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Stochastic leverage effect in high-frequency data: a
Fourier based analysis

Imma Valentina Curatoa,∗, Simona Sanfelicib

aUlm University, Institute of Mathematical Finance, Helmholtzstrae 18, 89069 Ulm,
Germany

bUniversity of Parma, Department of Economics and Management, Via J. Kennedy, 6,
43125 Parma, Italy

Abstract

The stochastic leverage effect, defined as the standardized covariation between
the returns and their related volatility, is analyzed in a stochastic volatility
model set-up. A novel estimator of the effect is defined using a pre-estimation
of the Fourier coefficients of the return and the volatility processes. The con-
sistency of the estimator is proven. Moreover, its finite sample properties are
studied in the presence of microstructure noise effects. The Fourier method-
ology is applied to S&P500 futures prices to investigate the magnitude of the
stochastic leverage effect detectable at high-frequency.

Keywords: Fourier analysis, leverage effect, high-frequency data,
microstructure noise
JEL: C13, C14, C51, C58

1. Introduction

The leverage effect is one of the most striking empirical regularity observed
in financial time series. In its classical interpretation given by Black (1976)
and Christie (1982), the effect refers to the negative and constant correlation
typically observed between returns and their respective volatilities. Bekaert5

and Wu (2000); Campbell (1987); Campbell and Hentschel (1992); French et al.
(1987); Figlewski and Wang (2001); Ghysel et al. (2005); Nelson (1991) and Wu
(2001) empirically investigate the presence of constant and negative correlation
between returns and volatilities across different financial asset types. They
observe that the effect is in general larger for aggregate market index returns10

than for individual stocks, see discussion in Tauchen et al. (1996), and detectable
at frequencies lower than or equal to 1 day.

In the empirical literature employing high-frequency data, i.e. intra-daily
data, there is no consensus in interpreting the leverage effect as above. Aı̈t-
Sahalia et al. (2013); Bollerslev et al. (2006); Tauchen et al. (1996) demonstrate15

∗Corresponding author

Preprint submitted to Econometrics and Statistics March 16, 2021



the presence of a constant and negative correlation between returns and volatil-
ities, the analysis in Bandi and Renó (2012); Figlewski and Wang (2001); Yu
(2012) support the claim of a time-varying effect, and Aı̈t-Sahalia et al. (2017);
Aı̈t-Sahalia and Jacod (2014); Carr and Wu (2007); Kalnina and Xiu (2017);
Mancino and Toscano (2020); Wang and Mykland (2014); Mykland et al. (2009)20

analyze the presence of stochastic correlation between returns and volatilities.
We follow this last strand of literature.

In a high-frequency framework, it is more appropriate to define the leverage
effect following Aı̈t-Sahalia et al. (2013), namely, as the instantaneous correla-
tion25

R(t) =
〈dp, dσ2〉√

〈dp, dp〉〈dσ2, dσ2, 〉
, (1)

which corresponds to the standardized quadratic covariation between the incre-
ments of the logarithmic asset price p, i.e. the return process, and the increments
of the volatility process σ2.

Aı̈t-Sahalia et al. (2013) observe that the magnitude of the leverage effect (1)
detected in the data (using a classical realized covariance estimator) is near zero30

if we use data in a daily time window, and becomes negative if we use a weekly to
a monthly time window. However, the leverage effect should not change its value
on different time horizons, as it is an intrinsic feature of the model underlying
the data. The authors observe that several sources of bias arise. One is due
to the latent (i.e. non-observable) volatility path, and a second one to the35

presence of microstructure noise. We observe the latter when using data at a
frequency higher than 5 minutes, e.g. tick-data. Aı̈t-Sahalia et al. (2013) employ
different proxies of the volatility path to overcome these problems, namely, local
averages of integrated volatility estimators and bias corrections. Unfortunately,
the methodology described in Aı̈t-Sahalia et al. (2013) only works under the40

assumption that the volatility is a stationary process and R(t) is equal to a
constant, as in the Heston (1993) model set-up.

To avoid the problems related to the estimation (1), Aı̈t-Sahalia and Jacod
(2014, Formula 8.42) examine an alternative measure of the leverage effect.
They estimate the standardized quadratic covariation between p and σ2 in a45

time window [0, T ],

RT =
〈p, σ2〉T√

〈p, p〉T 〈σ2, σ2〉
T

, (2)

where the integrated volatility, i.e. the quadratic variation of p, and the inte-
grated volatility of volatility, i.e. the quadratic variation of σ2, appear at the
denominator, and the integrated leverage appears at the numerator. We call RT
the stochastic leverage effect. For instance, if we assume that p and σ2 follow50

the Heston model, then RT = ρ; otherwise, RT is in general a random quantity.
In this paper, we analyze an estimation methodology for the stochastic lever-

age effect designed to work in the presence of microstructure noise. To this end,
it is crucial to make a clear distinction between an estimator of the integrated
leverage (appearing at the numerator of RT ) and an estimator of the stochastic55

leverage effect. The latter is a plug-in estimator that combines estimates of
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the former, of the integrated volatility and the integrated volatility of volatility.
Aı̈t-Sahalia et al. (2017) and Wang and Mykland (2014) discuss the estima-
tion of the integrated leverage in the presence of microstructure noise. In the
former, the authors also analyze models with jumps. Kalnina and Xiu (2017)60

and Aı̈t-Sahalia et al. (2017) employ the plug-in estimator for RT defined in
Aı̈t-Sahalia and Jacod (2014) in different simulation analysis. Aı̈t-Sahalia et
al. (2017) examine an estimation of RT in a Heston model set-up and in the
absence of microstructure noise effects. Their analysis depends on several bias
corrections, especially applied to the volatility of volatility estimation, and the65

tuning of parameters identifying, for example, the length of the time windows of
data used to estimate the latent volatility path. On the other hand, Kalnina and
Xiu (2017) use a volatility instrument as the VIX to perform their estimation.

We present a methodology to estimate the stochastic leverage effect, which
is based on a continuous-time model. We refer the reader to Remark 2.1 for70

more details on this modelling assumption. Therefore, when comparing our
methodology with the state-of-the-art literature, we refer to Wang and Mykland
(2014) for an estimation of the integrated leverage, and to Aı̈t-Sahalia and Jacod
(2014) and Aı̈t-Sahalia et al. (2017) for discussing theoretical and numerical
features of an estimator of RT . The paper of Kalnina and Xiu (2017) is based75

on a different modelling framework, and we do not consider it further.
The target of this paper is twofold. First of all, we want to develop an esti-

mation strategy for RT that constitutes an alternative to the one proposed in
Aı̈t-Sahalia and Jacod (2014), and handles data contaminated by microstructure
noise. Secondly, we want to determine a selection strategy for the tuning pa-80

rameters appearing in our proposed methodology and analyze the performance
of the estimator in set-up other than the Heston model. Notably, this latter
point is critical for using tick-data because they are not always well described
by a Heston model, see Remark 2.1. To the best of our knowledge, the numer-
ical and empirical analysis conducted in the paper is the first examining the85

presence of the stochastic leverage effect (2) at high frequency in the presence
of microstructure noise effects.

Our estimator employs the Fourier methodology introduced in Malliavin and
Mancino (2002), see also Mancino et al. (2017) for a complete overview. We call
it the Fourier estimator of the stochastic leverage effect (in short, FESL). We90

choose this methodology because it avoids estimating the latent volatility path.
This step is mandatory in the estimators appearing in Aı̈t-Sahalia et al. (2017)
and is one reason behind several bias corrections applied to their estimations of
RT .

To define a Fourier estimator of RT , we then combine three different estima-95

tors: the Fourier estimator of the integrated leverage (FEL), of the integrated
volatility (FEV) and the integrated volatility of volatility (FEVV) which have
been defined in Curato and Sanfelici (2015), Malliavin and Mancino (2002) and
Sanfelici et al. (2015), respectively. When estimating the numerator and denom-
inator of (2), we handle the latent volatility by computing N Fourier coefficients100

of the volatility process. This step requires the preliminary computation of M
Fourier coefficients of the returns. We call the parameters M and N cutting
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frequency parameters in the following. In the Fourier set-up described in this
paper, M and N play a role similar to the tuning parameters in Aı̈t-Sahalia et
al. (2017).105

The consistency and the finite sample properties of the FESL are strictly
related to a thorough analysis of the consistency and finite sample properties of
the FEL, the FEV, and the FEVV used in the estimation. Malliavin and Man-
cino (2009) analyze the consistency of the FEV, whereas Mancino and Sanfelici
(2008) study its finite sample properties and a selection strategy for the cutting110

frequency parameters appearing in the estimation. Regarding the FEVV, San-
felici et al. (2015) analyze its consistency, finite sample properties, and selection
of parameters M and N . Unfortunately, the theoretical results available for the
FEL are not sufficient to directly obtain the consistency of the FESL because
the three consistency theorems related to the FEL, the FEV, and the FEVV,115

available in the literature, hold under different assumptions. Hence, we prove
a new consistency result for the FEL as detailed in Section 2. Moreover, the
finite sample properties of the FEL, in the presence of microstructure noise,
have not yet been analyzed in the literature. We focus on them in Section 3 and
conclude that the FEL is asymptotically unbiased, although it has a diverging120

mean squared error.
We propose a variance corrected estimator of the FEL in the presence of

microstructure noise. Moreover, in an extensive simulation study, we analyze
selection strategies for the parameters M and N appearing in the FEL and
its variance corrected version. We use Monte-Carlo data sets drawn from Hes-125

ton (1993), and the generalized Heston model presented in Veerart and Veerart
(2012) and study how the selection of the parameters M and N impacts the
mean squared error and the sample variance of the estimation. Our findings
suggest that the parameters obtained by minimizing the mean squared error of
the FEL are equivalent to those obtained minimizing its sample variance. More-130

over, we note that using the variance corrected estimator reduces the sample
variance of the final estimation by a half. Having a selection strategy for the
parameters M and N , we show a comparison between the performance of the
FEL and the realized covariance-based estimator of the integrated leverage pre-
sented by Wang and Mykland (2014). To conclude, we also perform a sensitivity135

analysis on the FEL on data sets generated from the generalized Heston model
defined in Veerart and Veerart (2012): note that RT is a random quantity in
this set-up.

The paper has the following structure. In Section 2, we introduce the model
set-up, the definition of the FEL, and the FESL together with their asymptotic140

properties in the absence of microstructure noise. In Section 3, we analyze the
finite sample properties of the FEL in the presence of microstructure noise and
the selection strategy for the cutting frequency parameters. In Section 4, we
discuss how to implement the FESL in the presence of microstructure noise.
Section 5 applies our results to S&P500 futures prices. Section 6 concludes.145

The Appendix contains the proofs of all statements presented in the paper.
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2. Estimation of the stochastic leverage effect in the absence of mi-
crostructure

We assume throughout that the logarithmic asset price and the volatility
process are a solution to the system of equations150 {

dp(t) = a(t) dt+ σ(t) dW (t)
dσ2(t) = b(t) dt+ γ(t) dZ(t),

(3)

where W (t), t ≥ 0 and Z(t), t ≥ 0 are two correlated standard Brownian mo-
tions. Their correlation process is ρ(t) with values in [−1, 1]. We consider p(t)
the underlying efficient logarithmic price process.

Remark 2.1. The choice of a continuous-time modelling set-up for p(t) is
motivated by the empirical work of Christensen et al. (2014) where the authors155

analyze the presence of jumps in tick data. They observe that our ability to
distinguish true discrete jumps from continuous diffusive variation diminishes as
we increase the sampling frequency. For example, a short-lived burst of volatility
is likely to be identified as a jump when working with data sampled at a frequency
lower than 5 minutes but it is compatible with a continuous path when working160

with tick data. Thus, we do not consider jumps in our model. We add instead
different randomness sources in the dynamics of the logarithmic asset price and
its respective volatility that aim to describe the variability observed in tick data.
An exemplary model in this set-up is the generalized Heston model defined by
Veerart and Veerart (2012).165

We perform our analysis in a time window [0, T ] for T > 0, and such that
the processes appearing in model (3) satisfy the following assumption:

• (H1) a(t), b(t), σ(t), γ(t) and ρ(t) are R-valued processes, almost surely
continuous on [0, T ] such that

E
[

sup
t∈[0,T ]

|a(t)|2
]
<∞, E

[
sup
t∈[0,T ]

|b(t)|2
]
<∞,

170

E
[

sup
t∈[0,T ]

|σ(t)|4
]
<∞, E

[
sup
t∈[0,T ]

|γ(t)|4
]
<∞,

E
[

sup
t∈[0,T ]

|ρ(t)|2
]
<∞.

