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Abstract: Numerical computation of wave propagation in laminated cylinders with internal fluid
and residual stress is obtained using a Wave Finite Element formulation for 2D waveguides. Only
a very small segment of the system is modelled, resulting in a very low-order finite element (FE)
model to which the theory of wave propagation in 2D periodic structures is applied. The method
uses standard FE formulations and exploits the capability of commercial FE software to model both
fluid and structure and their interaction, resulting in a very large reduction in computational time.
The presented approach is general, and can be applied without the need to make assumptions related
to shell theory or low-frequency analysis. In particular, the laminated structure is discretised using
3D solid elements, thus representing the through-thickness dynamics with high accuracy. Residual
radial and hoop stresses are included in the model by adding the FE pre-stress stiffness matrix to
the original stiffness matrix of the system. The method provides simultaneously a very substantial
reduction of computational cost, accurate solutions up to very high frequency and prediction of the
dispersion curves for selected circumferential orders without the need for any further analysis. Here,
the formulation of the method is introduced and its application to laminated cylinders filled with an
acoustic fluid is presented. A composite, reinforced rubber cylinder, pre-stressed by a circumferential
tension, is also shown as an example of a laminated pipe for high-pressure applications.

Keywords: wave propagation; dispersion curves; fluid-structure interaction; laminated cylinders;
finite element

1. Introduction

Fluid-filled cylinders are components in a variety of systems such as chemical, petro-
chemical, gas, hydraulic, offshore plants and the human cardiovascular system. The
simulation of their dynamic behaviour, together with the diagnosis of their structural
health conditions, are important for design, safety, economic, environmental and medical
reasons. Numerical prediction of wave propagation in cylindrical structures, both in-vacuo
and fluid-filled, provides information that is essential in many applications such as dy-
namics and shock response, noise transmission, material characterisation, non-destructive
testing (NDT) and structural health monitoring (SHM).

The prediction of waves that can propagate over long distances with low attenuation,
together with their interaction with defects and inclusions, is fundamental for the imple-
mentation of ultrasonic guided wave techniques, which are commonly used for damage
detection and long-range inspection of pipes, e.g., [1]. Characterisation of wave propaga-
tion in pipes, including fluid-structure interaction, is also important to detect failure or to
predict noise propagation and fluid leakage in pipes. In [2], for example, theoretical and
experimental results for noise and vibration propagation in a polyethylene pipe were pre-
sented. When leakage in a pipe occurs, acoustic waves are generated and propagate to both
ends of the pipe, and their measurement is used to detect and locate leaks. These techniques
are widely used for leak detection in buried pipes and benefit from an understanding of
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wave propagation characteristics [3]. In [4], for example, a computational-fluid-dynamic
simulation was used to model wave propagation in gas pipelines for leak detection, while
in [5] the pressure wave velocity in fluid-filled pipes was analysed to detect solid deposits
in pipes, which might need to be prevented or removed, especially in oil pipelines. As a
further example, the prediction of pressure waves, including fluid-structure interaction,
was investigated in [6] for the diagnosis of cladding failure of a nuclear fuel rod. Fuel rod
cladding failure generates a pressure wave in the coolant fluid flowing around the fuel
rod, which can be detected by a system of sensors, whose design depends on the precise
understanding of wave propagation around the fuel rod.

Simulation of wave propagation in human arteries can also indicate the physiolog-
ical state of the cardiovascular system [7]. In particular, pressure wave propagation in
the arterial system can indicate cardiovascular risk [8]. Although simplified models are
typically assumed, the construction and dynamic behaviour of arteries is complicated, and
refined models are required to both improve diagnostic techniques and develop a new
generation of vascular prostheses. In [9], for example, segments of the aorta were modelled
as laminated cylindrical shells, including residual stresses, while in [10] a 3D fluid-structure
interaction model of the arteries was studied and results compared with simpler 1D and
rigid wall models.

