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Technical Notes and Correspondence1

Solution Algorithms for the Bounded Acceleration
Shortest Path Problem

2

3

Stefano Ardizzoni , Luca Consolini , Mattia Laurini , and Marco Locatelli4

Abstract—The purpose of this article is to introduce and char-5
acterize the bounded acceleration shortest path problem (BASP),6
a generalization of the shortest path problem (SP). This problem7
is associated to a graph: nodes represent positions of a mobile8
vehicle and arcs are associated to preassigned geometric paths9
that connect these positions. The BASP consists in finding the10
minimum-time path between two nodes. Differently from the SP, the11
vehicle has to satisfy bounds on maximum and minimum acceler-12
ation and speed, which depend on the vehicle’s position on the13
currently traveled arc. Even if the BASP is NP-hard in the general14
case, we present a solution algorithm that achieves polynomial15
time-complexity under some additional hypotheses on problem16
data.17

Index Terms—.
Q1

18

I. INTRODUCTION19

The combinatorial problem of detecting the best path from a source to20

a destination node over an oriented graph with constant costs associated21

to its arcs, also known as shortest path problem (SP in what follows),22

is well known and can be efficiently solved, e.g., by the Dijkstra23

algorithm (in case of nonnegative costs). The continuous problem of24

minimum-time speed planning over a fixed path under given speed and25

acceleration constraints, also depending on the position along the path,26

is also widely studied and very efficient algorithms for its solution27

exist. But the combination of these two problems, called in what28

follows bounded acceleration shortest path problem (BASP), turns out29

to be more challenging than the two problems considered separately.30

More precisely, in terms of the complexity theory, it is possible to31

prove that the BASP is NP-hard, while the two problems considered32

separately are both polynomially solvable. In the BASP, we still have33

the combinatorial search for a best path as in SP but, differently from34

SP, the cost of an arc (more precisely, the time to traverse it) is not a35

constant value but depends on the speed planning along the arc itself,36

which, in turn, depends on the speed and acceleration constraints not37

only over the same arc but also over those preceding and following it38

in the selected path. Fig. 1(a) presents a simple scenario that allows39

Manuscript received October 25, 2021; accepted April 15, 2022. This
work was supported by the Programme “FIL-Quota Incentivante” of
University of Parma and co-sponsored by Fondazione Cariparma. Rec-
ommended by Associate Editor T. Faulwasser. (Corresponding author:
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ardizzoni@unipr.it; luca.consolini@unipr.it; mattia.laurini@unipr.it;
marco.locatelli@unipr.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3172169.
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Fig. 1. Comparison of BASP and SP solutions. (a) Paths p1 and p2
connecting node s and f . (b) Optimal speed profile on p1. (c) Optimal
speed profile on p2.

to illustrate the BASP and its difference with SP; it shows two fixed 40

paths p1 and p2 connecting positions s and f . The vehicle starts from 41

s with null speed and must reach f with null speed. The solution of SP 42

corresponds to the path p1, which is the one of the shortest length. The 43

BASP consists in finding the shortest-time path under acceleration and 44

speed constraints. In this case, we assume that the vehicle acceleration 45

and deceleration are bounded by a common constant and that its speed 46

is bounded only on the central, high-curvature section of p1, in order 47

to avoid excessive lateral acceleration, which may cause sideslip. If the 48

bound on acceleration and deceleration is sufficiently high, the solution 49

of the BASP corresponds to the path p2. Indeed, even if the latter path is 50

longer, it can be traveled with a greater mean speed. Fig. 1(b) represents 51

the fastest speed profile on p1. The x-axis corresponds to the arc-length 52

position on the path p1 and the y-axis represents the squared speed. 53

In this representation, arc-length intervals of constant acceleration or 54

deceleration correspond to straight lines. Fig. 1(c) represents the fastest 55

speed profile on p2. Even if path p2 is longer than p1, it can be traveled 56

in less time. In fact, the vehicle is able to accelerate till the midpoint, 57

and then, to decelerate to the end position f . 58

The interest for the BASP comes from a specific industrial appli- 59

cation, namely the optimization of automated guided vehicles (AGVs) 60

motion in automated warehouses. The AGVs may be either free to move 61

within a facility or be only allowed to move along predetermined paths. 62

In the first case, one needs to employ environmental representations 63

such as cell decomposition methods [1] or trajectory maps [2]. In par- 64

ticular, the authors in [3] present an algorithm based on a modification of 65

Dijkstra’s algorithm in which edge weights are history dependent. Our 66

work is related to the second approach. Namely, we assume that AGVs 67
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cannot move freely within their environment and are instead required68

to move along predetermined paths that connect fixed operating points.69

These may be associated to shelves locations, where packages are stored70

or retrieved, to the end of production lines, where AGVs pick up final71

products, and to additional intermediate locations, used for routing. All72

these points are formally represented as nodes of a graph, whose arcs73

represent connecting paths. If AGVs are not subject to acceleration and74

speed constraints, the minimum-time planning problem is equivalent75

to SP and can be solved by the Dijkstra algorithm or its variants:76

see, for instance, [4]–[6], or other algorithms such as A∗ [7], Lifelong77

planning A∗ [8], D∗ [9], and D∗ Lite [10]. However, since the motion78

of AGVs must satisfy constraints on maximum speed and tangential79

and transversal accelerations that depend on the vehicle position on the80

path, these approaches cannot be applied to solve the BASP.81

Instead, various works consider the minimum-time speed planning82

problem with acceleration and speed constraint on an assigned path.83

For instance, one can use the methods presented in [11] and [12], or84

path-following techniques such as [13] and [14].85

As said, despite the fact that a large literature exists on SP and on the86

minimum-time speed planning on an assigned path, to the authors’87

knowledge, the BASP has never been specifically addressed in the88

literature. Formally, the BASP can be framed as an optimal control89

problem for a switching system, in which switchings are associated90

to passages from arc to arc and each discrete state is associated to a91

specific set of constraints. The results presented in this article exploit92

the very specific structure of the BASP and cannot be applied to generic93

switching systems. Anyway, the Algorithm V.5 could still apply to94

other switching systems satisfying an analogous of Proposition IV.395

and identifying a class of such systems could be the topic of future96

research.97

This article is structured as follows. After introducing the notation98

employed throughout this article in Section II, in Section III, we first99

briefly discuss the solution of the speed planning problem along a100

fixed path, and then, we provide a formal statement of the BASP, also101

mentioning an NP-hardness result. In Section IV, we consider a subclass102

of the BASP, called k-BASP, which can be solved with polynomial time103

complexity for fixed values of k. Since constant k is problem dependent104

and is not known in advance, in Section V, we present an adaptive A∗105

algorithm to find k. Finally, Section VI presents different computational106

experiments.107

II. NOTATION108

A directed graph is a pair G = (V ,E), where V is a set of nodes109

and E ⊂ {(x, y) ∈ V 2 | x �= y} is a set of directed arcs. A path p on G110

is a sequence of adjacent nodes of V (i.e., p = σ1 · · ·σm, with (∀i ∈111

{1, . . . ,m}) (σi, σi+1) ∈ E). An alphabet Σ = {σ1, . . . , σn} is a set112

of symbols. A word is any finite sequence of symbols. The set of all113

words over Σ is Σ∗, which also contains the empty word ε, while114

Σi represents the set of all words of length up to i ∈ N, (i.e., words115

composed of up to i symbols, including ε). Given a word w ∈ Σ∗, |w|116

denote its length. Given a directed graph G = (V ,E), we can think117

of V as an alphabet so that any path p of G is a word in V ∗. Given118

s, t ∈ Σ∗, the word obtained by writing t after s is the concatenation119

of s and t, denoted by st ∈ Σ∗; we call t a suffix of st and s a prefix120

of st. For r ∈ V ∗, �r is the rightmost symbol of r. In the following, we121

represent paths of G as strings of symbols in V . This allows to use122

the concatenation operation on paths and to use prefixes and suffixes to123

represent portions of paths. For x ∈ R, �x� = min{i ∈ Z | i ≥ x} is124

the ceiling of x. For a, b ∈ R, we set a ∧ b = min{a, b} and a ∨ b =125

max{a, b}, as the minimum and maximum operations, respectively.126

Finally, given an interval I ⊆ R, we recall that W 1,∞(I) is the Sobolev 127

space of functions in L∞(I) with weak derivative of order 1 with finite 128

L∞-norm. For f, g ∈ W 1,∞(I), we denote with f ∧ g and f ∨ g the 129

point-wise minimum and maximum of f and g, respectively. 130

III. PROBLEM FORMULATION 131

Before giving the formal description of the BASP, in Section III-A, 132

we briefly discuss the solution of the speed planning problem along a 133

fixed path. Although such problem has been already widely discussed 134

in the literature, here, we briefly describe a way to tackle it in order to 135

better understand the following formulation of the BASP. 136

A. Speed Planning Along an Assigned Path 137

Let γ : [0, λf ] → R2 be a C2 function such that (∀λ ∈ 138

[0, λf ]) ‖γ ′(λ)‖ = 1. The image set γ([0, λf ]) represents the path 139

followed by a vehicle, γ(0) the initial configuration, and γ(λf ) the 140

final one. The function γ is an arc-length parameterization of a path. 141

We want to compute the speed law that minimizes the overall travel 142

time while satisfying some kinematic and dynamic constraints. To this 143

end, let ξ : [0, tf ] → [0, λf ] be a differentiable monotonically increas- 144

ing function representing the vehicle arc-length coordinate along the 145

path as a function of time and let v : [0, λf ] → [0,+∞) be such that 146

(∀t ∈ [0, tf ]) ξ̇(t) = v(ξ(t)). In this way, v(λ) is the vehicle speed 147

at position λ. The vehicle position as a function of time is given by 148

x : [0, tf ] → R2, x(t) = γ(ξ(t)), speed and acceleration are given by 149

ẋ(t) = γ ′(ξ(t))v(ξ(t)), and ẍ(t) = aL(t)γ
′(ξ(t)) + aN (t)γ ′⊥(ξ(t)), 150

where aL(t) = v′(ξ(t))v(ξ(t)) and aN (t)(t) = κ(ξ(t))v(ξ(t))2 are 151

the longitudinal and normal components of acceleration, respec- 152

tively. Here, κ : [0, λf ] → R is the scalar curvature, defined as 153

κ(λ) =
〈
γ ′′(λ), γ ′(λ)⊥

〉
, where 〈·, ·〉 denotes the scalar product. 154

We require to travel distance λf in a minimum time while satisfy- 155

ing, for every t ∈ [0, ξ−1(λf )], 0 ≤ v−(ξ(t)) ≤ v(ξ(t)) ≤ v+(ξ(t)), 156

|aN (ξ(t))| ≤ β(ξ(t)), α−(ξ(t)) ≤ aL(ξ(t)) ≤ α+(ξ(t)). Here, func- 157

tions v−, v+, α−, α+, and β are arc-length-dependent bounds on the 158

vehicle speed and on its longitudinal and normal acceleration. It is 159

convenient to make the change of variables w = v2 (see [15]) so 160

that by setting Ψ(w) =
∫ λf
0

w(λ)−
1
2 dλ, μ+(λ) = v+(λ)2 ∧ β(λ)

κ(λ)
, and 161

μ−(λ) = v−(λ)2, our problem takes on the following form. 162

min
w∈W1,∞([0,λf ])

Ψ(w) (1a)

μ−(λ) ≤ w(λ) ≤ μ+(λ), λ ∈ [0, λf ] (1b)

α−(λ) ≤ w′(λ) ≤ α+(λ), λ ∈ [0, λf ] (1c)

where Ψ : W 1,∞([0, λf ]) → R is order reversing (i.e., (∀x, y ∈ 163

[0, λf ]) x ≥ y ⇒ Ψ(x) ≤ Ψ(y)) and μ−, μ+, α−, α+ ∈ L∞([0, λf ]) 164

are assigned functions with μ−, α+ ≥ 0, and α− ≤ 0. Initial and final 165

conditions on speed can be included in the definition of functions 166

μ− and μ+. For instance, to set initial condition w(0) = w0, it is 167

sufficient to define μ+(0) = μ−(0) = w0. In [16], we introduced a 168

subset of W 1,∞([0, λf ]), called Q, as a technical requirement and an 169

operator based on the solution of the following differential equations: 170

⎧⎪⎨
⎪⎩
F ′(λ) =

{
α+(λ) ∧ μ′(λ), if F (λ) ≥ μ(λ)

α+(λ), if F (λ) < μ(λ)

F (0) = μ(0)

(2)
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⎧⎪⎨
⎪⎩
B′(λ) =

{
α−(λ) ∧ μ′(λ), if B(λ) ≥ μ(λ)

α−(λ), if B(λ) < μ(λ)

B(λf ) = μ(λf )

