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Abstract: Minimum density power divergence estimation provides a general framework for robust
statistics, depending on a parameter α, which determines the robustness properties of the method.
The usual estimation method is numerical minimization of the power divergence. The paper considers
the special case of linear regression. We developed an alternative estimation procedure using the
methods of S-estimation. The rho function so obtained is proportional to one minus a suitably
scaled normal density raised to the power α. We used the theory of S-estimation to determine
the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of
comparisons were made. In one, S power divergence is compared with other S-estimators using
four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S
power divergence are close to those of Tukey’s biweight. The second set of comparisons is between
S power divergence estimation and numerical minimization. Monitoring these two procedures in
terms of breakdown point shows that the numerical minimization yields a procedure with larger
robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to
more efficient parameter estimates.

Keywords: estimation of α; monitoring; numerical minimization; S-estimation; Tukey’s biweight

1. Introduction

Basu et al. [1] introduced a general form of robust estimation based on minimizing a density
power divergence. The family of procedures, and so the robustness properties, depend on the value
of a parameter α. In this paper, we consider normal theory regression. We use standard methods for
the analysis of robust procedures, in particular S-estimation (Riani et al. [2]), to find the theoretical
breakdown point and efficiency of power divergence regression as a function of α. We use these results
to make comparisons with theoretical properties of other robust methods, for example, S-estimation
using Tukey’s biweight. We introduce a data-driven method for the estimation of α from monitoring
residuals over a range of values of α and so find the empirical efficiency and breakdown point of power
density estimation for several regression examples. One surprising conclusion is that, for normal
theory models, the rho function for the power divergence is one minus a suitably scaled standard
normal density raised to the power α.

The paper is structured as follows. The next section introduces minimum density power
divergence estimation and the related estimating equations for normal theory linear regression.
The important problem of estimating α is mentioned. The first part of Section 3 reviews S-estimation
in the linear regression model, and the second part, Section 3.2, rewrites power divergence estimation
of the regression parameter β in the form of S-estimation, derives the rho function, and so finds the
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asymptotic breakdown point (bdp) of the procedure. Section 3.2.2 gives the asymptotic efficiency of this
S-estimation at the Gaussian model and finds the weight function used in fitting data. Comparisons
are given with some well known rho and weight functions. In Section 4, plots of asymptotic efficiency
against asymptotic bdp are used to compare the properties of several S-estimators, including Tukey’s
biweight. Section 5 compares methods through the analysis of data. An alternative to S power
divergence is the original suggestion of Basu et al. [1] to use Brute Force (BF) minimization (our
acronym, not theirs). Comparisons on simulated and real data show the superiority of BF power
divergence to the S-estimator. In particular, monitoring the plots of residuals as α varies may lead to
a clear indication of the minimum value of α for which a robust fit is obtained. Thus, the empirical
breakdown point of BF power divergence estimation can be found, leading to the most efficient robust
estimation for each specific data set.

2. Minimum Density Power Divergence Estimation

Basu et al. [1] define the power divergence between two densities f (z) and g(z), a function of a
single parameter α, as

dα{g(z), f (z)} =
∫ {

f 1+α(z)−
(

1 +
1
α

)
f α(z)g(z) +

1
α

g1+α(z)
}

dz, α > 0 (1)

d0{g(z), f (z)} =
∫

g(z) log
{

g(z)
f (z)

}
dz.

The parameter α controls the trade-off between efficiency and robustness for the power divergence
estimator. The limit as α→ 0 is a version of the Kullback-Leibler divergence. The value α = 1 leads to
squared L2 estimation, an analysis of which is given by Scott [3].

Let g be the density function of the process generating the data. Given an independent and
identically distributed sample y1, . . . , yn is available from G, Basu et al. [1] model the unknown
g(z) with the density fθ(y) by minimizing dα{g(z), fθ(y)}. Since the third term of the divergence is
independent of θ, the power divergence estimator of θ can be found by minimizing

∫
f 1+α
θ (z)dz−

(
1 +

1
α

)
1
n

n

∑
i=1

f α
θ (yi), (2)

in which the empirical distribution Gn is used to approximate the unknown distribution G,
thus avoiding the necessity for density estimation.

