
S P E C I A L I S S U E - M E T HODO LOG Y P A P E R

TARSIS: An effective automata-based abstract domain for string
analysis

Luca Negrini1 | Vincenzo Arceri2 | Agostino Cortesi1 | Pietro Ferrara1

1Department of Environmental Sciences,

Informatics and Statistics, Ca' Foscari

University of Venice, Venice, Italy

2Department of Mathematical, Physical and

Computer Sciences, University of Parma,

Parma, Italy

Correspondence

Vincenzo Arceri, Department of Mathematical,

Physical and Computer Sciences, University of

Parma, Parco Area delle Scienze, 53/A, 43124

Parma, Italy.

Email: vincenzo.arceri@unipr.it

Funding information

University of Parma, Grant/Award Numbers:

MUR_DM737_2022_FIL_PROGETTI_B_

ARCERI_COFIN, CUP: D91B21005370003,

PE00000014; EU—NGEU; PNRR,

Grant/Award Number: ECS00000043; Ca'

Foscari University

Abstract

In this paper, we introduce TARSIS, a new abstract domain based on the abstract inter-

pretation theory that approximates string values through finite state automata. The

main novelty of TARSIS is that it works over an alphabet of strings instead of single

characters. On the one hand, such an approach requires a more complex and refined

definition of the lattice operators and of the abstract semantics of string operators.

On the other hand, it is in position to obtain strictly more precise results than state-

of-the-art approaches. We compare TARSIS both with simpler domains and with the

standard automata model, targeting case studies containing standard yet challenging

string manipulations. The performance gain w.r.t. the standard automata model is

also assessed, measuring the speed-up gained by TARSIS. Experiments confirm that

TARSIS can obtain precise results without incurring in excessive computational costs.

K E YWORD S

abstract interpretation, static analysis, string analysis

1 | INTRODUCTION

Nowadays, string values play a key role in any modern programming language, because they are adopted for a variety of purposes and tasks. For

instance, they allow to dynamically access object properties, to hide the program code by using string-to-code statements and reflection, or to

manipulate data-interchange formats, such as JSON, just to name a few. In this context, the correctness of string manipulations is therefore cru-

cial. Sound static analysis1,2 has been widely applied to prove the correctness of programs (e.g., the absence of bugs). Recently, a relevant effort

was spent towards the static approximation of string values in different contexts, such as SQL queries programmatically built by code,3

reflection,4,5 string-to-code statement analysis,6 and injection vulnerabilities.7,8

Despite the great effort spent in reasoning about strings, static analysis often failed to manage programs that heavily manipulate strings,

mainly due to the inaccuracy of the results and/or the prohibitive amount of resources (time and space) required to retrieve useful information on

strings. On the one hand, finite height string abstractions9 are computable in a reasonable time, but precision is suddenly lost when using

advanced string manipulations. On the other hand, more sophisticated abstractions (e.g., the ones reported in Arceri et al10 and Cortesi and

Olliaro11) compute precise results, but they require a huge, and sometimes unrealistic, computational cost, making the analysis of real code intrac-

table. A good representation of the latter abstractions is the finite state automata (FSA) domain.10 Over-approximating strings into FSAs has

shown to increase string analysis accuracy in many scenarios, but it does not scale up to real world programs dealing with statically unknown

inputs and long text manipulations.

Received: 1 March 2023 Revised: 6 September 2023 Accepted: 4 December 2023

DOI: 10.1002/smr.2647

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

J Softw Evol Proc. 2024;e2647. wileyonlinelibrary.com/journal/smr 1 of 36

https://doi.org/10.1002/smr.2647

https://orcid.org/0000-0001-9930-8854
https://orcid.org/0000-0002-5150-0393
mailto:vincenzo.arceri@unipr.it
https://doi.org/10.1002/smr.2647
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2647
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2647&domain=pdf&date_stamp=2024-02-14

In this paper, we introduce TARSIS, a new abstract domain for string values based on FSAs. Standard FSA has been shown to provide precise

abstractions of string values when all the components of such strings are known but with high computational cost. Instead of considering finite

automata built over the classical alphabet of single characters, TARSIS considers automata built over an alphabet of strings. The alphabet comprises

a special value to represent statically unknown strings. This avoids the creation of self-loops with any possible character as input, which otherwise

would significantly degrade performance. We define the TARSIS's abstract semantics on all string operations reported in Arceri et al,10 that we use

as reference, either defined directly on the automaton or on its equivalent regular expression.

TARSIS has been implemented in GoLiSA,12 a static analyzer for Go based on Library for Static Analysis (LiSA).13,14 By comparing TARSIS with

other cutting-edge domains for string analysis, results show that (i) when applied to simple code that causes a precision loss in simpler domains,

TARSIS correctly approximates string values within a comparable execution time; (ii) on code that makes the standard automata domain unusable

due to the complexity of the analysis, TARSIS is in position to perform in a limited amount of time, making it a viable domain for complex and real

codebases; and (iii) TARSIS is able to precisely abstract complex string operations that have not been addressed by state-of-the-art domains.

This paper is a revised and extended version of Negrini et al.15 Specifically, we completed the previous version of the paper by covering all of

the string operations considered in Arceri et al,10 with the addition of the string equality operator. For all supported operations (both newly added

and already formalized in Negrini et al.15), we also reported proofs of soundness and completeness (or incompleteness). Moreover, we repeated

the original experimental evaluation using GoLiSA12 instead of the prototypical analyzer used in the original paper. Finally, to clearly assess the

performance gain of TARSIS w.r.t. the FSA abstract domain introduced in Arceri et al,10 we extended our evaluation to deeply compare execution

times of the two domains.

The rest of the paper is structured as follows. Section 2 introduces a motivating example. Section 3 defines the mathematical notation used

throughout the paper. Section 4 formalizes TARSIS and its abstract semantics. Section 5 compares TARSIS with other domains. Section 6 discusses

most related works, while Section 7 concludes. Appendix A reports soundness and completeness (or incompleteness) proofs for TARSIS abstract

semantics.

2 | MOTIVATING EXAMPLE

Consider the code of Figure 1 that counts the occurrences of string substr into string s. This code is (a simplification of) the Go API function

strings.Count (see https://cs.opensource.google/go/go/+/refs/tags/go1.20.1:src/strings/strings.go). Proving properties about the value of n

at Line 9, is particularly challenging, because it requires to correctly model a set of string operations (viz., len, Index, and substring) and their

interaction. State-of-the-art string analyses fail to precisely model most of such operations, because their abstraction of string values is not rigor-

ous enough to deal with them. This loss of precision usually leads to failure in proving string-based properties (also on non-string values) in real-

world software, such as the numerical bounds of the value returned by Count when applied to a string.

The goal of this paper is to provide an abstract interpretation-based static analysis, in order to deal with complex and nested string manipula-

tions similar to the one reported in Figure 1. As we will discuss in Section 5, TARSIS models (among the others) all string operations used in Count,

and it is precise enough to infer, given the abstractions of s and substr, the precise range of values that n might have when the function

returns.

F IGURE 1 The strings.Count function of the Go API.

2 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://cs.opensource.google/go/go/+/refs/tags/go1.20.1:src/strings/strings.go

3 | PRELIMINARIES

3.1 | Mathematical notation

Given a set S, S ∗ is the set of all finite sequences of elements of S. If s¼ s0…sn � S ∗ , si is the ith element of s, jsj ¼ nþ1 is its length, and s½x=y� is
the sequence obtained by replacing all occurrences of x in s with y. When s0 is a subsequence of s, we write s0ss. Given s� S ∗ and

i, j�ℕ:0≤ i≤ j ≤ jsj, we denote the subsequence sisiþ1…sj�1 by s½i : j�, with s½i :� denoting the subsequence sisiþ1…sn. We denote by sn, with n≥0 the

n-times repetition of the string s. Given two sets S and T, ℘ðSÞ is the powerset of S, ST is the set difference, S� T is the strict inclusion relation

between S and T, S⊆ T is the inclusion relation between S and T, S�T is the Cartesian product between S and T, and S �T is the concatenation of

S and T, that is, S �T¼f s � t j s� S,t, � T g. Given a set S and n�ℕ, Sn is recursively defined as S0 ≜ fϵg, and Sn>0 ≜ S �Sn�1.

3.2 | Ordered structures

A set L with a partial ordering relation ≤ ⊆ L�L is a poset, denoted by hL, ≤ i. A poset hL, ≤ , _ , ^i, where _ and ^ are, respectively, the least

upper bound (lub) and greatest lower bound (glb) operators of L, is a lattice if 8x,y� L:x_y and x^y belong to L. It is also complete if 8X⊆ L we

have that
W
X,⋀X� L. A complete lattice L, with ordering ≤ , lub _ , glb ^ , top element > , and bottom element ⊥ is denoted by

hL, ≤ , _ , ^ , > , ⊥ i.

3.3 | Abstract interpretation

Abstract interpretation1,2 is a theoretical framework for sound reasoning about semantic properties of a program, establishing a correspon-

dence between the concrete semantics of a program and an approximation of it, called abstract semantics. Let C and A be complete lattices, a

pair of monotone functions α :C!A and γ :A!C forms a Galois connection (GC) between C and A if 8x�C,8y�A : αðxÞ≤ Ay, x≤ CγðyÞ. We

denote a GC as C ⇆
γ

α
A. Given C ⇆

γ

α
A, a concrete function f :C!C is, in general, not computable. Hence, a function f♯ :A!A that must correctly

approximate the function f is needed. If so, we say that the function f♯ is sound. Given C ⇆
γ

α
A and a concrete function f :C!C, an abstract func-

tion f♯ :A!A is sound w.r.t. f if 8c�C:αðfðcÞÞ≤ Af
♯ ðαðcÞÞ, or equivalently 8a�A:fðγðaÞÞ≤ Cγðf♯ ðaÞÞ. Completeness16 can be obtained by

enforcing the equality of the soundness conditions. Doing so, we obtain two notion of completeness. Given C ⇆
γ

α
A, a concrete function f :C!C

and an abstract function f♯ :A!A, f♯ is backward complete w.r.t. f if 8c�C: αðfðcÞÞ¼ f♯ ðαðcÞÞ, and it is forward complete w.r.t. f if

8a�A:fðγðaÞÞ¼ γðf♯ ðaÞÞ.

3.4 | FSAs and regular expression notation

We follow the notation reported in Arceri et al10 for introducing FSA. A FSA is a tuple A¼hQ,Σ,δ,q0,Fi, where Q is a finite set of states, q0 �Q is

the initial state, Σ is a finite alphabet of symbols, δ⊆Q�Σ�Q is the transition relation, and F⊆Q is the set of final states. If δ :Q�Σ!Q is a func-

tion, then A is called deterministic FSA. The set of all the FSAs is FA. If ℒ⊆Σ ∗ is recognized by a FSA, we say that ℒ is a regular language. Given

A� Fᴀ, ℒðAÞ is the language accepted by A. From the Myhill–Nerode theorem, for each regular language there uniquely exists a minimum FSA

(w.r.t. the number of states) recognizing the language. Given a regular language ℒ, MinðAÞ is the minimum FSA A s.t. ℒ¼ℒðAÞ. Abusing notation,

given a regular language ℒ, MinðℒÞ is the minimal FSA recognizing ℒ. Given A, we denote by KleeneðAÞ the automaton recognizing the Kleene

closure of ℒðAÞ.
We denote as PathsðAÞ�℘ðδ ∗ Þ the set of sequences of transitions corresponding to all the possible paths from the initial state q0 to a final

state qn � F. When A is cycle free, the set PathsðAÞ is finite and computable. Given π �PathsðAÞ, jπj is its length, meaning the sum of the lengths

of the symbols that appear on the transitions composing the path. Furthermore, jminPathðAÞj�ℕ denotes the (unique) length of a minimum path.

If A is a cycle-free automaton, jmaxPathðAÞj�ℕ denotes the (unique) length of a maximum path. Given π¼ t0…tn �PathsðAÞ, σπi is the symbol

read by the transition ti, i� ½0,n�, and σπ ¼ σπ0…σπn is the string recognized by such path. Predicate cyclicðAÞ holds if and only if the given automa-

ton contains a cycle. Throughout the paper, it could be more convenient to refer to a FSA by its regular expression (regex for short), being equiva-

lent. Given two regexes r1 and r2, r1 jjr2 is the disjunction between r1 and r2, r1r2 is the concatenation of r1 with r2, ðr1Þ ∗ is the Kleene

closure of r1.

NEGRINI ET AL. 3 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

3.5 | The FSA abstract domain

Here, we report the necessary notions about the FSA abstract domain presented in Arceri et al,10 over-approximating string properties as the min-

imum deterministic FSA recognizing them. Given an alphabet Σ, the FSA domain is defined as hFᴀ=�,vFᴀ,tFᴀ,uFᴀ,Minð;Þ,MinðΣ ∗ Þi, where FA=� is

the quotient set of FA w.r.t. the equivalence relation induced by language equality, vFᴀ is the partial order induced by language inclusion, and tFᴀ

and uFᴀ are the lub and the glb, respectively. The minimum is Minð;Þ, that is, the automaton recognizing the empty language, and the maximum is

MinðΣ ∗ Þ, that is, the automaton recognizing any possible string over Σ. We abuse notation by representing equivalence classes in FA=� by one of

its automaton (usually the minimum), that is, when we write A�Fᴀ=� we mean ½A��. Because FA=� does not satisfy the ascending chain condition

(ACC), that is, it contains infinite ascending chains, it is equipped with the parametric widening rn
Fᴀ. The latter is defined in terms of a state equiv-

alence relation merging states that recognize the same language, up to a fixed length n�ℕ, a parameter used for tuning the widening preci-

sion.17,18 For instance, let us consider the automata A,A0 � Fᴀ=� recognizing the languages ℒ¼fϵ,ag and ℒ0 ¼ fϵ,a,aag, respectively. The result of

the application of the widening rn
Fᴀ, with n¼1, is Arn

FᴀA
0 ¼A00 s.t. ℒðA00 Þ ¼ f an j n�ℕ g.

3.6 | Core language and semantics

We introduce a core language IMP, whose syntax is reported in Figure 2. Such language, besides supporting arithmetic expressions (AE) and Bool-

ean expressions (BE), also supports all of the string expressions (SE) discussed in Arceri et al,10 that we use as reference. Primitives values are

VAL¼ℤ[Σ ∗ [ftrue,falseg, namely, integers, strings, and Booleans. Programs states M : Iᴅ!Vᴀʟ map identifiers to primitives values, ranged

over the meta-variable Ê. The concrete semantics of IMP statements is captured by the function ½½ st �� :M!M. The semantics is defined in a

standard way and for this reason has been omitted. Such semantics relies on one of the expressions that we capture, abusing notation, as

½ ½ e �� :M!Vᴀʟ. We define the part concerning strings in Figure 3.

4 | THE TARS IS ABSTRACT DOMAIN

In this section, we recast the original finite state abstract domain working over an alphabet of characters Σ, reported in Section 3, to an aug-

mented abstract domain based on FSAs over an alphabet of strings.

4.1 | Abstract domain and widening

The key idea of TARSIS is to adopt the same FSA-based domain, changing the alphabet on which automata are defined to a set of strings, namely,

Σ ∗ . The main concern is that Σ ∗ is infinite and it would not permit us to adopt the FSA model that requires the alphabet to be finite. Thus, in

order to solve this problem, we make this abstract domain parametric to the program we aim to analyze and in particular to its strings. Given an

IMP program P, we denote by Σ ∗
P any substring of strings appearing in P (the set Σ ∗

P can be easily computed collecting the constant strings in P by

visiting its abstract syntax tree and then computing their substrings), delimiting the space of string properties we aim to check only on P.

At this point, we can instantiate the automata-based framework proposed in Arceri et al10 with the new alphabet as

F IGURE 2 IMP syntax.

4 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

T Fᴀ=�,vT ,tT ,uT ,Minð;Þ,MinðA ∗
P Þ

� �
:

The alphabet on which FSAs are defined is AP ≜Σ ∗
P [fTg, where T is a special symbol that we intend as “any possible string.” Let T Fᴀ be the set

of any deterministic FSA over the alphabet AP. Because we can have more automata recognizing a language, T Fᴀ=� is the quotient set of T Fᴀ w.

r.t. the equivalence relation induced by language equality, that is, the elements of domain are equivalence classes. For simplicity, when we write

A� T Fᴀ=�, we intend the equivalence class of A. vT is the partial order induced by language inclusion, and tT and uT are the lub and the glb over

elements of T Fᴀ=�, computing the equivalence class of the union and the intersection of the two automata representing the corresponding clas-

ses, respectively. The bottom element is Minð;Þ, corresponding to the automaton recognizing the empty language, and the maximum is MinðA ∗
P Þ,

namely, the automaton recognizing any string over AP.

Similarly to the standard FSA domain FA=�, also T Fᴀ=� is not a complete lattice and, consequently, it does not form a GC with the string con-

crete domain ℘ðΣ ∗ Þ. This comes from the non-existence, in general, of the best abstraction of a string set in T Fᴀ=� (e.g., a context-free language

has no best abstract element in T Fᴀ=� approximating it). Nevertheless, this is not a concern because weaker forms of abstract interpretation are

still possible19 still guaranteeing soundness relations between concrete and abstract elements (e.g., polyhedra20,21). In particular, we can still

ensure soundness comparing the concretizations of our abstract elements (cf. Section 8 of Cousot and Cousot19). Hence, we define the concreti-

zation function γT : T Fᴀ=� !℘ðΣ ∗ Þ as γT ðAÞ≜
S

σ �ℒðAÞFlatðσÞ, where Flat converts a string in A ∗
P into a set of strings in Σ ∗ . For instance,

Flatða TT bb cÞ¼ f aσbbc j σ �Σ ∗ g. Note that the language of strings recognized by A corresponds to the concretization function reported

above, namely, ℒðAÞ¼ γT ðAÞ.