We start by developing an estimation strategy for (2) in the absence of mi-
crostructure noise and studying its consistency. We aim to define a plug-in
estimator in Section 2.2 which employs the FEL, the FEV, and the FEVV,
respectively defined in Curato and Sanfelici (2015), Malliavin and Mancino175

(2002), and Sanfelici et al. (2015). As the first step, we analyze under which
set of assumptions the estimators above are all consistent. Let Sn := {0 =
t0 ≤ t1 ≤ . . . ≤ tn = T}, be the set of observation times, and define τ(n) =
maxi=0,...,n−1 |ti+1 − ti|. The FEV and FEVV are both consistent under the
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assumptions that N4

M → 0, and Mτ(n) → 0 as n,M,N → ∞ and τ(n) → 0,180

see Sanfelici et al. (2015) and Malliavin and Mancino (2009). Unfortunately,
the consistency of the FEL has not been proved in Curato and Sanfelici (2015)
under an assumption of type Mτ(n)→ 0. Hence, to define a consistent Fourier
estimator of (2), we need to prove that the FEL is consistent under a new set
of assumptions, see Remark 2.2. To start with, we briefly remind the definition185

of the FEL.

2.1. Fourier estimator of the integrated leverage

Let (p(t), σ2(t)) be a solution to (3). We define the leverage process η(t) as

〈dp(t), dσ2(t)〉 = σ(t)γ(t)ρ(t)dt = η(t)dt. (4)

We are interested in estimating the integrated covariation between the logarith-
mic price and the volatility process, which appears at the numerator of (2), by190

determining an estimator for

η =

∫ T

0

η(t)dt. (5)

We follow a methodology based on the use of the Fourier coefficients of the
process η(t).

Following Malliavin and Mancino (2002), we define the Fourier coefficients
of the returns and of the increments of the volatility process as195

c(l; dp) =
1

T

∫ T

0

e−i
2π
T ltdp(t), (6)

and

c(l; dσ2) =
1

T

∫ T

0

e−i
2π
T ltdσ2(t), (7)

for each l ∈ Z. Note that for all l 6= 0 and by using the integration by parts
formula, we can rewrite (7) as

c(l; dσ2) = il
2π

T
c(l;σ2) +

1

T
(σ2(T )− σ2(0)), (8)

where

c(l;σ2) =
1

T

∫ T

0

e−i
2π
T ltσ2(t)dt.

Given two functions Φ and Ψ on the integers Z, we say that their Bohr200

convolution product exists if the following limit exists for all integers h

(Φ ∗Ψ)(h) := lim
N→∞

1

2N + 1

∑
|l|≤N

Φ(l)Ψ(h− l).

Under Assumption (H1) and for a fixed h, we define Φ(l) := c(l; dσ2) and
Ψ(h − l) := c(h − l, dp), then the limit in probability of the Bohr convolu-
tion product exists and converges to the h-th Fourier coefficient of the leverage
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process. This result immediately follows from Malliavin and Mancino (2009,205

Theorem 2.1). The h-th Fourier coefficient of η(t) is then defined as

c(h; η) = lim
N→∞

T

2N + 1

∑
|l|≤N

c(l; dσ2)c(h− l; dp) =
1

T

∫ T

0

e−i
2π
T htη(t)dt. (9)

The definition of the Fourier coefficients of η(t) has the obvious drawback to
being feasible only when continuous observations of the logarithmic price and
the volatility paths are available. By using the methodology described in Curato
and Sanfelici (2015); Curato (2019), it is possible to give an estimator of the210

Fourier coefficients of η(t) when discrete and non-equidistant observations of
p(t) are available on the time grid Sn and the volatility is latent. Hereafter, we
indicate the discrete observed returns by δi = p(ti+1)−p(ti) for all i = 0, ..., n−1.

An estimator of the h-th Fourier coefficient of the leverage process can be
defined as215

cn,M,N (h; η) =
T

2N + 1

∑
|l|≤N

il
2π

T
cn,M (l;σ2)cn(h− l; dp), (10)

for any integer h such that |h| ≤ N , where cn(s; dp) are the discrete Fourier
coefficients of the returns

cn(s; dp) =
1

T

n−1∑
i=0

e−is
2π
T tiδi(p) (11)

for |s| ≤ N + M , and cn,M (h;σ2) are the Fourier coefficients of the volatility
process introduced in Malliavin and Mancino (2002) for |l| ≤ N

cn,M (l;σ2) =
T

2M + 1

∑
|s|≤M

cn(s; dp)cn(l − s; dp). (12)

The estimators are written as functions of n, M , and N which stand for220

the number of observations available, the number of the discrete Fourier coef-
ficients of the returns, and of the Fourier coefficients of the volatility process,
respectively.

Finally, the FEL is obtained from Definition (10) for h = 0

η̂n,M,N = Tcn,M,N (0; η) =
T 2

2N + 1

∑
|l|≤N

il
2π

T
cn,M (l;σ2)cn(−l; dp).

We can also give a more explicit form of the FEL. By employing the normalized225

Dirichlet kernel

DN (t) =
1

2N + 1

∑
|l|≤N

ei
2π
T lt, (13)

and its first derivative

D′N (t) =
1

2N + 1

∑
|l|≤N

il
2π

T
ei

2π
T lt, (14)
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we obtain

η̂n,M,N =

n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

DM (ti − tj)D′N (tk − tj)δiδjδk. (15)

We now focus on showing the consistency of the estimator (15).

Remark 2.2. In Curato and Sanfelici (2015), it is shown that the FEL (15), in230

the absence of microstructure noise, is consistent if N2/M → 0 and Mτ(n)→ a
with a > 0 as n,M,N → ∞ and τ(n) → 0. We now prove consistency under
the assumptions N2/M → 0 and MNτ(n)→ 0 as n,M,N →∞ and τ(n)→ 0.
Note, that the assumption MNτ(n) → 0 implies that Mτ(n) → 0 which is
the assumption under which the consistency of the FEV and the FEVV holds.235

Changing the asymptotic rate between the parameters M , N , and τ(n) implies a
complete different consistency’s proof of the FEL with respect to the one given by
Curato and Sanfelici (2015). In particular, we do not employ Malliavin calculus
as in the proof of Curato and Sanfelici (2015, Theorem 3.1).

Theorem 2.3. We assume that Assumption (H1) and240

N2

M
→ 0 and MNτ(n)→ 0 (16)

hold true as n,M,N →∞ and τ(n)→ 0. Then

η̂n,M,N
P−→ η. (17)

2.2. Fourier estimator of the stochastic leverage effect

We can now define the Fourier estimator of the stochastic leverage effect
(FESL) by combining the FEL, the FEV and the FEVV. The FESL takes the
form245

R̂T =
η̂n,M,M√
σ̂2
n,M γ̂

2
n,M,N

,

where

σ̂2
n,M =

T 2

2M + 1

∑
|s|≤M

cn(s; dp)cn(−s; dp), (18)

and

γ̂2n,M,N = lim
N→∞

T 2

2N + 1

∑
|l|≤N

(
1− |l|

N

)
l2

4π2

T 2
cn,M (l;σ2)cn,M (−l;σ2). (19)

Finally, we obtain the consistency of the estimator RT by using the contin-
uous mapping theorem and the results proved in Theorem 2.3, Theorem 3.2 in
Sanfelici et al. (2015), and Theorem 3.4 in Malliavin and Mancino (2009).250
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Corollary 2.4. We assume that Assumption (H1) and

N4

M
→ 0 and MNτ(n)→ 0

hold true as n,M,N →∞ and τ(n)→ 0. Then

R̂T
P−→ RT .

Remark 2.5. To obtain a central limit theorem for an estimator of RT is nec-
essary to have central limit theorem results for each estimator appearing in its
definition. These results have to hold under the same set of assumptions. A cen-
tral limit theorem for an estimator of RT follows from applying the delta method,
see Aı̈t-Sahalia and Jacod (2014). All this said, in the realized covariance-based255

literature, explicit calculations leading to a central limit theorem of an estimator
for RT are not present. Proving a central limit theorem for the estimator R̂T is
also outside the scope of our paper. However, we plan to analyze the latter in
future research projects employing the FESL.

3. Finite sample properties of the Fourier estimator of the integrated260

leverage

The finite sample properties of the FEV and the FEVV have been analyzed
in the presence of microstructure noise in Mancino and Sanfelici (2008) and
Sanfelici et al. (2015), respectively. We study in this section the finite sample
properties of the FEL.265

The results contained in this section hold under the following assumption.

• (H2) a(t), b(t), σ(t), γ(t) and ρ(t) are R-valued processes, almost surely
continuous on [0, T ] such that

E
[

sup
t∈[0,T ]

|a(t)|8
]
<∞, E

[
sup
t∈[0,T ]

|b(t)|8
]
<∞,

E
[

sup
t∈[0,T ]

|σ(t)|8
]
<∞, E

[
sup
t∈[0,T ]

|γ(t)|8
]
<∞,

270

E
[

sup
t∈[0,T ]

|ρ(t)|8
]
<∞.

Moreover, we add microstructure noise to the underlying efficient logarithmic
price p(t) defined in (3) by assuming that the logarithm of the observed price is

p̃(ti) = p(ti) + ζ(ti), for i = 0, . . . , n, (20)

where ζ(t) is the microstructure noise. We also assume the following

• (H3) The random shocks (ζ(ti))0≤i≤n are independent and identically275

distributed with bounded sixth moment. Moreover, the random shocks
are independent of p(t).
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We define εi = ζ(ti+1)− ζ(ti) and δ̃i = p̃(ti+1)− p̃(ti). Then, the FEL (15)
in the presence of microstructure noise becomes

η̃n,M,N =

n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

DM (ti − tj)D′N (tk − tj)δ̃iδ̃j δ̃k. (21)

We can disentangle (21) as∑
i 6=j 6=k

DM (ti − tj)D′N (tk − tj)δ̃iδ̃j δ̃k (22)

+
∑
i,j:i 6=j

DM (ti − tj)D′N (ti − tj)δ̃2i δ̃j +
∑
i,j

D′N (ti − tj)δ̃iδ̃2j

=
∑
i 6=j 6=k

DM (ti − tj)D′N (tk − tj)δiδjδk (23)

+
∑
i,j:i 6=j

DM (ti − tj)D′N (ti − tj)δ2i δj +
∑
i,j

D′N (ti − tj)δiδ2j (24)

+ηεn,M,N ,

where the sum of the components (23) and (24) corresponds to the FEL in the280

absence of microstructure noise and all the noise components are contained in
ηεn,M,N . The explicit expression of the latter can be found in the Appendix, see
(42).

In the modeling set-up (3), the integrated leverage can be positive or neg-
ative. Therefore, we analyze the bias of the estimator in absolute value. The285

definition of the FEL does not require the use of equidistant data. However,
for simplicity of computation, we assume equidistant observations in the time
window [0, T ].

Theorem 3.1. We assume that Assumptions (H2), (H3) and

N2

M
→ 0 and

MN

n
→ 0 (25)

hold true as N,M,n → ∞. Then the estimator η̃n,M,N is asymptotically unbi-290

ased. More precisely,∣∣∣E[η̃n,M,N − η]
∣∣∣ ≤ ∣∣∣E[ηn,M,N −

∫ T

0

η(t) dt]
∣∣∣+
∣∣∣E[ηεn,M,N ]

∣∣∣
≤ Γ(n,M,N) + Λ(n,N) + Ψ(N) +

∣∣∣2(n− 1)
(
DM

(T
n

)
− 1
)
D′N

(T
n

)
E[ζ3]

∣∣∣,
where

Γ(n,M,N) ≤ N(M +N)

n
8π2T

1
2 E
[

sup
[0,T ]

σ2(t)
] 3

2

+
N√

2M + 1
2π T

1
2 E
[

sup
[0,T ]

σ2(t)
] 3

2

,

10



Λ(n,N) ≤ N√
n

4πT
1
2 E
[

sup
[0,T ]

σ2(t)
] 3

2

+
N2

n
4π2(1+T

1
2 )E

[
sup
[0,T ]

σ4(t)
] 1

2E
[

sup
[0,T ]

σ2(t)
] 1

2

,

and,295

Ψ(N) ≤ 1√
2N + 1

T E
[

sup
[0,T ]

η2(t)
] 1

2

.