(3)

with F,B ∈ Q, that allows to compute the optimal solution of the171

Problem (1). In particular, in [16], it is shown that the optimal solution is172

F (μ+) ∧B(μ+). We refer the reader to [16] for a detailed discussion.173

B. BASP Problem174

In this section, we provide a formal description of the BASP. Let175

us consider a directed graph G = (V ,E), with V = {σ1, . . . , σN}.176

For each i ∈ {1, . . . , N}, the node σi represents an operating point177

Ri ∈ R2. In fact, the restriction Ri ∈ R2 is not strictly necessary but178

we imposed it since it holds in the AGV application, which is the main179

motivation of this work. Each arc θ = (σi, σj) ∈ E represents a fixed180

directed path between two operating points and is associated to an181

arc-length parameterized path γθ of length �(θ), such that γθ(0) = Ri182

and γθ(�(θ)) = Rj . In the following, we denote the set of all possible183

paths on G by P . Similarly, for s, f ∈ V , we denote by Ps the subset184

of P consisting in all paths starting from s and by Ps,f the subset of185

P consisting in all paths starting from s and ending in f . We extend186

this definition to subsets of V , that is, if S,F ⊂ V , we denote by PS,F187

the set of all paths starting from nodes in S and ending in nodes in F .188

Given a path p = σ1 · · ·σm, its length �(p) is defined as the sum of the189

lengths of its individual arcs, that is, �(p) =
∑m−1

i=1 �(σi, σi+1).190

To setup our problem, we need to associate four real-valued functions191

to each edge θ ∈ E: the maximum and minimum allowed acceleration192

and squared speed. The domain of each function is the arc-length193

coordinate on the path γθ . Then, given a specific path p, we are able to194

define a speed optimization problem of the form (1) by considering the195

constraints associated to the edges that compose p. We define the set of196

edge functions as E = {ϕ : E × R+ → R}. If ϕ ∈ E, θ ∈ E, λ ∈ R+,197

ϕ(θ, λ) denotes the value ofϕ on edge θ at position λ. Note thatϕ(θ, λ)198

will be relevant only for λ ∈ [0, �(θ)]. Given a path p = σ1 · · ·σm,199

we associate to ϕ ∈ E a function ϕp : [0, �(p)] → R in the following200

way. Define functions Θ : [0, �(p)] → N, Λ : [0, �(p)] → R such that201

Θ(λ) = max{i ∈ N | �(σ1 · · ·σi) ≤ λ} and Λ(λ) = �(σ1 · · ·σΘ(λ)).202

In this way, Θ(λ) is such that θ(λ) = (σΘ(λ), σΘ(λ)+1) is the edge203

that contains the position at arc length λ along p, and Λ(λ) is the204

sum of the lengths of all arcs up to node σΘ(λ) in p. Then, we define205

ϕp(λ) = ϕ(θ(λ), λ − Λ(λ)).206

Given μ̂+, μ̂−, α̂+, α̂− ∈ E and path p ∈ P , let B = (μ̂−, μ̂+,207

α̂−, α̂+). Assume (∀θ ∈ E) μ̂+(θ, ·) ∈ Q and define TB(p) =208

minw∈W1,∞([0,sf ]) Ψ(w), as the solution of the Problem (1) along209

path p with μ− = μ̂−
p , μ+ = μ̂+

p , α− = α̂−
p , and α+ = α̂+

p . In this210

way, TB(p) is the minimum time required to traverse the path p,211

respecting the speed and acceleration constraints defined in B. We set212

TB(p) = +∞ if the Problem (1) is not feasible.213

The following is the main problem discussed in this article.214

Problem III.1 (BASP): Given a graph G = (V ,E), μ+, μ−,215

α−, α+ ∈ E, B = (μ+, μ−, α−, α+), s ∈ V , and F ⊂ V , find216

minp∈Ps,F
TB(p).217

In other words, we want to find the path p that minimizes the transfer218

time between source node s and a destination node in F , taking into219

account bounds on speed and accelerations on each traversed arc (rep-220

resented by arc functions μ+, μ−, α−, α+). The following properties221

are a direct consequence of the definition of TB(p).222

Proposition III.2: The following properties hold:223

1) let p1, p2 ∈ P , p1p2 ∈ P ⇒ TB(p1p2) ≥ TB(p1) + TB(p2);224

2) if B = (μ+, μ−, α−, α+), B̂ = (μ̂+, μ̂−, α̂−, α̂+) are such that225

(∀θ ∈ E) (∀λ ∈ [0, �(θ)])[μ−(θ, λ), μ+(θ, λ)] ⊂ [μ̂−(θ, λ), μ̂+(θ, λ)]226

Fig. 2. Computation of �+(s1) = 1 and �−(s1) = 0.

and [α−(θ, λ), α+(θ, λ)] ⊂ [α̂−(θ, λ), α̂+(θ, λ)], then (∀p ∈ P ) 227

TB(p) ≥ TB̂(p). 228

In particular, the first property states that the minimum time for 229

traveling the composite path p1p2 is greater or equal to the sum of the 230

times needed for traveling p1 and p2 separately. In fact, in the first case, 231

the speed must be continuous when passing from p1 to p2 (due to the 232

acceleration bounds), but this constraint does not need to be satisfied 233

when the speed profiles for p1 and p2 are computed separately. 234

The following proposition (whose proof can be found in [17]) states 235

the theoretical complexity of a simplified version of Problem III.1, 236

called BASP-C, in which maximum and minimum acceleration and 237

speed are constant on each arc. 238

Proposition III.3: Problem BASP-C is NP-hard. 239

IV. k-BASP 240

As we will see in Remark IV.6, SP can be viewed as a special case 241

of the BASP, namely a BASP with unbounded acceleration limits. In 242

fact, also BASP can be viewed as an SP but defined on a different graph 243

with respect to the original one. More precisely, here, we introduce 244

some restrictions on parameters B that allow reducing the BASP to a 245

standard SP that can be solved by Dijkstra’s algorithm on an extended 246

graph. Let p ∈ P , define 247

�+(p) = min{{λ ∈ [0, �(p)] | ∫ λ

0
α+
p (q)dq = μ+

p (λ)},+∞}; 248

�−(p) = max{{λ ∈ [0, �(p)] | −∫ �(p)

λ
α−
p (q)dq = μ+

p (λ)},−∞}. 249

In this way, �+(p) is the smallest value of λ ∈ [0, �(p)] for which 250

the solution of F in (2), with α+ = α+
p , starting from initial condi- 251

tion F (0) = 0, reaches the squared speed upper bound μ+(λ). Note 252

that �+(p) = ∞ if no such value of λ exists. Similarly, �−(p) is the 253

largest value of λ ∈ [0, �(p)] for which the solution of B in (3), with 254

α− = α−
p , starting from initial condition B(�(p)) = 0, reaches μ+(λ). 255

Again, �−(p) = −∞ if no such value of λ exists. Note that if p, t, pt ∈ 256

P , �+(pt) ≤ �+(p) and �−(pt) ≥ �−(p) (actually, equalities hold if the 257

values are all finite). Finally, we define 258

K(B) = min{k ∈ N | (∀p ∈ Ps) |p| ≥ k ⇒ �+(p) ≤ �−(p)}. (4)

We call k-BASP any instance of Problem III.1 that sat- 259

isfies K(B) ≤ k. For instance, consider the following chain 260

graph G = (V = {s, 1, 2, f}, E = {(s, 1), (1, 2), (2, f)}). Here, 261

(∀θ ∈ E) α−(θ) = −1, α+(θ) = 1, μ−(θ) = 0, �(θ) = 1, and 262

μ+((s, 1)) = 1, μ+((1, 2)) = 2
3

, μ+((2, f)) = 1. In this case, Ps = 263

{s, s1, s12, s12f}. Moreover, K(B) > 2, since �+(s1) = 1 > 0 = 264

�−(s1), as reported in Fig. 2. Furthermore, �+(s12) < �−(s12) and 265

�+(12f) < �−(12f) and s12, 12f are the only paths of length 3. Fig. 3 266

shows the computation of �+(s12) and �−(s12); the computation of 267

�+(12f) and �−(12f) is analogous. Hence, in this example,K(B) = 3. 268

Note that K(B)− 1 represents the maximum number of nodes of a 269

path that can be traveled with a speed profile of maximum acceleration, 270

followed by one of maximum deceleration, starting and ending with null 271

speed, without violating the maximum speed constraint. The following 272
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Fig. 3. Computation of �+(s12) = 1 and �−(s12) = 4
3 .

expression provides a simple upper bound on K(B):273

K(B)≤ 1 +

⎡
⎢⎢⎢2max

θ∈E

max
λ∈[0,�(θ)]

μ+(θ, λ)

min
λ∈[0,�(θ)]

(
α+(θ, λ) ∧ |α−(θ, λ)|) �(θ)

⎤
⎥⎥⎥. (5)

Note thatK(B) = 1 only ifα− = −∞ andα+ = +∞, that is, if we274

do not consider acceleration bounds. We will present an algorithm that275

solves the k-BASP in polynomial time complexity with respect to |V |276

and |E|. However, note that the complexity is exponential with respect277

to k so that a correct estimation of K(B) is critical. In general, the278

bound (5) overestimates K(B). In Section V, we will present a simple279

method for correctly estimating K(B).280

We recall that Vk represents the subset of language V ∗ composed of281

strings with maximum length k, including the empty string ε. Define282

Suffk : P → Vk such that, if |p| ≤ k, Suffk(p) = p and if |p| > k,283

Suffk(p) is the suffix of p of length k. The function Suffk allows to284

introduce a partially defined transition function Γ : Vk × V → Vk by285

setting Γ(r, σ) = Suffk(rσ) if rσ ∈ P , otherwise, if rσ /∈ P , Γ(r, σ)286

is not defined. Define the incremental cost function η : Ps × V → R+287

such that, for p ∈ Ps and σ ∈ V , if pσ ∈ Ps, η(p, σ) = TB(pσ)−288

TB(p), otherwise η(p, σ) = +∞. In other words, η(p, σ) is the dif-289

ference between the minimum time required for traversing pσ and the290

minimum time required for traversing p. For simplicity of notation,291

from now on, we will denoteTB simply asT . The following proposition292

shows that the incremental cost is always strictly positive.293

Proposition IV.1: η(p, σ) ≥ T (σ).294

Proof: By 1) of Proposition III.2, T (pσ) ≥ T (p) + T (σ). �295

The following property, whose proof is presented in the Appendix,296

plays a key role in the solution algorithm.297

Proposition IV.2: Let p1, p2, t ∈ P , if p1t, p2t ∈ P and �+(t) ≤298

�−(t), then (∀σ ∈ V ) T (p1tσ)− T (p1t) = T (p2tσ)− T (p2t).299

The following is a direct consequence of Proposition IV.2. It states300

that, given p ∈ P and σ ∈ V , the incremental cost η(p, σ) does not301

depend on the complete pathp, but only onSuffk(p) (its lastk symbols).302

Proposition IV.3: If K(B) ≤ k and p, p′ ∈ P are such that303

Suffk(p) = Suffk(p
′), then (∀σ ∈ V ) η(p, σ) = η(p,′ σ).304

Define function η̂ : Vk × V → R+, such that η̂(r, σ) = η(p, σ)305

where p ∈ P is any path such that r = Suffk(p). We set η̂(r, σ) = +∞306

if such path does not exist. Note that the function η̂ is well-defined by307

Proposition IV.3, beingη(p, σ) identical among all pathsp such that r =308

Suffk(p). In particular, Proposition IV.3 holds for p′ = Suffk(p) = r309

so that we can compute η̂ as η̂(r, σ) = η(r, σ). In the following, since310

η̂ is the restriction of η on Vk × V , we denote η̂ simply by η.311

The value k can be viewed as the amount of memory required to312

solve the problem: once a node is reached, the optimal path from such313

node to the target one depends on the last k visited nodes. If k = 1, it314

only depends on the current node (i.e., no memory is required). This315

is the situation with the classical SP. More generally, k > 1 so that the316

optimal way to complete the path does not only depend on the current317

node, but also on the sequence of k − 1 nodes visited before reaching318

it. Define function V : Vk → R as319

V (r) = min
p∈Ps|Suffk p=r

TB(p). (6)

Fig. 4. Graph and its corresponding extension for k = 2.