Since Lamb’s pioneering work [11], numerous researchers have studied wave propa-
gation in fluid-filled cylinders, as reviewed in the book by Païdoussis [12]. Although there
is an extensive literature, the assumptions generally used to model flexible cylinders with
an internal fluid often restrict the analysis to the so-called thin-wall theory and to beam-like
motion of the pipe. Developing a continuum model in the framework of elasticity theory,
including fluid-structure interaction (FSI), is a challenging task. Therefore, theoretical
studies are often based on simplifying assumptions and approximations, resulting in an
upper-frequency limit of applicability. In order to properly study elastic and acoustic wave
propagation in fluid-filled cylinders, both the flexibility of the wall and the compressibility
of the fluid must be taken into account, complicating the model and the analysis further [13].
In addition, the cylinder may be laminated, which substantially increases numerical and
computational challenges. The dynamics of thick, laminated, cylindrical structures with
FSI can only be modelled accurately if the through-thickness deformation is included. This
typically results in very complex analytical/numerical models, which are, however, often
limited to low-frequency applications and beam-type modes. In any case, even for simple
cases, the analysis is very complex due to the interdependence of the parameters and the
transcendental dispersion equations to which explicit solutions do not exist. Relatively
recently, coupled analysis has been conducted using the finite element (FE) method [14].
This has made it possible to simulate the dynamic motion of an acoustic fluid coupled with
a flexible structure with arbitrary geometry. However, standard FE analysis cannot model
large structures at high frequency or with short wavelengths: there must be at least six
elements per wavelength to accurately model the behaviour, and the model size becomes
very large. In the low/low-mid frequency range, computational fluid-structure interaction
issues can be handled by applying special reduction techniques [15] or using boundary
element (BEM) and finite element (FEM) discretisation [16].

An important issue regarding applications involving wave propagation is the ability
to develop accurate and computationally efficient models. The computational constraints
of a full FE analysis of the structure and the complexity of analytical formulations have
inspired the development of semi-analytical and numerical methodologies to analyse wave
propagation in both structure and acoustic fluid, using new finite element formulations
for high-frequencies. In the context of cylindrical waveguides with FSI, we can cite, for
example, the Spectral-Finite-Element method, e.g., [17,18], which allows the evaluation of
wave propagation using a semi-analytical FE formulation. This method has the advantage
of being able to predict wave behaviour up to a very high frequency with high accuracy;
however, it requires the formulation of new finite elements that must be realised for each
model, resulting in a substantial effort, especially for complicated constructions. Another
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FE-based approach is the Wave Finite Element (WFE) method, which has seen application
to a variety of problems due to its ability to model, in a straightforward way, periodic and
homogeneous waveguides with complex characteristics. The unit cell of the structure is
taken and discretised using a conventional FE formulation, typically using commercial
FE software. Periodicity conditions are then applied to the FE equations of motion as
developed by Abdel-Rahman in his PhD thesis [19], and a quadratic or linear eigenvalue
problem is obtained. Solutions to this eigenvalue problem give the dispersion curves
(the relation between the wavenumbers and frequency) and the wavemodes (the cross-
section deformation caused by the passage of a wave through the structure). These provide
information for further analysis, such as forced response, the estimation of the parameters
in a Statistical Energy Analysis model, the vibroacoustic response and implementation of
SHM and NDT techniques. When both the structure and the fluid are taken into account,
the WFE method enables a very significant decrease in the size of the problem and in
computation time. The approach has been described in previous studies, which have
shown its practical applicability to periodic and continuous structures. Examples include
laminated plane panels [20], cylindrical structures [21], forced vibration [22], vibroacoustic
response [23] and metamaterial [24].

The aim of this paper is to investigate the application of the WFE method to model
wave propagation in fluid-filled, laminated cylinders of complex construction, with and
without pre-stress conditions. The method can be implemented at a very low computational
cost and exploits the versatility of commercial FE software. The method is applied using a
2D formulation for axisymmetric structures such as that described in [25]. Compared to
the 1D formulation, applied for example in [26], here only an arbitrarily small segment is
assumed as the unit cell instead of an entire axial segment of the structure. This results
in significant advantages compared to the 1D formulation: the dispersion curves can be
evaluated for a specified circumferential mode order separately without requiring any
further analysis; helical wave propagation can be also studied; due to the small segment
analysed, the use of solid elements instead of shell elements is not an issue—computational
cost is very small; by avoiding the use of shell elements, numerical issues related to the use
of rotational DOFs are removed while, at the same time, the through-thickness dynamics
up to high frequency can be predicted accurately.

In this paper, the WFE method is developed and applied to model wave propagation
in cylindrical structures with internal fluid and including pre-stress effects due to internal
pressure. In this method a very small segment of the system is discretised using 3D solid
elements, through the thickness, and 3D fluid elements. In our numerical examples, we
use the FE software ANSYS, although any FE package could be used. Thus, each layer
is discretised using one or more solid elements to accurately represent the stress/strain
behaviour of the structure. It is shown that the inclusion of pre-stress in the structure is
also straightforward. In particular, it is shown that pre-stress conditions can be applied
with very little effort using FE software by evaluating the FE static stiffness matrix of
the loaded 2D small segment of the structure using the same FE model of the unloaded
structure. Residual stresses in the structure are included in the model by evaluating the
FE pre-stress stiffness matrix of the loaded segment, which is then added to the segment’s
original stiffness matrix.