The mean squared error of the estimator (21) has the following bias-variance
decomposition

E[(η̃n,M,N − η)2] = V ar(η̃n,M,N ) + E[η̃n,M,N − η]2 + V ar(η)− 2Cov(η̃n,M,N , η).
(26)

This decomposition differs from the classical bias-variance decomposition which
can be found in the parametric statistics literature because the quantity we
aim to estimate, i.e. the integrated leverage η, is a random variable and not a300

constant parameter.

Theorem 3.2. We assume that Assumptions (H2), (H3) and

N2

M
→ 0 and

MN

n
→ 0 (27)

hold true as N,M,n→∞. Then

E[(η̃n,M,N − η)2]→∞.

The theorem above highlights a divergent element in (26) that we try to
identify using a numerical analysis in the next section. A diverging mean squared305

error in the presence of microstructure noise is a phenomenon already observed
for integrated estimators in a high-frequency setting. For example, the variance
of the realized volatility estimator diverges in the presence of microstructure
noise effects as discussed by Bandi and Russell (2008). In this framework, the
presence of microstructure noise is usually handled by using pre-averaging, see310

Jacod et al. (2009). This methodology is used in Aı̈t-Sahalia et al. (2017) and
Wang and Mykland (2014) to define estimators of the integrated leverage robust
to microstructure noise. However, the Fourier approach automatically filters the
noise components on its own, see discussion in Mancino et al. (2017, Chapter
5). Therefore, correcting our estimation by using a pre-averaging approach is315

not an option.
We define instead a variance corrected version of (21). We call the term (22)

by Υn,M,N . This term contains all the cross products of the noisy returns δ̃iδ̃j δ̃k
with i 6= j 6= k and is correlated to η̃n,M,N . Moreover, it has expected value
equal to zero as shown in the Corollary below.320

Corollary 3.3. We assume that the assumptions of Theorem 3.1 hold. Then,
the addend (22) has expected value equal to zero.
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Proof. The term (22) can be decomposed as∑
i6=j 6=k

DM (ti − tj)D′N (tk − tj)δiδjδk

+
∑

i,j,k:i6=j 6=k

DM (ti − tj)D′N (tk − tj)(δiδjεk + δjδkεi + δkδiεj + δiεjεk + δjεiεk

+ δkεiεj + εiεjεk).

The thesis follows straightforwardly from the results contained in the proof
of Theorem 3.1.

We then define the estimator325

η∗n,M,N = η̃n,M,N − bΥn,M,N (28)

which is asymptotically unbiased because of Theorem 3.1 and Corollary 3.3 and
has

V ar(η∗n,M,N ) = V ar(η̃n,M,N )− 2 bCov(η̃n,M,N ,Υn,M,N ) + b2 V ar(Υn,M,N ).
(29)

Hence, the estimator η∗n,M,N has smaller variance than the estimator η̃n,M,N

provided that

b2 V ar(Υn,M,N ) < 2 bCov(η̃n,M,N ,Υn,M,N ).

The optimal coefficient b∗ minimizing the variance of the estimator η∗n,M,N is330

given by

b∗M,N =
Cov(η̃n,M,N ,Υn,M,N )

V ar(Υn,M,N )
. (30)

Plugging this value in (29) and simplifying, we find

V ar(η∗n,M,N )

V ar(η̃n,M,N )
= (1− Corr(η̃n,M,N ,Υn,M,N )2),

which gives us the variance reduction ratio obtained by using the estimator (28).

Remark 3.4. A similar variance reduction appears, for instance, in the classi-
cal control variate method to reduce the variance of the sample mean estimator,335

see (Glasserman (2004, Section 4.1)).

In the next section, we determine selection strategies for the cutting fre-
quency parameters M and N of the FEL and its variance corrected version.
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3.1. Selection strategy for the cutting frequency parameters: a numerical study

We assume two different models for the underlying efficient price process, i.e.340

the classical model proposed by Heston (1993) and the generalized Heston model
proposed by Veerart and Veerart (2012). The microstructure noise satisfies
Assumption (H3).

We simulate second-by-second return and variance paths over a daily trading
period of T = 6 hours, for a total of 100 trading days and n = 21600 observations345

per day.
The first data generating process is

H :

{
dp(t) = σ(t)dW1(t)
dσ2(t) = α(β − σ2(t))dt+ νσ(t)dW2(t),

(31)

where W1 and W2 are correlated Brownian motions. The parameter values used
in the simulations are α = 0.01, β = 0.2, ν = 0.05 and the correlation parameter
is set to ρ = −0.2.350

The second data generating process is

GH :


dp(t) = σ(t)dX(t)

dX(t) = ρ(t)dW1(t) +
√

1− ρ2(t)dW2(t)
dσ2(t) = α(β − σ2(t))dt+ νσ(t)dW1(t),

(32)

and the infinitesimal variation of ρ(t) is given by

dρ(t) = ((2ξ − η)− ηρ(t))dt+ θ
√

(1 + ρ(t))(1− ρ(t))dW0,

where η, ξ and θ are positive constants and W0 is a Brownian motion. The
processes W0(t),W1(t) and W2(t) are assumed to be independent. The pa-
rameter values used in the simulation are α = 0.01, β = 0.2, ν = 0.05 and355

ξ = 0.02, η = 0.5, θ = 0.5, where the last three parameters are chosen in the
range prescribed by Veerart and Veerart (2012) such that ρ(t) ∈ [−1, 1]. We set
the initial values as σ2(0) = β, p(0) = log(100) and ρ(0) = −0.04. The noise-
to-signal ratio std(ζ)/std(r) is equal to 0.8, where r is the 1-second returns.

When processing simulated data, the natural approach in optimizing esti-360

mators depending on tuning parameters is to choose those values that minimize
the finite sample mean squared error (MSE). Therefore, one possible choice is to
select the cutting frequency parameters M and N by following this methodol-
ogy. We analyze two types of MSE-based optimal strategies. The first directly
minimizes the MSE of the FEL η̃n,M,N , whereas the second one is described365

below.
Operatively, the variance corrected estimator (28) can be implemented by

the following procedure:

Step 1: Given a sample of n observed returns and for all M ∈ {range} and N ∈
{range}, let η̃1n,M,N , η̃

2
n,M,N , . . . , η̃

d
n,M,N be d replications of the Fourier370

estimate of the integrated leverage in a Monte Carlo experiment. Along
with η̃in,M,N , on each replication we also calculate Υi

n,M,N ;
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Step 2: let M∗, N∗ := argmin VAR(Υn,M,N ) and let Υ∗ := Υn,M∗,N∗ ;

Step 3: plug the selected correction Υ∗ into equation (28)

η∗n,M,N = η̃n,M,N − b∗M,N Υ∗,

where

b∗M,N =
COV(η̃n,M,N ,Υ

∗)

VAR(Υ∗)

and COV, VAR denote the sample covariance and the sample variance,
respectively. For each M and N , compute d replications ηi∗n,M,N (i =375

1, . . . , d) of the estimator;

Step 4: choose the cutting frequency parameters M̂ and N̂ which minimize the
finite sample MSE of the corrected estimates ηi∗n,M,N for i = 1, . . . , d.

The magnitude of the variance correction given by the estimator (28) is tuned
by formula (30), where V ar(Υn,M,N ) appears at the denominator. We first set380

the parameter (30) to minimize the denominator and enhance the effectiveness
of the correction. Afterwards, in Step 4, we choose the optimal MSE-based cut-
ting frequency parameters M̂ and N̂ . This procedure provides better empirical
results than optimizing the parameters M and N in (28) simultaneously.

Table 1 shows the MSE reduction obtained by using the estimator (28)385

versus the FEL (21). The parameter values M̂ and N̂ are selected following
the MSE-based optimal strategies described above. Since both estimators are

H −model GH −model
η -1.013673e-04 -4.603226e-05

MSE BIAS M̂ N̂ MSE BIAS M̂ N̂
η̃n,M,N 2.40e-07 2.79e-05 887 1 1.70e-07 4.67e-06 2404 2
η∗n,M,N 1.43e-07 4.63e-05 889 1 1.49e-07 4.76e-06 2638 1

Table 1: Finite sample performance of the FEL η̃n,M,N and of the estimator η∗n,M,N . η
represents the average real integrated leverage for each data set. The value of the MSE and
BIAS in the table are computed w.r.t. the optimal parameters M̂ and N̂ .

only asymptotically unbiased and in the case of the Heston model the selected
cutting frequency parameters M̂ and N̂ are rather small, the variance corrected
estimator entails a slight increase of the bias, while for the generalized Heston390

model the bias remains almost the same. We notice that in both cases the
optimal MSE-based M̂ turns out to be much smaller than the Nyquist frequency
(i.e. M̂ << n/2), whereas N̂ is very small, as prescribed by the asymptotic
growth conditions in Theorem 2.3.

Let us now analyse the MSE and the sample variance (VAR) of the FEL395

η̃n,M,N in the presence of noise for the Heston and the generalized Heston model
data sets as a function of M and N .

From Figure 1, it is evident that the sample variance of the estimator has
the same order of magnitude as the MSE. Moreover, by analysing the relative
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Figure 1: MSE and sample variance of the FEL as a function of M and N under microstructure
effects. Left panels: H model. Right panels: GH model.

difference (MSE-VAR)/MSE for the FEL (21) and the variance corrected esti-400

mator (28) as a function of M and N in Figure 2, we observe that this ratio
is negligible for both estimators except for the lowest values of M . Moreover,
it never exceeds 0.1 so that the difference MSE-VAR never exceeds 10% of the
MSE.

We also find that the remaining terms in the MSE decomposition (26) are405

at least one order of magnitude smaller than the sample variance, which is then
the largest term of the FEL (21) in the presence of noise. The same conclusions
apply when analyzing the variance corrected estimator (28). We conclude that
minimizing the MSE of the FEL (21) or of the variance corrected estimator (28),
as a way to determine the optimal cutting frequency parameters M̂ and N̂ , is410

equivalent to minimizing the sample variance of the estimators. Following this
selection strategy, the parameters M̂ and N̂ do not yield a minimum value of
the estimator bias. The optimized estimator is then affected by a non-negligible
bias, which is, however, very small. In our simulation, we always get a sig-
nificant digit after the comma. Note that implementing this kind of selection415

strategy for the variance corrected estimator (28) means changing Step 4 of its
implementation by minimizing the sample variance. The results obtained by
selecting the optimal cutting frequency parameters by minimizing the sample
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Figure 2: Relative difference between MSE and variance of the FEL η̃n,M,N and the variance
corrected estimator η∗n,M,N as a function of M and N . Left panels: H model. Right panels:
GH model.

H −model GH −model
η -1.013673e-04 -4.603226e-05

VAR λ M̂ N̂ VAR λ M̂ N̂
η̃n,M,N 2.43e-07 887 1 1.75e-07 2404 2
η∗n,M,N 1.44e-07 0.59 889 1 1.51e-07 0.86 2638 1

Table 2: Finite sample performance of the FEL η̃n,M,N and of the estimator η∗n,M,N . η

represents the average real integrated leverage for each data set. The optimal parameters M̂
and N̂ are selected by minimization of the sample variance. The value of the VAR in the table
is computed w.r.t. the optimal parameters M̂ and N̂ . The symbol λ denotes the variance
reduction ratio V ar(η∗

n,M̂,N̂
)/V ar(η̃n,M̂,N̂ ).

variance of the estimators (21) and (28) are displayed in Table 2. We highlight
that the selected parameters M and N are the same as those selected by MSE420

minimization.