Note that the solution of the BASP corresponds to minr∈Vk |�r∈F V (r) 320

(we recall that �r is the last node of r). For r ∈ Vk, define the set of 321

predecessors of r asPrec(r) = {r̄ ∈ Vk | r = Γ(r̄, �r)}. The following 322

proposition presents an expression for V (r) that holds if �+(r′) ≤ 323

�−(r′) for all predecessors r′ of r. 324

Proposition IV.4: Let r ∈ Vk, if (∀r′ ∈ Prec(r)) �+(r′) ≤ �−(r′), 325

then 326

V (r) = min
r′∈Prec(r)

{V (r′) + η(r,′ �r)}. (7)

Proof: Let Sr = {q ∈ Ps | Suffk q�r = r}. V (r) = minp ∈ 327

Ps | Suffk p = rT (p) = minq∈Sr{T (q�r)− T (q) + T (q)} = minq 328

∈ Sr{T (q) + T ((Suffk q)�r)− T (Suffk q)} = minq∈Sr{T (q) + 329

η(Suffk q, �r)} = minr′∈Prec(r), q∈Sr′ {T (q) + η(r,′ �r)} = 330

minr′∈Prec(r){V (r′) + η(r,′ �r)}, where we used the facts that 331

T (qσ)− T (q) = T (Suffk qσ)− T (Suffk q), by Proposition IV.2, 332

and that q ∈ Ps is such that Suffk q�r = r ⇔ Suffk q ∈ Prec(r). � 333

As a consequence of Proposition IV.4, if (∀r ∈ Vk) �
+(r) ≤ �−(r), 334

V (r) corresponds to the length of the shortest path from s to r on the 335

extended directed graph G̃ = (Ṽ , Ẽ), where Ṽ = Vk and (r1, r2) ∈ Ẽ 336

if r2 = Γ(r1, �r2) is defined, in this case its length is η(r1, �r2). The left 337

part of Fig. 4 shows a graph consisting of three nodes. Node s = 1 is 338

the source (indicated by the entering arrow) and the double border 339

shows the final node F = {3}. The right part of Fig. 4 represents 340

the corresponding extended graph, obtained for k = 2, consisting of 341

13 nodes (the cardinality of V2). Note that some of the nodes are 342

unreachable from the initial state, these are represented with dotted 343

borders. 344

Solving k-BASP corresponds to finding a minimum-length path on 345

G̃ that connects node s ∈ Vk to F̃ = {r ∈ Vk | �f ∈ F}. Note that the 346

set of final states F̃ for the extended graph G̃ contains all paths p ∈ Vk 347

that end in an element ofF . In the extended graph reported in Fig. 4, this 348

corresponds to finding a minimum-length path from the starting node 349

1 to one of the final nodes 3, 13, 23, and 33. Note that the unreachable 350

nodes play no role in this procedure. We can find a minimum-length 351

path by Dijkstra’s algorithm applied to G̃, leading to the following 352

complexity result. 353

Proposition IV.5: k-BASP can be solved with complexity 354

O(|V |k−1|E|+ (|V |k log |V |k)). 355

Proof: Dijkstra’s algorithm has time complexity O(|E|+ 356

|V | log |V |), where |E| and |V | are the cardinalities of the edge 357

and vertex sets, respectively. In our case, |V | = |Ṽ | = |Vk| = 358∑k
i=0 |V |i = O(|V |k), |E| = |Ẽ| ≤ |Vk−1E| = O(|V |k−1|E|). � 359

The following remark establishes that SP can be viewed as a special 360

case of the BASP without acceleration bounds. 361

Remark IV.6: If (∀θ ∈ E) (∀λ ∈ [0, �(θ)]) α−(θ, λ) = −∞, 362

α+(θ, λ) = +∞, then K(B) = 1. The resulting 1-BASP reduces to 363

a standard SP on the graph G and can be solved with time complexity 364

O(|E|+ |V | log |V |). 365

V. ADAPTIVE A∗ ALGORITHM FOR k-BASP 366

The computation method based on Dijkstra’s algorithm on the 367

extended graph G̃, presented in the previous section, has two main 368
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disadvantages. First, G̃ has
∑k

j=0 |V |j nodes so that the time required369

by Dijkstra’s algorithm grows exponentially with k. We will show that370

it is possible to mitigate this problem and reduce the number of visited371

nodes by using the A∗ algorithm with a suitable heuristic. Second, the372

estimation of k = K(B) from its definition is not an easy task. We will373

show that it is quite easy to adaptively find the correct value of k by374

starting from k = 2 and increasing k if needed.375

The A∗ algorithm is a heuristic method that allows to compute the376

optimal path, if it exists (see [18]), by exploring the graph beginning377

from the starting node along the most promising directions according378

to a heuristic function that estimates the cost from the current position379

to the target node. Hence, to implement the A∗ algorithm, we need to380

define a heuristic function h : Vk → R, such that, for r ∈ Vk, h(r) is a381

lower bound on minp∈P
�r,F̃

T (p), that is, the minimum time needed for382

traveling from �r to a final state in F̃ . In general, we can compute lower383

bounds for the BASP by relaxing the acceleration constraints α− and384

α+. Namely, let B̂ be a parameter set obtained by relaxing acceleration385

constraints in B. Then, ifK(B̂) < K(B), by Proposition IV.5, the solu-386

tion of the BASP for parameter B̂ can be computed with a lower compu-387

tational time than the solution with parameter B. In particular, we obtain388

a very simple lower bound by removing acceleration bounds altogether,389

that is, by setting α− = −∞ and α+ = +∞. In this way, the vehicle390

is allowed to travel at maximum speed everywhere along the path and391

the incremental cost function η(p, σ) is given by the time needed to392

travel γσ at maximum speed, that is, η(p, σ) =
∫ �(�pσ)

0
1√

μ+((�p,σ),λ)
dλ.393

Define the heuristic h : Vk → R+ as394

h(r) = min
p∈P

�r,F̃

TB̂(p). (8)

Note that, ifα− = −∞ andα+ = +∞,h corresponds to the solution of395

1-BASP and all values ofh can be efficiently precomputed by Dijkstra’s396

algorithm (see Remark IV.6). The following proposition shows that h397

is admissible and consistent so that the A∗ algorithm, with heuristic h,398

provides the optimal solution of the k-BASP and its time complexity399

is no worse than Dijkstra’s algorithm (see [19, Th. 2.9 and 2.10]).400

Proposition V.1: Heuristic h satisfies the following two properties.401

1) Admissibility: (∀r ∈ Vk) h(r) ≤ minq∈P�r,f
TB(q).402

2) Consistency: (∀r ∈ Vk) (∀σ ∈ V )h(r) ≤ η(r, σ) + h(Γ(r, σ)).403

Proof: 1)h(r) = minp∈P�r,f
TB̂(p) ≤ minq∈P�r,f

TB(q), since B̂ is404

a relaxation of B.405

2) h(r) = minp∈P�r,f
TB̂(p) ≤ TB̂(σ) + minp∈Pσ,f

TB̂(p) ≤406

TB(σ) + minp∈Pσ,f
TB̂(p) ≤ η(r, σ) + minp∈Pσ,f

TB̂(p) =407

η(r, σ) + h(Γ(r, σ)), whereTB̂(σ) ≤ TB(σ) by 2) of Proposition III.2408

and TB(σ) ≤ η(r, σ) by Proposition IV.1. �409

Since heuristic h is admissible and consistent, A∗ is equivalent to410

Dijkstra’s algorithm, with the only difference that the incremental cost411

function η(r, σ) is replaced by the modified cost412

η̃(r, σ) = η(r, σ) + h(Γ(r, σ))− h(r) (9)

(see [19, Lemma 2.3] for a complete discussion). A description of the413

A∗ algorithm can be found in literature (for instance, see [19, Algorithm414

2.13]). We define a priority queue Q that contains open nodes, that is,415

nodes that have already been generated but have not yet been visited.416

Namely, Q is an ordered set of pairs (r, t) ∈ Vk × R+, in which r ∈ Vk417

and t is a lower bound for the time associated to the best completion of418

r to a path arriving at a final state. We need to perform the following419

operations on Q: operation Insert(Q, (r, t)) inserts couple (r, t) into420

Q; operation (r, t) = DeleteMin(Q) returns the first couple of Q,421

that is, the couple (r, t) with the minimum time t, and removes this422

couple from Q; and, operation DecreaseKey(Q, (r, t)) assumes that423

Q already contains a couple (r, t′) with t′ > t and substitutes this424

couple with (r, t). Furthermore, we consider three partially defined 425

maps value : Vk → R, parent : Vk → Vk, closed : Vk → {0, 1}, 426

such that, for r ∈ Vk, value(r) is the current best upper estimate of 427

V (r), parent(r) is the parent node of r, and closed(r) = 1 if node 428

r has already been visited. Maps value, parent, and closed can be 429

implemented as hash tables. 430

Algorithm V.2 (A∗ algorithm for k-BASP): 431

1) [initialization] Set Q = {(s, h(s))}, value(s) = 0. 432

2) [expansion] Set (r, t) = DeleteMin(Q) and set closed(r) = 1. 433

If �r ∈ F̃ , then t is the optimal solution and the algorithm terminates, 434

returning maps value, parent. Otherwise, for each σ ∈ V for which 435

Γ(r, σ) is defined, set r′ = Γ(r, σ), t′ = t+ η̃(r, σ). If closed(r′) = 436

1, go to 3). Else, if value(r′) is undefined Insert(Q, (r,′ t′)). Oth- 437

erwise, if t′ < value(r′), set value(r′) = t′, parent(r′) = r and do 438

DecreaseKey(Q, (r,′ t′)). 439

3) [loop] If Q �= ∅ go back to 2), otherwise no solution exists. 440

Proposition V.3: Algorithm V.2 terminates and returns the optimal 441

solution (if it exists), with a time-complexity not higher than Dijkstra’s 442

algorithm on the extended graph G̃. 443

Proof: It is a consequence of the fact that heuristic h is admissible 444

and consistent (see [19, Th. 2.9 and 2.10]). � 445

Note that, at the end of Algorithm V.2, value(f) is the optimal value 446

of the k-BASP and the optimal path from s to setF can be reconstructed 447

from map parent. 448

One possible limitation of Algorithm V.2 is that estimating K(B) 449

from its definition can be difficult. A correct estimation of K(B) is 450

critical for the efficiency of the algorithm. Indeed, if K(B) is overesti- 451

mated, the time complexity of the algorithm is higher than it would be 452

with a correct estimate. On the other hand, if K(B) is underestimated, 453

Algorithm V.2 is not correct since Proposition IV.4 does not hold. Here, 454

we propose an algorithm that adaptively finds a suitable value for k in 455

Algorithm V.2, such that k ≤ K(B), but, in any case, allows to find the 456

optimal solution of the BASP. First, we define the modified cost function 457

W : Vk → R as W (r) = V (r) + h(r), where V is given by (6) and 458

h is the heuristic given by (8). If (∀r ∈ Vk) �
+(r) ≤ �−(r), then W is 459

the solution of 460{
W (r) = minr′∈Prec(r){W (r′) + η̃(r,′ �r)}
W (s) = h(s).

(10)

Indeed, following the same steps of the proof of Proposition IV.4, 461

W (r) = V (r) + h(r) = minr′∈Prec(r){V (r′) + η(r,′ �r) + h(r) + 462

h(r′)− h(r′)} = minr′∈Prec(r){W (r′) + η̃(r,′ �r)}. Hence, W (r) 463

corresponds to the length of the shortest path from s to r on G̃, 464

with arc length given according to η̃. If condition �+(r) ≤ �−(r) is 465

not satisfied for all r ∈ Vk, (10) does not hold for all r ∈ Vk and 466

W does not represent the solution of an SP. However, the following 467

proposition shows that we can still find a lower bound Ŵ of W that 468

does correspond to the solution of an SP. 469

Proposition V.4: Let Ŵ : Vk → R be the solution of 470{
Ŵ (r) = minr′∈Prec(r){Ŵ (r′) + η̂(r,′ �r)}
Ŵ (s) = 0,

(11)

where if �+(r′) ≤ �−(r′) or |r′| < k, η̂(r,′ �r) = η̃(r,′ �r), otherwise 471

η̂(r,′ �r) = h(r)− h(r′). Then, (∀r ∈ Vk) 472

1) Ŵ (r) ≤ W (r); 473

2) (∀r̄ ∈ Vk | Ŵ (r̄) ≤ Ŵ (r)) �+(r̄) ≤ �−(r̄) ⇒ Ŵ (r) = W (r). 474

Proof: 1) For r ∈ Vk, let p ∈ Ps be such that Suffk p ∈ Prec(r). 475

If �+(Suffk p) ≤ �−(Suffk p), in view of Proposition IV.2, 476

T (p�r) = T (p) + η(Suffk p,�r), otherwise, obviously, T (p�r) ≥ T (p). 477

Hence, in both cases, by the definition of η̃ in (9), T (p�r) + h(r) ≥ 478

T (p) + h(Suffk p) + η̂(Suffk p,�r). By contradiction, assume 479
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(∃A ⊂ Vk) A �= ∅ such that (∀r ∈ A) Ŵ (r) > W (r). Let480