The paper is organised as follows. In the next section the formulation of the method for
the coupled motion of a cylindrical structure and internal acoustic fluid is briefly presented.
The resulting eigenvalue problem is formulated such that the real-valued frequency is
given and the complex-valued wavenumbers (eigenvalues) and wavemodes (eigenvectors)
are found. In section 3 numerical examples are presented. The first example concerns a thin-
walled steel pipe filled with water, for which results are validated with respect to results
obtained using an analytical formulation. The effect of increasing pipe thickness is also
studied. The second example shows the application of the method to the more complicated
example of a laminated sandwich cylinder containing air. The third example deals with
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a helical reinforced hard rubber pipe with internal pressure, this being an example of a
laminated cylinder used for high-pressure applications.

2. 2D WFE Formulation for Fluid-Filled Cylinders

Consider a fluid-filled cylinder as depicted in Figure 1a, where cylindrical coordinates
(y, r, θ) and geometrical parameters are defined. The cylinder is of thickness h and mean
radius R. At frequency ω, time-harmonic waves propagate in the structure as helical waves
so that w(r, θ, y, t) = W(r)e(iωt−kθ θ−kyy), where W(r) is the complex wave amplitude, t is
time, while kθ and ky are the wavenumber components in the y and θ directions.

The cylinder is homogeneous in the axial and circumferential directions, with an
arbitrary period. Exploiting this periodicity, a very small segment of angle α and length
Ly is taken, Figure 1a. The segment is then meshed by a number of elements as shown
in Figure 1b, using standard FE method. The elements used depend on the nature of the
structure: typically solid, 8-noded solid elements might be used to model the structure,
with acoustic elements for the fluid.

Figure 1. (a) Schematic representation of a laminated fluid-filled cylinder; (b) FE discretisation of the
arbitrary small segment of length Ly and subtending an angle α; (c) WFE super–element; (d) rotation
of the local coordinates.

The FE equations of motion of the discretised model in Figure 1b can be obtained
using standard FE analysis, and vary according to the assumed field variables. The FE
equation of motion in their standard, unsymmetrical formulation for acoustic FSI, when the
structural and acoustic variables are the nodal displacements, qs, and acoustic pressures,
q f , is[

Ms 0
ρ f GT M f

][
q̈s
q̈ f

]
+

[
Cs 0
0 C f

][
q̇s
q̇ f

]
+

[
Ks −G
0 K f

][
qs
q f

]
=

[
fs
f f

]
. (1)

In Equation (1), the subscripts s and f refer to structure and fluid respectively, ρ f is the
fluid density, Ms, M f , Ks, K f are mass and stiffness matrices, G and ρ f GT are coupling
submatrices, fs and f f are the nodal forces, Cs is the viscous damping matrix for the
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structure, while C f is a dissipation term added to account for absorption of the acoustical
pressure waves. Note that Equation (1) can alternatively be rewritten using acoustic
potential variables for the fluid, e.g., [15].

Residual radial and hoop stresses in the structure can be found by evaluating the FE
pre-stress stiffness matrix, which is then added to the original stiffness matrix. In particular,
the effect of internal pressure can be modelled by the pre-stress matrix Khr, which is
obtained simply by solving a FE static analysis for a slice of the cylinder to which the
internal pressure is applied. The effect of axial stress can be also considered by evaluating
the pre-stress stiffness matrix, Kax, obtained through a FE static analysis of the segment of
the cylinder loaded, for example, by the axial stress

σax = pR2
int/(R2

ext − R2
int), (2)

which is applied on the faces parallel to the y− z plane. The resulting total stiffness matrix is

K = Ku + Khr + Kax, (3)

where Ku is the stiffness matrix of the unloaded segment.
Assuming time-harmonic behaviour and omitting the time-dependence eiωt, Equation (1)

can be rewritten in the form(
−ω2M + iωC + K

)
q = f or Dq = f, (4)

where D is the dynamic stiffness matrix, qT = [qT
s qT

f ], fT = [fT
s fT

f ] where T denotes
the matrix transpose, and the matrices are those of the coupled system in Equation (1),
typically obtained using FE commercial software.