4.1.1 | Widening

Similarly to the standard automata domain FA=�, also T Fᴀ=� does not satisfy ACC, meaning that fixpoint computations over T Fᴀ=� may not con-

verge in a finite time. Hence, we need to equip T Fᴀ=� with a widening operator to ensure the convergence of the analysis. We define the widen-

ing rn
T : T Fᴀ=� �T Fᴀ=� !T Fᴀ=�, parametric in n�ℕ, taking two automata as input and returning an over-approximation of the least upper

bounds between them, as required by widening definition. We rely on the standard automata widening reported in Section 3 that, informally

speaking, can be seen as a subset construction algorithm22 up to languages of strings of length n.

To explain the widening rn
T , consider the following function manipulating strings; for the sake of readability, in the program examples pres-

ented in this paper, the plus operation between strings corresponds to the string concatenation:

F IGURE 3 Concrete semantics of IMP string expressions, where σ¼ ½½ s ��Ê,σ0 ¼ ½½ s0 ��Ê,σ00 ¼ ½½ s00 ��Ê

NEGRINI ET AL. 5 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Function f takes as input parameter v and returns variable res. Let us suppose that v is a statically unknown string, corresponding to the

automaton recognizing T (i.e., MinðfTgÞ). The result of the function f is a string of the form id ¼ T, repeated zero or more times. Because the

while guard is unknown, the number of iterations is statically unknown, and in turn, also the number of concatenations performed inside the

loop body. The goal here is to over-approximate the value returned by the function f, that is, the value of res at the end of the function. Let A,

reported in Figure 4A, be the automaton abstracting the value of res before starting the second iteration of the loop, and let A0 , reported in

Figure 4B, be the automaton abstracting the value of res at the end of the second iteration. At this point, we want to apply the widening opera-

tor rn
T , between A and A0, working as follows. We first compute AtT A0 (corresponding to the automaton reported in Figure 4B except that also

q0 is also a final state). On this automaton, we merge any state that recognizes the same AP-strings of length n, with n�ℕ. In our example, let n

be 2. The resulting automaton is reported in Figure 4C, where q0 and q2 are put together, and the other states are left as singletons. Figure 4D

depicts the minimized version of Figure 4C.

The widening rn
T has been proved to meet the widening requirements (i.e., over-approximation of the least upper bounds and convergence

on infinite ascending chains) in D'Silva.18 The parameter n, tuning the widening precision, is arbitrary and can be chosen by the user. As

highlighted in Arceri et al,10 the higher n is, the more the corresponding widening operator is precise in over-approximating lubs of infinite ascend-

ing chains (i.e., in fixpoint computations). A classical improvement on widening-based fixpoint computations is to integrate a threshold,23 namely,

widening is applied to over-approximate lubs when a certain threshold (usually over some property of abstract values) is overcome. In fixpoint

computations, we decide to apply the previously defined widening rn
T only when the number of the states of the lubbed automata overcomes

the threshold τ�ℕ. This permits us to postpone the widening application, getting more precise abstractions when the automata sizes do not over-

come the threshold. At the moment, the threshold τ is not automatically inferred, because it surely requires further investigations.

4.2 | String abstract semantics of IMP

In this section, we define the abstract semantics of the string operators defined in Section 3 over the new string domain T Fᴀ=�. Soundness and com-

pleteness (or incompleteness) proofs of the TARSIS's abstract semantics are reported in Appendix A. While TARSIS also implements startsWith

and endsWith operators, their abstract semantics is not discussed in this section because we adopt the same ones reported in Arceri et al.10

Because IMP supports strings, integers, and Booleans values, we need a way to merge the corresponding abstract domains. In particular, we

abstract integers with the well-known interval abstract domain1 defined as Intv≜ f ½a,b� j a�ℤ[f�∞g,b�ℤ[fþ∞g,a≤ b g[f⊥ Intvg, and Bool-

eans with Bool≜℘ðftrue,falsegÞ. As usual, we denote by tIntv and tBool the lubs between intervals and Booleans, respectively. In particular,

we merge such abstract domains in Vᴀʟ♯ by the smashed sum abstract domain24 Vᴀʟ♯ ≜T Fᴀ=�
L

Intv
L

Bool that smashes the bottom elements

of the involved domains into a single one, and adds a new top above the ones from the domains.

The program state is represented through abstract program memories M♯ : Iᴅ!Vᴀʟ♯ from identifiers to abstract values. The abstract seman-

tics is captured by the function ½½ st ��♯ :M♯ !M♯ , relying on the abstract semantics of expressions defined by, abusing notation,

½½ e ��♯ :M♯ !Vᴀʟ♯ . We focus on the abstract semantics of string operations, while the semantics of the other expressions is standard and does

not involve strings.

F IGURE 4 Example of widening application.

6 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4.2.1 | Concat

Given A,A0 � T Fᴀ=�, the abstract semantics of concat returns a new automaton recognizing the language f σ �σ0 j σ �ℒðAÞ,σ0 �ℒðA0Þ g, that is,
the concatenation between the strings of ℒðAÞ with the strings of ℒðA0Þ. This is achievable relying on the standard automata concatenation.22

Let s,s0 �sᴇ and suppose that ½½ s ��♯Ê♯ ¼hQ,AP,δ,q0,Fi� T Fᴀ=�, ½½ s0 ��♯Ê♯ ¼ Q0,AP,δ0 ,q00,F
0� �
� T Fᴀ=�. The abstract semantics of concat is

½½ concatðs,s0Þ ��♯Ê♯ ≜Min hQ[Q0,AP,δ[δ0 [f ðqf ,ϵ,q00Þ j qf � F g,q0,F0i
� �

:

Following the standard automata concatenation, the semantics merges the automata introducing an ϵ-transition from each final state of A to the

initial state of A0. The result's initial state is the initial state of A, while its final states are the ones of A0.

4.2.2 | Length

Given A� T Fᴀ=�, the abstract semantics of length returns an interval c1,c2½ � such that 8σ �ℒðAÞ:c1 ≤ jσj≤ c2. We recast the original idea of the

abstract semantics of length over standard FSAs. Let s�sᴇ, supposing that ½½ s ��♯Ê♯ ¼A� T Fᴀ=�. The length abstract semantics is

½½ lengthðsÞ ��♯Ê♯ ≜
½jminPathðAÞj,þ∞� if cyclicðAÞ_ readsTopðAÞ,
½jminPathðAÞj, jmaxPathðAÞj� otherwise;

�

where readsTopðAÞ, 9q,q0 �Q:ðq,T,q0Þ� δ. Note that, when evaluating the length of the minimum path, T is considered to have a length of

0. For instance, consider the automaton A reported in Figure 5A. The minimum path of A is ðq0,aa,q1Þ,ðq1,T,q2Þ,ðq2,bb,q4Þ, and its length is

4. Because a transition labeled with T is in A (and its length cannot be statically determined), the abstract length of A is ½4,þ∞�. Consider the
automaton A0 reported in Figure 5B. In this case, A0 has no cycles and has no transitions labeled with T and the length of every string recognized

by A0 can be determined. The length of the minimum path of A0 is 3 (below path of A0), the length of the maximum path of A0 is 7 (above path of

A0), and consequently, the abstract length of A0 is ½3,7�.

4.2.3 | Contains

Given A,A0 � T Fᴀ=�, the abstract semantics of contains should return true if every string of A0 is contained into every string of A, false if no

string of A0 is contained into any string of A, and ftrue,falseg in the other cases. For instance, consider the automaton A depicted in Figure 7A

and suppose we check if it contains the automaton A0 recognizing the language faa,ag. The automaton A0 is a single-path automaton,25 meaning

that every string of A0 is a prefix of its longest string. In this case, the containment of the longest string (on each automaton path) implies the con-

tainment of the others, such as in our example, namely, it is enough to check that the longest string of A0 is contained into A. Note that a single-

path automaton cannot read the symbol T. We rely on the predicate singlePathðAÞ when A is a non-cyclic single-path automaton, and we denote

by σsp its longest string.

Let s,s0 �sᴇ, supposing that ½½ s ��♯Ê♯ ¼A� T Fᴀ=�, ½½ s0 ��♯Ê♯ ¼A0 � T Fᴀ=�. The contains abstract semantics is

½½ containsðs,s0Þ ��♯Ê♯ ≜
ffalseg if A0uT FAðAÞ¼Minð;Þ,
ftrueg if singlePathðA0Þ^ 8π �PathsðAacÞ:σspsσπ ,
ftrue,falseg otherwise:

8><
>:

F IGURE 5 (A) A s.t. ℒðAÞ¼ fbbb bbb,aa T bbg and (B) A0 s.t. ℒðA0Þ ¼ fa b c,aa bbb ccg

NEGRINI ET AL. 7 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In the first case, we denote by FAðAÞ the factor automaton of A, that is, the automaton recognizing any substring of A. In particular, if none of A's

substrings is part of A0, the abstract semantics safely returns false (checking the emptiness of the greatest lower bound between FAðAÞ and A0).

Then, if A0 is a single-path automaton, the abstract semantics returns true if every path of Aac reads the longest string of A0, with Aac being a copy

of A where all the cycles have been removed. Considering Aac is necessary not only to make Paths computable but also to exclude optional strings

recognized as part of loops. Here, we abuse notation denoting with σspsσπ the fact that σsp is a substring of each string in FlatðσπÞ. Otherwise,

ftrue,falseg is returned.

4.2.4 | String equality

Given A,A0 � T Fᴀ=�, the abstract semantics of string equality returns true when A and A0 recognize a singleton string and they are equal, false

if no string recognized by A is equal to any string recognized by A0 , ftrue,falseg in the other cases. Before defining the abstract semantics of

string equality, we define equality between two strings over the alphabet Σ ∗ [fTg. For example, the strings aTb and abb may be equal, while aTb

and abd definitely are not. Algorithm 1 defines the function eq : fΣ[fTgg ∗ �fΣ[fTgg ∗ !Bool, working on the expanded alphabet fΣ[fTgg ∗ .

Intuitively, eq checks string equality by recursively inspecting smaller suffixes of the given strings (Lines 11–15), returning definite answers

only when T characters do not appear (Lines 2, 6, and 10). Note that, when one of the given strings begins with T (Lines 13 and 14), the algorithm

can only prove inequality.

Let s,s0 �sᴇ and suppose ½½ s ��♯Ê♯ ¼A and ½½ s0 ��♯Ê♯ ¼A0. The abstract semantics of string equality is defined as

½½ s¼¼ s0 ��♯Ê♯ ≜
ffalseg if AuT A0 ¼Minð;Þ,
ftrue,falseg if cyclicðAÞ_cyclicðA0Þ,
⨆σ �ℒðAÞ,σ0 �ℒðA0 Þeqðσ,σ0Þ otherwise:

8><
>:

In the first case, if the greatest lower bound between A and A0 is Minð;Þ, then the automata do not share any common string; hence, the abstract

semantics returns ffalseg. In the second case, if either A or A0 are cyclic, the abstract semantics of string equality returns ftrue,falseg. Other-

wise, we rely on eq to compare the AP-strings recognized by A and A0 and we lub the results. To avoid cluttering the notation, the conversion from

strings over Σ ∗ [fTg to strings over fΣ[fTgg ∗ when calling the function eq is implicit.

4.2.5 | IndexOf

Given A,A0 � T Fᴀ=�, the indexOf abstract semantics returns an interval of the first indexes of the strings of ℒðA0Þ inside strings of ℒðAÞ, recalling
that when at least one string of ℒðA0Þ is not a substring of any string of ℒðA0Þ, the resulting interval must take into account �1 as well.

Let s,s0 �sᴇ and suppose ½½ s ��♯Ê♯ ¼A and ½½ s0 ��♯Ê♯ ¼A0. The abstract semantics of indexOf is defined as

8 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

½½ indexOfðs,s0Þ ��♯Ê♯ ≜

½�1,þ∞� if cyclicðAÞ_cyclicðA0Þ_ readsTopðA0Þ,
�1,�1½ � if 8σ0 �ℒðA0Þ ∄σ �ℒðAÞ:σ0sσ,
⨆ Intv

σ �ℒðA0 ÞIOðA,σÞ otherwise:

8><
>:

If one of the automata has cycles or the automaton abstracting strings we aim to search for (i.e., A0) has a T-transition, we return ½�1,þ∞�. More-

over, if none of the strings recognized by A0 is contained in a string recognized by A (note that this is a decidable check because A and A0 are cycle

free; otherwise, the interval ½�1,þ∞� would be returned in the first case), we can safely return the precise interval �1,�1½ �. Otherwise, we rely

on the auxiliary function IO : T Fᴀ=� �Σ ∗ ! Intv that, given an automaton A and a string σ �Σ ∗ , returns an interval corresponding to the possible

first positions of σ in strings recognized by A. Because A0 recognizes a finite language, we apply IOðA,σÞ to each σ �ℒðA0Þ and to return the least

upper bound of the resulting intervals.

In particular, the function IOðA,σÞ returns an interval ½i, j�� Intv, where i and j are computed as follows.

i¼
�1 if 9π �PathsðAÞ:σsσπ ,

min
π � PathsðAÞ

i jσf �FlatðσπÞ^σfi…σfiþn
¼ σ

� �
otherwise,

(

j¼

�1 if 8π �PathsðAÞ:σsσπ ,
þ∞ if 9π �PathsðAÞ:σsσπ ^π reads T before σ,

max
π � PathsðAÞ

i jσf �FlatðσπÞ^σfi…σfiþn
¼ σ^σsσf0…σfiþn�1

� �
otherwise:

8>><
>>:

As for the abstract semantics of contains, we abuse notation denoting with σsσπ the fact that σ is a substring of each string in FlatðσπÞ. Given
IOðA,σÞ¼ ½i, j�� Intv, i corresponds to the minimal position where the first occurrence of σ can be found in A, while j to the maximal one. Let us first

focus on the computation of the minimal position. If there exists a path π of A s.t. σ is not recognized by σπ , then the minimal position where σ can

be found in A does not exist and �1 is returned. Otherwise, the minimal position where σ begins across π is returned. Let us consider now the

computation of the maximal position. If all paths of the automaton do not recognize σ, then �1 is returned. If there exists a path where σ is recog-

nized but the character T appears earlier in the path, then þ∞ is returned. Otherwise, the maximal index of the first occurrences of σ across the

paths of A is returned.

4.2.6 | Repeat

Given A� T Fᴀ=� and ½i, j�� Intv, the abstract semantics of repeat should return an automaton recognizing the language of every string recognized

by A repeated k-times, with i≤ k ≤ j. We first define the auxiliary function repeat, reported in Algorithm 2, that inputs an automaton A and n�ℕ

and returns an automaton recognizing the strings of A repeated n-times.

NEGRINI ET AL. 9 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Lines 1 and 2 handle the case when n is zero and return the automaton recognizing the empty string. Lines 3–8 handle the case when A0 is a

cyclic automaton, and they build the automaton A0 returned at Line 8, corresponding to the n-concatenation of the automaton A. Otherwise, for

each path π of A, Lines 12–15 build the automaton A0 that corresponds to the n-repetition of σπ , that is, the string read by the path π. This opera-

tion is repeated for each path of the automaton (Lines 11–17), and the obtained automata are lubbed together in Ar at Line 16, which is finally

returned.

Let s�sᴇ and a� ᴀᴇ, supposing that ½½ s ��♯Ê♯ ¼A� T Fᴀ=� and ½½ a ��♯Ê♯ ¼ ½i, j�� Intv. W.l.o.g., let us suppose that ½i, j�⊆ ½0, þ∞�; when nega-

tive values are met, the automaton recognizing the empty language is returned. The repeat abstract semantics is

½½ repeatðs,aÞ ��♯Ê♯ ¼

KleeneðAÞ if ½i, j� ¼ ½0,þ∞�,
repeatðA, iÞ if i¼ j^ i�ℕ,

½½ concatðrepeatðA, iÞ,KleeneðAÞÞ ��♯ if j¼þ∞,

⨆k � ½i,j�repeatðA,kÞ otherwise:

8>>><
>>>:

When the input interval is ½0,þ∞�, the first case is matched and the Kleene closure of A is returned. The second case is when the interval concret-

izes to a single value (e.g., ½2,2�) and the abstract semantics returns repeatðA, iÞ. If the interval is ½i, þ∞�, with i�ℕf0g, because it is excluded in the

first case, the abstract semantics returns the concatenation between the i-repetition of A with its Kleene closure. An example of this case is

reported in Figure 6. Otherwise, that is, the interval ½i, j� is finite, the repeat's abstract semantics returns the lub of the k-repetition of A, for each

i≤ k ≤ j.