r̄ = argminr̂∈A W (r̂) and Sr̄ = {q ∈ Ps | Suffk q ∈ Prec(r̄)},481

then W (r̄) = V (r̄) + h(r̄) = minp∈Ps|Suffk p=r̄ T (p) + h(r̄) =482

minq∈Sr̄ T (q�r) + h(r̄) ≥ minq∈Sr̄{T (q)+h(Suffk(q))+η̂(Suffk q,483

�̄r)} = minr′∈Prec(r̄){Ŵ (r′) + η̂(r,′ �̄r)} = Ŵ (r̄), where we used the484

fact that W (r′) = Ŵ (r′), that follows from the definition of r̄, since485

the value of r′ that attains the minimum is such that W (r′) < W (r̄).486

Then, the obtained inequality contradicts the fact that Ŵ (r̄) > W (r̄).487

2) Let A ⊂ V be the set of values of r ∈ V for which 2)488

does not hold, and by contradiction, assume that A �= ∅ and let489

r̂ = argminr∈AŴ (r). Then, by definition of r̂, it satisfies the490

following two properties: (∀r̄ ∈ Vk | Ŵ (r̄) ≤ Ŵ (r̂)) �+(r̄) ≤ �−(r̄),491

moreover, Ŵ (r̂) �= W (r̂). Note that, from the definitions of Ŵ ,492

W (s) = Ŵ (s). Then, W (r̂) = minp∈Ps|Suffk p=r̂ T (p) + h(r̂) =493

minq∈Ps|Suffk q∈Prec(r̂){T (q�̂r) + h(Suffk q)− h(Suffk q) + h(r̂)}=494

minr′∈Prec(r̂){Ŵ (r′) + η̂(r,′ �̂r)} = Ŵ (r̂), which contradicts the495

definition of r̂. Here, we used (9) and the fact that, since Ŵ (r′) < Ŵ (r̂)496

and by the definition of r̂, Ŵ (r′) = W (r′). �497

Proposition V.4 implies that Ŵ (r) is a lower bound of W (r) and498

that it corresponds to the length of the shortest path from s to r on499

the extended directed graph G̃, with arc length given in accordance500

to (11), namely by the value of function η̂. Hence, Ŵ (f) can be501

computed by Dijkstra’s algorithm (which is equivalent to compute V502

with A∗ algorithm, with heuristic h). The algorithm that we are going503

to present is based on the following basic observation. If A∗ algorithm504

computes f ∗ = argminf∈F̃ Ŵ (f) by visiting only nodes for which505

�+(r) ≤ �−(r), then 2) of Proposition V.4 is satisfied for r = f ∗ and506

Ŵ (f ∗) = W (f ∗) is the optimal value of the k-BASP. If this is not the507

case, we increase k by 1 and rerun the A∗ algorithm. Note that the508

algorithm starts with k = 2, since, according to its definition, K(B)509

equals 1 only if no acceleration bounds are present and, in this case, the510

BASP is equivalent to a standard SP and can be solved by Dijkstra’s511

algorithm.512

Algorithm V.5 (Adaptive A∗ algorithm for k-BASP):513

1) Set k = 2.514

2) Execute A∗ algorithm, and at every visit of a new node r, if none515

of the two conditions �+(r) ≤ �−(r) and |r| < k holds, set k = k + 1516

and repeat step 2).517

Note that the algorithm does not compute the exact value K(B).518

Rather, it underestimates it. More precisely, it stops with the smallest519

k value needed to solve the BASP between the given source and520

destination nodes. That is, the smallest k that satisfies the k-BASP521

definition over the explored subgraph.522

Proposition V.6: Algorithm V.5 terminates with k ≤ K(B) and523

returns an optimal solution.524

Proof: By Definition (4) of K(B), if k = K(B), the condition525

�+(r) ≤ �−(r) is satisfied for all r. Hence, there exists k ≤ K(B)526

for which the algorithm terminates. Let r ∈ Vk, with �r ∈ F be the527

last-visited node before the termination of the algorithm. By 2) of528

Proposition V.4, we have that Ŵ (r) = W (r) = V (r) (since h(r) =529

0), but, by definition, V (r) is the shortest time for reaching a node in530

F . �531

VI. NUMERICAL EXPERIMENTS532

A. Randomly Generated Problems533

We performed various tests on problems associated to graphs with n534

nodes, for increasing values ofn, randomly generated with function ge-535

ographical_threshold_graph of Python package NetworkX (networkx.536

org). Essentially, each node is associated to a position randomly chosen537

from set [0, 1]2. Edges are randomly determined in such a way that538

Fig. 5. BASP computing times on graphs of different size.

TABLE I
PERCENTAGES OF k VALUES FOR GRAPHS OF DIFFERENT SIZE

closer nodes have a higher connection probability. We multiplied the 539

obtained positions by factor 10
√
n, in order to obtain the same average 540

node density independently ofn. Then, we associated a random angle θi 541

to each node, obtained from a uniform distribution in [0, 2π]. In this way, 542

each node of the random graph is associated to a vehicle configuration, 543

consisting of a position and an angle. Set τ(θi) = [cos θi, sin θi]
T . 544

Each edge (i, j) is associated to a Dubins path, which is defined as the 545

shortest curve of bounded curvature that connects the configurations 546

associated to nodes i and j, with initial tangent parallel to τ(θi) and 547

final tangent parallel to τ(θj). We chose the minimum turning radius for 548

the path associated to edge (i, j) as rij = min{�((i, j))/(d(θi, θj)), 2} 549

where d(x, y) is the angular distance between angles x and y. We set 550

the acceleration and deceleration bounds constant for all paths and 551

equal to 0.1 ms−2. The upper squared speed bound is constant for 552

each arc and given by 2r, where r is the minimum curvature radius 553

of the path associated to the arc. In our tests, we used the adaptive 554

A∗ algorithm (see Algorithm V.5). First, we ran simulations for ten 555

values of n, logarithmically spaced between 100 and 1000. For each 556

n, we generated 50 different graphs, and for each one of them, we 557

ran ten simulations, randomly choosing source and target nodes. Fig. 5 558

shows the mean values and the distributions of the computational times 559

of Algorithm V.5 and it also shows the mean computational times of 560

Algorithm V.2 with k computed as in (5). Note that the mean times of 561

Algorithm V.2 are at least one order of magnitude higher than those of 562

Algorithm V.5. Table I shows, for each n, the percentages of k values 563

returned by Algorithm V.5, and the mean value k̄ of k computed as 564

in (5). Note that the values obtained with (5) are on average 54.8 times 565

larger than those returned by Algorithm V.5. 566

In Section V, we showed that, for a given problem instance, path p∗, 567

corresponding to the solution of the BASP, is in general different from 568

the path p̂ obtained as the solution of the BASP with infinite acceleration 569

bounds (which, in fact, is an SP) and from the path p̃ obtained as the 570

solution of SP with edge costs equal to their lengths. We ran some 571

numerical experiments to compare travel times TB(p
∗) and TB(p̂), 572

(i.e., the travel time of p∗ and the one of p̂ on which speed has been 573

planned using the same acceleration bounds of the BASP), and lengths 574

�(p∗) and �(p̃). Namely, we generated 50 different random graphs with 575

n = 100 with the procedure presented previously. For each instance, 576

we considered ten problems obtained by randomly choosing source and 577

target nodes. Then, we solved the BASP with different acceleration 578

bounds α+ and α− logarithmically spaced in [0.01, 1] ms−2, with 579

networkx.org
networkx.org
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Fig. 6. Travel time difference between BASP and BASP without accel-
eration bounds and path length difference between BASP and SP with
edge costs equal to their lengths.

Fig. 7. Travel time gain of BASP on 1000 simulations on the 2 485-
node graph with respect to the BASP without acceleration bounds and
SP with edge costs equal to their lengths.

α+ = α−. In Fig. 6 (top), we compare the optimal travel times along580

pathsp∗ and p̂, that is, for each value of the acceleration and deceleration581

bounds, we report the relative percentage difference 100TB(p̂)−TB(p∗)
TB(p∗)582

obtained for each test. We observe that for low acceleration and deceler-583

ation bounds the difference is more significant, while as the acceleration584

and deceleration bounds increase, the travel time difference between the585

two paths tends to be smaller. This is due to the fact that, if acceleration586

bounds are sufficiently high, paths p∗ and p̂ are the same. In Fig. 6587

(bottom), we compare the length of paths p∗ and p̃ showing how the588

BASP solution tends to differ from the SP with edge costs equal to their589

lengths even for small acceleration bounds. For p∗ and p̃ to coincide590

one needs even smaller acceleration bounds.591

B. Real Industrial Applications592

Here, we present a problem from a real industrial application rep-593

resenting an automated warehouse provided by packaging company594

Ocme S.r.l., based in Parma, Italy. The problem is described by a graph595

of 2 485 nodes and 4 411 arcs. The acceleration and deceleration bounds596

are constant, equal for all arcs, and given by α+ = 0.28 ms−2 and597

α− = −0.18 ms−2. The speed bounds are constant for each arc but598

vary among different arcs, according to the associated path curvatures,599

and they take values on interval [0.1, 1.7] ms−1. The arc lengths take600

values in [0.2, 18] m and have an average value of 4.2 m. We ran 1000601

simulations by randomly choosing source and the target nodes. The602

average value and the standard deviation of the computational time603

are 0.1587 and 1.9355 s, respectively. The mean value of k returned604

by Algorithm V.5 is 5, while the bound obtained with (5) is 105. We605

compare travel times TB(p
∗), TB(p̂), and TB(p̃), that is, the travel time606

of p∗ and the ones of p̂ and p̃ on which speed has been planned using607

the same acceleration bounds of the BASP. Fig. 7 compares the optimal608

travel time gain obtained using p∗ over p̂ and p̃. Namely, we report609

the relative percentage differences over 1000 tests. In the first case, we610

had a 2.17% mean gain and the 25% best performing paths p∗ had a611

8.53% mean gain over p̂. While, in the latter case, we had a 5.85%612

mean gain and the 25% best performing paths p∗ had a 14.16% mean613

gain over p̃. Note that these results are probably due to the fact that614

the graph associated to the industrial problem has a low connectivity. 615

Indeed, most nodes in the industrial problem represent positions in 616

corridors and are connected only to the node preceding them and the 617

one following them along the corridor. Nonetheless, in such industrial 618

context, even moderate improvements represent a significant gain for a 619

company. 620

APPENDIX 621

Proposition A.1: Let μ, α : [0,+∞) → R+, for i ∈ {1, 2}, let Fi 622

be the solution of the differential equation (2) where Fi replaces F 623

and w0,i replaces μ(0), with 0 ≤ w0,i ≤ μ(0); and let λ̄ be such that 624

μ(λ̄) =
∫ λ̄

0
α(λ)dλ. Then, (∀λ ≥ λ̄) F1(λ) = F2(λ). 625

Proof: Without loss of generality, assume that w0,1 ≥ w0,2. This 626

implies that (∀λ ≥ 0) F1(λ) ≥ F2(λ). Indeed, assume by contradic- 627

tion that there exists λ̄ such that F1(λ̄) < F2(λ̄), then, by conti- 628

nuity of F1 and F2, this implies that there exists λ̂ ≤ λ̄ such that 629

F1(λ̂) = F2(λ̂), thus (∀λ ≥ λ̂) F1(λ) = F2(λ), since, for λ ≥ λ̂, 630

F1(λ) and F2(λ) solve the same differential equation with the same 631

initial condition at λ = λ̂, contradicting the assumption. Furthermore, 632

note that (∃λ̃ ∈ (0, λ̄]) F2(λ̃) = μ(λ̃). Indeed, if by contradiction 633

(∀λ ∈ (0, λ̄]) F2(λ) < μ(λ), then (∀λ ∈ (0, λ̄]) F ′
2(λ) = α(λ) so that 634

F2(λ̄)− F2(0) =
∫ λ̄

0
α(λ) dλ = μ(λ̄), which contradicts the assump- 635

tion. Hence, (∃λ̂ ∈ R+) F2(λ̂) = F1(λ̂) = μ(λ̂), and consequently, 636

(∀λ ≥ λ̂) F1(λ) = F2(λ), which implies the thesis, being λ̄ ≥ λ̂. � 637

For p ∈ P , λ ∈ [0, �(p)], we set Wp(λ) = w, wherew is the solution 638

of Problem (1) for path p. In other words, Wp(λ) is the square of the 639

optimal speed profile for traversing the path p, evaluated at arc length 640

λ, with respect to p. 641

Proposition A.2 1): Let p1, p2, q ∈ P , be such that p1q, p2q ∈ P , 642

then (∀λ ≥ �+(q)) Wp1q(�(p1) + λ) = Wp2q(�(p2) + λ). 643

2) Let p, q2, q1 ∈ P , be such that pq1, pq2 ∈ P , then (∀λ ≤ 644

�−(p)) Wpq1(λ) = Wpq2(λ). 645

Proof: We only prove 1), the proof of 2) is analogous. Note 646

that, for λ ≥ 0, Wp1q(λ + �(p1)) = min{F1(λ), B(λ)}, Wp2q(λ + 647

�(p2)) = min{F2(λ), B(λ)}, where F1 and F2 are the solution of (2) 648

with μ = μ+ and initial conditions w0,1 = Wp1(�(p1)) and w0,2 = 649

Wp2(�(p2)), respectively, and B is the solution of (3) with μ = μ+. 650

By Proposition A.1, for λ ≥ �+(q), F1(λ) = F2(λ). Consequently, 651

(∀λ ≥ �+(q)) Wp1q(�(p1) + λ) = Wp2q(�(p2) + λ). � 652

A. Proof of Proposition IV.2 653

Let Ψ be defined as in (1a), then T (p1tσ)− T (p1t) =
∫ �(p1tσ)

0
Ψ 654

(Wp1tσ(λ))dλ − ∫ �(p1t)

0
Ψ(Wp1t(λ))dλ =

∫ �(p1tσ)

�(p1)+�−(t)
Ψ(Wp1tσ(λ)) 655

dλ − ∫ �(p1t)

�(p1)+�−(t))
Ψ(Wp1t(λ))dλ, where we used that, by 2) of 656

Proposition A.2, (∀λ ≤ �(p1) + �−(t))Ψ(Wp1tσ(λ)) = Ψ(Wp1t(λ)). 657

Similarly, T (p2tσ) − T (p2t) =
∫ �(p2tσ)

�(p2)+�−(t)
Ψ(Wp2tσ(λ))dλ − 658∫ �(p2t)

�(p2)+�−(t)
Ψ(Wp2t(λ))dλ. Moreover, by 1) of Proposition A.2, we 659

have that (∀λ ≥ �+(tσ))Wp1tσ(�(p1) + λ)dλ= Wp2tσ(�(p2) + λ)dλ 660

and (∀λ ≥ �+(t)) Wp1t(�(p1) + λ)dλ = Wp2t(�(p2) + λ)dλ, 661

which imply that T (p1tσ)− T (p1t) = T (p2tσ)− T (p2t), since 662

�+(t) ≤ �−(t), and as noticed in Section IV, �+(tσ) ≤ �+(t). � 663
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Technical Notes and Correspondence1