Basu et al. [1] develop their method only for random samples from the normal, exponential and
Poisson distributions. For the normal distribution, Equation (2) is minimized over both the mean µ

and the variance σ2. The extension to normal theory regression models is in Ghosh and Basu [4].
As usual in a regression framework, we define yi to be the response variable, which is related to

the values of a set of p− 1 explanatory variables xi1, . . . , xip−1 by the relationship

yi = β′xi + εi i = 1, . . . , n, (3)

where, including an intercept, β′ = (β0, β1, . . . , βp−1) and xi = (1, xi1, . . . , xip−1)
′. Let σ2 = var(εi),

which is assumed to be constant for all i = 1, . . . , n. We also take the quantities in xi to be fixed and
assume that x1, . . . , xn are not collinear. The case p = 1 corresponds to that of a univariate response
without predictors. We call σ the scale of the distribution of the error term εi, when its density takes
the form

σ−1 f
( ε

σ

)
.
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When f is the normal distribution with mean, as in Equation (3), and variance σ2, Durio and Isaia [5]
and Ghosh and Basu [4] show that the function, as in Equation (2), to be minimized becomes

1
(2π)α/2σα

√
1 + α

− 1 + α

α

1
(2π)α/2σα

1
n

n

∑
i=1

e−α(yi−x′i β)
2/2σ2

. (4)

The partial derivative of Equation (4), with respect to β j, provides the estimating equation for β:

n

∑
i=1

xij(yi − x′i β)e
−α(yi−x′i β)

2/2σ2
, (j = 1, . . . , p). (5)

When α = 0, Equation (5) becomes the equation for non-robust ordinary least squares. For α > 0
we have weighted least squares of the kind associated in the next section with M estimation. Ghosh
and Basu [4] also give the estimating equation for σ2 which we will however not be using in our
theoretical development.

An important aspect is the estimation of α. Durio and Isaia [5] test for changes in the estimates of
the parameters β as a function of α, while Warwick and Jones [6] and Ghosh and Basu [7] estimate the
mean squared error of the parameter estimates as α changes. In Section 5, we monitor changes in the
pattern of residuals to choose the minimum value of α for which a robust fit is obtained, so leading to
the most efficient parameter estimates.

3. Robust Regression

3.1. M and S Estimation

Basu et al. [1] find estimates of the parameters of the linear model by simultaneous minimization
of Equation (4) as a function of β and σ2. In this section, we recall the theory of M and S estimation,
which we use in Section 3.2 to describe properties of the S power divergence estimator. In Section 5,
we provide a numerical comparison of the BF minimization and S-estimation approaches.

The M-estimator of the regression parameters, which is scale equivariant (i.e., independent of the
units of measurement), is defined by

β̂M = min
β∈<p

n

∑
i=1

ρ
( ri

s

)
, (6)

where ri = yi − β′xi is the i-th residual and ρ is a function with suitable properties and s is an estimate
of σ. For least squares ρ(x) = x2. For robust estimation ρ(x) < x2 for sufficiently large absolute values
of x. We also write ri(β) to emphasize the dependence of ri on β.

These definitions do not depend on how σ is estimated. Clearly, if we want to keep the M-estimate
robust, s should also be a robust estimate. We assume that the same ρ is used in the estimation of β and
σ, which is customary in practice. In order to have a consistent scale estimate for normally distributed
observations, we require

EΦ0,1

[
ρ
( ri

s

)]
= K, (7)

where Φ0,1 is the cdf of the standard normal distribution. To see consistency, notice that EΦ0,1(ρ) = K
implies

EΦ0,σ2 [ρ]

K
=

Kσ2

K
= σ2.