Following the WFE formulation in [25,27], a 4-noded super-element is formed by
concatenating all the acoustical and structural degrees of freedom (DOFs) at the four
corners of the prismatic segment in Figure 1c. The total vectors of the DOFs q and nodal
forces f are ordered as

q = [qT
1 qT

2 qT
3 qT

4 ]
T , f = [fT

1 fT
2 fT

3 fT
4 ]

T . (5)

The local coordinates must be rotated as described in [25], Figure 1d. This is required
to model the curvature of the cylinder and can be easily accomplished by calculating the
rotation matrix R; the new FE matrices in the global system of reference become RTMR,
RTCR and RTKR.

Using periodicity conditions, the relations between the nodal DOFs at the four cor-
ners are

q2 = λαq1; q3 = λyq1; q4 = λαλyq1, (6)

where
λα = e−ikθ α; λy = e−iky Ly . (7)

Equation (6) then gives

q = ΛRq1; ΛR = [I λαI λyI λαλyI]T , (8)

where I denotes the identity matrix. Considering internal equilibrium and periodicity
conditions, the relationship between the nodal forces can be written as

ΛLf = 0; ΛL = [I λ−1
α I λ−1

y I (λαλy)
−1I]. (9)

Using Equations (8) and (9), the WFE reduced equation of motion becomes

[−ω2(ΛLMΛR) + iω(ΛLCΛR) + (ΛLKΛR)]q1 = 0 (10)
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and hence
[−ω2M(λα, λy) + iωC(λα, λy) + K(λα, λy)]q1 = 0, (11)

where K, M and C are the WFE reduced stiffness, mass and damping matrices whose size
are m × m, m being the total number of nodal DOFs q1 at corner 1, Figure 1c.

For closed cylindrical structures, the number of wavelengths around the circumference
must be integral and therefore the circumferential wavenumber kθ must be an integer
n = 0, 1, 2, . . .. It follows that

λα = e−inα (12)

for a given circumferential mode order n. Equation (11) thus becomes an eigenvalue
problem in λy and ω, whose solutions give the WFE predictions of the wavenumbers in the
y direction (through λy) and the wavemodes (through q1). The form of the eigenproblem
depends on the physical problem and on whether the frequency or the wavenumber is
assumed to be real [28].

In this paper, the frequency is assumed to be real, and a quadratic eigenvalue problem
in λy is obtained as shown in Appendix A. In particular, the eigenvalue formulation
solved in this paper (to obtain the complex dispersion curves and wavemodes) is a linear
companion form of the quadratic eigenvalue problem, see Equations (A3)–(A5). As a
result of the 2D formulation and because of the small number of DOfs, the equation
can be solved without numerical difficulties and at a very low computational cost using
standard functions and routines; in the examples herein presented the function eigs in
Matlab was used.

3. Numerical Examples

This section presents numerical examples. Different cylindrical structures and fluids
are considered. The mass and stiffness matrices of these examples were obtained using
ANSYS, exploiting its capability to model loaded and unloaded structure, fluid and FSI [29].
Once the segment is discretised, the mass and stiffness matrices are obtained from ANSYS
substructuring analysis selecting all the DOFs as Master DOFs. For the sake of brevity only
results for the n = 0 “breathing” mode and the n = 1 “bending” mode are shown. These
are particularly important because fluid-borne sources may easily excite these modes, and
they also play a crucial role in the vibro-acoustical behaviour of cylindrical constructions.
However, results for higher order modes can be obtained without any further effort.

3.1. Water-Filled Steel Pipe

As a first example, a water-filled, isotropic, cylindrical pipe with h/R = 0.05 is
considered. The case is presented to validate the procedure by comparison with analytical
results obtained by solving the Donnell-Mushtari equations for a thin cylindrical structure
coupled with internal fluid as in [30]. At the same time, the effect of the FSI on the waves
propagating in the structure is investigated. The assumptions and material properties
are those used in [30]: Young’s modulus E = 192 GPa, Poisson’s ratio ν = 0.3, density
ρ = 7800 kg m−3 for steel; density ρ = 1000 kg m−3 and free wave speed c = 1481 m s−1

for water. The FE model for this system is realised using 1 solid structural brick element
(SOLID45 in ANSYS) and 20 acoustic fluid elements (FLUID30 in ANSYS), resulting in
27 DOFs after the WFE reduction. Although a single shell element could be used in this
case, one solid element is preferred to avoid numerical issues related to the presence of
rotational degrees of freedom.