4.2.7 | TrimLeft, TrimRight, and Trim

The concrete semantics of trimLeft removes leading whitespaces (i.e., at the beginning) from a string. Similarly, its abstract semantics inputs an

automaton A� T Fᴀ=� and removes leading whitespaces from the begin of each string recognized by A. Let A� T Fᴀ=� and r be the regex

corresponding to the language recognized by A. The trimLeft's abstract semantics is captured by the function trimL inductively defined on the

structure of regexes as follows.

trimLðrÞ¼

r if r¼T_r¼;,
½½ trimLeftðσÞ �� if r¼ σ,

trimLðr1Þ jj trimLðr2Þ if r¼r1 jj r2,

trimLðr2Þ if r¼r1r2^trimLðr1Þ¼ ϵ,
trimLðr1Þðr2 jj trimLðr2ÞÞ if r¼r1r2^ readWSðr1Þ,
trimLðr1Þr2 if r¼r1r2^ ¬readWSðr1Þ,
ϵ if r¼ðr1Þ ∗ ^trimLðr1Þ¼ ϵ,
ϵ jj trimLðr1Þ r ifr¼ðr1Þ ∗ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

F IGURE 6 (A) A and (B) ½½ repeatðA, ½2, þ∞�Þ ��♯

10 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The predicate readWSðrÞ holds if the language of r recognizes a whitespace string, that is, readWSðrÞ , 9ws� f g ∗ :ws�ℒðrÞ. If the regex is

empty or T, trimL behaves as the identity function (first case). If the regex is an atom, we rely on the concrete semantics of trimLeft (second

case). If the regex is a disjunction, the result is the disjunction of the application of trimL of the operands (third case). Then, three cases are

needed for the regex concatenation r1r2. If r1 recognizes only whitespace strings (i.e., trimLðr1Þ¼ ϵ), then we need to trim left also r2 (fourth

case). If r1 recognizes at least one whitespace string, it might be necessary to also trim r2, hence trimLðr1Þ is concatenated with the disjunction

of r2 and trimLðr2Þ (fifth case). For instance, let us consider the regex ð jj aÞ b. The concrete semantics of trimLeft would return fa b,bg. Our

abstract semantics, in this case, correctly returns trimLð jj aÞ ð b jj trimLð bÞÞ¼ að b jj bÞ¼ a b jj b. Lastly, if r1 does not recognize any whit-

espace string, r1 is left-trimmed and concatenated with r2 (sixth case). Finally, if r¼ðr1Þ ∗ , two cases are identified. If r1 recognizes only

whitespace strings, the empty string is returned (seventh case); otherwise, the result may be the empty string (in the case of 0-repetition) or the

whole regex r appended to trimmed-left r1 (eighth case). Similarly, we can define trimR that removes trailing whitespace from the input regex.

The definition of trimR is left implicit because it is analogous to one of the trimL.

Let s�sᴇ, supposing that ½½ s ��♯Ê♯ ¼A� T Fᴀ=� and let r be the regex equivalent to A. The abstract semantics of trimLeft, trimRight,

and trim are

½½ trimLeftðsÞ ��♯Ê♯ ¼trimLðrÞ ½½ trimRightðsÞ ��♯Ê♯ ¼trimRðrÞ ½½ trimðsÞ ��♯Ê♯ ¼trimLðtrimRðrÞÞ:

4.2.8 | Replace

To give the intuition about how the abstract semantics of replace works, consider three automata A,As,Ar � T Fᴀ=�. Let us refer to As as the sea-

rch automaton and to Ar as the replace automaton. Roughly speaking, the abstract semantics of replace substitutes strings of As with strings of

Ar inside strings of A. We need to specify two types of possible replacements, by means of the following example. Consider A� T Fᴀ=� that is

depicted in Figure 7A and suppose that the search automaton As is the one recognizing the string bbb and the replace automaton Ar is a random

automaton. In this case, the replace abstract semantics performs a must-replace over A, namely, substituting the sub-automaton composed by

q1 and q2 with the replace automaton Ar . Instead, let us suppose that the search automaton As is the one recognizing the language fbbb,ccg.
Because it is unknown which string must be replaced (between bbb and cc), the replace abstract semantics needs to perform a may-replace:

When a string recognized by the search automaton is met inside a path of A, it is left unaltered in the automaton, and in the same position where

the string is met, the abstract replace only extends A with the replace automaton. An example of may replacement is reported in Figure 7,

where A is the one reported in Figure 7A, the search automaton As is the one recognizing the language fbbb,ccg and the replace automaton Ar is

the one recognizing the string rr.

Before introducing the abstract semantics of replace, we define how to replace a string into an automaton's path. In particular, we define

algorithm RP in Algorithm 3, that given a path π of an arbitrary automaton, a replace automaton Ar , and σs �Σ ∗ [fTg returns a new automaton

built starting from the path, but where portions of the path that recognize σs have been replaced with Ar .

F IGURE 7 Example of may-replacement.

NEGRINI ET AL. 11 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Algorithm 3 searches the given string σs across path π, collecting the sequences of transitions that recognize the search string σs and

extracting them from π (Line 3). Whenever a matching sequence is found, Ar is cloned to A0 to ensure that all additions target a different set of

nodes (Line 4). Then, an ϵ-transition is introduced going from the first state of the sequence to the initial state of A0 , and one such transition is also

introduced for each final state of A0 , connecting that state with the ending state of the sequence (Lines 5 and 6). The list of states composing the

sequence of transitions is then removed from the result (Line 7), together with the transitions connecting them (Line 8), because those were

needed only to recognize the string that has been replaced. Note that RP corresponds to a must-replace. At this point, we are ready to define the

replace abstract semantics. In particular, if either A or As have cycles or if one of them has a T-transition, we return MinðfTgÞ, namely, the

automaton recognizing T. Otherwise, the replace abstract semantics is

½½ replaceðs,ss,srÞ ��♯Ê♯ ≜

A if 8σs �ℒðAsÞ:∄σ �ℒðAÞ:σssσ,
⨆

π � PathsðAÞ
RPðπ,σs,ArÞ if ℒðAsÞ¼ fσsg,

⨆σ �ℒðAsÞ
π � PathsðAÞ

RPðπ,σ,ArtT MinðfσgÞÞ otherwise:

8>>>><
>>>>:

In the first case, if none of the strings recognized by the search automaton As is contained in strings recognized by A, we can safely return the

original automaton A without any replacement. In the special case where ℒðAsÞ¼ fσsg, we return the automaton obtained by replacing σs across

all paths of A using function RPðπ,σs,ArÞ. In the last case, for each string σ �ℒðAsÞ and for each path π �PathsðAÞ, we perform a may-replace of σ

with Ar : Note that this exactly corresponds to a call to RP where the replace automaton is ArtT MinðfσgÞ. The so far obtained automata are finally

lubbed together.

4.2.9 | Substr and CharAt

Given A� T Fᴀ=� and two intervals i, j� Intv, the abstract semantics of substr returns a new automaton A0 soundly approximating any substring

from i to j of strings recognized by A, for any i� i, j� j s.t. i≤ j.

Given A� T Fᴀ=�, in the definition of the substr semantics, we rely on the corresponding regex r because the two representations are

equivalent and regexes allow us to define a more intuitive formalization of the semantics of substr. Let us suppose that ½½ s ��♯Ê♯ ¼A� T Fᴀ=�,

and let us denote by r the regex corresponding to the language recognized by A. At the moment, let us consider exact intervals representing one

integer value, namely, ½½ a1 ��♯Ê♯ ¼ ½i, i� and ½½ a2 ��♯Ê♯ ¼ ½j, j�, with i, j�ℤ. In this case, the abstract semantics is defined as

½½ substrðs,a1,a2Þ ��♯Ê♯ ≜⨆Minðf σ j gðσ,0,0Þ�Sbðr, i, j� iÞÞ,

where Sb takes as input a regex r, two indexes i, j�ℕ, and computes the set of substrings from i to j of all the strings recognized by r. In particu-

lar, Sb is defined by Algorithm 4, and given a regex r and i, j�ℕ, it returns a set of triples of the form ðσ,n1,n2Þ, such that σ is the partial substring

that Algorithm 4 has computed up to now, n1 �ℕ tracks how many characters have still to be skipped before the substring can be computed and

n2 �ℕ is the number of characters Algorithm 4 still needs to look for to successfully compute a substring.

12 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Hence, given Sbðr, i, jÞ, the result is a set of such triples; note that given an element of the resulting set ðσ,n1,n2Þ, n2 ¼0 means that no more

characters are needed and σ corresponds to a proper substring of r from i to j. Thus, from the resulting set, we can filter out the partial substrings,

and retrieve only proper substrings of r from i to j, by only considering the value of n2. Algorithm 4 is defined by case on the structure of the input

regex r:

1. j¼0 or r¼; (Lines 1 and 2): ; is returned because we either completed the substring or we have no more characters to add.

2. r¼ σ �Σ ∗ (Lines 3–10): if i> jσj, the requested substring happens after this atom, and we return a singleton set fϵ, i�jσj, jg, thus tracking the

consumed characters before the start of the requested substring; if iþ j > jσj, the substring begins in σ but ends in subsequent regexes, and we

return a singleton set containing the substring of σ from i to its end, with n1 ¼0 because we began collecting characters, and n2 ¼ j�jσjþ i

because we collected jσj� i characters; otherwise, the substring is fully inside σ, and we return the substring of σ from i to iþ j, setting both n1

and n2 to 0.

3. r¼T (Lines 11–14): because r might have any length, we generate substrings that (a) gradually consume all the missing characters before the

substring can begin (Line 12) and (b) gradually consume all the characters that make up the substring, adding the unknown character • (Line

13).

NEGRINI ET AL. 13 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4. r¼r1r2 (Lines 15–25): the desired substring can either be fully found in r1 or r2 or could overlap them; thus, we compute all the partial sub-

strings of r1, recursively calling Sb (Line 17); for all fσ1, i1, j1g returned, substrings that are fully contained in r1 (i.e., when j1 ¼0) are added to

the result (Line 20) while the remaining ones are joined with ones computed by recursively calling Sb on r2 with n1 ¼ j1 and n2 ¼ j2.

5. r¼r1jjr2 (Lines 26 and 27): we return the partial substring of r1 and the ones of r2, recursively calling Sb on both of them;

6. r¼ðr1Þ ∗ (Lines 28–42): we construct the set of substrings through fixpoint iteration, starting by generating fϵ, i, jg (corresponding to r1

repeated 0 times—Line 29) and then, at each iteration, by joining all the partial results obtained until now with the ones generated by a further

recursive call to Sb, keeping only the joined results that are new (Lines 31–42).

Above, we have defined the abstract semantics of substr when intervals are constant. When ½½ a1 ��♯Ê♯ ¼ ½i, j� and ½½ a2 ��♯Ê♯ ¼ ½l,k�, with

i, j, l,k�ℤ, the abstract semantics of substr is

½½ substrðs,a1,a2Þ ��♯Ê♯ ≜⨆a � ½i,j�,b � ½l,k�,a≤ bMinðf σ j ðσ,0,0Þ�Sbðr,a,b�aÞ gÞ:

We do not report the cases when input intervals are unbounded (e.g., ½1,þ∞�). Nevertheless, these cases have been already considered in Arceri

et al10 and treated analogously in our implementation.

We exploit the abstract semantics of substr to instantiate the one of charAt as a special case of the former:

½½ charAtðs,a1Þ ��♯Ê♯ ≜ ½½ substrðs,a1,a1þ1Þ ��♯Ê♯ :

5 | EXPERIMENTAL RESULTS

TARSIS has been compared with five string abstract domains, namely, the prefix (PR), suffix (SU), char inclusion (CI), bricks (BR) domains (all defined

in Costantini et al.9), and FA=� (defined in Arceri et al.10). All domains have been implemented in GoLiSA, which we will briefly introduce before

presenting our experimental results. TARSIS and FA=� share a common implementation for the automata structure that is parametric to the alphabet

they use. This ensures that performance differences can be accounted on the different size of the automata, eliminating biases that could be intro-

duced with separate implementations having different degrees of optimization.

Comparisons have been performed by analyzing the code through the coalesced sum domain specified in Section 4.2 with trace partitioning26

(note that all traces are merged when evaluating an assertion), plugging in the various string domains. All experiments have been performed on a

HP EliteBook G6 machine, with an Intel Core i7-8565U @ 1.8 GHz processor and 16 GB of RAM memory.

To achieve a fair comparison with the other string domains, the subjects of our evaluation are small hand-crafted code fragments that repre-

sent standard string manipulations that occur regularly in software. PR, SU, CI, and BR have been built to model simple properties and to work with

integers instead of intervals and have been evaluated on small programs: Section 5.2 compares them with TARSIS and FA=� without expanding the

scope of such evaluations. Section 5.3 instead focuses on slightly more advanced and complex string manipulations that are not modeled by the

aforementioned domains, but that FA=� and TARSIS can indeed tackle, highlighting differences between them. Finally, Section 5.5 focuses on the

performance difference between FA=� and TARSIS, benchmarking their lattice operations and abstract transformers.

5.1 | LiSA and GoLiSA

Experiments presented in this paper have been performed using GoLiSA (https://github.com/lisa-analyzer/go-lisa), a static analyzer for Go based

on LiSA,13,14 whose high level infrastructure is visible in Figure 8.

LiSA is a modular framework for developing static analyzers based on the abstract interpretation theory. LiSA analyzes CFGs whose state-

ments do not have a predefined semantics: Instead, users of the framework define custom statement instances implementing language-specific

semantic functions, enabling the analysis of a wide range of programming languages and the development of multilanguage analyses. The analysis

infrastructure is partitioned into three main areas: call evaluation, memory modeling, and value analysis. Each area corresponds to a separate con-

figurable analysis component that operates agnostically w.r.t. how the others are implemented. The analysis begins in the Interprocedural Analysis

that executes a program-wide fixpoint by computing each individual CFG's fixpoint. Whenever a call is encountered, the computation of its result

is delegated back to the Interprocedural Analysis. Instead, non-calling statements are decomposed into a sequence of atomic operations, called

symbolic expressions, each with a precise semantics that the abstract domains can interpret. Memory-dealing expressions are handled by the Heap

Domain, tracking their effect and rewriting them as abstract identifiers representing possible memory locations. Finally, the Value Domain tracks

properties about variables (either program variables or abstract identifiers) and computes invariants for each program point.

14 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/lisa-analyzer/go-lisa

Code parsing logic and the definition of language-specific statements are provided by Frontends such as GoLiSA,12 which can also provide

implementations for LiSA's components. Several frontends exist for different languages,12,27,28 with each constituting effective static analyzers

for individual languages that can be combined to obtain multilanguage analyses. In particular, GoLiSA provides a Go-specific Heap Domain to accu-

rately track memory operations, while it exploits a context-based Interprocedural Analysis provided out-of-the-box by LiSA. All string abstractions

considered in the evaluation are implemented as Value Domains. Finally, after an analysis is completed, GoLiSA executes the Assertion Checker,

that is, a program visitor that can access the results of string analyses to raise definite alarms (DA for short) when a failing assert (i.e., whose condi-

tion is definitely false) is met, or possible alarms (PA for short) when the assertion might fail (i.e., the assertion's condition evaluates to TBool). Note

that Go does not have built-in assert instructions, and we simulate them by invoking a function that panics when the given condition is

false.

5.2 | Precision of the various domains on test cases

We start by considering programs SUBS (Figure 9A) and LOOP (Figure 9B).

SUBS calls substr on the concatenation between two strings, where the first is constant and the second one is chosen in a non-deterministic

way (i.e., nondet condition is statically unknown, Lines 3–7). LOOP builds a string by repeatedly appending a suffix, which contains an user input

(i.e., an unknown string), to a constant value. Table 1 reports the value approximation for res for each abstract domain and analyzed program

when the first assertion of each program is met, as well as if the abstract domain precisely dealt with the program assertions. For the sake of read-

ability, TARSIS and FA=� approximations are expressed as regexes.

When analyzing SUBS, both PR and SU lose precision because the string to append to res is statically unknown.

This leads, at Line 8, to a partial substring of the concrete one with PR and to an empty string with SU. Instead, the substring semantics of

CI moves every character of the receiver in the set of possibly contained ones, thus the abstract value at Line 8 is composed by an empty set

of included characters, and a set of possibly included characters containing the ones of both strings. Finally, BR, FA=�, and TARSIS are expressive

enough to track any string produced by any concrete execution of SUBS.

F IGURE 8 Schema of GoLiSA's architecture (taken from Olivieri et al.12)

NEGRINI ET AL. 15 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

When evaluating the assertions of SUBS, a PA should be raised on Lines 10 and 11, because �p� or �f� might be in res, together with a DA

alarm on Line 12, because �d� is surely not contained in res. No alarm should be raised on Line 9 instead, because �g� is part of the common

prefix of both branches and thus will be included in the substring. Such behavior is achieved when using BR, FA=�, or TARSIS. Because the sub-

string semantics of CI moves all characters to the set of possibly contained ones, PAs are raised on all four assertions.

Moreover, SU loses all information about res, PAs are raised on Lines 9–12 when using such domain. PR instead tracks the definite prefix of

res; thus, the PA at Line 9 is avoided.

When analyzing LOOP, we expect to obtain no alarm at Line 6 (because character �t� is always contained in the resulting string value) and

PAs at Lines 7 and 8. PR infers as prefix of res the string �Repeat:�, keeping such value for the analysis of the whole program. This allows the

analyzer to prove the assertion at Line 6, but it raises PAs when it checks the ones at Lines 7 and 8.

Again, SU loses all information about res because the lub operation occurring at Line 3 cannot find a common suffix between �Repeat:�
and �!�; hence, PAs are raised on Lines 6–8. Because the set of possible characters contains T, CI can correctly state that any character might

appear in the string. For this reason, two PAs are reported on Lines 7 and 8, while no alarm is raised on Line 6 (again, this is possible because the

string used in the contains call has length 1). The alternation of T and �!� prevents BR normalization algorithm from merging similar bricks.

This will eventually lead to overcoming the length threshold kL, hence resulting in the Tf g½ �ð0, þ∞Þ abstract value. In such a situation, BR returns

TBool on all contains calls, resulting in PAs on Lines 6–8. The parametric widening of FA=� collapses the colon into T. In TARSIS, because the

automaton representing res grows by two states each iteration, the parametric widening defined in Section 4.1 can collapse the whole content

of the loop into a two-state loop recognizing T!. The precise approximation of res of both domains enable the analyzer to detect that the asser-

tion at Line 6 always holds, while PAs are raised on Lines 7 and 8.

