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Abstract

In the present work, the power model adopted to predict compressive strength

of masonry as a function of brick and mortar strengths was studied by means

of Dimensional Analysis, identifying the main dimensionless groups ruling the

problem. The approach was applied on a dataset of solid-clay-brick masonry

tests collected from the literature. Data were represented in a novel way that

permitted to display the importance of the main dimensionless parameters. The

dataset was filtered distinguishing these parameters and used to propose a new

calibration of the power model considering mortar type and geometry of the

specimens. Results show an interesting improvement in terms of indicators of

regression quality with respect to the power models proposed in the literature.

Both Dimensional Analysis and regressions confirm that the power models are

specific for the type of specimens, i.e. dimensionless parameters, used for their

calibration and direct comparisons among them should be done with great cau-

tion.
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1. Introduction1

Forecasting masonry compressive strength as a function of geometrical and2

mechanical properties of its components is a challenging task that puzzled re-3

searchers since the beginning of twentieth century [1].4

Usually, the compressive strength of masonry is determined as a function5

of brick and mortar strengths by means of: (a) tables [2] or phenomenological6

relationships [3, 4] calibrated by means of experimental data; (b) mechanical7

models based on linear/nonlinear behavior of mortar and bricks [5–8]; (c) non-8

linear finite element models of wall specimens [9–13].9

One of the most commonly adopted phenomenological relationship, which is10

frequently used as basis for comparison for new models, is the expression11

fM = Kfαb f
β
m (1)

where fM is the strength of masonry, fb and fm are the mean compressive12

strengths of bricks and mortars joints respectively, and K, α, and β are coeffi-13

cients calibrated through the best fitting of a proper set of experimental data.14

Hereafter, subscripts M , b, and m stand for masonry, brick, and mortar respec-15

tively, while Eq. (1) will be called “power equation” because of the exponents,16

or powers, α, and β.17

Several authors have calibrated the coefficients of the power equation by18

means of best fitting of experimental data with different types of bricks and19

blocks. A long list can be read in [14–16].20

Although the method can be applied to any type of bricks, the present work21

concentrates on solid-clay-bricks, which are particularly common in existing22

masonry buildings, especially in monumental ones. Considering the related lit-23

erature, it is mandatory to start from ENV1996-1-1 [17], briefly EC6, which24

provides an expression for the compressive strength of new masonry walls. For25

this reason, the power equation is also called “EC6-like” equation. The coeffi-26

cientK varies between 0.4 and 0.7 depending on the brick types and construction27

details, such as thickness of bed joints, presence of head joints, and thickness of28
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the wall. Furthermore, the formula is valid for fb < 75 MPa, fm < 20 MPa, and29

fm < 2fb if the units are laid on general-purpose mortar. In case of multi-leaf30

walls, the strength is multiplied by the coefficient 0.8. Malek [18] and Hendry31

and Malek [19] analyzed full-scale story-height brickwork walls and observed32

that the coefficients are sensitive to the wall thickness (102.5 and 215 mm) and33

to the mortar type. Lumantarna et al. [20] calibrated the equation using both34

New Zealand historical field-extracted and laboratory-constructed three-brick35

high prisms composed of historical clay bricks and mortar. Mann [21] analyzed36

925 specimens with bricks of different typologies (aerated concrete, lightweight37

concrete, sandstone, and solid clay). Kaushik et al. [22] fitted the results of 1738

specimens (5 stacked bond bricks) in solid clay. Gumaste et al. [23] studied In-39

dian stack-bonded prisms characterized by solid-clay-bricks that were relatively40

softer than mortar. Also Dayaratnam [24] studied specimens of Indian masonry.41

Table 1 shows the coefficients proposed by the aforementioned authors. For42

EC6 [17] the values of solid clay units (group 1), general-purpose mortar, and43

single-wythe masonry have been written. For Hendry and Malek [19], the co-44

efficients for walls with thickness tM = 102.5 mm have been reported. All45

the expressions considered provide the mean compressive strength except EC6,46

which deals with the characteristic one.47

In addition, Table 1 shows the values of the coefficient of determination R2
48

declared by the authors, when available, which allows a concise judgment about49

the quality of the best fittings, i.e. a measure of the scatter between the values50

predicted by the formula and the experimental data. The closer the value of R2
51

comes to 1, the better is the approximation.52

The values of R2 have not been published for all the considered cases and53

the confidence intervals of the coefficients are not available. Without these data,54

it is impossible comparing the accuracy of the formulae. Furthermore, it can55

be noticed that the coefficients proposed by the authors are quite different: K56

goes from 0.28 to 0.83 and α from 0.49 to 0.85. This is due to the inevitable57

statistical dispersion of the experimental results, as well as to the different types58

of specimens analyzed.59
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To compare the models proposed by the cited authors, the equations are60

plotted in Fig. 1 for mortar strengths fm equal to 1.0 MPa and 10.0 MPa. As can61

be seen, the curves are quite dispersed. Small variations of the coefficients cause62

very different predictions. For instance, for a mortar strength fm = 1.0 MPa63

and bricks with compressive strength fb = 15 MPa, which are typical values for64

an historical masonry made with solid-clay-bricks and aerial lime mortar, the65

equations predict a masonry strength ranging from 1.0 to 5.7 MPa (Fig. 1a).66

The degree of uncertainty is very important. For the same masonry type, a67

table in the Italian code standard [2] recommends a value within the range of68

2.6 to 4.3 MPa, regardless of mortar and brick strengths.69

For more accurate predictions, the choice of a suitable formula is necessary.70

Aims of the present work are: (a) understand advantages and limits of the power71

models; (b) find which power model proposed in the literature is more suitable72

to forecast the strength of masonry built with solid-clay-bricks; (c) understand73

if the models proposed for general-purpose mortar are also valid in the case of74

lime mortar (which is particularly important for historical buildings but also75

for new ones made with lime mortar); (d) propose a new calibration specific76

for solid-clay-brick masonry considering also the mortar type; (e) discuss the77

quality of fitting and quantify the errors on the predicted strengths.78

To this purpose, the structure of the power equation was here interpreted,79

probably for the first time, by means of Dimensional Analysis. The role of the80

different parameters affecting the compressive strength (e.g. the geometry of the81

specimens, the type of mortar, or the thickness of mortar joints) was discussed82

in terms of dimensionless groups. Then, a dataset gathered from the existing83

literature was collected and discussed considering these dimensionless groups.84

Subsequently, the dataset was clustered in order to obtain subsets with homo-85

geneous values of the dimensionless groups and was used for a new calibration86

of the power model. Finally, the quality of the new best-fitted parameters was87

discussed considering their confidence intervals and three regression estimators.88
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Model K α β R2

Eurocode 6 [17] 0.55 0.70 0.30 –

Hendry and Malek [19] 1.29 0.52 0.19

Lumantarna et al. [20] 0.75 0.75 0.31 0.87

Mann [21] 0.83 0.67 0.18 –

Kaushik et al. [22] 0.63 0.49 0.32 0.93

Gumaste et al. [23] 0.23 0.85 0.15 –

Dayaratnam [24] 0.28 0.50 0.50 –

Table 1: Power model fM = Kfαb f
β
m for masonry compressive strength: coefficients proposed

by some authors and corresponding coefficient of determination R2.
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Fig. 1: Comparison of different power models proposed in the literature to evaluate the

compressive strength of masonry fM as a function of brick strength fb: (a) mortar strength

fm = 1 MPa; (b) fm = 10 MPa.
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2. Dimensional analysis89