Solution Algorithms for the Bounded Acceleration
Shortest Path Problem

2

3

Stefano Ardizzoni , Luca Consolini , Mattia Laurini , and Marco Locatelli4

Abstract—The purpose of this article is to introduce and char-5
acterize the bounded acceleration shortest path problem (BASP),6
a generalization of the shortest path problem (SP). This problem7
is associated to a graph: nodes represent positions of a mobile8
vehicle and arcs are associated to preassigned geometric paths9
that connect these positions. The BASP consists in finding the10
minimum-time path between two nodes. Differently from the SP, the11
vehicle has to satisfy bounds on maximum and minimum acceler-12
ation and speed, which depend on the vehicle’s position on the13
currently traveled arc. Even if the BASP is NP-hard in the general14
case, we present a solution algorithm that achieves polynomial15
time-complexity under some additional hypotheses on problem16
data.17

Index Terms—.
Q1

18

I. INTRODUCTION19

The combinatorial problem of detecting the best path from a source to20

a destination node over an oriented graph with constant costs associated21

to its arcs, also known as shortest path problem (SP in what follows),22

is well known and can be efficiently solved, e.g., by the Dijkstra23

algorithm (in case of nonnegative costs). The continuous problem of24

minimum-time speed planning over a fixed path under given speed and25

acceleration constraints, also depending on the position along the path,26

is also widely studied and very efficient algorithms for its solution27

exist. But the combination of these two problems, called in what28

follows bounded acceleration shortest path problem (BASP), turns out29

to be more challenging than the two problems considered separately.30

More precisely, in terms of the complexity theory, it is possible to31

prove that the BASP is NP-hard, while the two problems considered32

separately are both polynomially solvable. In the BASP, we still have33

the combinatorial search for a best path as in SP but, differently from34

SP, the cost of an arc (more precisely, the time to traverse it) is not a35

constant value but depends on the speed planning along the arc itself,36

which, in turn, depends on the speed and acceleration constraints not37

only over the same arc but also over those preceding and following it38

in the selected path. Fig. 1(a) presents a simple scenario that allows39

Manuscript received October 25, 2021; accepted April 15, 2022. This
work was supported by the Programme “FIL-Quota Incentivante” of
University of Parma and co-sponsored by Fondazione Cariparma. Rec-
ommended by Associate Editor T. Faulwasser. (Corresponding author:
Luca Consolini.)Q2

The authors are with the Dipartimento di Ingegneria e Architettura,
Università degli Studi di Parma, 43124 Parma, Italy (e-mail: stefano.
ardizzoni@unipr.it; luca.consolini@unipr.it; mattia.laurini@unipr.it;
marco.locatelli@unipr.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3172169.
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Fig. 1. Comparison of BASP and SP solutions. (a) Paths p1 and p2
connecting node s and f . (b) Optimal speed profile on p1. (c) Optimal
speed profile on p2.

to illustrate the BASP and its difference with SP; it shows two fixed 40

paths p1 and p2 connecting positions s and f . The vehicle starts from 41

s with null speed and must reach f with null speed. The solution of SP 42

corresponds to the path p1, which is the one of the shortest length. The 43

BASP consists in finding the shortest-time path under acceleration and 44

speed constraints. In this case, we assume that the vehicle acceleration 45

and deceleration are bounded by a common constant and that its speed 46

is bounded only on the central, high-curvature section of p1, in order 47

to avoid excessive lateral acceleration, which may cause sideslip. If the 48

bound on acceleration and deceleration is sufficiently high, the solution 49

of the BASP corresponds to the path p2. Indeed, even if the latter path is 50

longer, it can be traveled with a greater mean speed. Fig. 1(b) represents 51

the fastest speed profile on p1. The x-axis corresponds to the arc-length 52

position on the path p1 and the y-axis represents the squared speed. 53

In this representation, arc-length intervals of constant acceleration or 54

deceleration correspond to straight lines. Fig. 1(c) represents the fastest 55

speed profile on p2. Even if path p2 is longer than p1, it can be traveled 56

in less time. In fact, the vehicle is able to accelerate till the midpoint, 57

and then, to decelerate to the end position f . 58

The interest for the BASP comes from a specific industrial appli- 59

cation, namely the optimization of automated guided vehicles (AGVs) 60

motion in automated warehouses. The AGVs may be either free to move 61

within a facility or be only allowed to move along predetermined paths. 62

In the first case, one needs to employ environmental representations 63

such as cell decomposition methods [1] or trajectory maps [2]. In par- 64

ticular, the authors in [3] present an algorithm based on a modification of 65

Dijkstra’s algorithm in which edge weights are history dependent. Our 66

work is related to the second approach. Namely, we assume that AGVs 67

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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cannot move freely within their environment and are instead required68

to move along predetermined paths that connect fixed operating points.69

These may be associated to shelves locations, where packages are stored70

or retrieved, to the end of production lines, where AGVs pick up final71

products, and to additional intermediate locations, used for routing. All72

these points are formally represented as nodes of a graph, whose arcs73

represent connecting paths. If AGVs are not subject to acceleration and74

speed constraints, the minimum-time planning problem is equivalent75

to SP and can be solved by the Dijkstra algorithm or its variants:76

see, for instance, [4]–[6], or other algorithms such as A∗ [7], Lifelong77

planning A∗ [8], D∗ [9], and D∗ Lite [10]. However, since the motion78

of AGVs must satisfy constraints on maximum speed and tangential79

and transversal accelerations that depend on the vehicle position on the80

path, these approaches cannot be applied to solve the BASP.81

Instead, various works consider the minimum-time speed planning82

problem with acceleration and speed constraint on an assigned path.83

For instance, one can use the methods presented in [11] and [12], or84

path-following techniques such as [13] and [14].85

As said, despite the fact that a large literature exists on SP and on the86

minimum-time speed planning on an assigned path, to the authors’87

knowledge, the BASP has never been specifically addressed in the88

literature. Formally, the BASP can be framed as an optimal control89

problem for a switching system, in which switchings are associated90

to passages from arc to arc and each discrete state is associated to a91

specific set of constraints. The results presented in this article exploit92

the very specific structure of the BASP and cannot be applied to generic93

switching systems. Anyway, the Algorithm V.5 could still apply to94

other switching systems satisfying an analogous of Proposition IV.395

and identifying a class of such systems could be the topic of future96

research.97

This article is structured as follows. After introducing the notation98

employed throughout this article in Section II, in Section III, we first99

briefly discuss the solution of the speed planning problem along a100

fixed path, and then, we provide a formal statement of the BASP, also101

mentioning an NP-hardness result. In Section IV, we consider a subclass102

of the BASP, called k-BASP, which can be solved with polynomial time103

complexity for fixed values of k. Since constant k is problem dependent104

and is not known in advance, in Section V, we present an adaptive A∗105

algorithm to find k. Finally, Section VI presents different computational106

experiments.107

II. NOTATION108

A directed graph is a pair G = (V ,E), where V is a set of nodes109

and E ⊂ {(x, y) ∈ V 2 | x �= y} is a set of directed arcs. A path p on G110

is a sequence of adjacent nodes of V (i.e., p = σ1 · · ·σm, with (∀i ∈111

{1, . . . ,m}) (σi, σi+1) ∈ E). An alphabet Σ = {σ1, . . . , σn} is a set112

of symbols. A word is any finite sequence of symbols. The set of all113

words over Σ is Σ∗, which also contains the empty word ε, while114

Σi represents the set of all words of length up to i ∈ N, (i.e., words115

composed of up to i symbols, including ε). Given a word w ∈ Σ∗, |w|116

denote its length. Given a directed graph G = (V ,E), we can think117

of V as an alphabet so that any path p of G is a word in V ∗. Given118

s, t ∈ Σ∗, the word obtained by writing t after s is the concatenation119

of s and t, denoted by st ∈ Σ∗; we call t a suffix of st and s a prefix120

of st. For r ∈ V ∗, �r is the rightmost symbol of r. In the following, we121

represent paths of G as strings of symbols in V . This allows to use122

the concatenation operation on paths and to use prefixes and suffixes to123

represent portions of paths. For x ∈ R, �x� = min{i ∈ Z | i ≥ x} is124

the ceiling of x. For a, b ∈ R, we set a ∧ b = min{a, b} and a ∨ b =125

max{a, b}, as the minimum and maximum operations, respectively.126

Finally, given an interval I ⊆ R, we recall that W 1,∞(I) is the Sobolev 127

space of functions in L∞(I) with weak derivative of order 1 with finite 128

L∞-norm. For f, g ∈ W 1,∞(I), we denote with f ∧ g and f ∨ g the 129

point-wise minimum and maximum of f and g, respectively. 130

III. PROBLEM FORMULATION 131

Before giving the formal description of the BASP, in Section III-A, 132

we briefly discuss the solution of the speed planning problem along a 133

fixed path. Although such problem has been already widely discussed 134

in the literature, here, we briefly describe a way to tackle it in order to 135

better understand the following formulation of the BASP. 136

A. Speed Planning Along an Assigned Path 137

Let γ : [0, λf ] → R2 be a C2 function such that (∀λ ∈ 138

[0, λf ]) ‖γ ′(λ)‖ = 1. The image set γ([0, λf ]) represents the path 139

followed by a vehicle, γ(0) the initial configuration, and γ(λf ) the 140

final one. The function γ is an arc-length parameterization of a path. 141

We want to compute the speed law that minimizes the overall travel 142

time while satisfying some kinematic and dynamic constraints. To this 143

end, let ξ : [0, tf ] → [0, λf ] be a differentiable monotonically increas- 144

ing function representing the vehicle arc-length coordinate along the 145

path as a function of time and let v : [0, λf ] → [0,+∞) be such that 146

(∀t ∈ [0, tf ]) ξ̇(t) = v(ξ(t)). In this way, v(λ) is the vehicle speed 147

at position λ. The vehicle position as a function of time is given by 148

x : [0, tf ] → R2, x(t) = γ(ξ(t)), speed and acceleration are given by 149

ẋ(t) = γ ′(ξ(t))v(ξ(t)), and ẍ(t) = aL(t)γ
′(ξ(t)) + aN (t)γ ′⊥(ξ(t)), 150

where aL(t) = v′(ξ(t))v(ξ(t)) and aN (t)(t) = κ(ξ(t))v(ξ(t))2 are 151

the longitudinal and normal components of acceleration, respec- 152

tively. Here, κ : [0, λf ] → R is the scalar curvature, defined as 153

κ(λ) =
〈
γ ′′(λ), γ ′(λ)⊥

〉
, where 〈·, ·〉 denotes the scalar product. 154

We require to travel distance λf in a minimum time while satisfy- 155

ing, for every t ∈ [0, ξ−1(λf )], 0 ≤ v−(ξ(t)) ≤ v(ξ(t)) ≤ v+(ξ(t)), 156

|aN (ξ(t))| ≤ β(ξ(t)), α−(ξ(t)) ≤ aL(ξ(t)) ≤ α+(ξ(t)). Here, func- 157

tions v−, v+, α−, α+, and β are arc-length-dependent bounds on the 158

vehicle speed and on its longitudinal and normal acceleration. It is 159

convenient to make the change of variables w = v2 (see [15]) so 160

that by setting Ψ(w) =
∫ λf
0

w(λ)−
1
2 dλ, μ+(λ) = v+(λ)2 ∧ β(λ)

κ(λ)
, and 161

μ−(λ) = v−(λ)2, our problem takes on the following form. 162

min
w∈W1,∞([0,λf ])

Ψ(w) (1a)

μ−(λ) ≤ w(λ) ≤ μ+(λ), λ ∈ [0, λf ] (1b)

α−(λ) ≤ w′(λ) ≤ α+(λ), λ ∈ [0, λf ] (1c)

where Ψ : W 1,∞([0, λf ]) → R is order reversing (i.e., (∀x, y ∈ 163

[0, λf ]) x ≥ y ⇒ Ψ(x) ≤ Ψ(y)) and μ−, μ+, α−, α+ ∈ L∞([0, λf ]) 164

are assigned functions with μ−, α+ ≥ 0, and α− ≤ 0. Initial and final 165

conditions on speed can be included in the definition of functions 166

μ− and μ+. For instance, to set initial condition w(0) = w0, it is 167

sufficient to define μ+(0) = μ−(0) = w0. In [16], we introduced a 168

subset of W 1,∞([0, λf ]), called Q, as a technical requirement and an 169

operator based on the solution of the following differential equations: 170

⎧⎪⎨
⎪⎩
F ′(λ) =

{
α+(λ) ∧ μ′(λ), if F (λ) ≥ μ(λ)

α+(λ), if F (λ) < μ(λ)

F (0) = μ(0)

(2)
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⎧⎪⎨
⎪⎩
B′(λ) =

{
α−(λ) ∧ μ′(λ), if B(λ) ≥ μ(λ)

α−(λ), if B(λ) < μ(λ)

B(λf ) = μ(λf )