In summary, PR and SU failed to produce the expected results on both SUBS and LOOP, while CI and BR produced exact results in one case (LOOP

and SUBS, respectively) but not in the other. Hence, FA=� and TARSIS were the two only domains that produced the desired behavior in these rather

simple test cases.

5.3 | Evaluation on realistic code samples

In this section, we explore two real world code samples. Method TOSTRING (Figure 10A) transforms an array of names that come as string values

into a single string. While it resembles the code of LOOP in Figure 9B (thus, results of all the analyses show the same strengths and weaknesses),

now assertions check contains predicates with a multi-character string.

F IGURE 9 Program samples used for domain comparison.

TABLE 1 Values of res at the first assert of each program.

Domain Program SUBS Program LOOP

PR ring test O Repeat: O

SU ϵ O ϵ O

CI ½� abdefgilnprstu½ � O :aepRt½ � !:aepRt T½ � ✓

BR ring test fai,ring test pasf g½ �ð1,1Þ ✓ Tf g½ �ð0, þ∞Þ O

FA=� ring test ðpas jj faiÞ ✓ Repeat: ðTÞ ∗ ✓

TARSIS ðring test pas jj ring test faiÞ ✓ Repeat: ðT!Þ ∗ ✓

16 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Method COUNTMATCHES (Figure 10B) makes use of strings.Count (reported in Section 2) to prove properties about its return value.

Table 2 reports the results of both methods (stored in res and count, respectively) evaluated by each analysis at the first assertion, as well

as if the abstract domain precisely dealt with the program assertions.

As expected, when analyzing TOSTRING, each domain showed results similar to those of LOOP. In particular, we expect to obtain no alarm at

Line 12 (because �People� is surely contained in the resulting string) and two PAs at Lines 13 and 14. PR, SU, CI, and BR raise PAs on all the

three assert statements. FA=� and TARSIS detect that the assertion at Line 12 always holds. Thus, when using them, the analyzer raises PAs on Lines

13 and 14 because (i) comma character is part of res if the loop is iterated at least once and (ii) T might match �not�.

If COUNTMATCHES was to be executed, count would be either 2 or 3 when the first assertion is reached, depending on the choice of str.

Thus, no alarm should be raised at Line 9, while a DA should be raised on Line 10 and a PA on Line 11. Because PR, SU, CI, and BR do not define

most of the operations used in the code, the analyzer does not have information about the string on which strings.Count is executed and thus

abstract count with the interval ½0,þ∞�. Thus, PAs are raised on Lines 9–11. Instead, FA=� and TARSIS are instead able to detect that sub is pre-

sent in all the possible strings represented by str. Thus, thanks to trace partitioning, the trace where the loop is skipped and count remains

0 gets discarded. Then, when the first indexOf call happens, ½0,0� is stored into idx, because all possible values of str start with sub. Because

the call to length yields ½10,17�, all possible substrings from ½2,2� (idx plus the length of sub) to ½10,17� are computed (viz., �e throat�, �is

is th�, �is is the�, …, �is is the thing�), and the resulting automaton is the one that recognizes all of them. Because the value of sub is

still contained in every path of such automaton, the loop guard still holds and the second iteration is analyzed, repeating the same operations.

When the loop guard is reached for the third time, the remaining substring of the shorter starting string (viz., �roat�) recognized by the automa-

ton representing str will no longer contain sub: a trace where count equals ½2,2� will leave the loop. A further iteration is then analyzed, after

which sub is no longer contained in any of the strings that str might hold. Thus, a second and final trace where count equals ½3,3� will reach the

assertions and will be merged by interval lub, obtaining ½2,3� as final value for count. This allows TARSIS and FA=� to identify that the assertion at

Line 10 never holds, raising a DA, while the one at Line 11 might not hold, raising a PA.

5.4 | Efficiency w.r.t. simpler string domains

The detailed analysis of two test cases and two examples taken from real-world code underlined that TARSIS and FA=� are the only ones able to

obtain precise results on them. We now discuss the efficiency of the analyses. Table 3 reports the execution times for all the domains on the case

F IGURE 10 Programs used for assessing domain precision.

TABLE 2 Values of res and CountMatches at the first assert of the respective program.

Domain Program TOSTRING Program COUNTMATCHES

PR People: f O ½0,þ∞� O

SU ϵ O ½0,þ∞� O

CI fg:Peopl½ � fg:;Peopl T½ � O ½0,þ∞� O

BR Tf g½ �ð0,þ∞Þ O ½0,þ∞� O

FA=� People: fðTÞ ∗ Tg ✓ ½2,3� ✓

TARSIS People: fgjjPeople: fðT;Þ ∗ Tg ✓ ½2,3� ✓

NEGRINI ET AL. 17 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

studies analyzed in this section, by taking the time that GoLiSA reports as the one needed to compute a program-wide fixpoint (thus excluding

the time for booting up the analysis, parsing the code and dumping the results). Note that the times reported here are higher than the ones of the

original paper due to the usage of a complete static analyzer: Memory abstractions and call resolution were not performed by the prototypical

analyzer used in Negrini et al.15 Overall, PR, SU, CI, and BR are the fastest domains with execution times usually in the order of milliseconds, with

the exception of TOSTRING that proved more challenging for all domains. Thus, if on the one hand these domains failed to prove some of the prop-

erties of interest, they are quite efficient and they might be helpful to prove simple properties. TARSIS execution times are sometimes higher but

still comparable with them. Instead, FA=� blows up on three out of the four test cases (and in particular on TOSTRING). Hence, TARSIS is the only

domain that executes the analysis in a limited time while being able to prove all the properties of interest on these four case studies.

The reason behind the performance gap between TARSIS and FA=� can be accounted on the alphabets underlying the automata. In FA=�,

automata are built over an alphabet of single characters. While this simplifies the semantic operations, it also causes state and transition blow up

w.r.t. the size of the string that needs to be represented. This does not happen in TARSIS, because atomic strings (not built through concatenation

or other string manipulations) are part of the alphabet and can be used as transition symbol. Having less states and transitions to operate upon

drastically lowers the time and memory requirements of automata operations, making TARSIS faster than FA=�.

TARSIS's alphabet has another peculiarity w.r.t. FA=� 's: It has a special symbol for representing the unknown string. Having such a symbol

requires some fine-tuning of the algorithms to have them behave differently when the symbol is encountered, but without additional tolls on their

performances. FA=� 's alphabet does not have such a symbol, thus representing the unknown string is achieved through a state having one self-

loop for each character in the alphabet (including the empty string). This requires significantly more resources for automata algorithms, leading to

higher execution times.

It is important to notice that performances of programs relying on automata are heavily dependent on their implementation. Both FA=� and

TARSIS come as non-optimized implementations whose performances can be greatly improved, thus further reducing the gap between them

and the simpler string abstractions. The source code of FA=� is available at https://github.com/SPY-Lab/fsa, while TARSIS's implementation is publi-

shed at https://github.com/UniVE-SSV/tarsis. Instead, implementations used in the experiments are part of LiSA available at https://github.com/

lisa-analyzer/lisa.

5.5 | Performance benchmark of TARSIS and FA=�

As automata-based abstractions have already been proved to be effective in string program analysis,10 we focus the final part of our evaluation

on the difference in resource consumption between TARSIS and FA=�. In fact, our main goal is proving that the adoption of TARSIS can make

automata-based abstractions viable for the analysis of non-trivial code.

To measure the performance of TARSIS and FA=�, one could track the resource consumption of full program analyses employing the two

domains and reason about their difference. However, this could produce misleading results: the measured performance would be affected by the

ones of other analysis components (e.g., memory abstractions and interprocedural analyses) and would hence be affected by their running time

and memory consumption. The different semantics of TARSIS and FA=� would thus only account for a small portion of each measurement, hindering

the purpose of our experiments. Hence, to ensure that we can precisely measure only the performance of interest, that is, the ones concerning

TARSIS and FA=�, we directly compare each lattice operation and abstract transformer in isolation, benchmarking their execution times. This enables

accurate speedup measurements, because such times are not affected by external factors like memory saturation caused by the remaining analysis

components.

We compare lattice operators v, t, u, and r, together with the semantics of string operators (concat, contains, length, substr, trim,

repeat, and indexOf); because trim's semantics relies on trimLeft and trimRight, the comparison of the latter operations have been

omitted. Moreover, concerning the trimLeft, trimRight, and trim abstract semantics of FA=�, we adopted the same one reported in

Section 4.2 for TARSIS, recasted to standard automata, because a bug was found in the original FA=� abstract semantics when automata with cycles

TABLE 3 Execution times of the domains on each program.

Domain SUBS LOOP TOSTRING COUNTMATCHES

PR 5 ms 28 ms 1 s 509 ms 129 ms

SU 5 ms 32 ms 1 s 599 ms 110 ms

CI 4 ms 45 ms 1 s 594 ms 138 ms

BR 8 ms 78 ms 3 s 911 ms 345 ms

FA=� 11 ms 20 s 895 ms 22 m 37 s 621 ms 9 s 175 ms

TARSIS 7 ms 443 ms 12 s 437 ms 123 ms

18 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/SPY-Lab/fsa
https://github.com/UniVE-SSV/tarsis
https://github.com/lisa-analyzer/lisa
https://github.com/lisa-analyzer/lisa

were involved, leading to unsound results. For instance, let us consider the automaton recognizing the language f ð a Þn j n�ℕ g, the original

trim abstract semantics of FA=� returns the automaton recognizing the language f an j n�ℕ g, which is an unsound result (e.g., the string a a is

not recognized by the resulting automaton).

During an actual program analysis, the target operators would be invoked by a fixpoint engine on operands built through several string manip-

ulations. Each such operand would thus be an automaton with an arbitrarily complex structure, depending on the combination of operators used.

To ensure that our experiment measures the performance of each domain's operands on all possible input structures, we identify and define here

seven automata classes, each containing automata sharing a common structure, on which lattice operators and string operations can be applied

to. Then, we compose a benchmark by using automata from all classes, thus ensuring that the measurements will take into account performance

on different automata structures. In the following, we describe each class reporting an exemplification of a Go fragment that may generate an

automaton belonging to each class (where b is a statically unknown Boolean value), together with the automaton computed by TARSIS and FA=� for

the string variable x at the end of the fragment.

1. Statically unknown strings. Such class contains the abstractions of statically unknown strings, such as an user input. Because both domains have

a unique minimum automaton for such strings, this class is made of a single automaton.

2. Constant strings. This class contains automata generated as abstractions of string literals appearing in the program.

3. Concatenated strings. This class contains automata modeling the concatenation of simple strings, with each being either statically unknown or

constant. Automata in this class are effective concatenations of ones from the previous classes.

4. Increasing strings. The automata in this class model sets of strings built by optionally appending a finite number of strings at the end of an exis-

ting one, thus leading to single path automata. Each of such strings can be either statically unknown or constant (i.e., each automaton is part of

one of the first two classes).

5. Disjoint strings. This class contains automata built as the union of up to four different automata coming from the third class, thus modeling their

least upper bound. Automata in this class represent the result of merging branches where string variables were assigned to different values.

Each string used in the lub can thus be either statically unknown, constant, or resulting from a concatenation.

NEGRINI ET AL. 19 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6. Looping strings. The automata in this class are built by inserting up to two loops in the automata of the third class, thus modeling strings that

are built inside a loop.

7. Random strings. This class contains automata that are built using an arbitrary set of manipulations and thus have no predefined structure. They

represent worst-case scenarios for both domains, and thus, automata of this class can be significantly complex. As this class does not follow

any particular structure, examples automata with their generating code are omitted.

5.5.1 | Benchmark composition

We benchmark each lattice and string operators mentioned above by executing them 100 times (with each execution referred to as a round), each

one using randomly generated automata from one of the above classes for all the required inputs (e.g., a round executing concat on automata of

Class 2 will generate two automata A1 and A2 from that class and would then run concatðA1,A2Þ). Specifically, one round is executed using the

single automaton from Class 1, five rounds with automata from Class 2, 10 rounds are executed for Classes 3 to 6, while the remaining 54 rounds

use automata from Class 7. Each round consists of (i) the generation of the TARSIS automata, (ii) their conversion to the equivalent FA=� ones, and

(iii) the execution of each operation individually, measuring the required time. Each operation's execution has a 30 s timeout, as we deem it a rea-

sonable time bound for an operation to complete when running as part of an analysis. Before executing the benchmark, a warm-up iteration is

executed to ensure that setup operations of the JVM would not impact the actual measurement. Finally, integer indexes for the substring opera-

tion were randomly chosen between 0 and 20.

As the size of FA=� automata grows fast, we impose some limits on the structure of each generated TARSIS automaton, such that, when we

generate the equivalent FA=� automaton, its size is limited. This prevents an excessive amount of timeouts that would invalidate our experiments.

Specifically:

• all atomic strings (i.e., the ones used as symbols in TARSIS's transitions) have a random length of up to 10 characters;

• each atomic string has a 10% chance of being statically unknown;

• intermediate states of single path automata (Class 4) have a 50% chance of being an additional accepting state; and

• automata of Class 7 can contain up to five states with up to three transitions per state; each state has a 25% chance of being an additional final

state.

5.5.2 | Benchmark results

Table 4 reports, for each operation and domain, the number of successful rounds and the one of timed-out ones, together with the total, average,

minimum, and maximum execution times of the successful rounds. Finally, the speedup of TARSIS w.r.t. FA=� is determined by only comparing exe-

cution times of the rounds where both domains ran successfully, reporting the ratio tFᴀ=�=tTᴀʀsɪs.

The benchmark confirms that TARSIS is overall reliably faster than FA=�. TARSIS operations time out significantly less than the ones of FA=� (two

timeouts instead of 137), reporting lower total times despite the higher number of automata tackled. Worst-case performances are also improved,

with most operations requiring far less time with TARSIS even on complex automata, as highlighted by column Max. time of Table 4. Moreover,

20 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

when focusing only on rounds where both domains succeeded within the required time bound, the speedup (column Time ratio of Table 4) is still

noticeable: Even in the worst case of indexOf, TARSIS still performs almost twice as fast as FA=�.

Let us comment the results concerning length and trim. For these operations, TARSIS and FA=� use the same algorithms to implement the

corresponding abstract semantics. Still, TARSIS incurs in a single timeout when executing trim (against 43 timeouts of FA=�) and in none when exe-

cuting length (while FA=� incurs in 26 timeouts), also enabling significant speedup (more than 2000� for length and almost 500� for trim).

This highlights that even when using the same abstract semantics for both domains, the alphabet chosen for TARSIS is still able to drastically reduce

the required resources that a static analysis needs to analyze strings.

6 | RELATED WORK

The problem of statically analyzing strings has been already tackled in different contexts in the literature during the last two decades.9–11,29–32 As

already discussed, the TARSIS abstract domain built upon the FSA abstract domain defined in Arceri et al10 in the context of dynamic languages,

providing automata-based abstract semantics for common ECMAScript string operations. The same abstract domain has been integrated also for

defining a sound-by-construction analysis for string-to-code statements.33 As reported by the experimental results in Section 5 (Table 3 in particu-

lar), TARSIS is quite more efficient than FA=� while keeping (almost) the same level of precision.

Generally speaking, the practical comparison of different string static analyses is particularly challenging because of (i) the lack of standard

benchmarks, (ii) the variety of the information that can be tracked over string values (e.g., included characters, their order, regular expressions,

and substring relations), and (iii) the availability of the implementations of existing analyses (often formalized several years ago and not actively

maintained). For these reasons, in the rest of this section, we qualitatively discuss the differences between TARSIS and other related works, but we

do not experimentally compare them.

TABLE 4 Lattice operators and abstract transformers benchmark results.

Operation Domain # Successes # Timeouts Total time Avg. time Min. time Max. time Time ratio

v TARSIS 100 0 2 s 37 ms 20 ms <1 ms 403 ms 920.74�

FA=� 88 12 2 m 27 s 815 ms 1 s 679 ms <1 ms 18 s 685 ms

t TARSIS 100 0 29 ms <1 ms <1 ms 10 ms 114.98�

FA=� 100 0 3 s 430 ms 34 ms <1 ms 945 ms 31 ms

u TARSIS 100 0 4 s 905 ms <1 ms <1 ms 8 ms 29.37�

FA=� 100 0 760 ms 7 ms <1 ms 426 ms

r TARSIS 100 0 148 ms 1 ms <1 ms 27 ms 97.70�

FA=� 96 4 13 s 485 ms 140 ms <1 ms 3 s 522 ms

concat TARSIS 100 0 40 ms <1 ms <1 ms 5 ms 528.42�

FA=� 100 0 21 s 537 ms 215 ms <1 ms 14 s 177 ms

contains TARSIS 100 0 2 s 187 ms 21 ms <1 ms 668 ms 7.16�

FA=� 99 1 10 s 888 ms 109 ms <1 ms 1 s 922 ms

length TARSIS 100 0 143 ms 1 ms <1 ms 36 ms 2206.42�

FA=� 74 26 1 m 19 s 427 ms 1 s 73 ms <1 ms 15 s 454 ms

indexOf TARSIS 100 0 6 s 575 ms 65 ms <1 ms 2 s 222 ms 1.72�

FA=� 100 0 11 s 352 ms 113 ms <1 ms 10 s 693 ms

substr TARSIS 100 0 22 s 757 ms 227 ms <1 ms 13 s 807 ms 465.37�

FA=� 53 47 3 m 49 s 127 ms 4 s 323 ms <1 ms 32 s 998 ms

replace TARSIS 99 1 326 ms 3 ms <1 ms 47 ms 7.98�

FA=� 99 1 2 s 440 ms 24 ms <1 ms 1 s 470 ms

trim TARSIS 99 1 20 s 759 ms 209 ms <1 ms 18 s 270 ms 486.42�

FA=� 57 43 1 m 38 s 269 ms 1 s 724 ms <1 ms 22 s 760 ms

repeat TARSIS 100 0 37 ms 209 ms <1 ms 895 ms 3.93�

FA=� 97 3 12 s 488 ms 128 ms <1 ms 2 s 290 ms

NEGRINI ET AL. 21 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6.1 | Static analysis of string values

Our experimental results compared TARSIS with several simple abstract domains introduced in Costantini et al.9,34 Those domains track relatively

simple information about string values, such as characters included or not, prefixes and suffixes, and concatenation of constant string values. As

reported in Tables 1–3, these abstractions are quite more efficient but less precise than TARSIS. Overall, TARSIS exposed execution times comparable

with the ones of Costantini et al9,34 and precision similar to Arceri et al.10,33

Static analysis was applied to string values in many different contexts, such as SQL queries programmatically built by code,3 reflection,4,5 and

injection vulnerabilities.7,8 Instead, the main goal of our work is to introduce a novel abstract domain (i.e., approximation of string values) that out-

performs state-of-the-art approaches in terms of precision or efficiency, and this can be applied to different contexts.