2.1. Application of Dimensional Analysis to masonry compressive strength90

Dimensional Analysis provides useful information when it is necessary to91

identify phenomenological equations whose structure is unknown [25–27]. The92

key stone of Dimensional Analysis is the Buckingham Π theorem, which states93

that given a functional relationship g(.) between m dimensional variables (with94

physical dimensions) q1, q2, . . . , qm95

q1 = g(q2, q2, . . . , qm) (2)

then it is possible to express the process as a function of n = m−r dimensionless96

parameters (Π1,Π2, . . . ,Πm−r) as97

Π1 = g̃(Π2,Π3, . . . ,Πm−r) (3)

where r is the number of m variables which are dimensionally independent98

(equivalent to the rank of the dimensional matrix).99

To apply Buckingham theorem to the case of masonry compressive strength100

fM , we start by expressing fM as a function of all the parameters that have101

been recognized in the literature as the main factors governing the problem (a102

clear description is reported for instance in [28] and [29]):103

fM = g(fb, ftb, Eb, fm, ftm, Em, νb, νm, ffb, fvb︸ ︷︷ ︸
mechanical properties

, hb, bb, tb, hM , bM , tM , hm︸ ︷︷ ︸
geometric properties

, csh, σ̇, ε̇),

(4)

where fb, ft,b, Eb are compressive strength, tensile strength and Young modulus104

of bricks, fm, ft,m, Em are compressive strength, tensile strength, and Young105

modulus of mortar, νb, νm are Poisson coefficients of bricks and mortar respec-106

tively, ffb and fvb are the brick-mortar flexural and shear bond strengths re-107

spectively, hb, bb, tb and hM , bM , tM are height, length, and thickness of bricks108

and masonry specimens respectively, hm is the height of mortar joints, csh is109

a shape factor which takes into account the type of brickwork bond, σ̇ is the110
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loading rate, and ε̇ is a strain rate similar to the one adopted in [30]. Eq. (4) de-111

scribes the problem with m = 18 dimensional variables and three dimensionless112

parameters.113

The mechanical problem can be defined in terms of three fundamental vari-114

ables, e.g. mass M , length L, and time T . The corresponding dimensional115

matrix (of the dimensional variables) is:116

fM fb ftb Eb fm ftm Em ffb fvb hb bb tb hM bM tM hm σ̇ ε̇

M 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0

L −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 −1 0

T −2 −2 −2 −2 −2 −2 −2 −2 −2 0 0 0 0 0 0 0 −3 −1

(5)

The rank of the matrix is r = 3, therefore, according to the Buckingham117

theorem, the (maximum) number of dimensionless groups that rule the prob-118

lem is n = m − r = 15. Following the Buckingham’s theorem, the dimen-119

sionless strength Π1 can be expressed as a function of 14 dimensionless groups120

(Π2, . . . ,Π15) and 3 dimensionless parameters (νb, νm, csh) as:121

Π1 = g̃(Π2,Π3, . . . ,Π15, νb, νm, csh). (6)

Buckingam’s theorem provides the number of independent dimensionless122

groups Π but their form remains unknown. Furthermore, the choice of Π groups123

is not unique and identifying the most meaningful for a specific problem is not124

a trivial task.125

2.2. Choice of the dimensionless groups126

To define the dimensionless groups it is convenient to refer to groups usu-127

ally recognized as important, bearing a physical meaning, in the literature on128

masonry. A possible expression is:129

fM
fb

= g̃

(
ftb
fb
,
Eb
fb
,
fm
fb
,
ftm
fb

,
Em
fb

,
ffb
fb
,
fvb
fb
,
bb
hb
,
tb
hb
,
hM
hb

,
bM
hb
,
tM
hb
,
hm
hb
,
σ̇

ε̇fb
, νb, νm, csh

)
(7)
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which is one of the simplest, but other groups are possible. For instance, the130

group hM/hb could be replaced with the group (hM/tM ) × (tM/tb) × (tb/hb)131

where the ratio (hM/tM ) is called slenderness of the specimen and (tM/tb) is132

the number of wythes. Besides, in [28] the shape factor csh is replaced with133

the volume fraction of bricks V Fb (i.e., the ratio between volume of bricks and134

that of the specimen) and the volume fraction of mortar V RmH (i.e., the ratio135

between volume of mortar in horizontal joints and total volume of mortar); both136

could be here considered as alternative dimensionless groups. Furthermore, if137

mortar is not applied uniformly, it is necessary to introduce the ratio of the138

bed-joint area to the gross area.139

It is important to notice that not all the groups have the same relevance,140

and some choices could be better than others.141

2.3. Reducing the number of dimensionless groups142

It is still difficult to calibrate a phenomenological equation with all this143

dimensionless groups, because the number of variables is high. In general, it144

would be convenient to reduce the number of variables and consequently the145

enormous number of tests that need to be performed to calibrate the equation.146

This is possible, for instance, considering that the tensile strength ftb and147

the Young modulus Eb of the bricks are dependent variables since they can148

be written as a function of the compressive strength fb by means of empirical149

equations like ftb = c1f
c2
b and Eb = c3f

c4
b , where c1, c2, c3, c4 are suitable coef-150

ficients [31]. In this case, the variables ft,b/fb and Eb/fb can be removed from151

Eq. (7) introducing an uncertainty related to the adopted empirical equations.152

The same simplification can be done for the mortar, so obtaining153

fM
fb

= g̃

(
fm
fb
,
ffb
fb
,
fvb
fb
,
bb
hb
,
tb
hb
,
hM
hb

,
bM
hb
,
tM
hb
,
hm
hb
,
σ̇

ε̇fb
, νb, νm, csh

)
(8)

and reducing to m = 11 the number of dimensionless variables, plus three154

parameters. However, we notice that the coefficients ci of the adopted empirical155

expressions change with the type of brick and mortar, and therefore Eq. (8)156
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should refer in principle to a specific type of brick (e.g. extruded clay, pressed157

clay, calcium silicate, concrete, etc.) and mortar (e.g. cement, cement-lime, or158

lime). In other words, while Eq. 7 is quite general allowing a unified approach159

to the problem, Eq. 8 is specific, at least in principle, for a certain type of units160

and binder because it does not explicitly consider their different mechanical161

properties.162

Further simplifications derive from the evidence that, in many tests, some163

variables assume a constant value. To the purpose, Sonin [32] demonstrated164

that, given a functional relationship between m quantities, of which r are di-165

mensionally independent, if mk quantities assume constant value in all the cases166

being considered, then it is possible to express the process as a function of167

n = m − r − (mk − rk) dimensionless groups, where rk is the number of mk168

variables which are independent (equivalent to the rank of the dimensional ma-169

trix) [32]. In passing, this is not equivalent to eliminate the role of the constant170

dimensionless groups in describing the process, but simply gives the possibility171

to neglect those constant groups in the interpretation of the experiments.172

Following Sonin’s theorem, one might perform the tests by using bricks of173

standard (constant) dimensions. In this case, hb, bb, and tb are constant and174

their corresponding dimensional matrix (in terms of dimensional variables)175

hb bb tb

M 0 0 0

L 1 1 1

T 0 0 0

(9)

involves mk = 3 variables whereas the rank of this matrix is rk = 2. The176

dimensional matrix in Eq. 9 is a sub-matrix of the one in Eq. 5. Applying Sonin’s177

theorem, the number of dimensionless groups becomes n = m−r−(mk−rk) = 9.178

In other words, performing the tests by using standard-size bricks would simplify179

data interpretation permitting, for instance, to remove the dimensionless groups180

bb/hb and tb/hb from Eq. (8), obtaining:181
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fM
fb

= g̃

(
fm
fb
,
ffb
fb
,
fvb
fb
,
hM
hb

,
bM
hb
,
tM
hb
,
hm
hb
,
σ̇

ε̇fb
, νb, νm, csh

)
(10)

Of course, this simplification absolutely does not mean that the size of the182

bricks is physically irrelevant; it is just an experimental assumption that permits183

to focus on the effect of the other dimensionless parameters.184

2.4. Dimensional analysis and power equation185

Dimensional Analysis does not provide information on the analytical expres-186

sion for the equation g̃(.) governing the problem.187

The analytical expression of g̃(.) can be chosen to be particularly suitable188

for data fitting and regression algorithms. This is the case of the equation:189

fM
fb

= k

(
fm
fb

)β1

×
(
ffb
fb

)β2

×
(
fvb
fb

)β3

×
(
bb
hb

)β4

×
(
tb
hb

)β5

× . . . (11)

where k, β1, β2, . . . are coefficients. The equation is obtained by multiplying190

the powers of all the dimensionless groups in Eq. (8). If only the dimensionless191

group fm/fb varies whereas all the other remain constant, Eq. (11) becomes:192

fM
fb

= K

(
fm
fb

)β
(12)

or193

fM = Kf1−βb fβm = Kfαb f
β
m (13)

with α = 1− β, which is the well-known power equation usually adopted in the194

literature for masonry compressive strength (Eq. 1).195

Equation (13), like Eq. (8), is specific for a given type of unit and binder196

because it does not explicitly consider their different mechanical properties. It197

is evident from Eq. (12) that, if just one of the constant dimensionless groups198

not explicitly considered in Eq. (13) varies, the coefficients of the equation will199

be different. This clearly explains the important differences between dimension-200

less coefficient K of the power equations proposed in the literature (Tab. 1).201