3.2. Benchmark analysis

We want now to analyse the FEL performance compared to the estimator of
the integrated leverage proposed by Wang and Mykland (2014) in the presence
of noise. The latter is based on pre-averaging and blocking that allows us to425

deal with the noise contained in the data. Here two nested levels of blocks
are required: the first one, of size M , defines the range of pre-averaging, and
the second one, of size L, is used for computing the realized covariance between
returns and volatility increments. Our choice for the blocking parameters M and
L is the following: we let M vary from 2 seconds to 300 seconds (i.e. 5-minute430

block size). Then, up to rounding, for each value of M we define n′ = n/M
and let L = [

√
n′]. Coherently with our previous approach, we then choose the

optimal parameters by directly minimizing the MSE over the range of M ’s. We
call this estimator WM1.
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In their paper, the authors provide a rule to choose the optimal values of M435

and L that minimize the asymptotic variance in the presence of microstructure
effects. However, the implementation of this rule requires a preliminary estimate
of the integrated volatility, the integrated quarticity and the integrated sixth
power of volatility, besides the estimation of the spot quarticity and the diffu-
sion coefficient γ(t) in (3). To reduce possible sources of estimation errors, we440

compute these quantities from the model (31) by Riemann integration rule. We
call this estimator WM2. Our results are resumed in Table 3. We notice that
the first procedure, which is completely unfeasible, provides a worse estimate
than the Fourier methodology presented in Table 1 and 2 both in terms of bias
and variance. On the other hand, the second procedure provides a very good445

estimate in terms of bias, while the variance and MSE are nevertheless slightly
larger than those obtainable by the Fourier approach. This does not come as a
surprise, since the estimator proposed by Wang and Mykland (2014) contains
a bias correction factor while the Fourier estimator achieves unbiasedness only
asymptotically. As a further evidence, in Figure 3 we can see that the estimate

Wang and Mykland (2014) H −model
Estimator MSE VAR BIAS M L
WM1 3.90e-06 3.76e-06 -4.24e-04 4 73
WM2 3.09e-07 3.12e-07 -7.96e-06 2 2460

Table 3: Finite sample properties of the estimator by Wang and Mykland (2014) under mi-
crostructure effects.

450

proposed by Wang and Mykland (2014) is largely dependent on the choice of
the block size M and its MSE is increasing with this parameter, while the bias
remains rather stable around zero.
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Figure 3: MSE-based integrated leverage estimate by Wang and Mykland (2014) together
with its MSE and BIAS as a function of the block size M .
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3.3. Sensitivity analysis on the generalized Heston model

We examine the FEL behaviour in the presence of noise depending on the455

choice of some parameters of the GH model. The process ρ(t) in the GH model
is a linear transformation of a Jacobi process which takes values in [−1, 1].
Moreover, ρ(t) is mean reverting to ζ = (2ξ − η)/η at speed η. These kinds of
processes are ideal diffusions to model stochastic correlation. Its properties are
summarized by Veerart and Veerart (2012).460

An interesting feature of this process is that it tends to a jump process
with state-space {−1, 1} and constant intensities if θ tends to infinity. Roughly
speaking, when θ increases the process exhibits a jump-type behaviour while
the smaller the parameter θ, the smoother are the sample paths. Therefore, the
fluctuations of the process ρ(t) can be amplified by increasing the parameter465

θ. Fig. 4 shows the sensitivity of the FEL (21) and of the variance corrected
estimator (28) in terms of MSE with respect to the choice of θ. All the other
model parameters are set as in Section 3.1 and the cutting frequency parame-
ters are determined by minimization of the sample variance. As expected, the
MSE of both estimators slightly deteriorates as the jump-type behaviour of the470

correlation process is emphasized.

0 0.5 1

1.6

1.7

1.8

1.9

M
S

E

10
-7 Int. lev. estimator

0 0.5 1

1.4

1.5

1.6

1.7

M
S

E

10
-7 Corr. lev. estimator

Figure 4: Sensitivity of the FEL η̃n,M,N and of the estimator η∗n,M,N with respect to the choice
of θ in the presence of microstructure noise. Parameter values: α = 0.01, β = 0.2, ν = 0.05
and ξ = 0.02, η = 0.5.
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Figure 5: Sensitivity of the FEL η̃n,M,N and of the estimator η∗n,M,N with respect to the

choice of η and ζ = (2ξ − η)/η in the presence of microstructure noise. Parameter values:
α = 0.01, β = 0.2, ν = 0.05 and ξ = 0.02, θ = 0.5.
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We also examine the sensitivity of the FEL to the mean reversion parameter
η. The effect is examined in Fig. 5, where the MSE is plotted as a function
of ζ ranging in [−1, 1] and of the corresponding η = 2ξ/(ζ + 1). In this case,
the variability of the MSE is small. Moreover, we highlight that the Fourier475

estimator is not affected much by the speed of mean reversion and performs
slightly better when the speed of mean reversion is lower. That makes the
Fourier methodology particularly suitable to apply in a general setting where
we can assume that the GH model is the data generating process.

4. Estimation of the stochastic leverage effect in the presence of mi-480

crostructure noise

In the following, we denote by σ̃2
n,M and γ̃2n,M,N the FEV and the FEVV in

the presence of microstructure noise, respectively. We can then obtain a plug-in
estimator of (2) by using the FEL defined in (21) at the numerator and σ̃2

n,M

and γ̃2n,M,N at the denominator485

R̃T =
η̃n,M,N√
σ̃2
n,M γ̃

2
n,M,N

. (33)

Similarly, we can also consider a second estimator of (2) by using the Fourier
estimator η∗n,M,N defined in (28) at the numerator

R∗T =
η∗n,M,N√
σ̃2
n,M γ̃

2
n,M,N

. (34)

The estimators (33) and (34) depend on the choice of the cutting frequency
parameters M and N that strongly affect the quality of the estimates.

For the FEL at the numerator, we follow the selection strategy for the pa-490

rameters M and N described in Section 3.1. If we have simulated data, we
generate a certain number of daily samples and minimize the sample variance
of the FEL. On the other hand, if we are working in a real data framework,
we need several days of observations (e.g. 100 days) to perform the parameter
selection.495

For the FEV σ̃2
n,M the cutting frequency is determined by minimizing the

MSE estimate determined in Mancino and Sanfelici (2008, Theorem 3) on each
day. Finally, for the FEVV γ̃2n,M,N the frequencies M and N can be chosen in
the range defined in Sanfelici et al. (2015, Remark 4.3).

In this section, we use simulated data while performing an estimation with500

real data in Section 5. We again simulate second-by-second return and variance
paths over a daily trading period of T = 6 hours from the GH model (32) and
choose the parameter values and the noise-to-signal ratio as in Section 3.1. In
Table 4, we list the value of the cutting frequency parameters selected for the
simulation, together with the MSE achieved by each estimator appearing in (33)-505

(34) and the average value over 100 days of the corresponding true (following the
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GH model) integrated leverage, integrated volatility and integrated volatility of
volatility.

Estimates Reference Value MSE M N
η̃n,M,N -4.60e-05 1.70e-07 2404 2
η∗n,M,N -4.60e-05 1.49e-07 2638 1

σ̃2
n,M 1.00e-02 2.38e-06 819 -

γ̃2n,M,N 2.51e-05 3.71e-07 146 3

Table 4: GH data set. MSE and parameters’ selection related to the estimators appearing
in (33) and (34). The reference values corresponds to the average over 100 days of the
corresponding true integrated values.

Figure 6 shows RT estimated using (33) and (34). The true RT is plotted in
red. In our simulation, both plots displayed in Figure 6 seem to provide a good510

approximation of RT .
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Figure 6: Upper panel: Daily RT estimates performed with R̃T . Lower panel: Daily RT
estimates performed with R∗T . The true values of RT are plotted in red.

5. Empirical analysis

We analyse the leverage effect pattern in a tick data set by using the esti-
mators of the stochastic leverage effect R̃T and R∗T defined in (33) and (34),
respectively.515

We consider transaction data of the S&P500 futures recorded at the Chicago
Mercantile Exchange (CME) for the period from January 3, 2007, to December
31, 2008 (502 days). During this period, the United States experienced the
subprime mortgage crisis, a nationwide financial crisis that contributed to the
U.S. recession of December 2007 till June 2009. It was triggered by a large520

decline in home prices after the collapse of a housing bubble during 2006. That
induced a large banking crisis in 2007 and the financial crisis in 2008. In nine
days from October 1 to 9, 2008 the S&P500 lost 21.6% of its value. Table 5
describes the main features of our data set.
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Year N. trades Variable Mean Std. Dev. Min Max
2007 566409 S&P 500 index 1484.84 44.30 1375.00 1586.50

log-return 5.00e-6 1.81e-2 -1.64 2.33
2008 557982 S&P 500 index 1226.55 186.89 739.00 1480.20

log-return -9.03e-5 4.75e-2 -8.66 6.12

Table 5: Summary statistics for the sample of the traded CME S&P500 futures for the period
from January 3rd 2007 to December 31st 2008 (502 days).

Figure 7: Log-prices and returns plots for S&P500 futures in the years 2007 (left panels) and
2008 (right panels).

Figure 7 shows the plot of the log-prices and returns for the raw transaction525

data. High-frequency returns are contaminated by microstructure effects, such
as transaction costs and bid-and-ask bounce effects, leading to biases in the vari-
ance measures. Figure 8 shows the autocorrelation function for the log-returns.
Raw data exhibit a strongly significant positive first-order autocorrelation and
higher-order autocorrelations remain significant up to lag 8 in 2007 and up to530

lag 15 in 2008. We then perform an analysis of the stochastic leverage effect
using the estimators R̃T and R∗T . First, we plot the daily values of the factors

appearing in the estimator R̃T and R∗T . The upper panels of Figure 9 show the
daily FEL (21) and its variance corrected version (28) in 2007 (left) and 2008
(right). The middle panels show the FEV together with the 5-minute sparse535

sampled realized volatility estimator (which we consider as a benchmark of our
estimates) and the lower panels show the FEVV in 2007 and 2008. The esti-
mated quantities in 2007 and 2008 are very different in magnitude. The year
2008 displays the largest values (both negative and positive) of all the metrics,
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Figure 8: Autocorrelation function for S&P500 futures in the years 2007 (left panel) and 2008
(right panel).
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Figure 9: Upper panels: FEL (21) (blue) and variance corrected estimator (28) (red) . Middle
panels: FEV (blue) and the realized volatility estimator (red) in the years 2007 (left panel)
and 2008 (right panel). Lower panels: FEVV (blue) in the years 2007 (left panel) and 2008
(right panel).

S&P500 futures 2007

Estimate VAR λ M̂ N̂
η̃n,M,N -2.44e-07 1.20e-12 363 1
η∗n,M,N -9.23e-08 3.02e-13 0.25 143 1

S&P500 futures 2008

Estimate VAR λ M̂ N̂
η̃n,M,N -2.01e-06 5.94e-10 281 3
η∗n,M,N -1.76e-06 1.51e-10 0.25 285 3

Table 6: The FEL, its variance corrected counterpart (28) and their sample variance computed

w.r.t. the optimal parameters M̂ and N̂ . The symbol λ denotes the variance reduction
ratio V ar(η∗

n,M̂,N̂
)/V ar(η̃n,M̂,N̂ ). The optimal cutting frequency parameters are obtained

by minimization of the sample variance over each year. The estimates in the first column
correspond to averages over all the year.

coherently with the occurrence of the financial crisis. During 2007 the inte-540

grated leverage is rather small and mostly negative. All the estimations are
almost flat during 2008 up to September 16 (day 177 in our sample), when the
integrated leverage exhibits the first large negative spike. The second negative
spike is on September 29 (day 186), which corresponds to the beginning of the
financial crisis. Our finding highlights the presence of persistent positive and545

negative integrated leverage, especially in periods of financial turmoil. We no-
tice that both the FEL (21) and the variance corrected estimator (28) catch the
same positive and negative spikes of the integrated leverage; nevertheless, the
estimator (28) exhibits a smaller variability.