6.2 | Automata-based approaches

Several approaches to statically analyze string values through automata (like TARSIS) have been proposed in the literature. For instance, the authors

of Almashfi and Lu35 provided an automata abstraction merged with interval abstractions for analyzing JavaScript arrays and objects. Another

interesting automata-based model is symbolic automata,36 which differs from the standard one having an alphabet of predicates (that can poten-

tially be infinite) instead of single characters. Examples of applications of symbolic automata in the context of static analysis are regex processing,

sanitizer analysis,37 and their usage as program models for mixing syntactic and semantic abstractions over the program.38 Generally speaking,

automata-based approaches are usually not efficient, because they need to perform algorithmically complex operations on the automata. Our

approach is aimed at (partially) overcoming such limits by working on an alphabet of strings instead of single characters.

6.3 | Regular expressions

A major stream of research focused on the abstraction of string values through regular expressions. In particular, Christensen et al30 proposed a

static analysis of Java strings based on the abstraction of the control-flow graph as a context-free grammar. By relying on regular expressions, this

approach is in position to track information not only on constants inside the string values like TARSIS but also to approximate ranges of possible

characters such as 0j(-?[1-9][0-9]*) (i.e., the string representation of integer values). However, such approximation is strictly more complex

and led to less efficient analyses.

Similarly, regular strings39 is an abstraction of the FSA domain and approximates strings as a strict subset of regular expressions. The authors

introduced an aggressive widening operator that improves the efficiency but worsens the precision of the analysis.

6.4 | String constraints verification

Another major research effort was spent on the context of string constraints verification by the investigation and development of various tech-

niques and tools focused on the study of decidable fragments of string constraint formulas40 or proposing new efficient decidable procedures or

string constraints representations41,42 also based on automata, such as Wang et al43 and Yu et al,44 or involving type conversion string con-

straints.45 For instance, Z3-str46 extended the SMT-solver Z347 by treating strings as primitive types supporting the most common operations

over strings (e.g., concatenation and substring). All those approaches allow to track very precise information over string values but usually require

manually annotating some portions of the code (e.g., through loop invariants and pre- and post-conditions) and require solving NP-complete prob-

lems (e.g., SAT solving) causing slowdowns (or timeouts) of the analyses in some (hopefully corner) cases.

7 | CONCLUSION

In this paper, we introduced TARSIS, an abstract domain for sound abstraction of string values. TARSIS is based on FSAs paired with their equivalent

regular expression: a representation that allows precise modeling of complex string values. Experiments show that TARSIS achieves great precision

also on code that heavily manipulate string values, while the time needed for the analysis is comparable with the one of other simpler domains.

In order to enforce loop convergence, our analysis has been equipped with a widening with threshold operator over TARSIS automata. As it

usually happens in abstract interpretation, in order to retrieve some information lost by the widening application, the analysis can be equipped

also with a narrowing.23 Hence, a narrowing operator for TARSIS will be studied, in order to get more precise results on loop analyses. Another

improvement with respect to the efficiency of the analysis can be reached defining a split operator48 for TARSIS, when analyzing conditional guards;

22 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

this would allow TARSIS to achieve significant efficiency improvements with respect to the classical approach based on the filter operator. More-

over, TARSIS' semantics can also be employed as summaries for library functions that manipulate strings: When one such function is used, it can be

automatically identified by the analysis engine,49 and our proposed abstract semantics can be applied instead of analyzing the function's code.

Finally, TARSIS provides a non-relational string abstraction: As such, information relating different variables is not modeled inside the domain.

We thus intend on working on a relational extension of TARSIS that is also able to relate different variables, also extending existing solutions based

on combining TARSIS with other domains.50

ACKNOWLEDGMENTS

This work is partially supported by Bando di Ateneo per la Ricerca 2022, funded by University of Parma

(MUR_DM737_2022_FIL_PROGETTI_B_ARCERI_COFIN and CUP: D91B21005370003); “Formal verification of GPLs blockchain smart

contracts,” SERICS (PE00000014) under the NRRP MUR program funded by the EU—NGEU; iNEST-Interconnected NordEst Innovation Ecosys-

tem funded by PNRR (Mission 4.2, Investment 49 1.5) NextGeneration EU—Project ID: ECS00000043; and SPIN-2021 “Static Analysis for Data

Scientists” funded by Ca' Foscari University.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in LiSA at https://github.com/lisa-analyzer/lisa.

ORCID

Luca Negrini https://orcid.org/0000-0001-9930-8854

Vincenzo Arceri https://orcid.org/0000-0002-5150-0393

REFERENCES

1. Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In:

Graham RM, Harrison MA, Sethi R, eds. Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California,

USA: ACM; 1977:238-252. https://doi.org/10.1145/512950.512973

2. Cousot P, Cousot R. Systematic design of program analysis frameworks. In: Aho AV, Zilles SN, Rosen BK, eds. Conference Record of the Sixth Annual

ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA: ACM Press; 1979:269-282. https://doi.org/10.1145/567752.

567778

3. Gould C, Su Z, Devanbu PT. JDBC checker: a static analysis tool for SQL/JDBC applications. In: Finkelstein A, Estublier J, Rosenblum DS, eds. 26th

International Conference on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom: IEEE Computer Society; 2004:697-698.

https://doi.org/10.1109/ICSE.2004.1317494

4. Landman D, Serebrenik A, Vinju JJ. Challenges for static analysis of Java reflection: literature review and empirical study. In: Uchitel S, Orso A,

Robillard MP, eds. Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina: IEEE/ACM; 2017:507-

518. https://doi.org/10.1109/ICSE.2017.53

5. Bodden E, Sewe A, Sinschek J, Oueslati H, Mezini M. Taming reflection: aiding static analysis in the presence of reflection and custom class loaders. In:

Taylor RN, Gall HC, Medvidovic N, eds. Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA:

ACM; 2011:241-250. https://doi.org/10.1145/1985793.1985827

6. Arceri V, Mastroeni I. A sound abstract interpreter for dynamic code. In: Hung C-C, Cerný T, Shin D, Bechini A, eds. SAC '20: The 35th ACM/SIGAPP

Symposium on Applied Computing, Online Event, [Brno, Czech Republic]: ACM; 2020:1979-1988. https://doi.org/10.1145/3341105.3373964

7. Fu X, Lu X, Peltsverger B, Chen S, Qian K, Tao L. A static analysis framework for detecting SQL injection vulnerabilities. In: 31st Annual International

Computer Software and Applications Conference, COMPSAC 2007, Beijing, China, Vol. 1. IEEE Computer Society; 2007:87-96. https://doi.org/10.

1109/COMPSAC.2007.43

8. Livshits VB, Lam MS. Finding security vulnerabilities in Java applications with static analysis. In: McDaniel PD, ed. Proceedings of the 14th USENIX Secu-

rity Symposium, Baltimore, MD, USA: USENIX Association; 2005. https://www.usenix.org/conference/14th-usenix-security-symposium/finding-

security-vulnerabilities-java-applications-static

9. Costantini G, Ferrara P, Cortesi A. A suite of abstract domains for static analysis of string values. Softw Pract Exp. 2015;45(2):245-287. https://doi.org/

10.1002/spe.2218

10. Arceri V, Mastroeni I, Xu S. Static analysis for ECMAScript string manipulation programs. Appl Sci. 2020;10:3525. https://doi.org/10.3390/

app10103525

11. Cortesi A, Olliaro M. M-string segmentation: a refined abstract domain for string analysis in C programs. In: Pang J, Zhang C, He J, Weng J, eds. 2018

International Symposium on Theoretical Aspects of Software Engineering, TASE 2018, Guangzhou, China: IEEE Computer Society; 2018:1-8.

12. Olivieri L, Negrini L, Arceri V, Tagliaferro F, Ferrara P, Cortesi A, Spoto F. Information flow analysis for detecting non-determinism in blockchain. In:

Ali K, Salvaneschi G, eds. 37th European Conference on Object-Oriented Programming, ECOOP 2023, Seattle, Washington, United States, LIPIcs, vol. 263:

Schloss Dagstuhl—Leibniz-Zentrum für Informatik; 2023:23:1-23:25. https://doi.org/10.4230/LIPIcs.ECOOP.2023.23

13. Ferrara P, Negrini L, Arceri V, Cortesi A. Static analysis for dummies: experiencing LiSA. In: Do LNQ, Urban C, eds. SOAP@PLDI 2021: Proceedings of

the 10th ACM SIGPLAN International Workshop on the State of the Art in Program Analysis, Virtual Event, Canada: ACM; 2021:1-6. https://doi.org/10.

1145/3460946.3464316

14. Negrini L, Ferrara P, Arceri V, Cortesi A. LiSA: a generic framework for multilanguage static analysis. In: Arceri V, Cortesi A, Ferrara P, Olliaro M, eds.

Challenges of Software Verification: Springer Nature Singapore; 2023:19-42. https://doi.org/10.1007/978-981-19-9601-6_2

NEGRINI ET AL. 23 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/lisa-analyzer/lisa
https://orcid.org/0000-0001-9930-8854
https://orcid.org/0000-0001-9930-8854
https://orcid.org/0000-0002-5150-0393
https://orcid.org/0000-0002-5150-0393
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1109/ICSE.2004.1317494
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/3341105.3373964
https://doi.org/10.1109/COMPSAC.2007.43
https://doi.org/10.1109/COMPSAC.2007.43
https://www.usenix.org/conference/14th-usenix-security-symposium/finding-security-vulnerabilities-java-applications-static
https://www.usenix.org/conference/14th-usenix-security-symposium/finding-security-vulnerabilities-java-applications-static
https://doi.org/10.1002/spe.2218
https://doi.org/10.1002/spe.2218
https://doi.org/10.3390/app10103525
https://doi.org/10.3390/app10103525
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1007/978-981-19-9601-6_2

15. Negrini L, Arceri V, Ferrara P, Cortesi A. Twinning automata and regular expressions for string static analysis. In: Verification, Model Checking, and

Abstract Interpretation—22nd International Conference, VMCAI 2021, Proceedings Henglein F, Shoham S, Vizel Y, eds., Lecture Notes in Computer

Science, vol. 12597. Springer; 2021:267-290. https://doi.org/10.1007/978-3-030-67067-2_13

16. Giacobazzi R, Ranzato F, Scozzari F. Making abstract interpretations complete. J ACM. 2000;47(2):361-416. https://doi.org/10.1145/333979.333989

17. Bartzis C, Bultan T. Widening arithmetic automata. In: Computer Aided Verification, 16th International Conference, CAV 2004, Proceedings Alur R,

Peled DA, eds., Lecture Notes in Computer Science, vol. 3114. Springer; 2004:321-333. https://doi.org/10.1007/978-3-540-27813-9_25

18. D'Silva V. Widening for Automata. MsC Thesis: Inst. Fur Inform.—UZH; 2006.

19. Cousot P, Cousot R. Abstract interpretation frameworks. J Log Comput. 1992;2(4):511-547. https://doi.org/10.1093/logcom/2.4.511

20. Bagnara R, Hill PM, Zaffanella E. The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of

hardware and software systems. Sci Comput Program. 2008;72(1-2):3-21. https://doi.org/10.1016/j.scico.2007.08.001

21. Becchi A, Zaffanella E. PPLite: zero-overhead encoding of NNC polyhedra. Inf Comput. 2020;275:104620. https://doi.org/10.1016/j.ic.2020.104620

22. Davis MD, Sigal R, Weyuker EJ. Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science: Academic Press Professional,

Inc.; 1994.

23. Cortesi A, Zanioli M. Widening and narrowing operators for abstract interpretation. Comput Lang Syst Struct. 2011;37(1):24-42. https://doi.org/10.

1016/j.cl.2010.09.001

24. Arceri V, Maffeis S. Abstract domains for type juggling. Electron Notes Theor Comput Sci. 2017;331:41-55. https://doi.org/10.1016/j.entcs.2017.

02.003

25. Arceri V, Olliaro M, Cortesi A, Mastroeni I. Completeness of abstract domains for string analysis of JavaScript programs. In: Theoretical Aspects of

Computing—ICTAC 2019—16th International Colloquium, Proceedings Hierons RM, Mosbah M, eds., Lecture Notes in Computer Science, vol. 11884.

Springer; 2019:255-272. https://doi.org/10.1007/978-3-030-32505-3_15

26. Rival X, Mauborgne L. The trace partitioning abstract domain. ACM Trans Program Lang Syst. 2007;29(5):26-es. https://doi.org/10.1145/1275497.

1275501

27. Olivieri L, Jensen TP, Negrini L, Spoto F. MichelsonLiSA: a static analyzer for tezos. In: IEEE International Conference on Pervasive Computing and

Communications Workshops and Other Affiliated Events, PerCom Workshops 2023. IEEE; 2023:80-85. https://doi.org/10.1109/

PerComWorkshops56833.2023.10150247

28. Negrini L, Shabadi G, Urban C. Static analysis of data transformations in Jupyter notebooks. In: Proceedings of the 12th ACM SIGPLAN International

Workshop on the State of the Art in Program Analysis, SOAP 2023 Ferrara P, Hadarean L, eds. ACM; 2023:8-13. https://doi.org/10.1145/3589250.

3596145

29. Park C, Im H, Ryu S. Precise and scalable static analysis of jQuery using a regular expression domain. In: Proceedings of the 12th Symposium on

Dynamic Languages, DLS 2016 Ierusalimschy R, ed. ACM; 2016:25-36.

30. Christensen AS, Møller A, Schwartzbach MI. Precise analysis of string expressions. In: Static Analysis, 10th International Symposium, SAS 2003, Pro-

ceedings Cousot R, ed., Lecture Notes in Computer Science, vol. 2694. Springer; 2003:1-18. https://doi.org/10.1007/3-540-44898-5_1

31. Madsen M, Andreasen E. String analysis for dynamic field access. In: Compiler Construction—23rd International Conference, CC 2014, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2014. Proceedings Cohen A, ed., Lecture Notes in Computer Science,

vol. 8409. Springer; 2014:197-217. https://doi.org/10.1007/978-3-642-54807-9_12

32. Abdulla PA, Atig MF, Chen Y-F, Holík L, Rezine A, Rümmer P, Stenman J. String constraints for verification. In: Computer Aided Verification—26th

International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014. Proceedings Biere A, Bloem R, eds., Lecture Notes in

Computer Science, vol. 8559. Springer; 2014:150-166. https://doi.org/10.1007/978-3-319-08867-9_10

33. Arceri V, Mastroeni I. Analyzing dynamic code: a sound abstract interpreter for evil eval. ACM Trans Priv Secur. 2021;24(2):10:1-10:38. https://doi.org/

10.1145/3426470

34. Costantini G, Ferrara P, Cortesi A. Static analysis of string values. In: Formal Methods and Software Engineering—13th International Conference on

Formal Engineering Methods, ICFEM 2011. Proceedings Qin S, Qiu Z, eds., Lecture Notes in Computer Science, vol. 6991. Springer; 2011:505-521.

https://doi.org/10.1007/978-3-642-24559-6_34

35. Almashfi N, Lu L. Precise string domain for analyzing JavaScript arrays and objects. In: 3rd International Conference on Information and Computer

Technologies, ICICT 2020 May Huang SZ, ed. IEEE; 2020:17-23. https://doi.org/10.1109/ICICT50521.2020.00011

36. D'Antoni L, Veanes M. Minimization of symbolic automata. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL '14 Jagannathan S, Sewell P, eds. ACM; 2014:541-554. https://doi.org/10.1145/2535838.2535849

37. Veanes M. Applications of symbolic finite automata. In: Implementation and Application of Automata—18th International Conference, CIAA 2013.

Proceedings Konstantinidis S, ed., Lecture Notes in Computer Science, vol. 7982. Springer; 2013:16-23. https://doi.org/10.1007/978-3-642-39274-

0_3

38. Preda MD, Giacobazzi R, Lakhotia A, Mastroeni I. Abstract symbolic automata: mixed syntactic/semantic similarity analysis of executables. In: Pro-

ceedings of the 42nd annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015 Rajamani SK, Walker D, eds.