Figure 2 shows the dispersion curves for free waves propagating in the fluid-filled pipe
together with the dispersion curves for the empty cylinder, and acoustic modes in a hard-
walled duct and in a soft-walled duct. In the graphs, the frequency is non-dimensionalised
with respect to the ring frequency of the in vacuo shell, Ωring = 1/R

√
E/[ρ(1 − ν2)] , while

the wavenumber is non-dimensionalised with respect to R. The WFE and the analytical
formulation results show good agreement.
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Figure 2. Water–filled steel shell h/R = 0.05, (a) n = 0 and (b) n = 1: ——– (black thick) water–filled;
· · · · · · (thin) in vacuo; · · · · · · (black thick) analytic solution using the analytical equations in [30];
——– fluid in a hard–walled duct; - - - - - fluid in a soft–walled duct.

Differences are explained considering that the analytical dispersion relation for ax-
isymmetric and nonaxisymmetric waves was obtained using Donnell-Mushtari equations
of motion for the shell. Figure 2 shows that the dispersion curves of the system are modified
by the fluid-structure interaction: the presence of the fluid affects the structure’s behaviour
and therefore an attempt to interpret the dispersion behaviour of the system in terms of
the dispersion curves of the corresponding uncoupled subsystems, viz. an empty cylinder,
fluid in a rigid duct and fluid in a soft duct, leads to incorrect conclusions. It can be
noted that branches represent waves which are predominantly either structural-borne or
sound-borne, with a behaviour intermediate between structural wave motion in the empty
cylinder and fluid wave motion in a rigid or in a soft waveguide. It can also be noted that
veering phenomena occur [31]: structural wavemodes become quasi-fluid wave modes and
vice versa, giving information regarding the frequency and branches for which wave mode
exchange occurs.

For n = 0, Figure 2a, branch 1 cuts-off at ω = 0 as an acoustical wave in a hard-walled
duct and changes to a structural flexural branch as the frequency increases. The second
curve represents an almost pure shear wave (fluid viscosity has been ignored and tangential
motion is uncoupled from the fluid). The third curve starts propagating as a structural
longitudinal wave and then becomes a fluid wave for ω ≈ Ωring. For ω ≥ Ωring, due to
the increase in the radial displacement of the structure, the movements of the shell and the
fluid become coupled and mode veering take place. The fourth curve starts propagating as
a fluid wave; at ω ≈ Ωring it veers to an extensional structural wave before veering again
to a fluid wave. It can be seen that higher order branches exhibit similar behaviour: close
to points where the first extensional branch and acoustic branches cross, veering occurs
through Poisson contraction effects and coupling between fluid and structure radial motion
can be seen.

Figure 2b shows the results for the n = 1 circumferential mode. A pure torsional
mode uncoupled from the fluid is absent since axial, radial and tangential displacements
are coupled. At high frequencies, the wave behaviour is analogous to that described for
the case n = 0, while at low frequencies there are a few major variations: there is only one
wave, which cuts-off as an acoustic wave and then becomes a flexural wave. A second
branch cuts-off at ω = 0.59Ωring, and is similar in nature to a pressure wave in a rigid duct
for n = 1. It must be pointed out that for n > 1, all waves cut-off at frequencies different
from zero, hence no wave occurs at low frequencies.

Complex dispersion curves of the water-filled steel pipe for circumferential modes
n = 0 and n = 1 are shown in Figure 3. Characteristics of these complex dispersion curves
are described in detail in [30].
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Figure 3. Water–filled steel shell h/R = 0.05, (a) n = 0 and (b) n = 1: ..... complex valued
wavenumbers, ..... pure real and pure imaginary wavenumbers in the coupled system.

Cylindrical structures can be modelled accurately using thin-wall theory if h/R ≤ 0.1
and at low frequency (i.e., long wavelengths), otherwise thick-walled models are required.
In order to illustrate the effect of increased thickness of the pipe, dispersion curves are
shown in Figure 4 for the same water-filled pipe with h/R = 0.2 and h/R = 0.5. The FE
models for these pipes are implemented in ANSYS utilising two solid and twenty acoustic
elements for the first case, h/R = 0.2, and five solid elements and twenty acoustic elements
for the second case, h/R = 0.5. Here, for the purpose of non-dimensionalising the results,
a ring frequency is defined by using the mean radius R of the cylinder in vacuo.
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Figure 4. Water–filled steel cylinder n = 0, (a) h/R = 0.2 and (b) h/R = 0.5: ——– (black-thick)
water–filled; · · · · · · in vacuo; ——– fluid in the hard wall duct; - - - - - fluid in the soft wall duct.