(3)

with F,B ∈ Q, that allows to compute the optimal solution of the171

Problem (1). In particular, in [16], it is shown that the optimal solution is172

F (μ+) ∧B(μ+). We refer the reader to [16] for a detailed discussion.173

B. BASP Problem174

In this section, we provide a formal description of the BASP. Let175

us consider a directed graph G = (V ,E), with V = {σ1, . . . , σN}.176

For each i ∈ {1, . . . , N}, the node σi represents an operating point177

Ri ∈ R2. In fact, the restriction Ri ∈ R2 is not strictly necessary but178

we imposed it since it holds in the AGV application, which is the main179

motivation of this work. Each arc θ = (σi, σj) ∈ E represents a fixed180

directed path between two operating points and is associated to an181

arc-length parameterized path γθ of length �(θ), such that γθ(0) = Ri182

and γθ(�(θ)) = Rj . In the following, we denote the set of all possible183

paths on G by P . Similarly, for s, f ∈ V , we denote by Ps the subset184

of P consisting in all paths starting from s and by Ps,f the subset of185

P consisting in all paths starting from s and ending in f . We extend186

this definition to subsets of V , that is, if S,F ⊂ V , we denote by PS,F187

the set of all paths starting from nodes in S and ending in nodes in F .188

Given a path p = σ1 · · ·σm, its length �(p) is defined as the sum of the189

lengths of its individual arcs, that is, �(p) =
∑m−1

i=1 �(σi, σi+1).190

To setup our problem, we need to associate four real-valued functions191

to each edge θ ∈ E: the maximum and minimum allowed acceleration192

and squared speed. The domain of each function is the arc-length193

coordinate on the path γθ . Then, given a specific path p, we are able to194

define a speed optimization problem of the form (1) by considering the195

constraints associated to the edges that compose p. We define the set of196

edge functions as E = {ϕ : E × R+ → R}. If ϕ ∈ E, θ ∈ E, λ ∈ R+,197

ϕ(θ, λ) denotes the value ofϕ on edge θ at position λ. Note thatϕ(θ, λ)198

will be relevant only for λ ∈ [0, �(θ)]. Given a path p = σ1 · · ·σm,199

we associate to ϕ ∈ E a function ϕp : [0, �(p)] → R in the following200

way. Define functions Θ : [0, �(p)] → N, Λ : [0, �(p)] → R such that201

Θ(λ) = max{i ∈ N | �(σ1 · · ·σi) ≤ λ} and Λ(λ) = �(σ1 · · ·σΘ(λ)).202

In this way, Θ(λ) is such that θ(λ) = (σΘ(λ), σΘ(λ)+1) is the edge203

that contains the position at arc length λ along p, and Λ(λ) is the204

sum of the lengths of all arcs up to node σΘ(λ) in p. Then, we define205

ϕp(λ) = ϕ(θ(λ), λ − Λ(λ)).206

Given μ̂+, μ̂−, α̂+, α̂− ∈ E and path p ∈ P , let B = (μ̂−, μ̂+,207

α̂−, α̂+). Assume (∀θ ∈ E) μ̂+(θ, ·) ∈ Q and define TB(p) =208

minw∈W1,∞([0,sf ]) Ψ(w), as the solution of the Problem (1) along209

path p with μ− = μ̂−
p , μ+ = μ̂+

p , α− = α̂−
p , and α+ = α̂+

p . In this210

way, TB(p) is the minimum time required to traverse the path p,211

respecting the speed and acceleration constraints defined in B. We set212

TB(p) = +∞ if the Problem (1) is not feasible.213

The following is the main problem discussed in this article.214

Problem III.1 (BASP): Given a graph G = (V ,E), μ+, μ−,215

α−, α+ ∈ E, B = (μ+, μ−, α−, α+), s ∈ V , and F ⊂ V , find216

minp∈Ps,F
TB(p).217

In other words, we want to find the path p that minimizes the transfer218

time between source node s and a destination node in F , taking into219

account bounds on speed and accelerations on each traversed arc (rep-220

resented by arc functions μ+, μ−, α−, α+). The following properties221

are a direct consequence of the definition of TB(p).222

Proposition III.2: The following properties hold:223

1) let p1, p2 ∈ P , p1p2 ∈ P ⇒ TB(p1p2) ≥ TB(p1) + TB(p2);224

2) if B = (μ+, μ−, α−, α+), B̂ = (μ̂+, μ̂−, α̂−, α̂+) are such that225

(∀θ ∈ E) (∀λ ∈ [0, �(θ)])[μ−(θ, λ), μ+(θ, λ)] ⊂ [μ̂−(θ, λ), μ̂+(θ, λ)]226

Fig. 2. Computation of �+(s1) = 1 and �−(s1) = 0.

and [α−(θ, λ), α+(θ, λ)] ⊂ [α̂−(θ, λ), α̂+(θ, λ)], then (∀p ∈ P ) 227

TB(p) ≥ TB̂(p). 228

In particular, the first property states that the minimum time for 229

traveling the composite path p1p2 is greater or equal to the sum of the 230

times needed for traveling p1 and p2 separately. In fact, in the first case, 231

the speed must be continuous when passing from p1 to p2 (due to the 232

acceleration bounds), but this constraint does not need to be satisfied 233

when the speed profiles for p1 and p2 are computed separately. 234

The following proposition (whose proof can be found in [17]) states 235

the theoretical complexity of a simplified version of Problem III.1, 236

called BASP-C, in which maximum and minimum acceleration and 237

speed are constant on each arc. 238

Proposition III.3: Problem BASP-C is NP-hard. 239

IV. k-BASP 240

As we will see in Remark IV.6, SP can be viewed as a special case 241

of the BASP, namely a BASP with unbounded acceleration limits. In 242

fact, also BASP can be viewed as an SP but defined on a different graph 243

with respect to the original one. More precisely, here, we introduce 244

some restrictions on parameters B that allow reducing the BASP to a 245

standard SP that can be solved by Dijkstra’s algorithm on an extended 246

graph. Let p ∈ P , define 247

�+(p) = min{{λ ∈ [0, �(p)] | ∫ λ

0
α+
p (q)dq = μ+

p (λ)},+∞}; 248

�−(p) = max{{λ ∈ [0, �(p)] | −∫ �(p)

λ
α−
p (q)dq = μ+

p (λ)},−∞}. 249

In this way, �+(p) is the smallest value of λ ∈ [0, �(p)] for which 250

the solution of F in (2), with α+ = α+
p , starting from initial condi- 251

tion F (0) = 0, reaches the squared speed upper bound μ+(λ). Note 252

that �+(p) = ∞ if no such value of λ exists. Similarly, �−(p) is the 253

largest value of λ ∈ [0, �(p)] for which the solution of B in (3), with 254

α− = α−
p , starting from initial condition B(�(p)) = 0, reaches μ+(λ). 255

Again, �−(p) = −∞ if no such value of λ exists. Note that if p, t, pt ∈ 256

P , �+(pt) ≤ �+(p) and �−(pt) ≥ �−(p) (actually, equalities hold if the 257

values are all finite). Finally, we define 258

K(B) = min{k ∈ N | (∀p ∈ Ps) |p| ≥ k ⇒ �+(p) ≤ �−(p)}. (4)

We call k-BASP any instance of Problem III.1 that sat- 259

isfies K(B) ≤ k. For instance, consider the following chain 260

graph G = (V = {s, 1, 2, f}, E = {(s, 1), (1, 2), (2, f)}). Here, 261

(∀θ ∈ E) α−(θ) = −1, α+(θ) = 1, μ−(θ) = 0, �(θ) = 1, and 262

μ+((s, 1)) = 1, μ+((1, 2)) = 2
3

, μ+((2, f)) = 1. In this case, Ps = 263

{s, s1, s12, s12f}. Moreover, K(B) > 2, since �+(s1) = 1 > 0 = 264

�−(s1), as reported in Fig. 2. Furthermore, �+(s12) < �−(s12) and 265

�+(12f) < �−(12f) and s12, 12f are the only paths of length 3. Fig. 3 266

shows the computation of �+(s12) and �−(s12); the computation of 267

�+(12f) and �−(12f) is analogous. Hence, in this example,K(B) = 3. 268

Note that K(B)− 1 represents the maximum number of nodes of a 269

path that can be traveled with a speed profile of maximum acceleration, 270

followed by one of maximum deceleration, starting and ending with null 271

speed, without violating the maximum speed constraint. The following 272
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Fig. 3. Computation of �+(s12) = 1 and �−(s12) = 4
3 .

expression provides a simple upper bound on K(B):273

K(B)≤ 1 +

⎡
⎢⎢⎢2max

θ∈E

max
λ∈[0,�(θ)]

μ+(θ, λ)

min
λ∈[0,�(θ)]

(
α+(θ, λ) ∧ |α−(θ, λ)|) �(θ)

⎤
⎥⎥⎥. (5)

Note thatK(B) = 1 only ifα− = −∞ andα+ = +∞, that is, if we274

do not consider acceleration bounds. We will present an algorithm that275

solves the k-BASP in polynomial time complexity with respect to |V |276

and |E|. However, note that the complexity is exponential with respect277

to k so that a correct estimation of K(B) is critical. In general, the278

bound (5) overestimates K(B). In Section V, we will present a simple279

method for correctly estimating K(B).280

We recall that Vk represents the subset of language V ∗ composed of281

strings with maximum length k, including the empty string ε. Define282

Suffk : P → Vk such that, if |p| ≤ k, Suffk(p) = p and if |p| > k,283

Suffk(p) is the suffix of p of length k. The function Suffk allows to284

introduce a partially defined transition function Γ : Vk × V → Vk by285

setting Γ(r, σ) = Suffk(rσ) if rσ ∈ P , otherwise, if rσ /∈ P , Γ(r, σ)286

is not defined. Define the incremental cost function η : Ps × V → R+287

such that, for p ∈ Ps and σ ∈ V , if pσ ∈ Ps, η(p, σ) = TB(pσ)−288

TB(p), otherwise η(p, σ) = +∞. In other words, η(p, σ) is the dif-289

ference between the minimum time required for traversing pσ and the290

minimum time required for traversing p. For simplicity of notation,291

from now on, we will denoteTB simply asT . The following proposition292

shows that the incremental cost is always strictly positive.293

Proposition IV.1: η(p, σ) ≥ T (σ).294

Proof: By 1) of Proposition III.2, T (pσ) ≥ T (p) + T (σ). �295

The following property, whose proof is presented in the Appendix,296

plays a key role in the solution algorithm.297

Proposition IV.2: Let p1, p2, t ∈ P , if p1t, p2t ∈ P and �+(t) ≤298

�−(t), then (∀σ ∈ V ) T (p1tσ)− T (p1t) = T (p2tσ)− T (p2t).299

The following is a direct consequence of Proposition IV.2. It states300

that, given p ∈ P and σ ∈ V , the incremental cost η(p, σ) does not301

depend on the complete pathp, but only onSuffk(p) (its lastk symbols).302

Proposition IV.3: If K(B) ≤ k and p, p′ ∈ P are such that303

Suffk(p) = Suffk(p
′), then (∀σ ∈ V ) η(p, σ) = η(p,′ σ).304

Define function η̂ : Vk × V → R+, such that η̂(r, σ) = η(p, σ)305

where p ∈ P is any path such that r = Suffk(p). We set η̂(r, σ) = +∞306

if such path does not exist. Note that the function η̂ is well-defined by307

Proposition IV.3, beingη(p, σ) identical among all pathsp such that r =308

Suffk(p). In particular, Proposition IV.3 holds for p′ = Suffk(p) = r309

so that we can compute η̂ as η̂(r, σ) = η(r, σ). In the following, since310

η̂ is the restriction of η on Vk × V , we denote η̂ simply by η.311

The value k can be viewed as the amount of memory required to312

solve the problem: once a node is reached, the optimal path from such313

node to the target one depends on the last k visited nodes. If k = 1, it314

only depends on the current node (i.e., no memory is required). This315

is the situation with the classical SP. More generally, k > 1 so that the316

optimal way to complete the path does not only depend on the current317

node, but also on the sequence of k − 1 nodes visited before reaching318

it. Define function V : Vk → R as319

V (r) = min
p∈Ps|Suffk p=r

TB(p). (6)

Fig. 4. Graph and its corresponding extension for k = 2.