The variations of the exponents α and β can be explained considering that202
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Eq. (12) is oversimplified; for instance also the powers βi could be functions of203

the dimensionless parameters.204

From a mechanical viewpoint, these differences can be explained considering205

that masonry specimens display different failure modes depending both on the206

properties of brick and mortar and on the loss of bond between them [33]. In [23]207

four different failure modes were observed: in case of bricks stiffer than mortar,208

a triaxial compression occurs in the mortar whereas bricks are subjected to com-209

pression/biaxial tension up to possible debonding between the two materials.210

In case of mortar stiffer than bricks, instead, the triaxial compression occurs in211

the bricks whereas mortar is subjected to compression/biaxial tension. Assum-212

ing that there is a relationship between stiffness of the components and their213

compressive strength, it is possible to suppose that the behavior is ruled by the214

ratio fm/fb. This scenario is modified by the presence of vertical mortar joints215

(considered by coefficient csh) and by loss of bond between bricks and mortar216

(accounted by fvb/fb and ffb/fb). The structure of Eq. (13) is too simple to217

catch all failure modes and distinct procedures of calibration and coefficients are218

necessary, at least for the two cases of bricks stronger and weaker than mortar219

(i.e. fm/fb > 1).220

The use of the Dimensional Analysis has proven some theoretical limits of221

the power equation and has explained the variability of its coefficients. In the222

next section these aspects will be considered for a proper calibration of a new223

power equation.224

3. Experimental dataset225

3.1. Description of the dataset226

In order to discuss the power equation, it was necessary to collect a database227

of experimental data that comprehends all the dimensionless variables grouped228

in Eq. (8). Because the equation is specific to a given type of brick and mor-229

tar, it was necessary to limit the attention to a certain type of masonry. For230

the reasons explained in the introduction, the database has been prepared by231
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fM fb fm bb tb hb hM tM hm

(MPa) (MPa) (MPa) (mm) (mm) (mm) (mm) (mm) (mm)

min 0.74 6.81 0.60 200.0 100.0 50.0 300.0 100.0 8.00

mean 7.84 17.68 5.74 239.4 115.3 59.7 441.8 151.2 10.55

max 14.98 32.00 13.85 280.0 140.0 75.5 800.0 260.0 15.00

Table 2: Variations of the parameters of the analyzed dataset for wallettes.

searching the literature for compression tests on specimens made of solid-clay-232

bricks. Of course, the approach that will be followed, being completely general,233

is also valid for other types of masonry, such as concrete block masonry. Only234

wallettes and stack-bonded prisms specimens were considered because they re-235

ceived more attention in the literature. To collect the data, the database MADA236

[34] has also been used. Unfortunately, many studies with interesting experi-237

mental campaigns have been discarded because they contained incomplete data.238

Specimens with bricks weaker than mortar have been discarded too, since they239

display a different failure mode with respect to the one with bricks stronger than240

mortar [35], which are the majority of experimental data. Finally, a set of 116241

values from 24 references has been collected [6, 18, 20, 23, 36–55]. The data are242

reported in Tabs. A1 and A2 of the Appendix, for wallettes and stack-bonded243

prism specimens respectively. The tables include the strengths of masonry fM ,244

bricks fb, and mortar fm, the dimensions of both walls (bM × hM × tM ) and245

bricks (bb × hb × tb), and the thickness of mortar joints hm. In addition, avail-246

able information on number of wythes, and mortar type (cement c, cement-lime247

c + l, and lime l) have been indicated. Bond strengths ffb and fvb were not248

reported because of the scant or null information in the considered experimental249

campaigns.250

Wallettes and stack-bonded prisms display a different behavior [56], there-251

fore they have been studied separately taking into account implicitly the shape252

parameter csh. According to EC6 [17], tests on wallettes are performed follow-253

ing EN1052-1 [57] code, which prescribes standard values for the load speed.254

For this reason, the dimensionless parameter σ̇/ε̇fb can be considered constant.255
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fM fb fm bb tb hb hM tM hm

(MPa) (MPa) (MPa) (mm) (mm) (mm) (mm) (mm) (mm)

min 2.90 7.50 0.69 191.0 89.0 50.0 250.0 89.0 7.50

mean 13.33 29.22 9.33 229.6 109.2 62.3 313.8 109.7 12.13

max 37.70 68.73 52.60 290.0 140.0 78.0 523.0 140.0 15.00

Table 3: Variations of the parameters of the analyzed dataset for stack-bonded prisms.

fM/fb fm/fb bb/hb tb/hb hM/hb hM/tM tM/hb hm/hb

(–) (–) (–) (–) (–) (–) (–) (–)

min 0.06 0.05 2.86 1.43 5.45 2.14 1.52 0.14

mean 0.45 0.33 4.11 1.99 7.63 3.11 2.69 0.17

max 0.86 0.83 5.09 2.55 11.80 4.17 5.20 0.21

Table 4: Variations of the dimensionless parameters of the analyzed dataset for wallettes.

fM/fb fm/fb bb/hb tb/hb hM/hb hM/tM tM/hb hm/hb

(–) (–) (–) (–) (–) (–) (–) (–)

min 0.20 0.05 2.92 1.44 3.21 1.89 1.44 0.13

mean 0.53 0.35 3.84 1.82 5.20 2.92 1.83 0.20

max 1.08 1.00 5.80 2.80 8.77 5.51 2.80 0.30

Table 5: Variations of the dimensionless parameters of the analyzed dataset for stack-bonded

prisms.
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The same applies for stack-bonded prisms, which are usually tested according256

to ASTM 1314-18 [58]. Tables 2 and 3 show the minimum, mean, and max-257

imum values of the parameters of wallettes and stack-bonded prisms datasets258

respectively. For the same datasets, Tables 4 and 5 represents the minimum,259

mean, and maximum values of the considered dimensionless parameters, already260

defined in Eq. (8). Tabs. 2, 4 show that wallettes substantially fulfill the me-261

chanical and geometrical limits prescribed by EC6 [17] and EN1052-1 [57]. Also262

for stack-bonded prisms, Tabs. 3 and 5 show that the prescription of ASTM263

1314-18 [58] are mostly satisfied.264

The number of samples (41 and 75 for wallettes and stack-bonded prisms265

respectively), although limited, is sufficient to perform some statistical stud-266

ies. However, since data have been measured sometimes with heterogeneous267

specimens and testing conditions, data preparation and discussion by means of268

Dimensional Analysis will be performed before proceeding with their study.269

3.2. Correction of brick and mortar strengths270

The power model employs the mean compressive strengths of bricks and271

mortar as input variables. For the considered dataset, these values have been272

measured following different standard codes, humidity conditions, and geome-273

try of the specimens. Regarding the geometry, it is known that size and shape274

of brick specimens influence their failure mode and, consequently, the mea-275

sured strength [59]. For this reason, EC6 [17] employs in the power equation276

the normalized strength f ′b = δfb, where the coefficient δ, defined in EN772-1277

[60], transforms the measured strength to the one of a reference cube of side278

100 mm. The same correction coefficient δ was used in [61, 62] to homogenize279

their database of hollow concrete blocks. Since this correction seems to be ac-280

cepted by the scientific community, it was used in the present work to compute281

the normalized brick strengths f ′b reported in Tabs. A1,A2.282

Apart these tables, in the forthcoming sections the corrected brick strength283

f ′b will always be used although, for simplicity, it will be indicated as fb.284
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Also the size and the slenderness of mortar samples have a recognized in-285

fluence on the measured value of compressive strength fm [63]. Unfortunately,286

many authors do not report the adopted standards, nor the size of the mortar287

specimens; therefore it was not possible to correct the values of fm.288

3.3. Correction for masonry slenderness289

The slenderness of the specimens (i.e. the ratio of the height to the least290

lateral dimension of the prism hM/tM ) plays an important role in masonry com-291

pressive strength [64–68]. The slenderness hM/tb should be chosen to correctly292

represent the behavior of real walls subjected to pure compression. For this293

reason, the slenderness should be limited to reduce the eccentricity due to con-294

struction imperfections and second order effects [68]. Furthermore, squat speci-295

mens are easier to build or extract from existing masonry and for this reason are296

allowed by different standard codes. In this case, a minimum of three courses297

of bricks (hM/hb ≥ 3) is indispensable to prevent the effect of end restraints -298

exerted by the platens of the testing machine on the lateral deformation of the299

specimen - from altering the masonry failure mode [69]. As observed in [65], it300

seems that only for a slenderness hM/tM > 6, the effect of end restrains vanishes301

and pure compressive strength is attained. The restraints can be reduced by302

introducing a layer of suitable frictionless material between the specimen and303

the load bearing platens of the testing machine. Of course, different friction-304

less materials produce different effects on the measured strength [46, 55]. For305

this reason, some standard codes, rather than adopting frictionless interlayers,306

prefer to recommend a specific slenderness. For instance, Fig. 2 shows the sizes307

required by EN1052-1 [57] (for units with hb ≤ 150 mm and bb ≤ 300 mm)308

and ASTM 1314-18 [58] standard codes. Furthermore, the ASTM 1314-18 [58]309

adopts correction factors to transform the measured strength to the one of a310

reference specimen with slenderness hM/tM = 2. On the contrary, UNI 1052-1311

[57] prescribes specimens with hM/tM > 3, without any correction factor.312

The choice of a well-suited correction function is not trivial. The high num-313

ber of solutions proposed in the literature as well as in standard codes reveals314