It might be expected that for increasing the pipe thickness, hence increasing the
structure’s rigidity in the radial direction, the coupling would be weaker and the dispersion
curves would become more similar to those for an empty cylinder and a fluid in a rigid
walled duct. Figure 4 shows that this interpretation is accurate only when the wavenumber
and frequency are small enough. When the wavenumber increases, coupling between
acoustic and flexural waves occurs. The flexural phase velocity increases as the thickness of
the cylinder increases. Hence the first branch of the empty cylinder, representing the first
flexural wave, moves below the first acoustic branch and crosses higher acoustic branches.
At these crossing points, strong fluid-structure coupling occurs and the branches veer.
At higher frequencies, the behaviour is complicated by the cut-off of the higher order
wavemodes. In particular, the second higher order branch, being extensional in nature,
couples with the fluid due to radial expansion and contraction of the cylinder. Again,
acoustic waves and structural waves interact through Poisson contraction effects.
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3.2. Air-Filled Sandwich Cylinder

In this example, a sandwich cylinder similar to that analysed in [25] is considered but
filled with air at 20C. The ratio between the thickness and the mean radius is h/R = 0.02.
The structure is made of laminated graphite-epoxy skins, each comprising 4 orthotropic
sheets with symmetric lay-up of [+45/ − 45]S, and a ROHACELL foam core. The total
thickness of the skins is 2 mm; the core thickness is 10 mm. For this sandwich cylinder, the
ring frequency is considered as the first cut-off frequency for n = 0, which has been found
to be 857 Hz. The arbitrary unit cell analysed has characteristics dimensions Ly = 5 mm
and α = 0.4◦ and it has been meshed using 12 solid elements for the skins and the foam,
and 30 acoustic elements for the fluid.

The complex dispersion curves for the in vacuo and fluid-filled cylinder are shown in
Figure 5. It can be seen that the dispersive behaviour is complicated by the FSI and that
structural wavemodes couple with the fluid wavemodes over the whole frequency range.
For the breathing mode, n = 0, this coupling clearly occurs for the flexural mode at low
frequency and for the longitudinal mode at higher frequency (when the effect of Poisson
contraction becomes non-negligible). For the bending mode, n = 1, acoustic curves become
similar to those in a hard-walled duct, and similar to the previous case, most coupling
occurs between fluid waves and structural waves that involve significant radial motion.

(a) (b)

(c) (d)

Figure 5. Air–filled sandwich cylinder, n = 0 and n = 1. (a) Fluid–filled and (b) empty: ..... complex
valued wavenumbers; ..... pure real and pure imaginary wavenumbers; (c,d) ..... complex valued
wavenumbers in the coupled system, ..... pure real and pure imaginary wavenumbers in the coupled
system, ——– fluid in a hard–walled duct, - - - - - fluid in a soft–walled duct.

3.3. Wire-Reinforced Hard Rubber Pipe under Internal Pressure

The cylinder analysed in this section is a complex, hard rubber pipe reinforced by a
helical steel wire. The procedure presented in [32,33] is here applied to take into account
the helical pattern in the WFE formulation.

The ratio between the thickness and the external radius of the pipe is h/Rext = 0.25.
The lay-up angle of the helix is φ = 20◦. A schematic representation of the pipe structure
and of the small segment taken for WFE analysis are shown in Figure 6. Both sides of the
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steel wire-reinforcement, denoted by 4 in Figure 6b, are filled with rubber. Three different
hard rubber materials, numbered from 1 to 3, are used as depicted in Figure 6b.

Figure 6. (a) Schematic representation of the wire–reinforced pipe; (b) FE discretisation of a small
skew segment with material properties numbered as in Table 1; (c) WFE super–element; (d) rotation
of the local coordinates.

This type of cylindrical construction is used for applications such as pipes for oil
transport or aircraft refuelling hoses. The specific construction might vary depending
on the specific application, but typically strengthened wires are twisted around an inner
synthetic rubber tube and then covered by another synthetic rubber layer. It is difficult to
predict how these pipes behave mechanically, and typically several pipe specimens are
experimentally tested. Although some mathematical models for these constructions have
been studied, e.g., [34], developing numerical or analytical models is very difficult.

Material characteristics are given in Table 1. The size of the segment modelled for
this example is: Ly = 8mm and α = 1◦. The FE model of the segment in Figure 6b is
realised using 30 solid elements of the type SOLID45 in ANSYS. In the following results,
the wavenumber is nondimensional with respect to the internal radius of the pipe while
the frequency is nondimensional with respect to Ωring calculated for E, ρ and ν given by
the values of material 3 in Table 1.

Table 1. Material properties of the wire-reinforced hard rubber pipe.