When estimating the integrated leverage, a larger variability can be observed550

than estimating other quantities such as volatility or quarticity. According to
the analysis of Section 4, for both estimators η̃n,M,N and η∗n,M,N the cutting
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Figure 10: RT estimated by the FESL (33) (upper panels) and by its variance corrected
version (34) (lower panels) in the years 2007 (left panels) and 2008 (right panels).

frequency parameters M and N are chosen such to minimize the sample variance
over the whole one year sample. Their optimal values are listed in Table 6, along
with the sample variance achieved by the FEL (21) and its variance corrected555

counterpart (28). Due to the presence of microstructure effects, the optimal
cutting frequency M̂ turns out to be much smaller than the Nyquist frequency
(i.e. M � n/2 = 2460).

We highlight that the Fourier estimator makes use of all the n observed
prices and it filters out microstructure effects by a suitable choice of M and N ,560

instead of reducing the sampling frequency.
We conclude this section by showing RT estimates obtained with the esti-

mators (33) and (34). The graphs do not show evident differences between the
years 2007 and 2008. That is how it should be. Indeed, we expect to see a
similar behaviour of the stochastic leverage effect estimates because we assume565

that the data generating process is the same for both the 2007 and 2008 data
sets. The obtained estimates seem to express a fundamental measure of the
asymmetry between returns and volatilities observed across the years.

6. Conclusions

We define an estimator of the stochastic leverage effect which combines the570

Fourier estimator of the integrated leverage (FEL), of the integrated volatil-
ity (FEV) and the integrated volatility of volatility (FEVV) defined in Curato
and Sanfelici (2015), Malliavin and Mancino (2002) and Sanfelici et al. (2015),
respectively. We call it the Fourier estimator of the stochastic leverage effect
(FESL). An advantage of this estimator is that it avoids estimating the latent575

volatility path. This step is mandatory in concurrently realized covariance-
based estimators appearing in the literature and is one reason behind several
bias corrections required by them.

We show the consistency of the FESL in the absence of microstructure noise.
Then, we focus on analyzing the behaviour of the FESL in the presence of580
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microstructure noise. The latter is strictly related to the finite sample properties
of the FEL, the FEV, and the FEVV used in the estimation. The only estimator
for which a thorough analysis of the latter is missing in the literature is the
FEL. We fill this gap and determine that it is asymptotically unbiased but has
a diverging mean squared error.585

We propose a variance corrected estimator of the FEL to hinder its variabil-
ity in the finite sample. We then examine selection strategies for the cutting
frequency parameters appearing in the estimation methodology. Numerically,
we observe that the parameter values obtained by minimizing the mean squared
error of the FEL are equivalent to those obtained minimizing its sample vari-590

ance. Moreover, we note that using the variance corrected estimator reduces
the sample variance of the final estimation by a half and that a selection strat-
egy based on its sample variance is also directly applicable when real data are
at disposal. Finally, we investigate the performance of the FESL in empirical
analysis and detect the presence of the stochastic leverage effect in the S&P 500595

future prices data set for the years 2007 and 2008.

Appendix: Proofs

In the proofs below, we make often use of following Lemma, see Katznelson
(2004).

Lemma 6.1. Let DN (t) be the normalized Dirichlet kernel defined in (13), then600

the following properties are satisfied.

1.
∫ T
0
|DN (u)|2 du = T

2N+1 ,

2. ∀p > 1, there exists a constant Cp such that
∫ T
0
|DN (u)|p du =

Cp
2N+1 .

Proof of Theorem 2.3: Throughout the proof we indicate with φn(s) := supk=0,...,n{tk :
tk ≤ s}. Moreover, we use the following integral notation for the discrete Fourier605

coefficients of the returns (11)

cn(s; dp) =
1

T

∫ T

0

e−i
2π
T sφn(u)dp(u).

In the proof, C will denote a positive constant, not necessarily the same at
different occurrences.

Applying the product rule to the term cn(s; dp)cn(l− s; dp) and using nota-
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tions (13) and (14), we obtain the following error decomposition.

ηn,M,N − η = η1n,N − η + η2n,M,N (35)

=
T 2

2N + 1

∑
|l|≤N

il
2π

T

1

T

∫ T

0

e−i
2π
T lφn(t)σ2(t)dt

1

T

∫ T

0

ei
2π
T lφn(u)dp(u)

︸ ︷︷ ︸
η1n,N

−
∫ T

0

η(t) dt

(36)

+
T 2

2N + 1

∑
|l|≤N

il
2π

T

(
1

T

∫ T

0

∫ t

0

e−i
2π
T lφn(u)DM (φn(t)− φn(u)) dp(u) dp(t)

︸ ︷︷ ︸
+

1

T

∫ T

0

e−i
2π
T lφn(t)

∫ t

0

DM (φn(t)− φn(u)) dp(u) dp(t)

)
1

T

∫ T

0

ei
2π
T lφn(u), dp(u)︸ ︷︷ ︸

η2n,M,N

,

where the variable t ∈ (0, T ]. By using the Cauchy-Schwartz inequality we have
that610

E[|η2n,M,N |] ≤
T 2

2N + 1

∑
|l|≤N

|l|2π
T

E
[∣∣∣ 1

T

∫ T

0

∫ t

0

e−i
2π
T lφn(u)DM (φn(t)− φn(u)) dp(u) dp(t)

+
1

T

∫ T

0

e−i
2π
T lφn(t)

∫ t

0

DM (φn(t)− φn(u)) dp(u) dp(t)
∣∣∣2] 1

2E
[∣∣∣ 1

T

∫ T

0

ei
2π
T lφn(u)dp(u)

∣∣∣2] 1
2

.

For each |l| ≤ N , the L2-norm of the Fourier coefficients of the returns

E
[∣∣∣ ∫ T

0

ei
2π
T lφn(u)dp(u)

∣∣∣2] ≤ C,

under Assumption (H1). On the other hand,

E
[∣∣∣ 1

T

∫ T

0

∫ t

0

e−i
2π
T lφn(u)DM (φn(t)− φn(u)) dp(u) dp(t)

+
1

T

∫ T

0

e−i
2π
T lφn(t)

∫ t

0

DM (φn(t)− φn(u)) dp(u) dp(t)
∣∣∣2]

≤ CE
[∣∣∣ 1

T

∫ T

0

∫ t

0

e−i
2π
T lφn(u)DM (φn(t)− φn(u)) dp(u) dp(t)

∣∣∣2] (37)

+CE
[∣∣∣ 1

T

∫ T

0

e−i
2π
T lφn(t)

∫ t

0

DM (φn(t)− φn(u)) dp(u) dp(t)
∣∣∣2]. (38)
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The addends (37) and (38) have the same order of magnitude in L2-norm.
We then show only the estimation of the term (37). The latter is less than or615

equal to

CE
[ ∣∣∣ 1

T

∫ T

0

∫ t

0

(e−i
2π
T lφn(u) − e−i

2π
T lu)

1

2M + 1

∑
|s|≤M

e−i
2π
T s(φn(t)−φn(u)) dp(u) dp(t)

∣∣∣2
︸ ︷︷ ︸

(T1)

]

+CE
[ ∣∣∣ 1

T

∫ T

0

∫ t

0

e−i
2π
T lφn(u)

1

2M + 1

∑
|s|≤M

(e−i
2π
T s(φn(t)−φn(u)) − e−i

2π
T s(t−u)) dp(u) dp(t)

∣∣∣2
︸ ︷︷ ︸

(T2)

]

+CE
[ ∣∣∣ 1

T

∫ T

0

∫ t

0

e−i
2π
T luDM (t− u) dp(u) dp(t)

∣∣∣2︸ ︷︷ ︸
(T3)

]
.

The term (T1), after applying the Itô isometry, is less than or equal to

CE
[ ∫ T

0

∣∣∣ ∫ t

0

(e−i
2π
T lφn(u) − e−i

2π
T lu)

1

2M + 1

∑
|s|≤M

e−i
2π
T s(φn(t)−φn(u)) dp(u)

∣∣∣2 σ2(t) dt
]

(T11)

620

+CE
[ ∫

[0,T ]2

(∫ t

0

(e−i
2π
T lφn(u)−e−i

2π
T lu)

1

2M + 1

∑
|s|≤M

e−i
2π
T s(φn(t)−φn(u)) dp(u)

)
(∫ z

0

(ei
2π
T lφn(v) − ei

2π
T lv)

1

2M + 1

∑
|s|≤M

ei
2π
T s(φn(z)−φn(v)) dp(v)

)
a(z) a(t) dz dt

]
(T12)

≤ CE
[ ∫ T

0

∫ t

0

(|l|2π
T
|φn(t)− t|+ l2

4π2

T 2
o(|φn(t)− t|2))2 du dt

]
+CE

[ ∫ T

0

∫
[0,t]2

(|l|2π
T
|φn(t)− t|+ l2

4π2

T 2
o(|φn(t)− t|2))

×(|l|2π
T
|φn(s)− s|+ l2

4π2

T 2
o(|φn(s)− s|2)) dv ds dt

]
625

+C(N2τ(n) + o(1))E
[ ∫

[0,T ]2

(∫ t

0

1

2M + 1

∑
|s|≤M

e−i
2π
T s(φn(t)−φn(u)) dp(u)

∫ z

0

1

2M + 1

∑
|s|≤M

ei
2π
T s(φn(z)−φn(v)) dp(v)

)
a(z) a(t) dz dt

]
.

To obtain the last inequality, we apply several times Taylor’s formula, Assump-
tion (H1) and the Hölder and Cauchy-Schwarz inequalities. Note that the first
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two addends from the right hand side correspond to the estimation of the term
(T11) whereas the third addend estimates from above (T12). Thus,630

E[(T1)] ≤ CN2τ2(n) + o(1).

Analogously, we can show that

E[(T2)] ≤ CM2τ2(n) + o(1).

It remains to analyze the last addend of (37).

E[(T3)] ≤ CE
[ ∫ T

0

∣∣∣ ∫ t

0

e−i
2π
T luDM (t− u) dp(u)

∣∣∣2 σ2(t) dt
]

+
[ ∫

[0,T ]2

(∫ t

0

e−i
2π
T luDM (t−u) dp(u)

∫ z

0

ei
2π
T lzDM (z−v) dp(v)

)
a(t) a(z) dt dz

]
.

Using iteratively the Hölder and the Cauchy-Schwarz inequalities, we obtain the
term above is less than or equal to635

≤ CE
[ ∫ T

0

∫ t

0

D2
M (t−u)σ2(u) du dt

]
+CE

[ ∫ T

0

(∫ t

0

|DM (t−u)|p
′
a(u) du

) 2
p′
dt
]

+CE
[ ∫

[0,T ]2

(∫ t

0

D2
M (t− u) du

)
dtdz

] 1
2E
[ ∫

[0,T ]2

(∫ z

0

D2
M (z − v) dv

)
dtdz

] 1
2

+CE
[ ∫

[0,T ]2

(∫ t

0

|DM (t−u)|p
′
du
) 2
p′
dtdz

] 1
2E
[ ∫

[0,T ]2

(∫ z

0

D2
M (z−v) dv

)
dtdz

] 1
2

+CE
[ ∫

[0,T ]2

(∫ t

0

D2
M (t−u) du

)
dtdz

] 1
2E
[ ∫

[0,T ]2

(∫ z

0

|DM (z−v)|p
′
dv
) 2
p′
dtdz

] 1
2

+CE
[ ∫

[0,T ]2

(∫ t

0

|DM (t−u)|p
′
du
) 2
p′
dtdz

] 1
2E
[ ∫

[0,T ]2

(∫ z

0

|DM (z−v)|p
′
dv
) 2
p′
dtdz

] 1
2

,

for p′ ∈ (1, 2). By Lemma 6.1,640

E[(T3)] ≤ C

2M + 1
+

C

(2M + 1)
2
p′

+
C

(2M + 1)
2+p′
2p′

.

Thus

E[|η2n,M,N |] ≤ C
N√
M + 1

+ CN2τ(n) + CNMτ(n) + o(1),

which converges to zero under Assumption (16). We now show that the term
(36) converges to zero in L1-norm.