An M-estimator of scale in Equation (3), say s, is defined to be the solution to the equation

1
n

n

∑
i=1

ρ
( ri

s

)
=

1
n

n

∑
i=1

ρ

(
yi − β′xi

s

)
= K. (8)
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Equation (8) is solved, at least in principle, among all (β, σ) ∈ <p × (0, ∞), where 0 < K < sup ρ.
Rousseeuw and Yohai [8] defined S-estimators by minimization of the dispersion s of the residuals

β̂S = min
β∈<p

s{r1(β), . . . , rn(β)} (9)

with final scale estimate
σ̂S = s{r1(β̂S), . . . , rn(β̂S)}.

The dispersion s is defined as the solution of Equation (8). The S-estimates, therefore, can
be thought as self-scaled M-estimates whose scale is estimated simultaneously with the regression
parameters. Note, in fact, that when the scale and the regression estimates are simultaneously estimated,
S-estimators for regression also satisfy (for example, Maronna et al. [9], p. 131)

β̂S = min
β∈<p

n

∑
i=1

ρ
( ri

s

)
. (10)

The estimator of β in Equation (9) is called an S-estimator because it is derived from a scale
statistic in an implicit way.

The function ρ is the key to many important properties of M and S estimates. Rousseeuw and
Leroy [10] (p. 139) show that, if the function ρ satisfies the following conditions:

1. It is symmetric and continuously differentiable, and ρ(0) = 0;
2. there exists a c > 0 such that ρ is strictly increasing on [0, c] and constant on [c, ∞); and
3. it is such that

K/ρ(c) = bdp with 0 < bdp ≤ 0.5, (11)

then the asymptotic breakdown point of the S-estimator tends to bdp when n→ ∞. Note that if ρ(c) is
normalized in such a way that sup ρ(c) = 1, the constant K becomes exactly equal to the breakdown
point of the S-estimator.

3.2. S Estimation for Power Divergence Regression

3.2.1. The Breakdown Point and the Rho Function

The function ρ is used in the estimation of β for a given estimate s. With x = r/s it follows from
the function to be minimized in Equation (4) that ρ(x) ∝ − exp(−αx2/2). If we scale this function so
that sup ρα(x) = 1 and ρα(0) = 0, we obtain

ρα(x) = 1− exp(−αx2/2). (12)

This is a trivial reparameterization of an otherwise unreferenced rho function attributed to Welsh.
The panels of Figure 1 show plots of ρα(x) for several values of α. For α = 1, the efficiency is

0.65, and the breakdown point is 0.29. As α decreases, the procedure becomes less robust but more
efficient. Table 1 gives values of α, bdp, and eff for three frequently used values of each quantity; these
values being given in bold. The left-hand panel of Figure 1 is for the three bold values of bdp, and the
right-hand panel for the three values of eff. The rho functions for high efficiency are appreciably flatter
than those for high bdp.

Since ρα is scaled, the breakdown point, bdp, is given by EΦ0,1 [ρα(x)]. Then,

EΦ0,1 [ρα(x)] = 1− E
[
exp(−αx2/2)

]
,

= 1−
∫

exp(−αx2/2)dx,
= 1− (2π)α/2

∫
φα

0,1(x)φ0,1(x)dx.
(13)
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Figure 1. Dependence of ρα(x) on α, for frequently used values of robustness properties in Table 1.
Left-hand panel, three values of breakdown point (bdp); right-hand panel, three values of eff.

From the useful general expression in Section 3.2 of Basu et al. [11] that

∫
φα

m,s(x)φc,d(x)dx =
exp

[
−α(c−m)2/{2(s2 + αd2)}

]
(2π)α/2sα

(
1 + αd2

s2

)0.5 ,

we obtain
EΦ0,1 = bdp = 1− 1√

1 + α
. (14)

Our expression for the breakdown point comes from S-estimation, reflecting breakdown in the
estimate of β under the customary assumption that σ is known. This is different from the value of

α

(1 + α)3/2 (15)

in Section 3.2 of Basu et al. [11], who consider the joint breakdown of the estimates of β and σ

when “location explodes” and “scale implodes”. While the expression in Equation (14) increases
monotonically in the interval α = [0, 3], Equation (15) increases monotonically in the smaller interval
α = [0, 2] and then slightly decreases.