15



that the problem is still open [70]. For instance, in [61, 62] the ASTM 1314-315

18 correction function was used for concrete masonry prisms. In [28], instead,316

it was preferred to calibrate the correction function together with the power317

equation.

b
M ≥ 2b

b

bb ≤ 300 mm

(a) (b)

hM ≥ 5hb

hb

3 ≤      ≤ 15
tM
hM

tM 
≥ tb

EN 1052-1

b
M ≥ 100 mm

hM 

1,3 ≤       ≤ 5

tM =
 tb

ASTM 1314-14

tM
hM

Fig. 2: Shape of masonry prisms recommended by Standard Codes: (a) EN1052-1 [57]; (b)

ASTM 1314-18 [58].

318

In the present work, wallettes fulfill the geometric limits prescribed by EN1052-319

1 therefore, according to the same code, no correction function was introduced.320

On the contrary, test on stack-bonded prisms were performed according to321

ASTM 1314-18 and the correction function prescribed by the same code, which322

seems to be well accepted by the scientific community, was applied. The cor-323

rected compressive strengths f ′M thus obtained are reported in Tab. A2. Apart324

this table, in the forthcoming sections the corrected masonry strength f ′M will325

always be used for stack-bonded prisms but, for homogeneity with wallettes, it326

will be indicated as fM .327

3.4. Discussion of the dataset considering the dimensionless parameters328

The corrected dataset is now discussed starting from wallettes. Fig. 3 shows329

the masonry dimensionless strength fM/fb as a function of mortar dimension-330

less strength fm/fb. In Fig. 3a the data are represented distinguishing the331

number of wythes (tM/tb). The figure clearly shows that two-wythes wallettes332

present smaller strengths with respect to one-wythe, as already highlighted by333
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some authors [17, 19]. For this reason one-wythe and two-wythe data must334

be studied separately. In the collected dataset, one-wythe wallettes are the335

majority therefore the subsequent figures are specific for one-wythe masonry336

(tM/tb = 1). In Fig. 3b the data are represented considering the type of mortar337

(cement, cement-lime, and lime): differences between the three types are not338

so evident but deserve to be investigated. Fig. 3c represents the effect of the339

dimensionless parameter hM/hb, related to the number of courses, which is not340

self-evident. The same can be said for the slenderness hM/tM considered in341

Fig. 3d. This seems to justify, for the considered dataset, the choice of having342

omitted a correction factor for the slenderness. The effect of the thickness of343

mortar joints is represented in Fig. 3e by means of the dimensionless parameter344

hm/hb. Also in this case, data do not show different trends for the different val-345

ues of hm/hb. Finally, Figs. 3f,g represent the effect of brick geometry by means346

of the dimensionless parameters tb/hb and bb/hb. Data display an homogeneous347

behavior; therefore the dimensionless sizes of the bricks can be considered to348

be constant, as in the previous example on Sonin’s theorem. Based on this349

analysis, it seems correct to perform the best fitting of the dataset of wallettes350

by distinguishing the number of wythes and the type of mortar, whereas all the351

other dimensionless groups will be considered to be constant.352

Considering stack-bonded prisms, Fig. 4a shows the importance of mortar353

type: imagining an ideal bisector line from the lower left to the upper right354

corners of the figure, points corresponding to lime mortar are clustered in the355

upper part with respect to this line. The effect of dimensionless parameter356

hM/hb can be observed in Fig. 4b. The most surprising aspect is that speci-357

mens with 6 < hM/hb ≤ 8 are clustered in the lower part of the plot whereas358

specimens with 2 < hM/hb ≤ 4 are grouped at the top. This effect is more359

evident in Fig. 4c where the slenderness hM/tM is considered: squat specimens360

are placed in the upper part of the plot whereas slender specimens are placed361

in the bottom part. The effect is evident also in case of uncorrected masonry362

strengths fM (Figs. 4d). Interestingly, it seems that the adopted ASTM1314-18363

correction function is not able to remove completely the effect of slenderness for364
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Fig. 3: Wallettes: (a) effect of the number of wythes tM/tb; (b) effect of mortar type; (c)

effect of hM/hb; (d) effect of hM/tM ; (e) effect of mortar joint thickness hm/hb; (f) effect of

brick size tb/hb; (g) effect of brick size bb/hb.
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the considered dataset. This problem has already been raised in [71] for concrete365

masonry prisms. Fig. 4e shows the effect of mortar thickness hm/hb. As in the366

case of wallettes, data do not display a specific trend. The same can be said367

for the brick dimensions tb/hb and bb/hb shown in Figs. 4f,g. According to this368

graphic analysis, it seems possible to perform the best fitting of the dataset of369

stack-bonded prisms by distinguishing the type of mortar and the slenderness370

of the specimens hM/tM , which seems to be the most meaningful dimensionless371

groups, whereas all the others will be considered to be constant.372

4. Calibration of a new power equation373

The obtained results suggest trying a new calibration of the power model –374

which is specific for solid clay bricks – by distinguishing the different dimension-375

less groups that have been recognized to be important for the collected dataset.376

Generally, the coefficients of the power models proposed in the literature377

are calibrated by minimizing the sum-of-squares (SS) of the residuals X =378

fM,test − fM,model, defined as “vertical” distance between experimental points379

and surface, by means of the Minimum Least Square Method (MLSM). This380

method is based on the hypothesis that the residuals X follow a Gaussian dis-381

tribution with constant variance (homoscedasticity). In addition, the method382

requires that independent variables are measured with much greater precision383

than the dependent ones. These hypotheses, which are usually taken for granted,384

are now verified before proceeding with the calibration of the model.385

Here, the power equation386

fM = Kfαb f
1−α
m (14)

was used, where K and α are the parameters to be fitted. Equation (14) was387

preferred to Eq. (1) because it is more consistent from the point of view of di-388

mensional analysis, since the coefficient K is dimensionless and does not change389

with the adopted units. Furthermore, Eq. (12) was not used because, when di-390

viding fM by fb, the nonlinear transformation modifies also the distribution of391
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Fig. 4: Stack-bonded prisms: (a) effect of mortar type; (b) effect of hM/hb; (c) effect of

slenderness hM/tM ; (d) effect of slenderness hM/tM for uncorrected strengths fM ; (e) effect

of mortar joint thickness hm/hb; (f) effect of brick size tb/hb; (g) effect of brick size bb/hb.
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the residuals |X|, which, as we will see, has a certain importance for the study392

of the regression.393

The employed equation requires to solve a problem of nonlinear regression394

with unknowns K and α. Transformation of Eq. (14) by means of logarithms395

would simplify the problem to a linear regression396

ln fM = lnK + α ln fb + (1− α) ln fm (15)

with unknowns lnK and α. However, this transformation would also modify the397

distribution of the residuals X, and therefore it was not applied at this stage,398

where it was preferred to solve the nonlinear problem by using the Matlab399

function fit [72].400

The fitting was initially performed considering 1-wythe wallettes. The best-401

fitting function is represented in Fig. 5a as a surface, together with the data402

points. The dispersion of the points is evident; however the analysis of the data403

by means of matlab FSDATool [73] reveals that this dispersion is not due to404

outliers, therefore robust statistics was not applied.405

The values of the fitted parameters K and α, and their 95% confidence406

intervals, computed by means of the asymptotic method [72], are reported in407

Tab. 6 (wallettes 1-wythe). The 95% confidence interval has a 95% chance of408

containing the true value of the parameter. The corresponding upper and lower409

bound surfaces, plotted in Fig. 5a, show the uncertainty of the model.410

The analysis of the residuals X permits to check if the adopted procedure411

fulfills the hypotheses of the MLSM. Fig. 5b shows the plot of the residuals X,412

together with their best fitting plane of equation X = p0 + p1fb + p2fm. Small413

values of the coefficients p0, p1, and p2 confirm that the errors X are equally414

distributed above and below the plane X = 0. Fig. 5c displays the absolute415

value of the error |X| and the corresponding best-fitting plane. It is possible to416

observe that the errors, as expected, increase with fb but the coefficients of the417

best fitting plane are small also in this case, therefore the hypothesis of constant418

variance (homoscedasticity) is not badly violated.419

To check the hypothesis of normal distribution of the residuals X, their420
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Fig. 5: Best fitting of all the data: (a) Comparison between best fitted model, 95% confidence

bounds and experimental points; (b) Comparison between residuals X and their best-fitting

plane; (c) Comparison between absolute values of the residuals |X| and their best-fitting plane;