E[|η1n,N − η|]
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= E
[∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

n−1∑
i=0

n−1∑
j=0

ei
2π
T l(ti−tj)

∫ tj+1

tj

σ2(t) dt

∫ ti+1

ti

dp(u)−
∫ t

0

η(t) dt
∣∣∣]

=E
[∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ T

0

(ei
2π
T l(φn(t)−φn(u)) − ei

2π
T l(t−u))σ2(u) du a(t)dt

∣∣∣]
(39)

+ E
[∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ T

0

(ei
2π
T l(φn(t)−φn(u)) − ei

2π
T l(t−u))σ2(u) duσ(t) dW (t)

∣∣∣]
(40)

+ E
[∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

e−i
2π
T luσ2(u) du

∫ T

0

ei
2π
T ltdp(t)−

∫ T

0

η(t) dt
∣∣∣].

(41)

By using Taylor’s formula, the term (39) is less than or equal to

C
1

2N + 1

∑
|l|≤N

|l|2π
T

E
[ ∫ T

0

∫ T

0

e−i
2π
T l(t−u)

(2π

T
|l||φn(t)− t− φn(u) + u|

+ l2
4π2

T 2
o(|φn(t)− t− φn(u) + u|2)dudt

]
645

≤ CN2τ(n) + o(1).

Analogously, term (40) is less than or equal to CN2τ(n). Let us analyze the
term (41). By using formula (8)

E
[∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

e−i
2π
T luσ2(u) du

∫ T

0

ei
2π
T ltdp(t)−

∫ T

0

η(t) dt
∣∣∣]

= E
[∣∣∣ T 2

2N + 1

∑
|l|≤N

il
2π

T
c(l;σ2)c(−l; dp)−

∫ T

0

η(t) dt
∣∣∣]

= E
[∣∣∣ 1

2N + 1

∑
|l|≤N

(
c(l; dσ2)− 1

T

∫ T

0

dσ2(u)
)
c(−l; dp)−

∫ T

0

η(t) dt
∣∣∣].

We now use the product rule and obtain650

E
[∣∣∣∫ T

0

∫ t

0

DN (t− u)dp(u)dσ2(t)

M1,N (T )

+

∫ T

0

∫ t

0

DN (t− u) dσ2(u)dp(t)

M2,N (T )

−
∫ T

0

∫ t

0

DN (u)dp(u)dσ2(t)

M3,N (T )

−
∫ T

0

∫ t

0

DN (t)dσ2(u)dp(t)

M4,N (T )

−
∫ T

0

DN (u)η(u)du

M5,N (T )

∣∣∣].
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Let us analyze the first double integral M1,N (T )

E
[∣∣∣ ∫ T

0

∫ t

0

DN (t−u)dp(u)dσ2(s)
∣∣∣] = E

[∣∣∣ ∫ T

0

∫ t

0

DN (t−u)σ(u)dW (u)γ(s)dZ(s)

+

∫ T

0

∫ t

0

DN (t− u)σ(u)dW (u)b(s)ds+

∫ T

0

∫ t

0

DN (t− u)a(u)d(u)γ(s)dZ(s)

+

∫ T

0

∫ t

0

DN (t− u)a(u)dub(s)ds
∣∣∣]

The first two summands of the decomposition above have a L1-norm of655

order O(N−
1
2 ) and the third and the fourth ones are of order O(N−

1
p ), where

p ∈ (1, 2). These estimations are performed by means of the use of Lemma 6.1,
the Hölder and Cauchy-Schwarz inequalities. Analogous calculations follow for
the terms M1,N (T ), M2,N (T ), M3,N (T ), M4,N (T ).

By Lemma 6.1, we have660

E[|M5,N (2π)|] ≤ CE
[

sup
t∈[0,T ]

|η(t)|
]( ∫ T

0

|DN (u)|pdu
) 1
p ≤ C

N
1
p

.

Choosing p ∈ (1, 2) we obtain that the term M5,N (2π) converges to zero in
L1-norm as N →∞. Thus,

E
[∣∣∣ 4π2

2N + 1

∑
|l|≤N

ilc(l; ν)c(−l; dp)−
∫ 2π

0

η(t)dt
∣∣∣]

≤ C√
N

+
C

N
1
p

Therefore, under Assumption (16), it follows the consistency of the estimator
ηn,M,N .665

Remark 6.2. In the proof of Theorem 2.3, we show that the drift components of
the logarithmic price and the volatility process appear in terms that are negligible
in probability. To shorten the proofs of the theorems below, from now on, we
omit calculations involving the drift terms a(t) and b(t) as they follow the same670

rationale of the one presented in the proof above.

In the proof of Theorem 3.1 and 3.2, an explicit formulation of the term
ηεn,M,N is pivotal. Hence,
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ηεn,M,N =
∑

i,j,k:i 6=j 6=k

DM (ti − tj)D′N (tk − tj)(δiδjεk + δjδkεi + δkδiεj + δiεjεk

+ δjεiεk + δkεiεj + εiεjεk)

+
∑
i,j:i 6=j

DM (ti − tj)D′N (ti − tj) (δiεj + ε2i δj + ε2i εj + 2δiδjεi + 2δiεjεi)

(42)

+
∑
i,j

D′N (ti − tj) (δjεi + ε2jδi + ε2jεi + 2δjδiεj + 2δjεiεj).

Proof of Theorem 3.1. We first analyse the Bias due to the noise components.
Because of Assumption (H3), it holds675

E[εiεjεj ] = 0 if i 6= j 6= k

E[ε2i εj ] =

 0 if |i− j| 6= 1,
−E[ζ3] if j = i+ 1,
E[ζ3] if j = i− 1,

and

E[ηεn,M,N ] =

n−1∑
i=0

n−1∑
j=0

D′N (ti − tj)E[ε2jεi] +

n−1∑
i=0

n−1∑
j=0

DM (ti − tj)D′N (ti − tj)E[ε2i εj ]

=

n−2∑
i=0

D′N (ti+1 − ti)E[ε2i εi+1] +

n−1∑
i=1

D′N (ti−1 − ti)E[ε2i εi−1]

+

n−2∑
i=0

DM (ti+1−ti)D′N (ti+1−ti)E[ε2i+1εi]+

n−1∑
i=1

DM (ti−1−ti)D′N (ti−1−ti)E[ε2i−1εi]

= (n− 1)D′N (
T

n
)E[ε2i εi+1] + (n− 1)D′N (−T

n
)E[ε2i εi−1]

680

+(n− 1)DM (
T

n
)D′N (

T

n
)E[ε2i+1εi] +DM (

T

n
)D′N (−T

n
)E[ε2i−1εi]

= 2(n− 1)D′N (
T

n
)(DM (

T

n
)− 1)E[ζ3].

By using Taylor’s formula, it follows that D′N (Tn ) ∼ O
(
N2

n ) and DM (Tn ) ∼
1−O

(
M2

n2 ). Thus, under the Assumption (25), |E[ηεn,M,N ]| converges to zero as
N,M,n→∞.

The expected value of the term (23) is equal to685 ∑
i,j,k: i 6=j 6=k

DM (ti − tj)D′N (tk − tj)E[δiδjδk] = 0,

because E[δiδjδk] = 0.
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The expected value of the term involving the components (24) equals

E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

1

2M + 1

∑
|s|≤M

n−1∑
i=0

n−1∑
j=0

ei
2π
T (l−s)(ti−tj) δ2i δj

+
1

2N + 1

∑
|l|≤N

il
2π

T

n−1∑
i=0

n−1∑
j=0

ei
2π
T l(ti−tj) δiδ

2
j −

∫ T

0

η(t)dt
]

= E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

1

2M + 1

∑
|s|≤M

n−1∑
i=0

n−1∑
j=0

ei
2π
T (l−s)(ti−tj)

∫ ti+1

ti

σ2(u) du

∫ tj+1

tj

dp(t)
]

(A1)

690

+E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

1

2M + 1

∑
|s|≤M

n−1∑
i=0

n−1∑
j=0

ei
2π
T (l−s)(ti−tj)

∫ ti+1

ti

∫ t

ti

dp(u)dp(t)

∫ tj+1

tj

dp(t)
]

(A2)

+E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

n−1∑
i=0

n−1∑
j=0

ei
2π
T l(ti−tj)

∫ tj+1

tj

∫ t

tj

dp(u)dp(t)

∫ ti+1

ti

dp(t)
]

(A3)

+E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

n−1∑
i=0

n−1∑
j=0

ei
2π
T l(ti−tj)

∫ tj+1

tj

σ2(u) du

∫ ti+1

ti

dp(t)−
∫ T

0

η(t)dt
]

(A4)

.

The term (A1) can be further decomposed in

E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

1

2M + 1

∑
|s|≤M

n−1∑
i=1

i−1∑
j=0

ei
2π
T (l−s)(ti−tj)

∫ ti+1

ti

σ2(u) du

∫ tj+1

tj

dp(t)
]

(A∗1)

+E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

1

2M + 1

∑
|s|≤M

n−1∑
j=1

j−1∑
i=0

ei
2π
T (l−s)(ti−tj)

∫ ti+1

ti

σ2(u) du

∫ tj+1

tj

dp(t)
]
.

By applying the tower property with respect to the sigma-algebra Fi+1, the695

second summand is zero because of the martingale property of the Itô integrals.
Thus, the term (A1) is just equal to the term (A∗1). We call |(A∗1)| = Γ(n,M,N).

Γ(n,M,N) =
∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

ei
2π
T l(φn(t)−φn(u))

1

2M + 1

∑
|s|≤M

e−i
2π
T s(φn(t)−φn(u)) dp(u)σ2(t) dt

]∣∣∣
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=
∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

ei
2π
T l(φn(t)−φn(u))

1

2M + 1

700 ∑
|s|≤M

(e−i
2π
T s(φn(t)−φn(u)) − e−i

2π
T s(t−u)) dp(u)σ2(t) dt

]∣∣∣
+
∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

(e−i
2π
T l(φn(t)−φn(u)) − e−i

2π
T l(t−u))

1

2M + 1

∑
|s|≤M

e−i
2π
T s(t−u) dp(u)σ2(t) dt

]∣∣∣
+
∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

e−i
2π
T l(t−u)DM (t− u) dp(u)σ2(t) dt

]∣∣∣.
The third summand is less than or equal to

E
[ 1

2N + 1

∑
|l|≤N

|l|2π
T

∣∣∣ ∫ T

0

∫ t

0

e−i
2π
T (l)(t−u)DM (t− u) dp(u)σ2(t) dt

∣∣∣]
705

≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

E
[

sup
[0,T ]

σ2(t)
] 3

2

T E
[ ∫ T

0

D2
M (u)du

] 1
2

≤ 2πNE
[

sup
[0,T ]

σ2(t)
] 3

2
( T

2M + 1

) 1
2

by using the Cauchy Schwartz and Hölder inequality, the Itô isometry and
the properties of the rescaled Dirichlet kernel.

By means of the Taylor’s formula, we obtain estimations for the first and
second summand of Γ(n,M,N) as follows710 ∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

ei
2π
T (l)(φn(t)−φn(u)) 1

2M + 1∑
|s|≤M

(e−i
2π
T (s)(φn(t)−φn(u)) − e−i

2π
T (s)(t−u)) dp(u)σ2(t) dt

]∣∣∣
≤ E

[∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

ei
2π
T (l)(φn(t)−φn(u)) 1

2M + 1

∑
|s|≤M

e−i
2π
T (s)(t−u)(s

2π

T
(t− u− φn(t) + φn(u)) + o(1)) dp(u)σ2(t) dt

∣∣∣]
≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

1

2M + 1

∑
|s|≤M

E
[

sup
[0,T ]

σ2(t)
]
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715 ∫ T

0

E
[∣∣∣ ∫ t

0

ei
2π
T (l)(φn(t)−φn(u))e−i

2π
T (s)(t−u)(s

2π

T
(t−u−φn(t)+φn(u))+o(1)) dp(u)

∣∣∣]dt
≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

1

2M + 1

∑
|s|≤M

E
[

sup
[0,T ]

σ2(t)
]

∫ T

0

E
[ ∫ t

0

(s2
4π2

T 2
(t− u− φn(t) + φn(u))2 + o(1)) σ2(u)du

] 1
2

dt

≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

1

2M + 1

∑
|s|≤M

E
[

sup
[0,T ]

σ2(t)
] 3

2

∫ T

0

(∫ t

0

s24
4π2

n2
+o(1) du

) 1
2

dt

≤ MN

n
8π2T

1
2 E
[

sup
[0,T ]

σ2(t)
] 3

2

+ o(1),

and720 ∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ t

0

(e−i
2π
T (l)(φn(t)−φn(u)) − e−i

2π
T (l)(t−u))

1

2M + 1

∑
|s|≤M

e−i
2π
T s(t−u) dp(u)σ2(t) dt

]∣∣∣
≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

1

2M + 1

∑
|s|≤M

E
[

sup
[0,T ]

σ2(t)
] 3

2

×
∫ T

0

(∫ t

0

(l2
4π2

T 2
(φn(t)− φn(u)− t+ u)2 + o(1)) du

) 1
2

dt

≤ N2

n
8π2T

1
2 E
[

sup
[0,T ]

σ2(t)
] 3

2

+ o(1).