ACM; 2015:329-341. https://doi.org/10.1145/2676726.2676986

39. Choi T-H, Lee O, Kim H, Doh K-G. A practical string analyzer by the widening approach. In: Programming Languages and Systems, 4th Asian Sympo-

sium, APLAS 2006, Proceedings Kobayashi N, ed., Lecture Notes in Computer Science, vol. 4279. Springer; 2006:374-388. https://doi.org/10.1007/

11924661_23

40. Abdulla PA, Atig MF, Diep BP, Holík L, Janku P. Chain-free string constraints. In: Automated Technology for Verification and Analysis—17th Interna-

tional Symposium, ATVA 2019, Proceedings Chen Y-F, Cheng C-H, Esparza J, eds., Lecture Notes in Computer Science, vol. 11781. Springer; 2019:

277-293. https://doi.org/10.1007/978-3-030-31784-3_16

41. Chen T, Hague M, Lin AW, Rümmer P, Wu Z. Decision procedures for path feasibility of string-manipulating programs with complex operations. Proc

ACM Program Lang. 2019;3:49:1-49:30. https://doi.org/10.1145/3290362

42. Amadini R, Gange G, Stuckey PJ. Dashed strings for string constraint solving. Artif Intell. 2020;289:103368. https://doi.org/10.1016/j.artint.2020.

103368

43. Wang H-E, Chen S-Y, Yu F, Jiang J-HR. A symbolic model checking approach to the analysis of string and length constraints. In: Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018 Huchard M, Kästner C, Fraser G, eds. ACM; 2018:623-633.

24 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/978-3-030-67067-2_13
https://doi.org/10.1145/333979.333989
https://doi.org/10.1007/978-3-540-27813-9_25
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1016/j.cl.2010.09.001
https://doi.org/10.1016/j.cl.2010.09.001
https://doi.org/10.1016/j.entcs.2017.02.003
https://doi.org/10.1016/j.entcs.2017.02.003
https://doi.org/10.1007/978-3-030-32505-3_15
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1007/3-540-44898-5_1
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1145/3426470
https://doi.org/10.1145/3426470
https://doi.org/10.1007/978-3-642-24559-6_34
https://doi.org/10.1109/ICICT50521.2020.00011
https://doi.org/10.1145/2535838.2535849
https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1145/2676726.2676986
https://doi.org/10.1007/11924661_23
https://doi.org/10.1007/11924661_23
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1145/3290362
https://doi.org/10.1016/j.artint.2020.103368
https://doi.org/10.1016/j.artint.2020.103368

44. Yu F, Alkhalaf M, Bultan T, Ibarra OH. Automata-based symbolic string analysis for vulnerability detection. Formal Methods Syst Des. 2014;44(1):

44-70.

45. Abdulla PA, Atig MF, Chen Y-F, et al. Efficient handling of string-number conversion. In: Proceedings of the 41st ACM SIGPLAN International Confer-

ence on Programming Language Design and Implementation, PLDI 2020 Donaldson AF, Torlak E, eds. ACM; 2020:943-957. https://doi.org/10.1145/

3385412.3386034

46. Zheng Y, Zhang X, Ganesh V. Z3-str: a z3-based string solver for web application analysis. In: Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE'13, Saint Petersburg, Russian Federation

Meyer B, Baresi L, Mezini M, eds. ACM; 2013:114-124.

47. de Moura LM, Bjørner NS. Z3: an efficient SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems, 14th International Con-

ference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008. Proceedings

Ramakrishnan CR, Rehof J, eds., Lecture Notes in Computer Science, vol. 4963. Springer; 2008:337-340.

48. Arceri V, Dolcetti G, Zaffanella E. Speeding up static analysis with the split operator. In: Proceedings of the 12th ACM SIGPLAN International Work-

shop on the State of the Art in Program Analysis, SOAP 2023 Ferrara P, Hadarean L, eds. ACM; 2023:14-19. https://doi.org/10.1145/3589250.

3596141

49. Ferrara P, Negrini L. SARL: OO framework specification for static analysis. In: Software Verification—12th International Conference, VSTTE 2020, and

13th International Workshop, NSV 2020, Revised Selected Papers Christakis M, Polikarpova N, Duggirala PS, Schrammel P, eds., Lecture Notes in

Computer Science, vol. 12549. Springer; 2020:3-20. https://doi.org/10.1007/978-3-030-63618-0_1

50. Arceri V, Olliaro M, Cortesi A, Ferrara P. Relational string abstract domains. In: Verification, Model Checking, and Abstract Interpretation—23rd Inter-

national Conference, VMCAI 2022, Proceedings Finkbeiner B, Wies T, eds., Lecture Notes in Computer Science, vol. 13182. Springer; 2022:20-42.

https://doi.org/10.1007/978-3-030-94583-1_2

How to cite this article: Negrini L, Arceri V, Cortesi A, Ferrara P. TARSIS: An effective automata-based abstract domain for string analysis.

J Softw Evol Proc. 2024;e2647. https://doi.org/10.1002/smr.2647

APPENDIX A: SOUNDNESS AND COMPLETENESS PROOFS OF TARSIS's SEMANTICS

We prove the soundness and completeness of TARSIS's abstract semantics by showing that their concretization is an over-approximation of the

concrete one. As we formalized our transfer functions w.r.t. the smashed sum Vᴀʟ♯ ≜T Fᴀ=�
L

Intv
L

Bool, we compare concretizations of its ele-

ments with a concrete smashed sum Vᴀʟ≜℘ðΣ ∗ Þ[℘ðℤÞ[℘ðftrue,falsegÞ, which is defined as a collecting semantics. We abuse notation

denoting with M : Iᴅ!Vᴀʟ the set of collecting memories, ranging over meta-variable Ê, that associate each identifier to a collecting value. The

concrete expression semantics of such domain is defined as ½½ e �� :M!Vᴀʟ, evaluating e and returning its possible values. Such semantics is

defined as the additive lift of the one in Figure 3. Function γVᴀʟ♯ :Vᴀʟ
♯ !Vᴀʟ is the smashed sum concretization, and it is defined as

γVᴀʟ♯ ðaÞ≜

; if a¼ ⊥ ,

γIntvðaÞ if a� Intv,

γBoolðaÞ if a�Bool,

γT ðaÞ if a� T Fᴀ=�,

Vᴀʟ otherwise;

8>>>>>><
>>>>>>:

where γIntv : Intv!℘ðℤÞ and γBool :Bool!℘ðftrue,falsegÞ correspond to the concretization functions of intervals and Booleans, respectively.

We can now define the abstract memories concretization γ :M♯ !M as γðÊ♯ Þ≜ f ðx,γVᴀʟ♯ ðÊ♯ ðxÞÞÞ j x� domðÊ♯ Þ g. With this setup, we prove the

abstract semantics to be sound by proving that 8Ê♯ �M♯ : ½½ e ��γðÊ♯ Þ⊆ γVᴀʟ♯ ð½½ e ��♯ ðÊ♯ ÞÞ. We also prove completeness by enforcing the equality

on such relation, and incompleteness by providing a counterexample.

In the following, we remove the subscript from γ to avoid cluttering the notation, because it is clear from the context which concretization

function applies. Moreover, we mark proof steps as automata lift if they represent the transition from a condition over languages (i.e., sets of

strings) to its equivalent condition over automata. Finally, given the non-existence of a GC between the string concrete domain and TARSIS, from

here on, when we refer to completeness, we intend forward completeness, defined in Section 3.

A.1 | Concat

Theorem A1. ½½ concatðs,s0Þ ��♯ is a sound and complete abstraction of ½½ concatðs,s0Þ ��. Formally,

NEGRINI ET AL. 25 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1145/3385412.3386034
https://doi.org/10.1145/3385412.3386034
https://doi.org/10.1145/3589250.3596141
https://doi.org/10.1145/3589250.3596141
https://doi.org/10.1007/978-3-030-63618-0_1
https://doi.org/10.1007/978-3-030-94583-1_2
https://doi.org/10.1002/smr.2647

8Ê♯ �M♯ ,8s,s0 �sᴇ:½½ concatðs,s0Þ ��γðÊ♯ Þ¼ γð½½ concatðs,s0Þ ��♯Ê♯ Þ:

Proof. Soundness and completeness follow from the fact that finite state automata and regular languages are closed under finite

concatenation.22 □

A.2 | Length

Theorem A2. ½½ lengthðsÞ ��♯ is a sound but not complete abstraction of ½½ lengthðsÞ ��. Formally,

8Ê♯ �M♯ , 8s�sᴇ:½½ lengthðsÞ ��γðÊ♯ Þ⊊ γð½½ lengthðsÞ ��♯Ê♯ Þ:

Proof. The collecting semantics of length is defined as the additive lift of the concrete one reported in Figure 3, namely,

½½ lengthðsÞ ��Ê¼f jσj j σ �ℒ g, where ½½ s ��Ê¼ℒ�℘ðΣ ∗ Þ. Let us suppose that ½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ℒ�℘ðΣ ∗ Þ,
and let I¼f jσj j σ �ℒ g. Following the semantics definition, if cyclicðAÞ_ readsTopðAÞ, we prove the soundness as

½½ lengthðsÞ ��γðÊ♯ Þ
¼ I ⟅ def: E ⟆

⊆ γð½min I,þ∞�Þ ⟅ def: min,γ ⟆

¼ γð½jminPathðAÞj, þ∞�Þ ⟅ def: minPath ⟆

¼ γð½½ lengthðsÞ ��♯Ê♯ Þ ⟅ def: E, first case ⟆ :

Otherwise, becauseℒ is a finite language, soundness is proven as

½½ lengthðsÞ ��γðÊ♯ Þ
¼ I ⟅ def: E ⟆

⊆ γiað½min I, max I�Þ ⟅ def: max,γ ⟆

¼ γð½jminPathðAÞj, jmaxPathðAÞj�Þ ⟅ def: minPath,maxPath ⟆

¼ γð½½ lengthðsÞ ��♯Ê♯ Þ ⟅ def: E, second case ⟆ :

As a counterexample for completeness, let us consider ½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ fa,aaag.

½½ lengthðsÞ ��γðÊ♯ Þ¼ f1,3g⊊ γð½1,3�Þ ¼ γð½½ lengthðsÞ ��♯Ê♯ Þ:

□

A.3 | Contains

Theorem A3. ½½ containsðs,s0Þ ��♯ is a sound but not complete abstraction of ½½ containsðs,s0Þ ��. Formally,

8Ê♯ �M♯ , 8s,s0 �sᴇ:½½ containsðs,s0Þ ��γðÊ♯ Þ⊆ γð½½ containsðs,s0Þ ��♯Ê♯ Þ:

Proof. The collecting semantics of contains is defined as the additive lift of the concrete one, that is,

½½ containsðs,s0Þ ��Ê¼f b j b¼containsðσ,σ0Þ,σ �ℒ,σ0 �ℒ0 g, where ½½ s ��Ê¼ℒ�℘ðΣ ∗ Þ, ½½ s0 ��Ê¼ℒ0 �℘ðΣ ∗ Þ and

26 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

contains :Σ ∗ �Σ ∗ !ftrue,falseg corresponds to the concrete semantics of Figure 3. Let ½½ s ��♯Ê♯ ¼A� T Fᴀ=�

s.t. γðAÞ¼ℒ�℘ðΣ ∗ Þ and ½½ s0 ��♯Ê♯ ¼A0 � T Fᴀ=� s.t. γðA0Þ¼ℒ0 �℘ðΣ ∗ Þ. We split the proof following possible values produced by

the concrete semantics.

⊳ ½½ containsðs,s0Þ ��γðÊ♯ Þ¼ ffalseg. Thus, no substring of the strings in ℒ is in ℒ0.

½½ containsðs,s0Þ ��γðÊ♯ Þ¼ ffalseg ,
def: E

8σ �ℒ 8σ0 �ℒ0 :σ0sσ ,
def: FA

ℒðFAðAÞÞ\ℒ0 ¼ ;

,
automata lift

FAðAÞuT A0 ¼Minð;Þ ,
def: E ,1st case

½½ containsðs,s0Þ ��♯Ê♯ ¼ffalseg:

⊳ ½½ containsðs,s0Þ ��γðÊ♯ Þ¼ ftrueg. Thus, all strings in ℒ contain all the strings of ℒ0. This invalidates the first case of our

abstract semantics, as 9σ �ℒðFAðAÞÞ:σ �ℒ0. If singlePathðA0Þ holds, our semantics matches the concrete one:

½½ containsðs,s0Þ ��γðÊ♯ Þ¼ ftrueg^singlePathðA0Þ ,
def: E,singlePath

8σ �ℒ:σspsσ ,
ℒðAacÞ ⊆ℒ

8σ �ℒðAacÞ:σspsσ

,automata lift
8π �PathsðAacÞ:σspsσπ ,

def: E ,2nd case
½½ containsðs,s0Þ ��♯Ê♯ ¼ftrueg:

Otherwise, if A0 is not a single-path automaton, the semantics returns ftrue,falseg, and soundness is met.

⊳ ½½ containsðs,s0Þ ��γðÊ♯ Þ¼ ftrue,falseg. In this case, soundness is met as none of the conditions appearing in the definition

of ½½ containsðs,s0Þ ��♯ are satisfied, and the latter returns ftrue,falseg as well (third case). As a counterexample for the

completeness of contains, let us consider ½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ fab,bbag and ½½ s0 ��♯Ê♯ ¼A0 � T Fᴀ=�

s.t. γðA0Þ ¼ fa,bg.

½½ containsðs,s0Þ ��γðÊ♯ Þ¼ ftrueg⊊ ftrue,falseg¼ γð½½ containsðs,s0Þ ��♯Ê♯ Þ:

□

A.4 | IndexOf

Theorem A4. ½½ indexOfðs,s0Þ ��♯ is a sound but not complete abstraction of ½½ indexOfðs,s0Þ ��. Formally,

8Ê♯ �M♯ ,8s,s0 �sᴇ:½½ indexOfðs,s0Þ ��γðÊ♯ Þ⊊ γð½½ indexOfðs,s0Þ ��♯Ê♯ Þ:

Proof. The collecting semantics of indexOf is defined as the additive lift of the concrete one:

½½ indexOfðs,s0Þ ��Ê¼f i j i¼indexOfðσ,σ0Þ,σ �ℒ,σ0 �ℒ0 g, where ½½ s ��Ê¼ℒ�℘ðΣ ∗ Þ, ½½ s0 ��Ê¼ℒ0 �℘ðΣ ∗ Þ and indexOf :

Σ ∗ �Σ ∗ !ℕ corresponds to the concrete semantics of Figure 3. Let ½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ℒ�℘ðΣ ∗ Þ and ½½ s0 ��♯Ê♯ ¼
A0 � T Fᴀ=� s.t. γðA0Þ¼ℒ0 �℘ðΣ ∗ Þ. By definition of the concrete semantics, ½½ indexOfðs,s0Þ ��γðÊ♯ Þ⊆ γð½�1, þ∞�Þ. When A or A0

are cyclic or A0 has a T transition, the abstract semantics returns the interval ½�1, þ∞�, guaranteeing soundness. We thus continue

by assuming that A and A0 are not cyclic and A0 has no T transitions (i.e., ℒ0 is finite). We split the proof following the possible con-

crete values.

⊳ ½½ indexOfðs,s0Þ ��γðÊ♯ Þ¼ f�1g. No string of ℒ0 is contained in any string of ℒ. Formally,

½½ indexOfðs,s0Þ ��γðÊ♯ Þ¼ f�1g ,
necessary condition

8σ0 �ℒ0 ∄σ �ℒ:σ0sσ

,
def: E ,2ndcase

½½ indexOfðs,s0Þ ��♯Ê♯ ¼ ½�1,�1� ¼ :

NEGRINI ET AL. 27 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

As γIntvð½�1,�1�Þ ¼ f�1g, soundness is met.

⊳ ½½ indexOfðs,s0Þ ��γðÊ♯ Þ¼ I⊆ f n�ℤ j n≥ �1 g : 9i� I : i≥0. This implies 9σ �ℒðAÞ,σ0 �ℒðA0Þ:σ0sσ, as the collecting semantics

returns at least one value that is not �1. Here, the abstract semantics relies on function IO that computes an interval for each

string σ0 �ℒðA0Þ, lubbing the results together. Hence, it is enough to prove the correctness of IO. Given σ0 �ℒ0, let us define the

set Iσ0 ⊆ I¼f i j i¼indexOfðσ,σ0Þ,σ �ℒ g of positions where σ0 can be found in ℒ and let m,M� Iσ0 be the minimal and the maxi-

mal elements of Iσ0 . Therefore, it is sufficient to prove that γIntvð½m,M�Þ⊆ γIntvð½i, j�Þ, where ½i, j� ¼ IOðA,σ0Þ. For soundness to hold,

i≤m andM≤ j must be true, according to γIntv. We first prove i≤m, identifying two cases. If m¼�1:

�1� Iσ0 ,
necessary condition

9σ �ℒ:σ0sσ ,automata lift 9π �PathsðAÞ:σ0sσπ ,
def: i,1st case

i¼�1:

Instead, if m> �1:

m¼ min Iσ0 ,m≠ �1 ,
necessary cond:

9σ �ℒ:σm…σmþjσ0 j ¼ σ0 ^ 8σ �ℒ ∄n<m:σn…σnþjσ0 j ¼ σ0

,
automata lift

9π �PathsðAÞ:9σf �FlatðσπÞ:σfm…σfmþjσ0 j ¼ σ0 ^ 8π �PathsðAÞ 8σf �FlatðσπÞ:σfk…σfkþjσ0 j ¼ σ0) k ≥m

,
def: i,2nd case

i¼ min k¼m:

We now prove that M≤ j, identifying three cases. If M¼�1:

Iσ0 ¼ f�1g ,
necessary condition

8σ �ℒ:σ0sσ ,automata lift 8π �PathsðAÞ:σ0sσπ ,
def: j,1st case

j¼1:

Instead, if M> �1 and 8π �PathsðAÞ:πreadsσ) πdoes not readT before σ:

M¼ max Iσ0 ,
necessary cond:

9σ �ℒ:σM…σMþjσ0 j ¼ σ0 ^ 8σ �ℒ ∄n>M:σn…σnþjσ0 j ¼ σ0

,
automata lift

9π �PathsðAÞ:9σf �FlatðσπÞ:σfM…σfMþjσ0 j ¼ σ0 ^ 8π �PathsðAÞ 8σf �FlatðσπÞ:σfk…σfkþjσ0 j ¼ σ0) k ≤M

,
def: j,3rd case

j¼ max k¼M:

Finally, if M> �1 and 9π �PathsðAÞ:πreadsT before σ, j¼þ∞ by the second case of the definition of j, that is, thus greater

than M. As both inequalities are always satisfied, we can conclude that soundness is met in all cases. □

As a counterexample for completeness, let us consider ½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ fa,bbag and ½½ s0 ��♯Ê♯ ¼A0 � T Fᴀ=� s.t. γðA0Þ ¼ fag.