Material 1 Material 2 Material 3 Material 4

E = 107 Pa E = 108 Pa E = 109 Pa E = 19.210 Pa
ν = 0.49 ν = 0.49 ν = 0.49 ν = 0.3

ρ = 1000 kg/m3 ρ = 1100 kg/m3 ρ = 1100 kg/m3 ρ = 7800 kg/m3

Real-valued dispersion curves for circumferential orders n = 0, n = 1 are shown
in Figure 7. Dispersion curves obtained for the same pipe with φ = 0◦ and with no
reinforcement are shown for comparison.
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Figure 7. Dispersion curves for the helically wire–reinforced pipe. Circumferential modes (a) n = 0,
(b) n = 1: ——– helically reinforced pipe φ = 20°; ........ reinforced pipe φ = 0°; - - - - - non reinforced pipe.

Dispersion curves and their analysis can be used to improve the performance of these
structures at a design stage. As an example, an increase in the slope of the dispersion curves
generally implies increasing rigidity of the structure. The same consideration generally
holds for increasing values of the cut-off frequency. Branches in the dispersion curves
represent waves which are in general predominantly flexural, shear or extensional in
nature. With reference to the global Cartesian coordinates in Figure 6, flexural waves
involve motion primarily in the z direction while shear and extensional waves involve
motion mostly in the x and y directions. However, due to the complicated construction
of the pipe, the dispersive behaviour in Figure 7 cannot be described simply in terms of
these torsional, extensional and flexural waves alone. Analysis of the deformation of the
cross-section and the energy associated with the individual DOFs has shown that different
motions are involved under the passage of a wave.

Consider the branches corresponding to the helically wire-reinforced pipe for n = 0,
thick lines in Figure 7a. The first branch in Figure 7a starts propagating as a quasi-
extensional wave. The cross-sectional displacement and the relative contributions of the
kinetic energy in the axial (y) direction are significantly larger than those in the circumfer-
ential and radial directions. At ω ≈ 0.1Ωring the branch veers, involving motion primarily
in the x direction, but there are also cross-sectional displacements in the y and z directions.
As the frequency increases, the behaviour of branch 1 changes again, involving motion
primarily in the radial (z) direction. The second branch in Figure 7a starts propagating at
ω = 0.1Ωring as a predominantly shear wave, then it veers, involving primarily extensional
motion in the axial direction, and then its behaviour changes again, involving motion in
both the y and x directions. Higher-order branches represent waves which are predom-
inantly shear and extensional in nature. Generally, the behaviour is very complicated
because also radial motion is involved.

Figure 7 shows that, as expected, the helical reinforced pipe exhibits a stiffer behaviour
than the non-reinforced pipe, in particular in terms of extensional propagation of distur-
bances. Figure 7 also shows that the stiffness of the pipe depends, in different ways, on
the lay angle of the reinforcing wires. At lower frequencies, the behaviour of the helically
reinforced pipe (φ = 20◦) is similar to that of the circumferentially reinforced pipe (φ = 0◦).
As the frequency increases, the first branch shows that the helically reinforced pipe is less
stiff with respect to flexural wave propagation. The third branch of the helically reinforced
pipe has a behaviour that is intermediate between those of the circumferentially reinforced
pipe and the non-reinforced pipe. Branch 4 is similar to that of the circumferentially rein-
forced pipe below kR = 2. However, as the frequency and wavenumber increase, branch 4
and branch 5 corresponding to the φ = 0◦ case veer, due to coupling between radial and
axial motion, while for φ = 20◦ branch 4 and branch 5 have almost constant phase veloci-
ties. In the frequency and wavenumber range considered, as n increases the behaviour of
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the helically reinforced pipe starts becoming more similar to that of the circumferentially
reinforced pipe. This is particularly true for small values of the wavenumber, that is for
long wavelengths, although some differences in the dispersion curves are still evident.