(d) Cumulative of the residuals X and fitting with normal-distribution cumulative.

cumulative has been plotted in Fig. 5d. The theoretical normal cumulative,421

with mean µ = 0.1775 MPa and standard deviation σ = 1.8197 MPa, is well422

superimposed on the experimental curve. In addition, normality tests have423

been performed. In particular, the skewness is -0.58 and Kurtosis coefficient424
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Type Param. all cement cement-lime lime

Wallettes (1 wythe) N 30 4 8 18

K 0.79 (0.66, 0.91) - 0.91 (0.66, 1.15) 0.70 (0.51, 0.89)

α 0.57 (0.44, 0.70) - 0.33 (0.022, 0.64) 0.70 (0.54, 0.86)

Stack-bonded prisms N 35 5 22 8

2 ≤ hM/tM < 3 K 0.87 (0.74, 1.01) - 0.76 (0.50, 1.02) 0.75 (0.28, 1.21)

α 0.71 (0.63, 0.80) - 0.90 (0.55, 1.24) 0.74 (0.36, 1.11)

Stack-bonded prisms N 33 6 24 1

3 ≤ hM/tM < 4 K 0.57 (0.46, 0.68) - 0.60 (0.47, 0.74) -

α 0.75 (0.61, 0.90) - 0.73 (0.57, 0.90) -

Table 6: Parameters of the model fM = Kfαb f
1−α
m obtained by best fitting of N specimens,

95% confidence intervals (within parentheses).

is equal to 3.22. For a normal distribution, the skewness (which measures the425

lack of symmetry of the distribution) is zero and the Kurtosis coefficient (which426

measures how the data are tailed with respect to a normal distribution) is 3.427

With these values, it is possible to confirm the hypothesis of normal distribution428

of the residuals X.429

The previous analyses of the errors show that the hypotheses of MLSM430

are substantially fulfilled. The only problem is that the independent variables431

(brick and mortar strengths) are measured with a precision comparable with432

the dependent ones, as suggested by their typical coefficients of variation. The433

problem is pointed out also in the EC6 [17], where it is specified that the pro-434

posed power equation is valid only for bricks whose compressive strength has a435

coefficient of variation smaller than 25%. To address this issue it would be nec-436

essary to develop new statistical tools based for instance on Total Least Squares437

Method [74–76], which are very complicate and out of the scope of the present438

work.439

Considering the fact that all power models proposed in the literature ignored440

this issue obtaining satisfactory results, or at least accepted by the scientific441

community, MLSM was considered applicable to the problem also in the present442

work.443
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Therefore, fitting and validation were repeated to the sub-cases of 1-wythe444

wallettes in cement-lime, and lime mortar. The case of cement was not analyzed445

because of the insufficient number of experimental data (N = 4). The values of446

the determined coefficients K and α are reported in Tab. 6, together with their447

95% confidence intervals.448

The importance of confidence intervals is shown in Fig. 6, where the dimen-449

sionless masonry strength fM/fb is represented as a function of dimensionless450

mortar strength fm/fb. In the same figure, the fitted curve is represented to-451

gether with the 95% confidence band obtained using the confidence intervals452

as coefficients of the power model. The confidence band shows how well we453

know the curve. The dispersion of the data and their limited number implies454

rather wide confidence bands. Probably the results would improve increasing455

the number of data points.456

Fitting was repeated for stack-bonded prisms distinguishing slenderness 2 ≤457

hM/tM < 3 and 3 ≤ hM/tM < 4. Results are reported in Tab. 6 considering458

all the data and, subsequently, separating the mortar type. Cases with N < 8459

were not analyzed because of the scant number of points.460
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Fig. 6: Results of fitting of 1-wythe wallettes (all data) and corresponding confidence band.

Also in the case of stack-bonded prisms, coefficients reported in Tab. 6 dis-461

play an important variation an wide 95% confidence limits.462
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Despite this problem, it is interesting to notice that the coefficients for stack-463

bonded prisms are different from the ones for wallettes. Furthermore, the dif-464

ferent slenderness and mortar type imply, as expected, different coefficients.465

5. Discussion of the results466

5.1. Wallettes467

The quality of the proposed regressions was investigated starting from one-468

wythe wallettes (all data). The predicted strengths fM,model are plotted in469

Fig. 7a as a function of the corresponding measured strengths fM,test, together470

with the bisector line that represents the ideal perfect correspondence between471

the test results and the proposed model. Points above the bisector line lay on472

the unsafe side. In the same figure, the dashed lines represent an error of ±20%473

in the model.474

The study is repeated in Fig. 7b for EC6 [17] model. A coefficient of 1.2 was475

used according to [17] to transform the characteristic strengths into the mean476

strengths. As can be seen, the results are similar to the ones of the proposed477

regression in the case of low strengths but some points lay on the unsafe side for478

higher strengths. Fig. 7c shows the behavior of the model proposed by Hendry479

& Malek [19]. In this case, most of the points lay on the safe side with important480

errors. The same can be said for the Mann’s model [21].481

To quantify numerically the goodness of the fit, the classic coefficient of de-482

termination R2 was computed. Results are reported in Tab. 7. The proposed483

model provides the best R2, especially when the type of mortar is distinguished.484

The values are not exciting, but in any case better than those of the models485

chosen for comparison, especially for cement-lime and lime mortar. However, it486

is well known that the coefficient of determination cannot be the only indicator487

used to judge the quality of a model. For this reason, also the Akaike’s In-488

formation Criterion (AIC) was introduced, since it is particularly indicated for489

the case of non-nested models (i.e., not dependent)[77]. Because the number of490

data points N is small with respect to the number of model parameters k, it was491
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Fig. 7: One-wythe wallettes (all data). Comparison between experimental compressive

strengths fM,test and compressive strengths predicted by the calibrated model fM,model:

(a) Proposed model; (b) EC6 [17]; (c) Hendry & Malek [19]; (d) Mann [21].
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preferred to use the corrected Akaike’s Information Criterion (AICc), defined492

as:493

AICc = N ln
SS

N
+ 2k +

2k(k + 1)

N − k − 1
(16)

where SS is the sum of squares of the errors X. The coefficient AICc can only494

be computed when N > 2k [77]. Comparing two models, the best one has the495

lowest AICc coefficient.496

Also in this case, the proposed model provides better results, particularly497

when the type of mortar is considered (Tab. 7). It is interesting to notice that,498

for the proposed model and for EC6, the number of parameters is k = 2 because499

α + β = 1. For the other two models k = 3, therefore the condition N > 2k500

was not fulfilled in the case of cement-lime and lime mortar, and the coefficient501

AICc was not computed.502

Another indicator useful from the engineering point of view is the coefficient503

a20 proposed in [14], which represents the number of points predicted with a504

relative error ≤ 20% with respect to the total number of points N . Comparing505

two models, the best one has the a20 coefficient closest to one.506

If we consider all the data, the models provide similar values of a20, which507

are close to 0.50. Instead, if the type of mortar is distinguished, the proposed508

model provides values of a20 close to 0.75, which are good and similar to those509

reached in [14] by means of neural networks.510

The study suggests that also the type of mortar should by considered to511

define the compressive strength of solid-clay-brick wallettes.512

Among the models proposed in the literature, the EC6 provides the best513

results even in the case of lime mortar. This result was not predictable because514

the model was proposed for general-purpose mortar. Compared to the proposed515

new models, although the indicators are only slightly worse, the EC6 is more516

conservative for higher strengths (Fig. 7).517
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Model all cement-lime lime

R2 a20 AICc R2 a20 AICc R2 a20 AICc

Proposed 0.73 0.50 42.12 0.77 0.75 17.79 0.72 0.61 19.39

EC6 [17] 0.68 0.50 46.75 0.35 0.63 26.12 0.70 0.50 20.86

Hendry & Malek [19] 0.63 0.53 54.32 0.28 0.38 - 0.63 0.61 27.90

Mann [21] 0.57 0.47 58.42 0.08 0.25 - 0.64 0.61 27.31

Table 7: One-wythe wallettes: comparison of the proposed model to some models published

in the literature.

