng, that is a
higher bdp, than those of the hard trimming methods. Both kB#dmation with
eff' and S-estimation using’ appear, on this evidence, less reliable than hard
trimming.
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8. Comparisonsand Extensions

In the appendix we describe two further forms of BIC for certldetection
using soft trimming. The starting point is the robust craarfor regression
model selection of Maronna et al. (2019). This uses the dyaiy of Akaike’s
AIC (Akaike, 1974) to penalize increasingly complex modéels form a sim-
ilar BIC for outlier detection we replace this penalty witiat of §3.1, that is
k(p,n) = plogn. We call the resulting robust criterion BICR and define it in
equation (A.4). An expression for this criterion that issgdoin form to BICW,
is found by Taylor series linearisation of BICR. In (A.6)ghs called BICL.

Table 4 provides a comparison of the performance of theséustlrer forms
of BIC when they are used with S-estimation in the analysie®three examples
of 87. The table gives the maximizing values of bdthandd*, together with,
for reference, the corresponding results from hard tringmin

Table 4: Comparison of values of the bdpnaximizing three forms of BIC for analysis of the
examples of §7 using S-estimation

Estimated Contaminated Stars Balance
Measure Maximum lliness Data Data Sheet Data
BICW LTS 0.07 ¢ =50) 0.14 ¢ =41) 0.007 @& = 1396)
BICW FS h = 50 h =41 h = 1396
BICW, i 0.14 0.25 0.02
BICL df 0.15 0.24 0.02
BICR dr 0.24 0.33 0.03
BICW, d* 0.23 0.33 0.128
BICL d* 0.23 0.33 0.128
BICR d* 0.23 0.35 0.133

The purpose of the data analyses in this paper is to identiflyeos and to
provide efficient parameter estimates for the non-outldata. In the case of
LTS and S-estimation this leads directly to finding the seslbdp value at
which the outliers are excluded from the analysis. The fwstlines of Table 4
show that LTS and the FS find values of bdp smaller than thase the soft
trimming procedures based on S-estimation. Within thetsiofiming methods,
the three forms of BIC provide similar values#fandd*, except for the higher
value ofd" from BICR for the contaminated illness data. We therefdrepft
trimming is required, suggest the use of BICWhe properties of which have
been more thoroughly explored in this paper.
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We also tested robustness to the choicepdtinction. As an alternative
to the Tukey biweight we used the power divergepdeinction p(u) = 1 —
exp(—au?/2), wherea is the parameter controlling breakdown point and effi-
ciency. Plots such as Figure 5 of Riani et al. (2020) inditiase there is little
difference in asymptotic efficiency and breakdown pointtssn thisp function
and the Tukey biweight. The simulation results showed tH&VB, continued
to perform best although the results gave slightly largéwasofd’ andd* than
those of Table 4. Tukey’s biweight is to be preferred for saftming, but flex-
ible hard trimming, either from the FS or monitoring LTS, éstie preferred.

9. Discussion

Flexible hard trimming combined with the information criten BICW pro-
vides clear identification of outliers. For soft trimmingraesults indicate that
BICW, is the preferred form of information criterion when S-esttran is used,
which is to be preferred to MM-estimation.

The outliers identified by applying BICW to the results of LéSthe FS
agree with those in our previous analyses using significkaveds and the prop-
erties of order statistics. For the three examples the Flysesare respectively
given by Atkinson et al. (2021), Riani et al. (2014b) and Atdan et al. (2020).
Here, in contrast, we run a single search through the datanamitor the value
of the appropriate BIC, the maximum indicating which obséons are outliers.
The complicated rule for determining significance of patdmtutliers is circum-
vented.

The calculations for the forward search only require uppt regression
that starts from a small number of observations. This is agatnally much
simpler than the implementation of LTS we have used (seerg@&hich an op-
timum solution has to be found for eaghas it also is than monitoring MM- or
S-estimation, where numerical optimizations are requioeegach value okff
or d. For large data sets we can use the results of Torti et al1j20Bich extend
the FS to moving forward by adding batcheg:of 1 observations.

We have restricted our attention to the classical case oflthey-Huber
contamination model with fewer than 50% contaminated olagems. It is im-
portant that the FS can be adapted also to the case of moré@P&oontamina-
tion, when this is physically meaningful, for example instiering (Cerioli et al.,
2019).

The forms of BIC we have developed for the automatic detectfmutliers
do not include significance tests. However, significancgnigsnay be important
once the outliers, if any, have been detected (Cerioli amddaaeni, 2011). The
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inclusion of least squares with= n in the monitoring ensures that the models
we consider include one in which outliers are not deletedhBicagnostic plots,
such as those of 87, and significance testing will be part efdétermination
of the importance of any outliers; they may be random, thig&cebeing to re-
duce the accuracy of conclusions drawn from the data or thightnmdicate,

in a medical context, a group of patients that respondsrdiifity to treatment.
Cox (2020) dissects forms of statistical significance appate to a variety of
data analytical tasks. Finally, we see a place for our resalautomatic model
selection as an extension to the use of conventional BICverdbe presence of
outliers.
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Appendix A. Appendix: Other Forms of Robust BIC for Soft Trimming

Maronna et al. (2019, p.137) derive a robust fornCpffor model selection.
We now extend their approach to provide two further versiohBIC for soft
downweighting.

Akaike’s non-robust Final Prediction Error, FPE, for lesgtiares regression
is written in (5.37) of Maronna et al. (2019) as

1 — 2p
FPE_—E 21+ = Al
n 2 Ci ( n)’ (A1)

i=1

wheree; = y; — 27 3. ThenR(3) = 3. €2 and FPE= {R(f)/n}(1 + 2p/n).

Maronna et al. (2019) obtain a robust criterion for reg@ssnodel selec-
tion starting from (A.1) in which least squares is replacgedour case, by S-
estimation. The corresponding robust version of FPE (A1) i

1 €; pA
RFPE— — (—) P A2
2220 (5) T (A2)
i=1

() o250 (E)
with ¢ (u) = p'(u).

The RFPE criterion (A.2) is for the comparison of regressioodels. We
take the form of the linear model as given and are interestedanitoring the
behaviour of BIC as the valué of the breakdown point of the robust method
varies. To develop this novel form of BIC we rewrite (A.2) iwthe BIC penalty

and obtain
LY (g + Aben (A2)

Multiplication by —n yields the robust BIC

BICR=-Y ) (e)

To see the relationship between BICR and the BIC for hardntiimgy in (7)

we rewrite (A.3) as
A1 pl
p{1+——p Og”}, (A.5)

where

3|'—‘
M:

/\

w;) } logn. (A.4)

B2 n
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wherep = > p(e;/5)/n. Taylor expansion of the logarithm of (A.5) yields

Multiplication by —n and inclusion of the penalty for downweighting used in
(A.4) gives the approximate BIC

5A -
BICL = —nlogp — gg {p+ Z(l — wz)} log n. (A.6)
P i=1

The relationship between BICL and BICR depends on the Taf{pansion.
For asymptotic equivalence we require that the quantiiy3){ (plogn)/n} de-
crease wit. Since the asymptotic value éf/B is finite (Maronna et al., 2019,
Chapter 10), we only require that the limit @flogn)/n — 0 with n, which it
does for models in which the number of parameters is not aifumof n. Ob-
servations which come in blocks of fixed sizes, each of whitfoduces a new
parameter, such as mixed pairs (Cox and Hinkley, 1974, pré@lire special
treatment. A model with random effects for blocks is one [inkty.
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