The presence of a high internal pressure considerably stiffens the pipe, and helical
reinforcement can be used to bear the radial stress induced by internal pressure. Figure 8
shows the dispersion curves for circumferential mode orders n = 0 and n = 1 when the
residual stress due to high internal pressure is included in the model. Dispersion curves for
the same helically reinforced pipe without internal pressure are shown for comparison. It
can be noticed that the internal pressure considerably stiffens the dynamic behaviour of
the pipe, hence decreasing the wavenumbers. For n = 0, only the quasi-extensional wave
propagates below ω/Ωring ≈ 0.4. As the frequency increases, the pipe starts to be less
stiff in the radial direction and the quasi-flexural branch cuts–off. For frequencies above
ω/Ωring = 1, higher order branches cut-off and wavemodes involving extensional and
flexural behaviour start to become coupled (consider for example the second and third
branches in Figure 8a,b. The cut-off frequency of branch 4 is lower than that corresponding
to branch 4 of the unpressurised pipe. It can be noticed that the behaviour of the higher
order branches is not strongly affected by internal pressure. Branch 5, for example, is
similar to that of the unloaded pipe. Although the internal pressure stiffens the pipe
considerably, and therefore affects the wave behaviour, the behaviour of the pipe under
internal pressure for n = 1 shows characteristics similar to those of the unloaded pipe,
Figure 8b. Again, coupling between wavemodes that involve extensional and radial motion
and curve veering can be seen.
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Figure 8. Dispersion curves for the helical wire–reinforced pipe under internal pressure. Circumfer-
ential modes (a) n = 0, (b) n = 1. - - - - without pre–stress, —— with pre–stress.

4. Conclusions

In this paper the Wave Finite Element method was applied to modelling wave propa-
gation in thick, laminated, cylinders of different construction and filled with different fluids,
including pre-tensioning and residual stress effects. Compared to previous studies, the
paper focused on these complicated cases, showing an alternative to other methodologies,
and to the 1D formulation of the method, for the wave and vibro-acoustic characterisation
of fluid-structure interaction and pre-stress effects.

In particular, the formulation proposed in the paper showed that results for any given
circumferential mode order can be found without any additional investigation by specifying
the circumferential wavenumber. The laminated structures were modelled using 3D solid
elements, thus representing the through-thickness dynamics with high accuracy up to
high frequency, but at very low computational cost, since only a very small segment of the
system needs to be analysed. Therefore, the method shows promise for its implementation
in optimisation processes and biomechanics research involving blood vessels, for example.
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Numerical examples were presented and discussed. These concerned thick, laminated
cylinders filled with water and air and a composite reinforced rubber cylinder pre-stressed
by circumferential tension. It was found that an attempt to interpret the dispersion be-
haviour of the system in terms of the dispersion curves of the corresponding uncoupled
subsystems, viz. an empty cylinder, fluid in a rigid duct and fluid in a soft duct, generally
leads to incorrect conclusions, in particular when the wavenumber increases and laminated
constructions are considered; in these cases, it was found that coupling and mode exchange
between acoustic and elastic waves become significant. When complicated constructions
with internal reinforcements and pre-stress conditions (for example due to internal pres-
sure) are considered, it was shown that the analysis of dispersion curves could be used to
investigate and improve the performance of the pipe at a design stage.
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Appendix A. WFE Eigenvalue Problem

This appendix provides a brief summary of the 2D WFE eigenvalue problem formu-
lation for axisymmetric structures. For further details, the reader can refer to [25]. If the
dynamic stiffness matrix D in Equation (4) is partitioned into submatrices corresponding
to the super-nodes (q1, q2, q3, q4), i.e.,

D =


D11 D12 D13 D14
D21 D22 D23 D24
D31 D32 D33 D34
D41 D42 D43 D44

, (A1)

then the reduced WFE eigenvalue problem in Equation (11) becomes

[(D11 + D22 + D33 + D44)λαλy + (D12 + D34)λ
2
αλy

+(D13 + A2)λαλ2
y + D32λ2

α + D23λ2
y + (D21 + D43)λy

+(D31 + D42)λα + D14λ2
αλ2

y + D41]q1 = 0.
(A2)

For closed cylindrical structures, λα = e−inα is known for a given circumferential order n;
therefore, Equation (A2) becomes, for a given ω, a quadratic eigenproblem in λy of the form[

A2λ2
y + A1λy + A0

]
q1 = 0, (A3)

where
A2 = D23 + (D23 + D24)λα + D14λ2

α;
A1 = D21 + D43 + (D11 + D22 + D33 + D44)λα + (D12 + D34)λ

2
α;

A1 = D41 + (D31 + D42)λα + D32λ2
α.

(A4)

The standard linear companion form

L(λy) =

[
−A−1

2 A1 −A−1
2 A0

I 0

]
− λy

[
I 0
0 I

]
. (A5)

is considered. Solutions of Equation (A5) yield the relationship between the wavenumber
and frequency (dispersion curves) and the DoFs q1 of the cross-section due to the passage
of a wave (wave mode shapes). The obtained wavenumbers may be purely real, purely
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imaginary or complex. Thus the complex frequency spectrum can be determined for any
given circumferential mode order.
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