5.2. Stack-bonded prisms518

The study proposed for wallettes was repeated for stack-bonded prisms. In519

particular, Figs. 8, 9 show the relationship between fM,test and fM,model for520

the cases of 2 < hM/tM ≤ 3 and 3 < hM/tM ≤ 4 respectively. The same521

figures show the behavior of the models published for stack-bonded prisms by522

Lumantarna et al. [20], Kaushik et al. [22], and Gumaste et al. [23].523

For the sake of completeness, comparisons with the TMS402/602-16 [78] and524

AS37000-18 [79] models have been included in in the same figures, even if they525

are not power models.526

The points predicted by the proposed models are well distributed around527

the bisector line for both slendernesses (Fig. 8a, 9a). On the contrary, the528

model proposed by Lumantarna [20] fits well the first case with small slenderness529

(Fig. 8b), but provides unconservative results for the second case (Fig. 9b). This530

can be explained considering that Lumantarna’s model was calibrated for three-531

bricks-high stack-bonded prisms, which are squat and similar to the first case.532

The model proposed by Kaushik et al. [22], calibrated for five-bricks-high stack-533

bonded prisms, provides conservative results in both cases (Figs. 8c, 9c). The534

same can be said for the model published by Gumaste et al. [23] (Figs. 8d, 9d).535

Figs. 8e and 9e show the results for the model proposed in TMS402/602-16536

[78]. The ASTM 1314-18 prism test method used for stack-bonded prisms is537

usually associated with the TMS402/602-16 [78] unit strength method, which538

provides the specified compressive strength of masonry (in psi) by means of the539
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equation:540

fM = A(400 +Bfb) (17)

where fb is the average compressive strength of clay-masonry units (in psi),541

A = 1 for inspected masonry, B = 2 for Type N portland-cement lime mortar,542

and B = 0.25 for type S or M portland-cement lime mortar. The type of mortar543

is defined with its recipe, which is usually different from those used in the544

dataset. Moreover, lime mortar is not considered.545

Since there is no direct correspondence between mortar strength and type546

(S, N, or M), B = 0.2 for lime mortar and B = 0.25 for all other cases were used547

for the analysis. As can be seen in Figs. 8e and 9e, results overestimate smaller548

strengths, probably because of the choice of parameter B. Furthermore, the549

model underestimates higher strengths, as already pointed out in [78].550

Finally, the comparisons were carried out with the model proposed in the551

Australian Standard AS3700-18 [79]:552

fM = khkmf
0.5
b (18)

where fM and fb are characteristic strengths, kh = min[1.3, 1.3(19hm/hb)
−0.29]553

is a joint thickness factor, and km is a compressive strength factor which for554

clay-masonry units and full bedding type it is equal to 1.1, 1.4, and 2.0 for555

mortar type M2, M3, and M4 respectively. Also in this case it is not easy to556

find a correspondence between the strength of mortar and its type, therefore it557

was decided to use km = 1.4 for lime mortar and km = 2 for all the other cases.558

In addition, the characteristic strength provided by Eq. 18 was multiplied by559

1.2 to obtain the average strength. For the compressive strength of bricks, the560

values reported in Tab. A2 were used. For consistency, the correction factor561

for slendernesses hM/tM < 5 published by AS3700-18 has been used in place of562

ASTM 1314-18 to correct the experimental strengths.563

Figs. 8f and 9f show the results for AS3700-18 [79] model. Also in this case564

the model seems to overestimate the lowest strengths and underestimate the565

highest ones.566
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2<hM/tM ≤ 3
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Fig. 8: Stack-bonded prisms with 2 < hm/tm ≤ 3. Comparison between experimental

compressive strengths fM,test and compressive strengths predicted by the calibrated model

fM,model: (a) Proposed model ; (b) Lumantarna et al. [20]; (c) Kaushik et al. [22] ; (d)

Gumaste et al. [23]; (e) TMS402/602-16 [78]; (f) AS3700-18 [79].
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3<hM/tM ≤ 4
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Fig. 9: Stack-bonded prisms with 3 < hm/tm ≤ 4. Comparison between experimental

compressive strengths fM,test and compressive strengths predicted by the calibrated model

fM,model: (a) Proposed model ; (b) Lumantarna et al. [20]; (c) Kaushik et al. [22] ; (d)

Gumaste et al. [23]; (e) TMS402/602-16 [78]; (f) AS3700-18 [79].
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Type Model all cement-lime lime

R2 a20 AICc R2 a20 AICc R2 a20 AICc

2 ≤ hM/tM < 3 Proposed 0.82 0.54 86.10 0.57 0.50 62.59 0.24 0.38 24.87

Lumantarna et al. [20] 0.81 0.46 90.79 0.52 0.36 67.90 0.11 0.38 -

Kaushik et al. [22] -1.03 0.00 174.06 -2.25 0.00 109.90 -2.52 0.00 -

Gumaste et al. [23] -1.16 0.00 173.64 -3.07 0.00 111.87 -3.53 0.00 39.20

TMS402/602-16 [78] 0.18 0.14 139.86 -0.91 0.05 95.20 -0.38 0.38 29.71

AS3700-18 [79] 0.63 0.49 94.58 0.34 0.59 61.07 -0.37 0.5 25.67

3 ≤ hM/tM < 4 Proposed 0.74 0.21 114.33 0.70 0.23 95.03 - - -

Lumantarna et al. [20] -0.12 0.18 165.49 -0.06 0.23 131.17 - - -

Kaushik et al. [22] -0.01 0.27 162.03 -0.21 0.23 134.58 - - -

Gumaste et al. [23] -0.11 0.03 162.71 -0.32 0.00 133.95 - - -

TMS402/602-16 [78] 0.44 0.45 140.42 0.34 0.50 116.09 - - -

AS3700-18 [79] 0.44 0.21 125.79 0.47 0.27 98.99 - - -

Table 8: Comparison of the proposed model to the ones published in the literature: Stack-

bonded prisms.

The different estimators for the quality of the models are reported in Tab. 8.567

Considering the coefficient of determination R2, it is possible to notice that568

both for the proposed model and for Lumantarna’s model, R2 is about 0.8 if all569

the specimens are considered and slightly diminishes in the case of cement-lime570

mortar, also because of the scant number of points.571

The models proposed by Kaushik et al. [22], Gumaste et al. [23], and572

TMS402/602-16 [78] are characterized by poor values of the coefficient of de-573

termination R2, which in some cases are even negative (Tab. 8). In this case,574

the mean value of the strengths fits better the results than the model. Model575

AS3700-18 [79], on the other hand, provides slightly better results.576

The proposed model presents also the best values of parameters AICc and577

a20, whereas the other models present poor values, similarly to what obtained578

in [14]. On the contrary, also for these parameters the model AS3700-18 [79]579

provides acceptable results.580

In case of lime mortar, all the models show worse results than those obtained581
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for wallettes.582

Results generally confirm that the models proposed in the literature repre-583

sent well the data used for their calibration but are not able to describe with584

accuracy the considered dataset, which is characterized by different dimension-585

less parameters. The AS3700-18 model is a separate case, presumably because it586

explicitly takes into account more dimensionless parameters (the slenderness of587

the specimens and the ratio between the thickness of the bed mortar joints and588

the block). The explicit inclusion of these and other dimensionless parameters589

is probably the way forward to generalize the power model, allowing a unified590

approach to compressive strength of masonry.591

The proposed regressions are not intended to be, once again, just a calibra-592

tion of the power equation for the specific case (perhaps they are too many to be593

adopted in the codes). They rather permit to open a reflection on the adopted594

procedures and the uncertainties of the results.595

6. Conclusions596

The power equation is one of the most common phenomenological relation-597

ships used in the literature to forecast the compressive strength of masonry,598

which has been proposed with different coefficients and exponents by many599

authors. In the present work, the power equation was discussed by means of600

Dimensional Analysis. Nine dimensionless groups affecting masonry strength601

were introduced to identify and discuss the field of applicability of the power602

equation. Then, a dataset of 116 specimens selected from the literature was603

analyzed considering these dimensionless groups. Subsequently, experimental604

data were clustered considering the most significant dimensionless groups and605

used to calibrate new power equations for the different cases. Then, the new606

models were compared with some power models proposed in the literature. The607

results indicate that:608

� It is proved from the theoretical point of view that the coefficients of the609

power equation must depend on the geometry of the specimens and on610
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the mechanical properties of the materials. For this reason, the power611