½½ indexOfðs,s0Þ ��γðÊ♯ Þ¼ f0,2g⊊ γð½0,2�Þ ¼ γð½½ indexOfðs,s0Þ ��♯Ê♯ Þ:

A.5 | Repeat

The abstract semantics of repeat relies of the auxiliary function repeat, described by Algorithm 2. First, we prove the soundness of repeat.

Theorem A5. Given A� T Fᴀ=�, i�ℕ, repeat is sound. Namely,

repeatðℒðAÞ, iÞ⊆ γðrepeatðA, iÞÞ,

where we abuse notation defining the collecting semantics repeatðℒ, iÞ≜ f σi j σ �ℒ g.

Proof. We split the proof in the following cases.

28 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

⊳ i¼0. In this case, Algorithm 2 returns the automaton recognizing the empty string (MinðfϵgÞ), and repeat is sound:

repeatðℒðAÞ, iÞ¼ f σ0 j σ �ℒðAÞ g¼fϵg¼ γðMinðfϵgÞÞ ⟅ Lines 1and 2of Algorithm 2 ⟆

⊳ A is cyclic. In the following we rely on the fact that, for some i�ℕ:

f σi j σ �ℒ g⊆ℒi ðA1Þ

repeatðℒðAÞ, iÞ ¼
¼f σi j σ �ℒðAÞ g ⟅ def: repeatðℒ, iÞ ⟆
¼fϵg �f σi j σ �ℒðAÞ g ⟅ neutrality ofϵfor concatenation ⟆

⊆ fϵg �ℒðAÞi ⟅ EquationA1 ⟆ :

The last formula is the language obtained by concatenating the empty string with the i-concatenation of ℒðAÞ,
corresponding the language of concatenating i-times the automaton A with itself and the automaton recognizing ϵ.

These operations are the ones performed at Lines 3–8 of Algorithm 2.

⊳ i≠0 and A is not cyclic. In this case, we have

repeatðℒðAÞ, iÞ ¼
¼f σi j σ �ℒðAÞ g ⟅ def: repeatðℒ, iÞ ⟆
¼f σi j 9π �PathsðAÞ: σ¼ σπ g ⟅ σ �ℒðAÞ ⟆
¼
S

π � PathsðAÞσ
i
π ⟅ σ¼ σπ ⟆

¼ γ ⨆π � PathsðAÞMinðfσiπgÞ
	

⟅ def:γ, t ⟆ :

The input of function γ in the last formula corresponds to Lines 10–18 of Algorithm 2, where MinðfσiπgÞ is computed by Lines

13–15. □

Theorem A6. ½½ repeatðs,aÞ ��♯ is a sound but not complete abstraction of ½½ repeatðs,aÞ ��. Formally,

8Ê♯ �M♯ ,8s�sᴇ,a� ᴀᴇ:½½ repeatðs,aÞ ��γðÊ♯ Þ⊊ γð½½ repeatðs,aÞ ��♯Ê♯ Þ:

Proof. The collecting semantics of replace is defined as the additive lift of the concrete one, that is,

½½ repeatðs,aÞ ��Ê¼f σk j k� ½i, j�,σ �ℒ g, where ½½ s ��Ê¼ℒ�℘ðΣ ∗ Þ and ½½ a ��Ê¼ ½i, j��℘ðℤÞ. Let ½½ s ��♯Ê♯ ¼A� T Fᴀ=�

s.t. γðAÞ¼ℒ�℘ðΣ ∗ Þ, and ½½ a ��♯Ê♯ ¼ ½i, j�� Intv. By definition of the concrete semantics, we suppose that ½i, j�⊆ ½0,þ∞�. We split

the proof in the following cases.

⊳ ½i, j� ¼ ½0,þ∞�.

½½ repeatðs,aÞ ��γðÊ♯ Þ ¼
¼f σi j σ �ℒðAÞ, i�ℕ g ⟅ def:repeatðs,aÞ ⟆
⊆
S

i � ℕℒðAÞi ⟅EquationðA1Þ ⟆
¼ γðKleeneðAÞÞ ⟅def: Kleene ⟆ :

⊳ i¼¼ j^ i�ℕ. Soundness follows from Theorem (A5).

⊳ j¼þ∞.

NEGRINI ET AL. 29 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

½½ repeatðs,aÞ ��γðÊ♯ Þ ¼
¼f σk j σ �ℒðAÞ,k ≥ i g ⟅ def:repeatðs,aÞ ⟆
¼f σiσl j σ �ℒðAÞ, l�ℕ g ⟅ def:≥ , string concat: ⟆

¼f σi j σ �ℒðAÞ g � f σl j σ �ℒðAÞ, l�ℕ g ⟅ def: lang: concat: ⟆

⊆ γð½½ concatðrepeatðA, iÞ,KleeneðAÞÞ ��♯ Þ ⟅ def: Kleene,repeat,γ ⟆ :

⊳ i, j�ℕ. Soundness follows from Theorem A5 and the definition of tT . As a counterexample for completeness, let

½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ f an j n�ℕ g[fbg and ½½ a ��♯Ê♯ ¼ ½2,2�.

½½ repeatðs,aÞ ��γðÊ♯ Þ¼ f an j n�ℕ g[fbbg⊊ f anbamb j n,m�ℕ g¼ γð½½ repeatðs,aÞ ��♯Ê♯ Þ:

□

A.6 | TrimLeft, TrimRight, and Trim

The abstract semantics of trimLeft relies of the auxiliary function trimL, working on regexes. In the following we prove the soundness of

trimL. The soundness proof for trimR is analogous, while soundness of trim follows from the soundness of trimL and trimR.

Theorem A7. Given A� T Fᴀ=�, let r be the regex equivalent to A. trimL is sound, namely,

trimLðγðrÞÞ⊆ γðtrimLðrÞÞ,

where we abuse notation of trimL defining the collecting semantics trimLðℒÞ≜ σ0 j
σ �ℒ,σ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ¼ψ 0σ00 g

� �
.

Proof. The proof is done by induction on the structure of the regex r.

Base cases

⊳ r¼;. Soundness holds because trimLðℒð;ÞÞ¼ ;¼ γðtrimLð;ÞÞ (first case).
⊳ r¼T. Soundness holds because trimLðℒðTÞÞ¼Σ ∗ ¼ γðtrimLðTÞÞ (first case).
⊳ r¼ σ. If the regex is an atom, the abstract semantics relies on its concrete semantics; hence, soundness holds.

Inductive cases

⊳ r¼r1 jj r2.

trimLðγðr1jjr2ÞÞ ¼
¼trimLðγðr1Þ[γðr2ÞÞÞ ⟅ def: γ ⟆

¼trimLðγðr1ÞÞ[trimLðγðr2ÞÞ ⟅ distrib: of trimL ⟆

¼ γðtrimLðr1ÞÞ[γðtrimLðr2ÞÞ ⟅ ind: hp: ⟆

¼ γðtrimLðr1Þ[trimLðr2ÞÞ ⟅ def:[,γ ⟆

¼ γðtrimLðr1 jj r2ÞÞ ⟅ distrib: of trimL, third case ⟆ :

⊳ r¼r1r2. For regex concatenation, we split the proof in three sub-cases. • γðr1Þ⊆ f g ∗) trimLðγðr1ÞÞ¼ ϵ

30 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

trimLðγðr1r2ÞÞ ¼

¼ σ0 j
σ � γðr1r2Þ,σ¼ψσ0,

ψ ¼ maxf ψ 0 � f g ∗ j σ¼ψ 0σ0
0

()
⟅ def: trimL ⟆

¼ σ0 j
σ1 � γðr1Þ,σ2 � γðr2Þ,σ1σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ1σ2 ¼ψ 0σ0
0 g

()
⟅ def: γðr1r2Þ ⟆

¼ σ0 j
σ2 � γðr2Þ,σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ2 ¼ψ 0σ0
0 g

()
⟅ trimLðγðr1ÞÞ¼ ϵ) σ1 �ψ ⟆

¼trimLðγðr2ÞÞ ⟅ def: trimL ⟆

⊆ γðtrimLðr2ÞÞ ⟅ ind: hp: ⟆

¼ γðtrimLðr1r2ÞÞ ⟅ fourth case ⟆ :

• readWSðr1Þ) γðr1Þ¼ℒws [ℒ¬ws s.t. ℒws ⊆ f g ∗ and ℒ¬ws \f g ∗ ¼;

trimLðγðr1r2ÞÞ ¼

¼ σ0 j
σ � γðr1r2Þ,σ¼ψσ0,

ψ ¼ maxf ψ 0 � f g ∗ j σ¼ψ 0σ0
0 g

()
⟅ def: trimL ⟆

¼ σ0 j
σ1 � γðr1Þ,σ2 � γðr2Þ,σ1σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ1σ2 ¼ψ 0σ0
0 g

()
⟅ def: γðr1r2Þ ⟆

¼ σ0 j
σ1 �ℒws,σ2 � γðr2Þ,σ1σ2 ¼ψσ0,

ψ ¼ maxf ψ 0 � f g ∗ j σ1σ2 ¼ψ 0σ0
0 g

()

[σ0 j
σ1 �ℒ¬ws,σ2 � γðr2Þ,σ1σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ1σ2 ¼ψ 0σ0
0 g

()
⟅ def: ℒws,ℒ¬ws ⟆

¼ σ0 j
σ2 � γðr2Þ,σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ2 ¼ψ 0σ0
0 g

()

[σ0 j
σ1 �ℒ¬ws,σ2 � γðr2Þ,σ1σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ1σ2 ¼ψ 0σ0
0 g

()
⟅ σ1 � f g ∗ ⟆

¼ σ0 j
σ2 � γðr2Þ,σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ2 ¼ψ 0σ0
0 g

()

[σ0 j
σ1 �ℒ¬ws,σ2 � γðr2Þ,σ1σ2 ¼ψσ0 ,

ψ ¼ maxf ψ 0 � f g ∗ j σ1σ2 ¼ψ 0σ0
0 g

()
⟅ σ1 =2f g ∗ ,ψ � σ1 ⟆

¼trimLðγðr2ÞÞ[trimLðγðr1ÞÞγðr2Þ ⟅ def: trimL ⟆

⊆ γðtrimLðr2ÞÞ[γðtrimLðr1Þr2Þ ⟅ ind: hp:,def: γ ⟆

¼ γðtrimLðr2Þ jj trimLðr1Þr2Þ ⟅def:γðr1 jj r2Þ ⟆
¼ γðtrimLðr1r2ÞÞ ⟅ fifth case ⟆ :

• ¬readWSðr1Þ. The proof is analogous to the previous case.

⊳ r¼ðr1Þ ∗ . If trimLðr1Þ¼ ϵ, then trimLðrÞ¼ ϵ¼ γðtrimLðrÞÞ; hence, soundness trivially holds. Otherwise, the proof is analo-

gous to the case r¼r1r2. □

As a counterexample for completeness, let ½½ s ��♯Ê♯ ¼A¼MinðfTabgÞ, thus γðAÞ¼ f σab j σ �Σ ∗ g.

½½ trimLeftðsÞ ��γðÊ♯ Þ¼ f σab j σ �Σ ∗ f g ∗ g⊊ γðMinðfTabgÞ¼ γð½½ trimLeftðsÞ ��♯Ê♯ Þ:

Consequently, also the abstract semantics of trimRight and trim are not complete.

A.7 | Replace

Theorem A8. ½½ replaceðs,ss,srÞ ��♯ is a sound but not complete abstraction of ½½ replaceðs,ss,srÞ ��. Formally,

NEGRINI ET AL. 31 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8Ê♯ �M♯ ,8s,ss,sr �sᴇ:½½ replaceðs,ss,srÞ ��γðÊ♯ Þ⊊ γð½½ replaceðs,ss,srÞ ��♯Ê♯ Þ:

Proof. The collecting semantics of replace is defined as the additive lift of the concrete one, that is,

½½ replaceðs,ss,srÞ ��Ê¼f σ0 j σ0 ¼replaceðσ,σs,σrÞ,σ �ℒ,σs �ℒs,σr �ℒr g, where ½½ s ��Ê¼ℒ�℘ðΣ ∗ Þ,
½½ ss ��Ê¼ℒs �℘ðΣ ∗ Þ, ½½ sr ��Ê¼ℒr �℘ðΣ ∗ Þ and replace :Σ ∗ �Σ ∗ �Σ ∗ !Σ ∗ corresponds to the concrete semantics of

Figure 3. Let ½½ s ��♯Ê♯ ¼A� T Fᴀ=� s.t. γðAÞ¼ℒ�℘ðΣ ∗ Þ, ½½ ss ��♯Ê♯ ¼As � T Fᴀ=� s.t. γðAsÞ¼ℒs �℘ðΣ ∗ Þ, and

½½ sr ��♯Ê♯ ¼Ar � T Fᴀ=�γðArÞ¼ℒr �℘ðΣ ∗ Þ. When A or As have a cycle or have a T-transition, our semantics returns MinðfTgÞ and is

thus trivially sound. Otherwise, when no replacement happens (i.e., ½½ replaceðℒ,ℒs,ℒrÞ ��Ê¼ℒ):

½½ replaceðℒ,ℒs,ℒrÞ �� ¼ℒ ,
necessary condition

8σs �ℒs ∄σ �ℒ:σssσ ,
def: E ,1st case

½½ replaceðA,As,ArÞ �� ¼A:

Otherwise, when at least one replacement happens, the semantics returns the lub of several applications of RP ranging over all pos-

sible combinations of strings in ℒ and ℒs, which can be thoroughly explored because ℒ and ℒs are finite sets. Once RP has been

proven correct, soundness naturally follows according to the properties of lub. We thus prove that

8σ �ℒ,8σs �ℒs, 8π �PathsðAÞ:σπ ¼ σ:

½½ replaceðfσg,fσsg,ℒrÞ ��⊆ γðRPðπ,σs,ArÞÞ:

Specifically, RP removes every occurrence of σs in π (Lines 7 and 8 of Algorithm 3, where states and transitions composing σs are

removed from the resulting automaton), substituting them with a copy of the replace automaton (Line 4) that is connected to the

path with ϵ-transitions. This means that all σ0sσπ :σ0 ¼ σs are substituted with all the strings recognized by Ar . We can then character-

ize the language of the automaton returned by RP as f σπ ½σs=σr � j σr �ℒðArÞ g. Soundness is thus ensured:

½½ replaceðfσg,fσsg,ℒrÞ �� ¼ f σ½σs=σr� j σr �ℒr g
⊆ f σπ ½σs=σr � j σr �ℒðArÞ g ⟅ automata lift ⟆

¼ γðRPðπ,σs,ArÞÞ ⟅ def: RP ⟆ :

Soundness is thus proven as the result on individual strings can be lifted to languages, and because the Ar passed to RP is an

over-approximation of the concrete strings it represents (as the semantics performs a may-replacement whenever jℒsj>1). The
abstract semantics of replace is not complete, due to it returns MinðfTgÞ when either the input automaton or the search automa-

ton contain cycles or read T.

As a counterexample for completeness, let ½½ s ��♯Ê♯ ¼A� T Fᴀ=�, ½½ ss ��♯Ê♯ ¼As � T Fᴀ=�, ½½ sr ��♯Ê♯ ¼Ar � T Fᴀ=�

s.t. γðAÞ¼ fabcg,γðAsÞ¼ fa,zg and γðArÞ¼ frg.