Note that the solution of the BASP corresponds to minr∈Vk |�r∈F V (r) 320

(we recall that �r is the last node of r). For r ∈ Vk, define the set of 321

predecessors of r asPrec(r) = {r̄ ∈ Vk | r = Γ(r̄, �r)}. The following 322

proposition presents an expression for V (r) that holds if �+(r′) ≤ 323

�−(r′) for all predecessors r′ of r. 324

Proposition IV.4: Let r ∈ Vk, if (∀r′ ∈ Prec(r)) �+(r′) ≤ �−(r′), 325

then 326

V (r) = min
r′∈Prec(r)

{V (r′) + η(r,′ �r)}. (7)

Proof: Let Sr = {q ∈ Ps | Suffk q�r = r}. V (r) = minp ∈ 327

Ps | Suffk p = rT (p) = minq∈Sr{T (q�r)− T (q) + T (q)} = minq 328

∈ Sr{T (q) + T ((Suffk q)�r)− T (Suffk q)} = minq∈Sr{T (q) + 329

η(Suffk q, �r)} = minr′∈Prec(r), q∈Sr′ {T (q) + η(r,′ �r)} = 330

minr′∈Prec(r){V (r′) + η(r,′ �r)}, where we used the facts that 331

T (qσ)− T (q) = T (Suffk qσ)− T (Suffk q), by Proposition IV.2, 332

and that q ∈ Ps is such that Suffk q�r = r ⇔ Suffk q ∈ Prec(r). � 333

As a consequence of Proposition IV.4, if (∀r ∈ Vk) �
+(r) ≤ �−(r), 334

V (r) corresponds to the length of the shortest path from s to r on the 335

extended directed graph G̃ = (Ṽ , Ẽ), where Ṽ = Vk and (r1, r2) ∈ Ẽ 336

if r2 = Γ(r1, �r2) is defined, in this case its length is η(r1, �r2). The left 337

part of Fig. 4 shows a graph consisting of three nodes. Node s = 1 is 338

the source (indicated by the entering arrow) and the double border 339

shows the final node F = {3}. The right part of Fig. 4 represents 340

the corresponding extended graph, obtained for k = 2, consisting of 341

13 nodes (the cardinality of V2). Note that some of the nodes are 342

unreachable from the initial state, these are represented with dotted 343

borders. 344

Solving k-BASP corresponds to finding a minimum-length path on 345

G̃ that connects node s ∈ Vk to F̃ = {r ∈ Vk | �f ∈ F}. Note that the 346

set of final states F̃ for the extended graph G̃ contains all paths p ∈ Vk 347

that end in an element ofF . In the extended graph reported in Fig. 4, this 348

corresponds to finding a minimum-length path from the starting node 349

1 to one of the final nodes 3, 13, 23, and 33. Note that the unreachable 350

nodes play no role in this procedure. We can find a minimum-length 351

path by Dijkstra’s algorithm applied to G̃, leading to the following 352

complexity result. 353

Proposition IV.5: k-BASP can be solved with complexity 354

O(|V |k−1|E|+ (|V |k log |V |k)). 355

Proof: Dijkstra’s algorithm has time complexity O(|E|+ 356

|V | log |V |), where |E| and |V | are the cardinalities of the edge 357

and vertex sets, respectively. In our case, |V | = |Ṽ | = |Vk| = 358∑k
i=0 |V |i = O(|V |k), |E| = |Ẽ| ≤ |Vk−1E| = O(|V |k−1|E|). � 359

The following remark establishes that SP can be viewed as a special 360

case of the BASP without acceleration bounds. 361

Remark IV.6: If (∀θ ∈ E) (∀λ ∈ [0, �(θ)]) α−(θ, λ) = −∞, 362

α+(θ, λ) = +∞, then K(B) = 1. The resulting 1-BASP reduces to 363

a standard SP on the graph G and can be solved with time complexity 364

O(|E|+ |V | log |V |). 365

V. ADAPTIVE A∗ ALGORITHM FOR k-BASP 366

The computation method based on Dijkstra’s algorithm on the 367

extended graph G̃, presented in the previous section, has two main 368
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disadvantages. First, G̃ has
∑k

j=0 |V |j nodes so that the time required369

by Dijkstra’s algorithm grows exponentially with k. We will show that370

it is possible to mitigate this problem and reduce the number of visited371

nodes by using the A∗ algorithm with a suitable heuristic. Second, the372

estimation of k = K(B) from its definition is not an easy task. We will373

show that it is quite easy to adaptively find the correct value of k by374

starting from k = 2 and increasing k if needed.375

The A∗ algorithm is a heuristic method that allows to compute the376

optimal path, if it exists (see [18]), by exploring the graph beginning377

from the starting node along the most promising directions according378

to a heuristic function that estimates the cost from the current position379

to the target node. Hence, to implement the A∗ algorithm, we need to380

define a heuristic function h : Vk → R, such that, for r ∈ Vk, h(r) is a381

lower bound on minp∈P
�r,F̃

T (p), that is, the minimum time needed for382

traveling from �r to a final state in F̃ . In general, we can compute lower383

bounds for the BASP by relaxing the acceleration constraints α− and384

α+. Namely, let B̂ be a parameter set obtained by relaxing acceleration385

constraints in B. Then, ifK(B̂) < K(B), by Proposition IV.5, the solu-386

tion of the BASP for parameter B̂ can be computed with a lower compu-387

tational time than the solution with parameter B. In particular, we obtain388

a very simple lower bound by removing acceleration bounds altogether,389

that is, by setting α− = −∞ and α+ = +∞. In this way, the vehicle390

is allowed to travel at maximum speed everywhere along the path and391

the incremental cost function η(p, σ) is given by the time needed to392

travel γσ at maximum speed, that is, η(p, σ) =
∫ �(�pσ)

0
1√

μ+((�p,σ),λ)
dλ.393

Define the heuristic h : Vk → R+ as394

h(r) = min
p∈P

�r,F̃

TB̂(p). (8)

Note that, ifα− = −∞ andα+ = +∞,h corresponds to the solution of395

1-BASP and all values ofh can be efficiently precomputed by Dijkstra’s396

algorithm (see Remark IV.6). The following proposition shows that h397

is admissible and consistent so that the A∗ algorithm, with heuristic h,398

provides the optimal solution of the k-BASP and its time complexity399

is no worse than Dijkstra’s algorithm (see [19, Th. 2.9 and 2.10]).400

Proposition V.1: Heuristic h satisfies the following two properties.401

1) Admissibility: (∀r ∈ Vk) h(r) ≤ minq∈P�r,f
TB(q).402

2) Consistency: (∀r ∈ Vk) (∀σ ∈ V )h(r) ≤ η(r, σ) + h(Γ(r, σ)).403

Proof: 1)h(r) = minp∈P�r,f
TB̂(p) ≤ minq∈P�r,f

TB(q), since B̂ is404

a relaxation of B.405

2) h(r) = minp∈P�r,f
TB̂(p) ≤ TB̂(σ) + minp∈Pσ,f

TB̂(p) ≤406

TB(σ) + minp∈Pσ,f
TB̂(p) ≤ η(r, σ) + minp∈Pσ,f

TB̂(p) =407

η(r, σ) + h(Γ(r, σ)), whereTB̂(σ) ≤ TB(σ) by 2) of Proposition III.2408

and TB(σ) ≤ η(r, σ) by Proposition IV.1. �409

Since heuristic h is admissible and consistent, A∗ is equivalent to410

Dijkstra’s algorithm, with the only difference that the incremental cost411

function η(r, σ) is replaced by the modified cost412

η̃(r, σ) = η(r, σ) + h(Γ(r, σ))− h(r) (9)

(see [19, Lemma 2.3] for a complete discussion). A description of the413

A∗ algorithm can be found in literature (for instance, see [19, Algorithm414

2.13]). We define a priority queue Q that contains open nodes, that is,415

nodes that have already been generated but have not yet been visited.416

Namely, Q is an ordered set of pairs (r, t) ∈ Vk × R+, in which r ∈ Vk417

and t is a lower bound for the time associated to the best completion of418

r to a path arriving at a final state. We need to perform the following419

operations on Q: operation Insert(Q, (r, t)) inserts couple (r, t) into420

Q; operation (r, t) = DeleteMin(Q) returns the first couple of Q,421

that is, the couple (r, t) with the minimum time t, and removes this422

couple from Q; and, operation DecreaseKey(Q, (r, t)) assumes that423

Q already contains a couple (r, t′) with t′ > t and substitutes this424

couple with (r, t). Furthermore, we consider three partially defined 425

maps value : Vk → R, parent : Vk → Vk, closed : Vk → {0, 1}, 426

such that, for r ∈ Vk, value(r) is the current best upper estimate of 427

V (r), parent(r) is the parent node of r, and closed(r) = 1 if node 428

r has already been visited. Maps value, parent, and closed can be 429

implemented as hash tables. 430

Algorithm V.2 (A∗ algorithm for k-BASP): 431

1) [initialization] Set Q = {(s, h(s))}, value(s) = 0. 432

2) [expansion] Set (r, t) = DeleteMin(Q) and set closed(r) = 1. 433

If �r ∈ F̃ , then t is the optimal solution and the algorithm terminates, 434

returning maps value, parent. Otherwise, for each σ ∈ V for which 435

Γ(r, σ) is defined, set r′ = Γ(r, σ), t′ = t+ η̃(r, σ). If closed(r′) = 436

1, go to 3). Else, if value(r′) is undefined Insert(Q, (r,′ t′)). Oth- 437

erwise, if t′ < value(r′), set value(r′) = t′, parent(r′) = r and do 438

DecreaseKey(Q, (r,′ t′)). 439

3) [loop] If Q �= ∅ go back to 2), otherwise no solution exists. 440

Proposition V.3: Algorithm V.2 terminates and returns the optimal 441

solution (if it exists), with a time-complexity not higher than Dijkstra’s 442

algorithm on the extended graph G̃. 443

Proof: It is a consequence of the fact that heuristic h is admissible 444

and consistent (see [19, Th. 2.9 and 2.10]). � 445

Note that, at the end of Algorithm V.2, value(f) is the optimal value 446

of the k-BASP and the optimal path from s to setF can be reconstructed 447

from map parent. 448

One possible limitation of Algorithm V.2 is that estimating K(B) 449

from its definition can be difficult. A correct estimation of K(B) is 450

critical for the efficiency of the algorithm. Indeed, if K(B) is overesti- 451

mated, the time complexity of the algorithm is higher than it would be 452

with a correct estimate. On the other hand, if K(B) is underestimated, 453

Algorithm V.2 is not correct since Proposition IV.4 does not hold. Here, 454

we propose an algorithm that adaptively finds a suitable value for k in 455

Algorithm V.2, such that k ≤ K(B), but, in any case, allows to find the 456

optimal solution of the BASP. First, we define the modified cost function 457

W : Vk → R as W (r) = V (r) + h(r), where V is given by (6) and 458

h is the heuristic given by (8). If (∀r ∈ Vk) �
+(r) ≤ �−(r), then W is 459

the solution of 460{
W (r) = minr′∈Prec(r){W (r′) + η̃(r,′ �r)}
W (s) = h(s).

(10)

Indeed, following the same steps of the proof of Proposition IV.4, 461

W (r) = V (r) + h(r) = minr′∈Prec(r){V (r′) + η(r,′ �r) + h(r) + 462

h(r′)− h(r′)} = minr′∈Prec(r){W (r′) + η̃(r,′ �r)}. Hence, W (r) 463

corresponds to the length of the shortest path from s to r on G̃, 464

with arc length given according to η̃. If condition �+(r) ≤ �−(r) is 465

not satisfied for all r ∈ Vk, (10) does not hold for all r ∈ Vk and 466

W does not represent the solution of an SP. However, the following 467

proposition shows that we can still find a lower bound Ŵ of W that 468

does correspond to the solution of an SP. 469

Proposition V.4: Let Ŵ : Vk → R be the solution of 470{
Ŵ (r) = minr′∈Prec(r){Ŵ (r′) + η̂(r,′ �r)}
Ŵ (s) = 0,

(11)

where if �+(r′) ≤ �−(r′) or |r′| < k, η̂(r,′ �r) = η̃(r,′ �r), otherwise 471

η̂(r,′ �r) = h(r)− h(r′). Then, (∀r ∈ Vk) 472

1) Ŵ (r) ≤ W (r); 473

2) (∀r̄ ∈ Vk | Ŵ (r̄) ≤ Ŵ (r)) �+(r̄) ≤ �−(r̄) ⇒ Ŵ (r) = W (r). 474

Proof: 1) For r ∈ Vk, let p ∈ Ps be such that Suffk p ∈ Prec(r). 475

If �+(Suffk p) ≤ �−(Suffk p), in view of Proposition IV.2, 476

T (p�r) = T (p) + η(Suffk p,�r), otherwise, obviously, T (p�r) ≥ T (p). 477

Hence, in both cases, by the definition of η̃ in (9), T (p�r) + h(r) ≥ 478

T (p) + h(Suffk p) + η̂(Suffk p,�r). By contradiction, assume 479
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(∃A ⊂ Vk) A �= ∅ such that (∀r ∈ A) Ŵ (r) > W (r). Let480