equations proposed in the literature are specific for the type of specimens612

(i.e. dimensionless parameters) used for their calibration and direct com-613

parisons among them should be done with great caution.614

� A novel representation of the experimental data in the cartesian plane, in615

terms of dimensionless masonry strength (masonry efficiency) vs. dimen-616

sionless mortar strength, permits to observe the importance of specimen617

type (wallettes or stack-bonded prisms), specimen slenderness, and mortar618

type (cement, cement-lime, and lime). Furthermore, plots of the collected619

dataset show that the effect of slenderness is well evident for stack-bonded620

prism specimens and a suitable correction function should be studied.621

� A new calibration of the power equation specific for solid-clay-brick ma-622

sonry was done considering homogeneous data in terms of dimensionless623

parameters. Compared to the power models proposed in the literature,624

the results of fitting are characterized by more consistent estimators. Re-625

gressions confirm once again that the power equations proposed in the626

literature are specific for the type of specimens (i.e. dimensionless param-627

eters) used for their calibration.628

� The coefficient of determination R2 is insufficient to evaluate the quality of629

a regression. The combination of several estimators, like R2, Akaike’s In-630

formation Criterion, and a20 seems a good choice for the specific problem,631

providing more motivated judgments.632

The application of the concepts of Dimensional Analysis is new in the field633

of masonry, where most (if not all) analyses are based on statistical treatment634

of the measured dimensional variables, with empirical or semi-empirical corre-635

lations.636

Starting from a broad perspective on masonry compressive strength, the637

problem was narrowed to the simple case of the power equation. Also in this638

case the available experiments are by far not enough to perform a thorough639
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analysis in order to leave in place all the variables, hence only the most relevant640

can be saved. The detailed process of the selection is useful in order to perceive641

the approximations and the limits of the use of power equations for masonry642

strength.643

The results of the present work are not intended to propose yet another644

calibration of the power equation but rather to allow a different reading and645

systematization of the problem, identifying better the context and its limits, and646

suggesting new developments with the aim of improving the overall approach647

to the problem.648
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N. ref. bM × tM × hM wythes fM bb × tb × hb fb f ′b hm fm mortar

(mm) (–) (MPa) (mm) (MPa) (MPa) (mm) (MPa) (–)

1 [36] 500× 250× 600 2 11.00 250× 120× 55 26.90 21.52 10.00 3.20 l

2 [36] 500× 250× 600 2 14.50 250× 120× 55 26.90 21.52 10.00 12.70 c+l

3 [37] 442× 103× 385 1 5.69 215× 103× 65 12.00 10.14 12.00 4.39 l

4 [37] 442× 103× 385 1 6.32 215× 103× 65 12.00 10.14 12.00 7.02 l

5 [37] 442× 103× 385 1 1.53 215× 103× 65 12.00 10.14 12.00 0.89 l

6 [38] 500× 115× 370 1 9.50 250× 115× 55 26.40 22.44 10.00 4.70 l

7 [38] 500× 115× 370 1 9.40 250× 115× 55 26.40 22.44 10.00 5.80 l

8 [38] 500× 115× 370 1 12.90 250× 115× 55 26.40 22.44 10.00 9.80 c+l

9 [39] 520× 110× 350 1 5.40 −× 110×− 15.20 12.92 - 5.80 l

10 [39] 520× 110× 350 1 8.80 −× 110×− 15.20 12.92 - 9.80 c+l

11 [40] 280× 140× 300 1 8.14 280× 140× 55 19.70 16.74 8.00 2.30 l

12 [40] 280× 140× 300 1 7.42 280× 140× 55 19.70 16.74 8.00 2.30 l

13 [40] 280× 140× 300 1 6.14 280× 140× 55 19.70 16.74 8.00 2.30 l

14 [40] 280× 140× 300 1 7.47 280× 140× 55 19.70 16.74 8.00 2.30 l

15 [40] 280× 140× 300 1 8.50 280× 140× 55 19.70 16.74 8.00 2.30 l

16 [40] 280× 140× 300 1 7.60 280× 140× 55 19.70 16.74 8.00 2.30 l

17 [41] 660× 200× 800 2 1.79 200× 100× 70 7.82 6.81 15.00 1.04 l

18 [42] 430× 100× 330 1 4.64 200× 100× 50 10.00 10.00 - 3.33 c+l

19 [42] 430× 100× 330 1 7.14 200× 100× 50 32.00 32.00 - 2.87 c+l

20 [42] 430× 100× 330 1 10.41 200× 100× 50 32.00 32.00 - 9.84 c+l

21 [43] 500× 120× 500 1 14.98 250× 120× 65 17.40 17.40 13.00 13.85 c

22 [43] 500× 120× 500 1 12.51 250× 120× 65 17.40 17.40 13.00 9.47 c+l

23 [43] 500× 120× 500 1 6.93 250× 120× 65 17.40 17.40 13.00 1.13 l

24 [44] 380× 260× 590 2 6.60 250× 120× 50 15.70 15.70 - 11.10 c+l

25 [44] 380× 260× 590 2 8.30 250× 120× 50 21.20 21.20 - 10.60 c+l

26 [44] 380× 260× 590 2 10.80 250× 120× 50 27.20 27.20 - 10.40 c+l

27 [44] 380× 260× 590 2 5.60 250× 120× 50 16.30 16.30 - 5.80 c+l

28 [44] 380× 260× 590 2 8.00 250× 120× 50 22.20 22.20 - 6.20 c+l

29 [44] 380× 260× 590 2 9.80 250× 120× 50 28.30 28.30 - 5.50 c+l

30 [44] 380× 260× 590 2 9.60 250× 120× 50 28.50 28.50 - 5.80 c+l

31 [23] 235× 115× 460 1 13.60 235× 111× 76 23.00 20.08 12.00 12.21 c+l

32 [23] 235× 115× 460 1 6.70 235× 111× 76 23.00 20.08 12.00 6.60 c

33 [23] 235× 115× 460 1 12.60 235× 111× 76 23.00 20.08 12.00 12.21 c+l

34 [23] 235× 115× 460 1 9.60 235× 111× 76 23.00 20.08 12.00 6.60 c

35 [18] 700× 230× 700 2 5.40 230×−× 70 13.10 13.10 10.00 6.10 c

Continued on next page
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Table A1 – continued from previous page

N. ref. bM × tM × hM wythes fM bb × tb × hb fb f ′b hm fm mortar

(mm) (–) (MPa) (mm) (MPa) (MPa) (mm) (MPa) (–)

36 [45] 440× 103× 365 1 8.90 215× 103× 65 15.00 12.00 10.00 10.00 l

37 [45] 440× 103× 365 1 4.80 215× 103× 65 15.00 12.00 10.00 2.70 l

38 [45] 440× 103× 365 1 0.74 215× 103× 65 15.00 12.00 10.00 0.60 l

39 [45] 440× 103× 365 1 1.52 215× 103× 65 15.00 12.00 10.00 0.90 l

40 [45] 440× 103× 365 1 4.30 215× 103× 65 15.00 12.00 10.00 1.40 l

41 [45] 440× 103× 365 1 5.75 215× 103× 65 15.00 12.00 10.00 1.20 c

Table A1: Database of experimental values: wallettes.

N. ref. bM × tM × hM fM f ′M bb × tb × hb fb f ′b hm fm mortar

(mm) (MPa) (MPa) (mm) (MPa) (MPa) (mm) (MPa) (–)