½½ replaceðs,ss,srÞ ��γðÊ♯ Þ¼ frbcg⊊ fabc, rbcg¼ γð½½ replaceðs,ss,srÞ ��♯Ê♯ Þ: □

A.8 | Substring and CharAt

Theorem A9. ½½ substrðs,a1,a2Þ ��♯ is a sound and complete abstraction of ½½ substrðs,a1,a2Þ ��. Formally,

8Ê♯ �M♯ ,8s�sᴇ,8a1,a2 � ᴀᴇ:½½ substrðs,a1,a2Þ ��γðÊ♯ Þ¼ γð½½ substrðs,a1,a2Þ ��♯Ê♯ Þ:

Proof. The collecting semantics of substr is defined as the additive lift of the concrete one, that is,

½½ substrðs,a1,a2Þ ��Ê¼f σ j σ¼substrðσ, i, jÞ,σ �ℒ, i� I, j� J g, where ½½ s ��Ê¼ℒ�℘ðΣ ∗ Þ, I¼ ½½ a ��Ê, J¼ ½½ a0 ��Ê and

substr :Σ ∗ �ℕ�ℕ!Σ ∗ corresponds to the concrete semantics of Figure 3. Without loss of generality, we can prove the

semantics to be sound when ½½ a1 ��♯Ê♯ ¼ ½i, i� and ½½ a2 ��♯Ê♯ ¼ ½j, j�, with i, j�ℕ,0≤ i≤ j, as the abstract semantics lifts such result to

32 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

non-singleton intervals applying lub. Let ½½ s ��♯Ê♯ ¼A s.t. γðAÞ¼ℒ, and that ½½ a1 ��♯Ê♯ ¼ ½i, i� and ½½ a2 ��♯Ê♯ ¼ ½j, j�, with i, j�ℕ. Fur-

thermore, let r�A be the regex equivalent to A. We can thus prove completeness of the semantics by proving the following:

½½ substrðℒ,fig,fjgÞ ��γðÊ♯ Þ¼ γðMinðf σ j gðσ,0,0Þ�Sbðr, i, j� iÞÞÞ:

Completeness is proven by structural induction over the structure of the regular expression, referencing the lines of Algorithm 4

that are involved in the computation as §x, where x is the line number. Moreover, when Sbðr, i, jÞ produces the set

S¼fðσ1, i1, j1Þ,…,ðσn, in, jnÞg, we denote the automaton Minðf σ j ðσ,0,0Þ� S gÞ as either, abusing notation, MinðSbðr, i, jÞÞ or

Minðfðσ1, i1, j1Þ,…,ðσn, in, jnÞgÞ. With the latter notation, we abuse notation writing σi =2Sb to denote that ðσi, ii , jiÞ is not in the final

result of Sb.

Base cases

⊳ r¼; (ℒðrÞ¼ ;):

½½ substrð;,fig,fjgÞ �� ¼ ;
¼ γðMinð;ÞÞ ⟅ automata lift ⟆

¼ γðMinðSbð;, i, j� iÞÞÞ ⟅ §2 ⟆ :

⊳ r¼ σ � Σ ∗ : here, we identify three cases. If i≤ j< jσj:

½½ substrðfσg,fig,fjgÞ �� ¼ fσi…σjg
¼ γðMinðfσi…σjgÞÞ ⟅ automata lift ⟆

¼ γðMinðSbðfσg, i, j� iÞÞÞ ⟅ §6 ⟆ :

Instead, when i> jσj:

½½ substrðfσg,fig,fjgÞ �� ¼ ;
¼ γðMinðfðϵ, i�jσj, j� iÞgÞÞ ⟅ i�jσj>0) ϵ =2Sb ⟆

¼ γðMinðSbðfσg, i, j� iÞÞÞ ⟅ §4 ⟆ ,

computing an empty partial substring (i.e., still concretized as the empty set of strings), but taking into account that σ

has been read (i�jσj) and no character from σ has been taken (j� i). Finally, if i< jσj and j> jσj (where k¼ j�jσjþ i):

½½ substrðfσg,fig,fjgÞ �� ¼ ;
¼ γðMinðfðσi…σjσj�1,0,kÞgÞÞ ⟅ k >0) σi…σjσj�1 =2Sb ⟆

¼ γðMinðSbðfσg, i, j� iÞÞÞ ⟅ §5 ⟆ ,

computing an partial substring (i.e., still concretized as the empty set of strings) that is a suffix of σ, and noting that j�
ði�jσi…σjσj�1jÞ characters still have to be read before completing the substring. ⊳r¼T:

½½ substrðΣ ∗ ,fig,fjgÞ �� ¼ f σ j jσj ¼ j� i g
¼ γðMinðfð• j�i ,0,0ÞgÞÞ ⟅ automata lift ⟆

[γðMinðfð• l ,0, j� lÞgÞÞ, l < j� i ⟅ j� l >0) • l =2Sb ⟆

[γðMinðfðϵ, i� l, jÞgÞÞ,0≤ l≤ i ⟅ i� l>0) ϵ =2Sb ⟆

¼ γðMinðSbðT, i, j� iÞÞÞ ⟅ §8,§9 ⟆ ,

where, for the sake of clarity, strings returned by Sb are split into three sets, the first (fð• j�i,0,0Þg) simulating sub-

strings generated when i, j≤ jσj, the second one (ð• l ,0, j� lÞ) representing partial substrings when i≥ jσj, and the third

symbolizing partial substrings generated when i< jσj^ j ≥ jσj. Note that only strings from the first set are part of the

final concretization, while partial substrings from the second and third automata only serve in computations of succes-

sive substrings.

NEGRINI ET AL. 33 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Inductive steps

⊳ r¼r1jjr2: let ℒ,ℒ1,ℒ2 �℘ðΣ ∗ Þ be the languages recognized by r, r1, and r2, respectively. It is easy to see that

½½ substrðℒ,fig,fjgÞ �� ¼ ½½ substrðℒ1,fig,fjgÞ ��[½½ substrðℒ2,fig,fjgÞ ��. We assume ½½ substrðℒ1,fig,fjgÞ ��¼
γðMinðSbðr1, i, j� iÞÞÞ and ½½ substrðℒ2,fig,fjgÞ ��¼ γðMinðSbðr2, i, j� iÞÞÞ to hold for inductive hypothesis. We then prove sound-

ness with the following:

½½ substrðℒ,fig,fjgÞ �� ¼ ½½ substrðℒ1,fig,fjgÞ ��[½½ substrðℒ2,fig,fjgÞ ��
¼ γðMinðSbðr1, i, j� iÞÞÞ[γðMinðSbðr2, i, j� iÞÞÞ ⟅ ind: hp: ⟆

¼ γðMinðSbðr1jjr2, i, j� iÞÞÞ ⟅ §21 ⟆ :

⊳ r¼r1r2: let ℒ,ℒ1,ℒ2 �℘ðΣ ∗ Þ be the languages recognized by r, r1, and r2, respectively. The concrete semantics is the union

of two sets: ½½ substrðℒ1,fig,fjgÞ �� (i.e., substrings that are fully contained in ℒ1), and ½½ substrðℒ1�ℒ2,fig,fjgÞ ��
(i.e., substrings that straddle ℒ1 and ℒ2). We prove soundness assuming the inductive hypotheses ½½ substrðℒ1,fig,fjgÞ ��¼
γðMinðSbðr1, i, j� iÞÞÞ and ½½ substrðℒ2,fig,fjgÞ ��¼ γðMinðSbðr2, i, j� iÞÞÞ:

½½ substrðℒ,fig,fjgÞ �� ¼ ½½ substrðℒ1,fig,fjgÞ ��[½½ substrðℒ1�ℒ2,fig,fjgÞ ��

¼ γðMinðSbðr1, i, j� iÞÞÞ[γðMin σ11 �σ12, i
1
2, j

1
2

	

,…, σn1 �σn2, i

n
2, j

n
2

� �n o	

⟅ ind: hp: ⟆

¼ γðMinðSbðr1r2, i, j� iÞÞÞ ⟅ §1,§16,§18 ⟆ ,

where, for the sake of clarity, strings returned by Sb are split in two sets, the first (Sbðr1, i, j� iÞ) corresponding to sub-

strings that entirely contained into r1, the second one σ11 �σ12, i
1
2, j

1
2

	

,…, σn1 �σn2, i

n
2, j

n
2

� �n o	

that models substrings strad-

dling r1 and r2, where 8i: σi1, i
i
1, j

i
1

	

�Sbðr1, i, j� iÞ, ji1 ≠0^ σi2, i

i
2, j

i
2

	

�Sb r2, i

i
1, j

i
1

	

. Strings in the latter set are built

by offsetting substrings of r2 by the length of the substrings of r1.

⊳ r¼ðr1Þ ∗ . The proof of this case is similar to the one for concatenation, because ðr1Þ ∗ can be seen as an (undefined) concate-

nation of the regular expression r1, and is thus left implicit. □

Theorem A10. ½½ charAtðs,aÞ ��♯ is a sound and complete abstraction of ½½ charAtðs,aÞ ��. Formally,

8Ê♯ �M♯ ,8s�sᴇ,8a� ᴀᴇ:½½ charAtðs,aÞ ��γðÊ♯ Þ¼ γð½½ charAtðs,aÞ ��♯Ê♯ Þ:

Proof. Because the abstract semantics of charAt relies on the one of substr, soundness and completeness come from

Theorem A9. □

A.9 | String equality

We report the soundness and completeness proof of the abstract semantics of string equality. First, we prove the soundness of the eq function

(whose algorithm is reported in Algorithm 1).

Theorem A11. Given σ1,σ2 �Σ ∗ [fTg, ½½ Flatðσ1Þ¼¼Flatðσ2Þ �� is a sound and complete approximation of eqðσ1,σ2Þ. Formally,

8σ1,σ2 �Σ ∗ [fTg:Flatðσ1Þ¼¼Flatðσ2Þ¼ γðeqðσ1,σ2ÞÞ,

where we abuse notation denoting by == also the collecting semantics of string equality.

Proof. The proof is done by natural induction over the length of σ1 and σ2.

Base cases

⊳ jσ1j ¼0 , σ1 ¼ ϵ

• jσ2j ¼0 , σ2 ¼ ϵ. In this case, Flatðσ1Þ¼¼Flatðσ2Þ¼ ftrueg, that is, equal to the result returned by eq in Algorithm 1 when

both strings are empty (Lines 1 and 2).

34 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

• jσ2j ¼1 , σ2 ¼ c�Σ[fTg. We can split the proof in two cases: � c¼T: the empty string may be equal to T, thus

Flatðσ1Þ¼¼Flatðσ2Þ¼ ftrue,falseg, that is, equal to the result returned by eq in Algorithm 1 when one of the string is empty

and the other is equal to T (Lines 3 and 4). � c≠T: the empty string is not equal to any string, thus

Flatðσ1Þ¼¼Flatðσ2Þ¼ ffalseg, that is, equal to the result returned by eq in Algorithm 1 when one of string is empty and the

other has a single character not equal to T (Lines 5 and 6).

⊳ jσ1j ¼1 , σ1 ¼ c�Σ[fTg. We can split the proof in two cases:

• c¼T. � jσ2j ¼0 , σ2 ¼ ϵ. This case is analogous to the second point of the previous base case. �
jσ1j ¼1 , σ2 ¼ c0 �Σ[fTg. We have two cases:

c0 ¼T. Two strings just made of a singleton T character may be equal, thus Flatðσ1Þ¼¼Flatðσ2Þ¼ ftrue,falseg, that is, equal to the

result returned by eq in Algorithm 1 when both strings have a single character equal to T (Lines 7 and 8).

c0 ≠T. A string just made of a singleton T may be equal to c�Σ[fTg, thus Flatðσ1Þ¼¼Flatðσ2Þ¼ ftrue,falseg, that is, equal to
the result returned by eq in this case (Lines 7 and 8) Algorithm 1.

• c≠T.

� jσ2j ¼0 , σ2 ¼ ϵ. This case is analogous to the second case of the first base case.

� jσ2j ¼1 , σ2 ¼ c0 �Σ[fTg. This case is analogous to the previous case (c¼T).

Inductive steps

Let n�ℕ and let σ1,σ2 � ðΣ[fTgÞ ∗ such that jσ1j≤ n, jσ2j≤ n. For inductive hypothesis, the following holds:

Flatðσ1Þ¼¼Flatðσ2Þ⊆ γðeqðσ1,σ2ÞÞ:

Given ρ1,ρ2 � ðΣ[fTgÞ ∗ such that jρ1j> n, jρ2j> n, we prove that

Flatðρ1Þ¼¼Flatðρ2Þ⊆ γðeqðρ1,ρ2ÞÞ:

Let us consider ρ1 ¼ cσ1 and ρ2 ¼ c0σ2. We split the proof in the following cases.

⊳c≠T,c0 ≠T

Flatðρ1Þ¼¼Flatðρ2Þ ¼
¼Flatðcσ1Þ¼¼Flatðc0σ2Þ ⟅ def:ρ1andρ2 ⟆

¼f cs¼¼ c0s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ g ⟅ def:¼¼ ⟆ :

We split the proof in the following cases.

• c¼ c0

f cs¼¼ c0s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ g ¼
¼f s¼¼ s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ g ⟅ c¼ c0 ⟆

¼ γðeqðσ1,σ2ÞÞ ⟅ ind: hp: ⟆

¼ γðeqðρ1,ρ2ÞÞ ⟅ Lines 11and 12 ⟆ :

• c≠ c0 f cs¼¼ c0s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ g ¼
¼ffalseg ⟅ c≠ c0 ⟆

¼ γðeqðρ1,ρ2ÞÞ ⟅ Lines 9and 10 ⟆ :

⊳c¼T,c0 ≠T

NEGRINI ET AL. 35 of 36

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Flatðρ1Þ¼¼Flatðρ2Þ ¼
¼FlatðTσ1Þ¼¼Flatðc0σ2Þ ⟅ def:ρ1andρ2 ⟆

¼f ts¼¼ c0s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ,t�Σ ∗ g ⟅ def:¼¼ ⟆

¼f s¼¼ c0s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ,t�Σ ∗ g
[f cs¼¼ cs0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ g
[f ts¼¼ c0s0 j s�Flatðσ1Þ,s0 �Flatðσ2Þ,t�Σ ∗ fϵ,cg g ⟅ set union def: ⟆

¼ γðeqðρ1,ρ2½1 :�ÞÞ ⟅ ind: hp: ⟆

tγðeqðρ1½1 :�,ρ2½1 :�Þ ⟅ ind: hp: ⟆

tγðeqðρ1,ρ2½1 :�Þtfalse ⟅ ind: hp:;t¼ ϵ_ t≠ c ⟆

¼ γðeqðρ1,ρ2ÞÞ ⟅ Lines 13and 14 ⟆ :

⊳c¼T,c0 ¼T. The proof is analogous to the previous case.

⊳c≠T,c0 ¼T. The proof is analogous to the previous cases. □

Theorem A12. ½½ s¼¼ s0 ��♯ is a sound and complete abstraction of ½½ s¼¼ s0 ��. Formally,

8Ê♯ �M♯ ,8s,s0 �sᴇ:½½ s¼¼ s0 ��γðÊ♯ Þ⊆ γð½½ s¼¼ s0 ��♯Ê♯ Þ:

Proof. In the first case of the abstract semantics of string equality, soundness and completeness are trivially met, while soundness

and completeness of the third case follow from Theorem A11. Let us focus on the second case, let s,s0 �sᴇ and suppose

½½ s ��♯Ê♯ ¼A� T Fᴀ=�, ½½ s0 ��♯Ê♯ ¼A0 � T Fᴀ=�. We prove that if either A or A0 are cyclic, ½½ s¼¼ s0 ��γðÊ♯ Þ¼ ftrue,falseg, the
same result returned by γð½½ s¼¼ s0 ��♯Ê♯ Þ, proving completeness. Note that ½½ s¼¼ s0 ��γðÊ♯ Þ cannot be ffalseg because this

case is treated in the first case of the abstract semantics of string equality. By contradiction, let either A or A0 be cyclic and let us

suppose that ½½ s¼¼ s0 ��γðÊ♯ Þ¼ ftrueg.

½½ s¼¼ s0 ��γðÊ♯ Þ¼ ftrueg
, 8σ � γðAÞ8σ0 � γðA0Þ:σ¼¼ σ0 ⟅ def: ½½ s¼¼ s0 �� ⟆
) jγðAÞj ¼ jγðA0Þj ¼1 ⟅ set theory; def:¼¼ ⟆ :

We supposed that either A or A0 were cyclic, reaching a contradiction. Thus, if either A or A0 are cyclic,

½½ s¼¼ s0 ��γðÊ♯ Þ¼ ffalse,trueg¼ γð½½ s¼¼ s0 ��♯Ê♯ Þ, proving completeness. □

36 of 36 NEGRINI ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2647 by V
IN

C
E

N
Z

O
 A

R
C

E
R

I - U
niversity D

egli Studi D
i Parm

a Settore B
iblioteche , W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	Tarsis: An effective automata-based abstract domain for string analysis
	1 INTRODUCTION
	2 MOTIVATING EXAMPLE
	3 PRELIMINARIES
	3.1 Mathematical notation
	3.2 Ordered structures
	3.3 Abstract interpretation
	3.4 FSAs and regular expression notation
	3.5 The FSA abstract domain
	3.6 Core language and semantics

	4 THE Tarsis ABSTRACT DOMAIN
	4.1 Abstract domain and widening
	4.1.1 Widening

	4.2 String abstract semantics of Imp
	4.2.1 Concat
	4.2.2 Length
	4.2.3 Contains
	4.2.4 String equality
	4.2.5 IndexOf
	4.2.6 Repeat
	4.2.7 TrimLeft, TrimRight, and Trim
	4.2.8 Replace
	4.2.9 Substr and CharAt

	5 EXPERIMENTAL RESULTS
	5.1 LiSA and GoLiSA
	5.2 Precision of the various domains on test cases
	5.3 Evaluation on realistic code samples
	5.4 Efficiency w.r.t. simpler string domains
	5.5 Performance benchmark of Tarsis and Fa/
	5.5.1 Benchmark composition
	5.5.2 Benchmark results

	6 RELATED WORK
	6.1 Static analysis of string values
	6.2 Automata-based approaches
	6.3 Regular expressions
	6.4 String constraints verification

	7 CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES
	APPENDIX A SOUNDNESS AND COMPLETENESS PROOFS OF Tarsis's SEMANTICS
	 Concat
	 Length
	 Contains
	 IndexOf
	 Repeat
	 TrimLeft, TrimRight, and Trim
	 Replace
	 Substring and CharAt
	 String equality