Let us now further decompose the term (A4) in725

(A4) = E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

e−il
2π
T φn(u)σ2(u) du

(∫ T

0

eil
2π
T φn(t) − eil

2π
T tdp(t)

)]
(A4.1)

+E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

eil
2π
T φn(t) dp(t)

(∫ T

0

e−il
2π
T φn(u) − e−il

2π
T uσ2(u) du

)]
(A4.2)

+E
[ 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

e−il
2π
T u σ2(u) du

∫ T

0

eil
2π
T t dp(t)−

∫ T

0

η(t)dt
]

(A4.3)

.

We call Λ(n,N) = |(A2)|+ |(A3)|+ |(A4.1)|+ |(A4.2)|.
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Let us first discuss the terms (A2) and (A3). For i 6= j, the terms

1

2N + 1

∑
|l|≤N

il
2π

T

1

2M + 1

∑
|s|≤M

∑
i6=j

ei
2π
T (l−s)(ti−tj) E

[ ∫ ti+1

ti

∫ t

ti

dp(u)dp(t)

∫ tj+1

tj

dp(t)
]

and730

1

2N + 1

∑
|l|≤N

il
2π

T

∑
i 6=j

ei
2π
T l(ti−tj) E

[ ∫ tj+1

tj

∫ t

tj

dp(u)dp(t)

∫ ti+1

ti

dp(t)
]

are zero because the Itô integrals appearing in the expectations are defined on
non overlapping intervals. For i = j, let us evaluate the terms |(A2)| and |(A3)|.
In this instance, (A2) and (A3) are both equal and

∣∣∣E[ 1

2N + 1

∑
|l|≤N

il
2π

T

n−1∑
i=0

∫ ti+1

ti

∫ t

ti

dp(u)dp(t)

∫ ti+1

ti

dp(t)
]∣∣∣

≤
∣∣∣ 1

2N + 1

∑
|l|≤N

il
2π

T

n−1∑
i=0

E
[ ∫ ti+1

ti

∫ t

ti

dp(u)σ2(t)dt
]∣∣∣

735

≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

n−1∑
i=0

E
[∣∣∣ ∫ ti+1

ti

∫ t

ti

dp(u)σ2(t)dt
∣∣∣]

≤ N 2π

T

n−1∑
i=0

E
[

sup
[0,T ]

σ2(t)
] 3

2

(ti+1 − ti)
3
2

≤ N 2π

T

(T
n

) 3
2

nE
[

sup
[0,T ]

σ2(t)
] 3

2

=
N√
n

2πT
1
2 E
[

sup
[0,T ]

σ2(t)
] 3

2

,

by using the Itô isometry and the Hölder inequality. Moreover, because of the
Cauchy-Schwartz inequality, |(A4.1)| is less than or equal to

1

2N + 1

∑
|l|≤N

|l|2π
T

E
[∣∣∣ ∫ T

0

e−il
2π
T φn(u)σ2(u) du

∣∣∣2] 1
2E
[∣∣∣ ∫ T

0

eil
2π
T φn(t)−eil

2π
T φn(t)dp(t)

∣∣∣2] 1
2

740

≤ 1

2N + 1

∑
|l|≤N

|l|2π
T

E
[ ∫ T

0

σ4(u) du
] 1

2

T
1
2E
[ ∫ T

0

(l
2π

T

T

n
+ o(1))2σ2(t) dt

] 1
2

1

2N + 1

∑
|l|≤N

|l|2π
T

E[ sup
t∈[0,T ]

σ4(t)]
1
2E[ sup

t∈[0,T ]

σ2(t)]
1
2T

N

n
2π + o(1)

≤ N2

n
4π2 E[ sup

t∈[0,T ]

σ4(t)]
1
2E[ sup

t∈[0,T ]

σ2(t)]
1
2 + o(1),
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by applying Taylor’s Formula and the Cauchy-Schwartz inequality. Analogously,
it can be shown that |(A4.2)| is less than or equal to

N2

n
4π2T

1
2 E[ sup

t∈[0,T ]

σ4(t)]
1
2E[ sup

t∈[0,T ]

σ2(t)]
1
2 + o(1).

It remains to evaluate the term |(A4.3)| that we call Ψ(N). By formula (8),745

|(A4.3)| can be expressed as

∣∣∣E[ ∫ T

0

∫ t

0

DN (t− u)dp(u)dσ2(t) +

∫ T

0

∫ t

0

DN (t− u) dσ2(u)dp(t)

−
∫ T

0

∫ t

0

DN (u)dp(u)dσ2(t)−
∫ T

0

∫ t

0

DN (t)dσ2(u)dp(t)−
∫ T

0

DN (u)η(u)du
]∣∣∣.

The Itô integrals have zero mean and the terms above are simply equal to∣∣∣E[− ∫ T

0

DN (u)η(u)du
]∣∣∣ ≤ E

[ ∫ T

0

D2
N (u)du

∫ T

0

η(u)2du
] 1

2

after applying the Cauchy-Schwartz inequality. Thus,

Ψ(N) ≤ T√
2N + 1

E[ sup
t∈[0,T ]

η(t)2]
1
2 .

The terms Γ(n,M,N), Λ(n,N) and Ω(N) converge to zero under Assump-750

tion (25) which concludes the proof.

Proof of Theorem 3.2. We have that

E[(η̃n,M,N − η)2] = E
[( ∑

i,j,k:i 6=j 6=k

DM (ti − tj)D′N (tk − tj)δ̃iδ̃j δ̃k (43)

+
∑
i,j:i6=j

DM (ti − tj)D′N (ti − tj)δ̃2i δ̃j +
∑
i,j

D′N (ti − tj)δ̃iδ̃2j − η
)2]

which is in turn equal to

E
[(

(ηn,M,N − η)

+
( ∑
i,j,k:i6=j 6=k

DM (ti − tj)D′N (tk − tj)(δiδjεk + δjδkεi + δkδiεj

+ δiεjεk + δjεiεk + δkεiεj + εiεjεk)
)

+
( ∑
i,j:i6=j

DM (ti − tj)D′N (ti − tj) (δiεj + ε2i δj + ε2i εj + 2δiδjεi + 2δiεjεi)
)

+
(∑
i,j

D′N (ti − tj) (δjεi + ε2jδi + ε2jεi + 2δjδiεj + 2δjεiεj)
))2]

.
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The term E[(ηn,M,N − η)2] corresponds to the mean squared error of the
estimator (15) in the absence of microstructure noise and converges to zero as
n,M,N tend to infinity. The error decomposition (35) and the proof of Theorem
2.3 highlight that the term η1n,N is in L2-norm bigger than (η2n,M,N − η). Then,755

to prove our claim, it is enough to analyse the convergence to zero of

E[(η1n,N − η)2]. (44)

Following Remark 6.2, we have that (44) is equal to

E
[( 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ T

0

(ei
2π
T l(φn(t)−φn(u)) − ei

2π
T l(t−u))σ2(u) duσ(t) dW (t)

+

∫ T

0

∫ t

0

DN (t− u) dp(u) dσ2(t) +

∫ T

0

∫ t

0

DN (t− u) dσ2(t) dp(u)

−
∫ T

0

∫ t

0

DN (u)dp(u)dσ2(t)−
∫ T

0

∫ t

0

DN (u)dσ2(t)dp(u)−
∫ T

0

DN (u) η(u)du
)2]

≤2E
[( 1

2N + 1

∑
|l|≤N

il
2π

T

∫ T

0

∫ T

0

(ei
2π
T l(φn(t)−φn(u)) − ei

2π
T l(t−u))σ2(u) duσ(t) dW (t)

)2]
(45)

+ 8E
[( ∫ T

0

∫ t

0

DN (t− u) dp(u) dσ2(t)
)2]

+ 8E
[( ∫ T

0

∫ t

0

DN (t− u) dp(u) dσ2(t)
)2]

(46)

+ 8E
[( ∫ T

0

DN (u) η(u)du
)2]

+ 8E
[( ∫ T

0

DN (u) η(u)du
)2]

(47)

≤128π2

T 2

N4

n2
E[ sup
t∈[0,T ]

σ2(t)]E[ sup
t∈[0,T ]

σ4(t)] (48)

+ 16
T 2

2N + 1
E[ sup
t∈[0,T ]

σ2(t)]E[ sup
t∈[0,T ]

γ2(t)] (49)

+ 16
T

2N + 1
E[ sup
t∈[0,T ]

η(t)2], (50)

where (48), (49), (50) correspond to the estimation of the summands (45),
(46), (47), respectively. Thus, (44) converges to zero as n,N → ∞ and so
does the mean squared error of the estimator (15). However, whenever a noise
component appears in the decomposition (43), the related terms diverge to760

infinity as n,M,N goes to infinity. As exemplary calculation, we will show that

E[
(∑
i,j

D′N (ti − tj) (δjεi + ε2jδi + ε2jεi + 2δjδiεj + 2δjεiεj)
))2

] (51)
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diverges as n,N →∞ and is greater than O(n2N). In order to handle the other
terms in (43), the strategies of computation addressed below have to be used.
Ultimately, this leads to show that the remaining terms in (43) are greater than765

O(NM2 + n2N
M ).

We have that

E
[(∑

i,j

D′N (ti − tj) δjεi + ε2jδi + ε2jεi + 2δjδiεj + 2δjεiεj

)2]
=
∑
i,j

(D′N (ti − tj))2E[(δjεi + ε2jδi + ε2jεi + 2δjδiεj + 2δjεiεj)
2] (52)

+
∑

i,j,i′,j′:i 6=i′,j 6=j′
D′N (ti − tj)D′N (ti′ − tj′)E[(δjεi + ε2jδi + ε2jεi + 2δjδiεj + 2δjεiεj)

(δj′εi′ + ε2j′δi′ + ε2j′εi′ + 2δj′δi′εj′ + 2δj′εi′εj′)]. (53)

Under Assumption (H2), we have that (51) is equal to

∑
i,j

(D′N (ti − tj))2(E[δ2j ]E[ε2i ] + E[ε4j ]E[δ2i ] + E[ε4jε
2
i ] + 4E[δ2j δ

2
i ]E[ε2j ] + 4E[δ2j ]E[ε2i ε

2
j ])

(54)

+
∑

i,j,i′,j′:i 6=i′,j 6=j′
D′N (ti − tj)D′N (ti′ − tj′)E[ε2jεiε

2
j′εi′ ]. (55)

It holds that

E[ε2i ] = 2E[ζ2]

E[ε4i ] = 2E[ζ4] + 6E[ζ2]2

E[ε4jε
2
i ] =

 4E[ζ4]E[ζ2] + 12E[ζ2]3 if |i− j| 6= 1,
9E[ζ4]E[ζ2] + E[ζ6] + 6E[ζ2]3 − 4E[ζ3]2 if i = j − 1,
13E[ζ4]E[ζ2] + E[ζ6] + 2E[ζ2]3 − 4E[ζ3]2 if i = j + 1.

E[ε2jε
2
i ] =

 4E[ζ2]2 if |i− j| > 1,
3E[ζ2]2 + E[ζ4] if i = j − 1,
3E[ζ2]2 + E[ζ4] if i = j + 1.