1 [46] 193× 93× 465 17.60 21.47 193× 93× 53 30.00 23.52 10.00 10.10 c+l

2 [47] 140× 140× 300 7.54 7.60 260× 130× 55 30.51 25.93 - 2.31 l

3 [48] 250× 110× 270 12.50 12.84 250× 110× 55 13.80 13.80 10.00 9.20 c+l

4 [48] 250× 110× 270 14.50 14.90 250× 110× 55 13.80 13.80 10.00 9.20 c+l

5 [48] 250× 110× 270 12.80 13.15 250× 110× 55 13.80 13.80 10.00 7.00 c+l

6 [48] 250× 110× 270 13.70 14.07 250× 110× 55 13.80 13.80 10.00 7.00 c+l

7 [40] 240× 110× 270 12.51 12.85 240× 110× 55 30.50 25.93 10.00 13.10 c+l

8 [40] 240× 110× 270 14.55 14.95 240× 110× 55 30.50 25.93 10.00 13.10 c+l

9 [40] 240× 110× 270 12.78 13.13 240× 110× 55 30.50 25.93 10.00 10.00 c+l

10 [40] 240× 110× 270 13.66 14.03 240× 110× 55 30.50 25.93 10.00 10.00 c+l

11 [49] 191× 95× 523 15.56 18.98 191× 95×− 34.00 34.00 - 15.70 c

12 [42] 200× 100× 330 3.69 4.04 200× 100× 50 10.00 10.00 - 3.33 c+l

13 [42] 200× 100× 330 6.49 7.10 200× 100× 50 32.00 32.00 - 2.87 c+l

14 [42] 200× 100× 330 8.70 9.52 200× 100× 50 32.00 32.00 - 9.84 c+l

15 [50] 285× 130× 280 28.90 29.17 285× 130× 50 56.80 68.73 10.00 5.50 c

16 [50] 285× 130× 280 28.80 29.07 285× 130× 50 56.80 68.73 10.00 5.50 c

17 [50] 285× 130× 280 28.20 28.46 285× 130× 50 56.80 68.73 10.00 5.50 c

18 [50] 285× 130× 280 28.30 28.56 285× 130× 50 56.80 68.73 10.00 5.50 c

19 [20] 228× 112× 250 3.31 3.36 228× 112× 78 8.50 7.50 15.00 1.23 l

20 [20] 228× 112× 250 6.98 7.08 228× 112× 78 12.00 10.58 15.00 4.54 c+l

21 [20] 228× 112× 250 10.70 10.85 228× 112× 78 15.70 13.85 15.00 5.53 l

22 [20] 228× 112× 250 7.39 7.49 228× 112× 78 16.00 14.11 15.00 4.14 c+l

23 [20] 228× 112× 250 6.59 6.68 228× 112× 78 16.30 14.38 15.00 8.58 l

Continued on next page
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Table A2 – continued from previous page

N. ref. bM × tM × hM fM f ′M bb × tb × hb fb f ′b hm fm mortar

(mm) (MPa) (MPa) (mm) (MPa) (MPa) (mm) (MPa) (–)

24 [20] 228× 112× 250 6.06 6.14 228× 112× 78 17.10 15.08 15.00 2.62 l

25 [20] 228× 112× 250 12.05 12.22 228× 112× 78 21.10 18.61 15.00 5.92 l

26 [20] 228× 112× 250 14.70 14.90 228× 112× 78 27.30 24.08 15.00 6.65 c+l

27 [20] 228× 112× 250 6.19 6.28 228× 112× 78 8.50 7.50 15.00 4.95 c+l

28 [20] 228× 112× 250 7.17 7.27 228× 112× 78 10.60 9.35 15.00 1.75 l

29 [20] 228× 112× 250 10.82 10.97 228× 112× 78 15.70 13.85 15.00 4.95 c+l

30 [20] 228× 112× 250 7.35 7.45 228× 112× 78 17.10 15.08 15.00 0.69 l

31 [20] 228× 112× 250 10.63 10.78 228× 112× 78 17.10 15.08 15.00 2.47 c+l

32 [20] 228× 112× 250 11.71 11.87 228× 112× 78 17.10 15.08 15.00 4.95 c+l

33 [20] 228× 112× 250 11.52 11.68 228× 112× 78 17.10 15.08 15.00 5.90 c+l

34 [20] 228× 112× 250 16.07 16.29 228× 112× 78 17.10 15.08 15.00 8.65 c+l

35 [20] 228× 112× 250 14.66 14.86 228× 112× 78 27.50 24.25 15.00 4.95 c+l

36 [20] 228× 112× 250 30.79 31.22 228× 112× 78 38.20 33.69 15.00 12.52 c+l

37 [20] 228× 112× 250 24.77 25.12 228× 112× 78 43.40 38.28 15.00 12.52 c+l

38 [23] 235× 115× 460 6.70 7.70 235× 111× 76 23.00 20.08 12.00 6.60 c

39 [51] 240× 110× 270 9.90 10.17 240× 110× 55 19.90 19.90 10.00 14.72 c+l

40 [51] 240× 110× 270 13.50 13.87 240× 110× 55 19.90 19.90 10.00 11.39 c+l

41 [52] 230× 110× 400 4.00 4.48 230× 110× 75 17.70 17.70 10.00 3.10 c

42 [52] 230× 110× 400 2.90 3.25 230× 110× 75 16.10 16.10 10.00 3.10 c

43 [52] 230× 110× 400 5.10 5.72 230× 110× 75 28.90 28.90 10.00 3.10 c

44 [52] 230× 110× 400 4.30 4.82 230× 110× 75 20.60 20.60 10.00 3.10 c

45 [52] 230× 110× 400 8.50 9.53 230× 110× 75 28.90 28.90 10.00 20.60 c

46 [52] 230× 110× 400 7.60 8.52 230× 110× 75 20.60 20.60 10.00 20.60 c

47 [52] 230× 110× 400 6.50 7.29 230× 110× 75 17.70 17.70 10.00 15.20 c+l

48 [52] 230× 110× 400 5.90 6.61 230× 110× 75 16.10 16.10 10.00 15.20 c+l

49 [52] 230× 110× 400 7.20 8.07 230× 110× 75 28.90 28.90 10.00 15.20 c+l

50 [52] 230× 110× 400 6.80 7.62 230× 110× 75 20.60 20.60 10.00 15.20 c+l

51 [6] 194× 89× 350 37.70 43.15 194× 89× 55 69.80 59.33 7.50 52.60 c+l

52 [6] 194× 89× 350 34.70 39.72 194× 89× 55 69.80 59.33 7.50 26.40 c+l

53 [6] 194× 89× 350 27.00 30.90 194× 89× 55 69.80 59.33 7.50 13.70 c+l

54 [6] 194× 89× 350 19.70 22.55 194× 89× 55 69.80 59.33 7.50 3.40 c+l

55 [53] 250× 120× 315 8.24 8.57 250× 120× 55 19.76 14.95 10.00 2.62 c

56 [54] 210× 100× 340 27.50 30.30 204× 98× 50 66.00 66.00 14.00 37.50 l

57 [54] 430× 100× 340 18.20 20.06 204× 98× 50 66.00 66.00 14.00 17.60 c+l

Continued on next page
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Table A2 – continued from previous page

N. ref. bM × tM × hM fM f ′M bb × tb × hb fb f ′b hm fm mortar

(mm) (MPa) (MPa) (mm) (MPa) (MPa) (mm) (MPa) (–)

58 [54] 210× 100× 340 15.80 17.41 204× 98× 50 66.00 66.00 14.00 17.60 c+l

59 [54] 210× 100× 340 8.30 9.15 212× 99× 51 27.00 27.00 14.00 17.60 c+l

60 [54] 430× 100× 340 11.10 12.23 208× 98× 50 33.00 33.00 14.00 17.60 c+l

61 [54] 210× 100× 340 9.10 10.03 208× 98× 50 33.00 33.00 14.00 17.60 c+l

62 [54] 430× 100× 340 19.40 21.38 212× 100× 53 40.00 40.00 14.00 17.60 c+l

63 [54] 430× 100× 340 19.60 21.60 212× 100× 53 40.00 40.00 14.00 17.60 c+l

64 [54] 210× 100× 340 16.80 18.51 208× 98× 50 66.00 66.00 15.00 4.50 c+l

65 [54] 210× 100× 340 7.40 8.15 212× 99× 51 27.00 27.00 14.00 4.50 c+l

66 [54] 210× 100× 340 10.20 11.24 208× 98× 50 33.00 33.00 14.00 4.50 c+l

67 [54] 430× 100× 340 19.80 21.82 212× 100× 53 40.00 40.00 12.50 8.10 c+l

68 [54] 430× 100× 340 19.50 21.49 212× 100× 53 40.00 40.00 12.50 8.10 c+l

69 [54] 430× 100× 340 7.50 8.26 208× 98× 50 33.00 33.00 14.00 3.00 c+l

70 [54] 210× 100× 340 6.50 7.16 208× 98× 50 33.00 33.00 14.00 3.00 c+l

71 [54] 430× 100× 340 14.90 16.42 212× 100× 53 40.00 40.00 14.00 3.00 c+l

72 [55] 290× 140× 273 12.30 12.13 290× 140× 50 21.30 17.04 10.00 1.23 l

73 [55] 290× 140× 265 11.78 11.43 290× 140× 50 21.30 17.04 10.00 1.23 l

74 [55] 290× 140× 265 13.80 13.39 290× 140× 50 21.30 17.04 10.00 1.90 l

75 [55] 290× 140× 268 13.66 13.33 290× 140× 50 21.30 17.04 10.00 1.90 l

Table A2: Database of experimental values: stack-bonded prisms.

40



References657
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