r̄ = argminr̂∈A W (r̂) and Sr̄ = {q ∈ Ps | Suffk q ∈ Prec(r̄)},481

then W (r̄) = V (r̄) + h(r̄) = minp∈Ps|Suffk p=r̄ T (p) + h(r̄) =482

minq∈Sr̄ T (q�r) + h(r̄) ≥ minq∈Sr̄{T (q)+h(Suffk(q))+η̂(Suffk q,483

�̄r)} = minr′∈Prec(r̄){Ŵ (r′) + η̂(r,′ �̄r)} = Ŵ (r̄), where we used the484

fact that W (r′) = Ŵ (r′), that follows from the definition of r̄, since485

the value of r′ that attains the minimum is such that W (r′) < W (r̄).486

Then, the obtained inequality contradicts the fact that Ŵ (r̄) > W (r̄).487

2) Let A ⊂ V be the set of values of r ∈ V for which 2)488

does not hold, and by contradiction, assume that A �= ∅ and let489

r̂ = argminr∈AŴ (r). Then, by definition of r̂, it satisfies the490

following two properties: (∀r̄ ∈ Vk | Ŵ (r̄) ≤ Ŵ (r̂)) �+(r̄) ≤ �−(r̄),491

moreover, Ŵ (r̂) �= W (r̂). Note that, from the definitions of Ŵ ,492

W (s) = Ŵ (s). Then, W (r̂) = minp∈Ps|Suffk p=r̂ T (p) + h(r̂) =493

minq∈Ps|Suffk q∈Prec(r̂){T (q�̂r) + h(Suffk q)− h(Suffk q) + h(r̂)}=494

minr′∈Prec(r̂){Ŵ (r′) + η̂(r,′ �̂r)} = Ŵ (r̂), which contradicts the495

definition of r̂. Here, we used (9) and the fact that, since Ŵ (r′) < Ŵ (r̂)496

and by the definition of r̂, Ŵ (r′) = W (r′). �497

Proposition V.4 implies that Ŵ (r) is a lower bound of W (r) and498

that it corresponds to the length of the shortest path from s to r on499

the extended directed graph G̃, with arc length given in accordance500

to (11), namely by the value of function η̂. Hence, Ŵ (f) can be501

computed by Dijkstra’s algorithm (which is equivalent to compute V502

with A∗ algorithm, with heuristic h). The algorithm that we are going503

to present is based on the following basic observation. If A∗ algorithm504

computes f ∗ = argminf∈F̃ Ŵ (f) by visiting only nodes for which505

�+(r) ≤ �−(r), then 2) of Proposition V.4 is satisfied for r = f ∗ and506

Ŵ (f ∗) = W (f ∗) is the optimal value of the k-BASP. If this is not the507

case, we increase k by 1 and rerun the A∗ algorithm. Note that the508

algorithm starts with k = 2, since, according to its definition, K(B)509

equals 1 only if no acceleration bounds are present and, in this case, the510

BASP is equivalent to a standard SP and can be solved by Dijkstra’s511

algorithm.512

Algorithm V.5 (Adaptive A∗ algorithm for k-BASP):513

1) Set k = 2.514

2) Execute A∗ algorithm, and at every visit of a new node r, if none515

of the two conditions �+(r) ≤ �−(r) and |r| < k holds, set k = k + 1516

and repeat step 2).517

Note that the algorithm does not compute the exact value K(B).518

Rather, it underestimates it. More precisely, it stops with the smallest519

k value needed to solve the BASP between the given source and520

destination nodes. That is, the smallest k that satisfies the k-BASP521

definition over the explored subgraph.522

Proposition V.6: Algorithm V.5 terminates with k ≤ K(B) and523

returns an optimal solution.524

Proof: By Definition (4) of K(B), if k = K(B), the condition525

�+(r) ≤ �−(r) is satisfied for all r. Hence, there exists k ≤ K(B)526

for which the algorithm terminates. Let r ∈ Vk, with �r ∈ F be the527

last-visited node before the termination of the algorithm. By 2) of528

Proposition V.4, we have that Ŵ (r) = W (r) = V (r) (since h(r) =529

0), but, by definition, V (r) is the shortest time for reaching a node in530

F . �531

VI. NUMERICAL EXPERIMENTS532

A. Randomly Generated Problems533

We performed various tests on problems associated to graphs with n534

nodes, for increasing values ofn, randomly generated with function ge-535

ographical_threshold_graph of Python package NetworkX (networkx.536

org). Essentially, each node is associated to a position randomly chosen537

from set [0, 1]2. Edges are randomly determined in such a way that538

Fig. 5. BASP computing times on graphs of different size.

TABLE I
PERCENTAGES OF k VALUES FOR GRAPHS OF DIFFERENT SIZE

closer nodes have a higher connection probability. We multiplied the 539

obtained positions by factor 10
√
n, in order to obtain the same average 540

node density independently ofn. Then, we associated a random angle θi 541

to each node, obtained from a uniform distribution in [0, 2π]. In this way, 542

each node of the random graph is associated to a vehicle configuration, 543

consisting of a position and an angle. Set τ(θi) = [cos θi, sin θi]
T . 544

Each edge (i, j) is associated to a Dubins path, which is defined as the 545

shortest curve of bounded curvature that connects the configurations 546

associated to nodes i and j, with initial tangent parallel to τ(θi) and 547

final tangent parallel to τ(θj). We chose the minimum turning radius for 548

the path associated to edge (i, j) as rij = min{�((i, j))/(d(θi, θj)), 2} 549

where d(x, y) is the angular distance between angles x and y. We set 550

the acceleration and deceleration bounds constant for all paths and 551

equal to 0.1 ms−2. The upper squared speed bound is constant for 552

each arc and given by 2r, where r is the minimum curvature radius 553

of the path associated to the arc. In our tests, we used the adaptive 554

A∗ algorithm (see Algorithm V.5). First, we ran simulations for ten 555

values of n, logarithmically spaced between 100 and 1000. For each 556

n, we generated 50 different graphs, and for each one of them, we 557

ran ten simulations, randomly choosing source and target nodes. Fig. 5 558

shows the mean values and the distributions of the computational times 559

of Algorithm V.5 and it also shows the mean computational times of 560

Algorithm V.2 with k computed as in (5). Note that the mean times of 561

Algorithm V.2 are at least one order of magnitude higher than those of 562

Algorithm V.5. Table I shows, for each n, the percentages of k values 563

returned by Algorithm V.5, and the mean value k̄ of k computed as 564

in (5). Note that the values obtained with (5) are on average 54.8 times 565

larger than those returned by Algorithm V.5. 566

In Section V, we showed that, for a given problem instance, path p∗, 567

corresponding to the solution of the BASP, is in general different from 568

the path p̂ obtained as the solution of the BASP with infinite acceleration 569

bounds (which, in fact, is an SP) and from the path p̃ obtained as the 570

solution of SP with edge costs equal to their lengths. We ran some 571

numerical experiments to compare travel times TB(p
∗) and TB(p̂), 572

(i.e., the travel time of p∗ and the one of p̂ on which speed has been 573

planned using the same acceleration bounds of the BASP), and lengths 574

�(p∗) and �(p̃). Namely, we generated 50 different random graphs with 575

n = 100 with the procedure presented previously. For each instance, 576

we considered ten problems obtained by randomly choosing source and 577

target nodes. Then, we solved the BASP with different acceleration 578

bounds α+ and α− logarithmically spaced in [0.01, 1] ms−2, with 579
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Fig. 6. Travel time difference between BASP and BASP without accel-
eration bounds and path length difference between BASP and SP with
edge costs equal to their lengths.

Fig. 7. Travel time gain of BASP on 1000 simulations on the 2 485-
node graph with respect to the BASP without acceleration bounds and
SP with edge costs equal to their lengths.

α+ = α−. In Fig. 6 (top), we compare the optimal travel times along580

pathsp∗ and p̂, that is, for each value of the acceleration and deceleration581

bounds, we report the relative percentage difference 100TB(p̂)−TB(p∗)
TB(p∗)582

obtained for each test. We observe that for low acceleration and deceler-583

ation bounds the difference is more significant, while as the acceleration584

and deceleration bounds increase, the travel time difference between the585

two paths tends to be smaller. This is due to the fact that, if acceleration586

bounds are sufficiently high, paths p∗ and p̂ are the same. In Fig. 6587

(bottom), we compare the length of paths p∗ and p̃ showing how the588

BASP solution tends to differ from the SP with edge costs equal to their589

lengths even for small acceleration bounds. For p∗ and p̃ to coincide590

one needs even smaller acceleration bounds.591

B. Real Industrial Applications592

Here, we present a problem from a real industrial application rep-593

resenting an automated warehouse provided by packaging company594

Ocme S.r.l., based in Parma, Italy. The problem is described by a graph595

of 2 485 nodes and 4 411 arcs. The acceleration and deceleration bounds596

are constant, equal for all arcs, and given by α+ = 0.28 ms−2 and597

α− = −0.18 ms−2. The speed bounds are constant for each arc but598

vary among different arcs, according to the associated path curvatures,599

and they take values on interval [0.1, 1.7] ms−1. The arc lengths take600

values in [0.2, 18] m and have an average value of 4.2 m. We ran 1000601

simulations by randomly choosing source and the target nodes. The602

average value and the standard deviation of the computational time603

are 0.1587 and 1.9355 s, respectively. The mean value of k returned604

by Algorithm V.5 is 5, while the bound obtained with (5) is 105. We605

compare travel times TB(p
∗), TB(p̂), and TB(p̃), that is, the travel time606

of p∗ and the ones of p̂ and p̃ on which speed has been planned using607

the same acceleration bounds of the BASP. Fig. 7 compares the optimal608

travel time gain obtained using p∗ over p̂ and p̃. Namely, we report609

the relative percentage differences over 1000 tests. In the first case, we610

had a 2.17% mean gain and the 25% best performing paths p∗ had a611

8.53% mean gain over p̂. While, in the latter case, we had a 5.85%612

mean gain and the 25% best performing paths p∗ had a 14.16% mean613

gain over p̃. Note that these results are probably due to the fact that614

the graph associated to the industrial problem has a low connectivity. 615

Indeed, most nodes in the industrial problem represent positions in 616

corridors and are connected only to the node preceding them and the 617

one following them along the corridor. Nonetheless, in such industrial 618

context, even moderate improvements represent a significant gain for a 619

company. 620

APPENDIX 621

Proposition A.1: Let μ, α : [0,+∞) → R+, for i ∈ {1, 2}, let Fi 622

be the solution of the differential equation (2) where Fi replaces F 623

and w0,i replaces μ(0), with 0 ≤ w0,i ≤ μ(0); and let λ̄ be such that 624

μ(λ̄) =
∫ λ̄

0
α(λ)dλ. Then, (∀λ ≥ λ̄) F1(λ) = F2(λ). 625

Proof: Without loss of generality, assume that w0,1 ≥ w0,2. This 626

implies that (∀λ ≥ 0) F1(λ) ≥ F2(λ). Indeed, assume by contradic- 627

tion that there exists λ̄ such that F1(λ̄) < F2(λ̄), then, by conti- 628

nuity of F1 and F2, this implies that there exists λ̂ ≤ λ̄ such that 629

F1(λ̂) = F2(λ̂), thus (∀λ ≥ λ̂) F1(λ) = F2(λ), since, for λ ≥ λ̂, 630

F1(λ) and F2(λ) solve the same differential equation with the same 631

initial condition at λ = λ̂, contradicting the assumption. Furthermore, 632

note that (∃λ̃ ∈ (0, λ̄]) F2(λ̃) = μ(λ̃). Indeed, if by contradiction 633

(∀λ ∈ (0, λ̄]) F2(λ) < μ(λ), then (∀λ ∈ (0, λ̄]) F ′
2(λ) = α(λ) so that 634

F2(λ̄)− F2(0) =
∫ λ̄

0
α(λ) dλ = μ(λ̄), which contradicts the assump- 635

tion. Hence, (∃λ̂ ∈ R+) F2(λ̂) = F1(λ̂) = μ(λ̂), and consequently, 636

(∀λ ≥ λ̂) F1(λ) = F2(λ), which implies the thesis, being λ̄ ≥ λ̂. � 637

For p ∈ P , λ ∈ [0, �(p)], we set Wp(λ) = w, wherew is the solution 638

of Problem (1) for path p. In other words, Wp(λ) is the square of the 639

optimal speed profile for traversing the path p, evaluated at arc length 640

λ, with respect to p. 641

Proposition A.2 1): Let p1, p2, q ∈ P , be such that p1q, p2q ∈ P , 642

then (∀λ ≥ �+(q)) Wp1q(�(p1) + λ) = Wp2q(�(p2) + λ). 643

2) Let p, q2, q1 ∈ P , be such that pq1, pq2 ∈ P , then (∀λ ≤ 644

�−(p)) Wpq1(λ) = Wpq2(λ). 645

Proof: We only prove 1), the proof of 2) is analogous. Note 646

that, for λ ≥ 0, Wp1q(λ + �(p1)) = min{F1(λ), B(λ)}, Wp2q(λ + 647

�(p2)) = min{F2(λ), B(λ)}, where F1 and F2 are the solution of (2) 648

with μ = μ+ and initial conditions w0,1 = Wp1(�(p1)) and w0,2 = 649

Wp2(�(p2)), respectively, and B is the solution of (3) with μ = μ+. 650

By Proposition A.1, for λ ≥ �+(q), F1(λ) = F2(λ). Consequently, 651

(∀λ ≥ �+(q)) Wp1q(�(p1) + λ) = Wp2q(�(p2) + λ). � 652

A. Proof of Proposition IV.2 653

Let Ψ be defined as in (1a), then T (p1tσ)− T (p1t) =
∫ �(p1tσ)

0
Ψ 654

(Wp1tσ(λ))dλ − ∫ �(p1t)

0
Ψ(Wp1t(λ))dλ =

∫ �(p1tσ)

�(p1)+�−(t)
Ψ(Wp1tσ(λ)) 655

dλ − ∫ �(p1t)

�(p1)+�−(t))
Ψ(Wp1t(λ))dλ, where we used that, by 2) of 656

Proposition A.2, (∀λ ≤ �(p1) + �−(t))Ψ(Wp1tσ(λ)) = Ψ(Wp1t(λ)). 657

Similarly, T (p2tσ) − T (p2t) =
∫ �(p2tσ)

�(p2)+�−(t)
Ψ(Wp2tσ(λ))dλ − 658∫ �(p2t)

�(p2)+�−(t)
Ψ(Wp2t(λ))dλ. Moreover, by 1) of Proposition A.2, we 659

have that (∀λ ≥ �+(tσ))Wp1tσ(�(p1) + λ)dλ= Wp2tσ(�(p2) + λ)dλ 660

and (∀λ ≥ �+(t)) Wp1t(�(p1) + λ)dλ = Wp2t(�(p2) + λ)dλ, 661

which imply that T (p1tσ)− T (p1t) = T (p2tσ)− T (p2t), since 662

�+(t) ≤ �−(t), and as noticed in Section IV, �+(tσ) ≤ �+(t). � 663
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