E[ε3i ] = 0

E[ε2jεiε
2
j′εi′ ] =


0 if i 6= i′, j 6= j′, i 6= j′, j 6= i′,
0 if i 6= i′, j 6= j′, i = j′, j = i′ and |i− j| 6= 1,
a if i 6= i′, j 6= j′, i = j′, j = i′ and i = j + 1,
b if i 6= i′, j 6= j′, i = j′, j = i′ and i = j − 1,

where a = E[ζ3]2 − E[ζ6] − 6E[ζ4]E[ζ2] − 9E[ζ2]3, and b = E[ζ3]2 − E[ζ6] −
6E[ζ4]E[ζ2]− 9E[ζ2]3.770
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Therefore (51) is equal to∑
i,j

(D′N (ti − tj))2(2E[δ2j ]E[ζ2] + 2E[δ2i ]E[ζ4] + 6E[δ2i ]E[ζ2]2 + 8E[δ2i δ
2
j ]E[ζ2])

(56)

+
∑

i,j:|i−j|6=1

(D′N (ti − tj))216E[δ2j ]E[ζ2]2 +
∑

i,j:|i−j|=1

(D′N (ti − tj))2E[δ2j ]

× (12E[ζ2]2 + 4E[ζ4]) (57)

+
∑

i,j:|i−j|6=1

(D′N (ti − tj))2(4E[ζ4]E[ζ2] + 12E[ζ2]3) (58)

+
∑

i,j:i=j−1
(D′N (tj−1 − tj))2(9E[ζ4]E[ζ2] + E[ζ6] + 6E[ζ2]3 − 4E[ζ3]2) (59)

+
∑

i,j:i=j+1

(D′N (tj+1 − tj))2(13E[ζ4]E[ζ2] + E[ζ6] + 2E[ζ2]3 − 4E[ζ3]2) (60)

+
∑

i,j:i=j−1
D′N (tj−1 − tj)D′N (tj − tj−1)(E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3)

(61)

+
∑

i,j:i=j+1

D′N (tj+1 − tj)D′N (tj − tj+1)(E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3)

(62)

Computing the summands from (59) to (62), we obtain

(n− 1)
( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
+

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
e−i

2π
n (l−l′)

)
× (9E[ζ4]E[ζ2] + E[ζ6] + 6E[ζ2]3 − 4E[ζ3]2) (63)

+(n− 1)
( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
+

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
ei

2π
n (l−l′)

)
× (13E[ζ4]E[ζ2] + E[ζ6] + 2E[ζ2]3 − 4E[ζ3]2) (64)

+(n− 1)
( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
e−i

4π
n l +

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
e−i

2π
n (l′+l)

)
× (E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3) (65)

+(n− 1)
( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
e+i 4πn l +

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
ei

2π
n (l′+l)

)
× (E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3) (66)

The terms where the indices l and l′ appear in (63) and (65) has to be
summed up following the rule highlighted in Table 7. The same applies for the
terms where the indices l and l′ appear in (64) and (66).
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Indices belonging to (63) Indices belonging to (65)
l > 0, l′ > 0 l > 0, l′ < 0
l < 0, l′ < 0 l < 0, l′ > 0
l > 0, l′ < 0 l > 0, l′ > 0
l < 0, l′ > 0 l < 0, l′ < 0

Table 7: Summing rule: the terms has to be first summed according to the indices present in
each row, then the resulting addends has to be summed with respect to the indices grouped
by color.

The summands from (59) to (62) are then equal to

(n− 1)
1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(22E[ζ4]E[ζ2] + 2E[ζ6] + 8E[ζ2]3 − 8E[ζ3]2) (67)

+ (n− 1)
1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
2 cos(

4π

n
l)(E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3)

(68)

+ (n− 1)
1

(2N + 1)2

∑
l,l′>0

ll′
4π2

T 2
sin(

2π

n
l) sin(

2π

n
l′)(34E[ζ4]E[ζ2] + 4E[ζ6]

+ 26E[ζ2]3 − 5E[ζ3]2). (69)

If N = n
1
β with β > log(n)

log(n)−log(8) then 0 ≤ cos( 4π
n l) ≤ 1 for all |l| ≤ N . If β >775

log(n)
log(n)−log(2) then 0 ≤ sin( 2π

n l) ≤ 1. We have that the choice of β > log(n)
log(n)−log(8)

is implied by the ratio in (27). In conclusion, the term (69) is greater than or
equal to zero and the sum between (67) and (68) is greater than or equal to

(n− 1)
1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(22E[ζ4]E[ζ2] + 2E[ζ6] + 8E[ζ2]3 − 8E[ζ3]2), (70)

if (E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3) > 0 and greater than or equal to

(n− 1)
1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(10E[ζ4]E[ζ2]− 10E[ζ2]3 − 6E[ζ3]2), (71)

if (E[ζ3]2 − E[ζ6]− 6E[ζ4]E[ζ2]− 9E[ζ2]3) < 0.780

Let us now analyse the summands from (56) to (58). They are equal to
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l, l′

s ll′(cos(2π/n(ls− l′s)) + i sin(2π/n(ls− l′s))
−s ll′(cos(2π/n(−ls+ l′s)) + i sin(2π/n(−ls+ l′s))

l,−l′
s −ll′(cos(2π/n(ls+ l′s)) + i sin(2π/n(ls+ l′s))
−s −ll′(cos(2π/n(−ls− l′s)) + i sin(2π/n(−ls− l′s))

−l,−l′
s ll′(cos(2π/n(−ls+ l′s)) + i sin(2π/n(−ls+ l′s))
−s ll′(cos(2π/n(ls− l′s)) + i sin(2π/n(ls− l′s))

−l, l′
s −ll′(cos(2π/n(−ls− l′s)) + i sin(2π/n(−ls− l′s))
−s −ll′(cos(2π/n(ls+ l′s)) + i sin(2π/n(ls+ l′s))

Table 8: Coefficients appearing in the summands from (72) to (75) with respect to the indices
l, l′, s. Note that ti − tj = 2π

n
s and all the indices are considered positive constants.

.

l, l′

s ll′(2 cos(2π/n(ls− l′s)))
−s ll′(2 cos(2π/n(−ls+ l′s)))

l,−l′
s −ll′(2 cos(2π/n(ls+ l′s)))
−s −ll′(2 cos(2π/n(−ls− l′s)))

Table 9: Coefficients appearing in the summands from (72) to (75) with respect to the indices
l, l′, s. Note that ti − tj = 2π

n
s and all the indices are considered positive constants.

∑
i,j

( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
+

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
e−i

2π
T (l−l′)(ti−tj)

)
× (2E[δ2j ]E[ζ2] + 2E[δ2i ]E[ζ4] + 6E[δ2i ]E[ζ2]2 + 8E[δ2i δ

2
j ]E[ζ2]) (72)

+
∑

i,j:|i−j|6=1

( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
+

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
e−i

2π
T (l−l′)(ti−tj)

)
× 16E[δ2j ]E[ζ2]2 (73)

+
∑

i,j:|i−j|=1

( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
+

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
e−i

2π
T (l−l′)(ti−tj)

)
× E[δ2j ](12E[ζ2]2 + 4E[ζ4]) (74)

+
∑

i,j:|i−j|6=1

( 1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
+

1

(2N + 1)2

∑
l 6=l′

ll′
4π2

T 2
e−i

2π
T (l−l′)(ti−tj)

)
× (4E[ζ4]E[ζ2] + 12E[ζ2]3). (75)

We first take care of the sum with respect to the indices i, j, l and l′ appearing
in the terms (72) to (75). To simply explain the calculations below, let us
consider from now on that the indices l and l′ are positive and that there exists
an s = 1, . . . , n− 1 such that if ti > tj , ti − tj = s 2πn . We do not consider s = 0785

in the calculations below because D′N (ti− ti) = 0. In Table 8, we find, for fixed
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values of s, l, l′, all the possible combination of the indices and the expression
of the terms ll′e−i

2π
T (l−l′)(ti−tj) appearing in the summands. The blue and the

red elements appear in (72), (73), (74) and(75), respectively, the same number
of times. We first sum each row of Table 8. We then obtain, Table 9. Summing790

up the blue and red terms obtained for s and −s, respectively, we have

∑
i,j

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(2E[δ2j ]E[ζ2] + 2E[δ2i ]E[ζ4] + 6E[δ2i ]E[ζ2]2

+ 8E[δ2i δ
2
j ]E[ζ2]) (76)

n−1∑
i=1

i−1∑
j=0

1

(2N + 1)2

∑
l,l′>0

ll′
4π2

T 2
4 sin(

2π

n
ls) sin(

2π

n
l′s)

× (2E[δ2j ]E[ζ2] + 2E[δ2i ]E[ζ4] + 6E[δ2i ]E[ζ2]2 + 8E[δ2i δ
2
j ]E[ζ2]) (77)

+
∑

i,j:|i−j|6=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
16E[δ2j ]E[ζ2]2 (78)

+

n−1∑
i=2

i−2∑
j=0

1

(2N + 1)2

∑
l,l′>0

ll′
4π2

T 2
4 sin(

2π

n
ls) sin(

2π

n
l′s)16E[δ2j ]E[ζ2]2 (79)

+
∑

i,j:|i−j|=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
E[δ2j ](12E[ζ2]2 + 4E[ζ4]) (80)

+ (n− 1)
1

(2N + 1)2

∑
l,l′>0

ll′
4π2

T 2
4 sin(

2π

n
l) sin(

2π

n
l′)E[δ2j ](12E[ζ2]2 + 4E[ζ4])

(81)

+
∑

i,j:|i−j|6=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(4E[ζ4]E[ζ2] + 12E[ζ2]3) (82)

+

n−1∑
i=2

i−2∑
j=0

1

(2N + 1)2

∑
l,l′>0

ll′
4π2

T 2
4 sin(

2π

n
ls) sin(

2π

n
l′s) (4E[ζ4]E[ζ2] + 12E[ζ2]3)

(83)

If N = n
1
β such that β > log(n)

log(n)−log(2(n−1)) then 0 ≤ sin( 2π
n ls) ≤ 1 for

s = 1, . . . , n − 1 and l > 0. The latter is straightforwardly implied by (27),

being log(n)
log(n)−log(2(n−1)) negative. Therefore, the summands (77), (79), (81) and

(83) are greater than or equal to zero.795

In conclusion, (51) is possibly greater than or equal to two sums. The first
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one is∑
i,j

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(2E[δ2j ]E[ζ2] + 2E[δ2i ]E[ζ4] + 6E[δ2i ]E[ζ2]2

+ 8E[δ2i δ
2
j ]E[ζ2]) +

∑
i,j:|i−j|6=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
16E[δ2j ]E[ζ2]2

+
∑

i,j:|i−j|=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
E[δ2j ](12E[ζ2]2 + 4E[ζ4]) (84)

+
∑

i,j:|i−j|6=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(4E[ζ4]E[ζ2] + 12E[ζ2]3)

+(n− 1)
1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(22E[ζ4]E[ζ2] + 2E[ζ6] + 8E[ζ2]3 − 8E[ζ3]2),

and the second one is∑
i,j

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(2E[δ2j ]E[ζ2] + 2E[δ2i ]E[ζ4] + 6E[δ2i ]E[ζ2]2 + 8E[δ2i δ

2
j ]E[ζ2])

+
∑

i,j:|i−j|6=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
16E[δ2j ]E[ζ2]2

+
∑

i,j:|i−j|=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
E[δ2j ](12E[ζ2]2 + 4E[ζ4]) (85)

+
∑

i,j:|i−j|6=1

1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(4E[ζ4]E[ζ2] + 12E[ζ2]3)

+(n− 1)
1

(2N + 1)2

∑
|l|<N

l2
4π2

T 2
(10E[ζ4]E[ζ2]− 10E[ζ2]3 − 6E[ζ3]2).

Note that because of Assumption (H2), the terms E[δ2i ] and E[δ2i δ
2
j ] are

positive and finite constants. The behaviour of the sums (84) and (85) is ruled
by their first summands. In fact,∑

i,j

1

(2N + 1)2

∑
|l|≤N

l2
4π2

T 2
=

n2

(2N + 1)2
4π2

T 2

(N3

3
+
N2

2
+
N

6

)
,

which diverges as n,N →∞.
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