To fit a model to data, we specify the desired asymptotic breakdown point, when the value of α

from inverting the expression in Equation (14) is

α =
1

(1− bdp)2 − 1.

For example, for 50% breakdown, α = 3.

Table 1. S power divergence. Values of α, bdp, and eff for three frequently used values of each in bold.

α bdp eff

0 0 1
0.5 0.1835 0.8381
1 0.2929 0.6495

0.7778 0.25 0.7271
1.7778 0.4 0.4536

3 0.5 0.2894
0.4715 0.1756 0.85
0.3522 0.14 0.9
0.2245 0.0963 0.95
0.089 0.0417 0.99
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3.2.2. Efficiency, the Psi Function and the Influence Function

Other basic properties of the robust estimator follow from derivatives of ρα(x). For power density

ψα(x) = ρ′α(x) = αx exp(−αx2/2)

and
ψ′α(x) = α(1− αx2) exp(−αx2/2).

Figure 2 shows, for three values of α, a plot of ψα(x) (which is proportional to the Influence
Function, see Maronna et al. [9] (p. 123)). As α decreases, the figure shows the curve becomes flatter.

-20 -15 -10 -5 0 5 10 15 20

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2. S power divergence; ψ function, proportional to the influence function.

From, for example, Rousseeuw and Leroy [10] (p. 142), the asymptotic efficiency eff of the
S-estimator at the Gaussian model is

eff =
{∫

ψ′(x)dΦ(x)
}2∫

ψ2(x)dΦ(x)
. (16)

For ρα(x),

E[ψ2
α(x)] = α2(2π)α/2

∫
x2φ2αx+1

0,1 dx. (17)

Since ∫
x2φn

0,1dx =
1

n3(2π)n−1 ,

Equation (17) becomes

E[ψ2
α(x)] = α2 1

(2α + 1)3 .

To find the numerator of the efficiency

E[ψ′α(x)] = α(2π)α/2
∫

φα+1
0,1 dx− α2(2π)α/2

∫
x2φα+1

0,1 dx,

= α√
1+α
− α2√

(1+α)3
,

= α√
(1+α)3

.
(18)
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Combining these pieces, we obtain

eff =
√
(1 + 2α)3

(1 + α)3 , (19)

agreeing with the expression for the asymptotic variance of the estimate of the mean µ of a univariate
normal sample given in Section 4.2 of Basu et al. [1], a few values of which are tabulated in their
Table 1. Inversion of Equation (19) yields

α = (1− F +
√

1− F)/F,

where F = eff 2/3.
The algorithm for S-estimation is complicated, involving weighted regression. Rousseeuw and

Leroy [10] (pp. 207–208) provide a sketch. More details are in Salibian-Barrera and Yohai [12]. A central
part is weighted regression, with weights

w(x) = ψ(x)/x.

Figure 3 plots the weight functions for power divergence and five other rho functions: Tukey’s
biweight [13], Hampel’s [14] (p. 150), Huber’s [15], the optimal (Yohai and Zamar [16]), and hyperbolic
tangent (Hampel et al. [14] (p. 328)), all scaled to have efficiency 0.95.

Details of the functions are in the Appendix A. The similarity of the power divergence weights
to those of the Tukey biweight is outstanding, although the biweight is exactly zero at x = c, which
in this case is equal to 4.6851. For this x coordinate, the power divergence weight (when eff = 0.95) is
0.0851. Both have a curved shape for small values of |x|, unlike the Hampel and hyperbolic weights.
We note that the procedure for finding the tuning constant α for the power divergence estimator, given
a prefixed value of breakdown point or efficiency, is not iterative. This is distinct from all the other rho
functions listed above (apart from that of Huber), for which iterative procedures are required.
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Power divergence

Figure 3. The weight function ψ(x)/x for six S-estimators.
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4. Comparisons of Asymptotic Properties

The basic properties of S power divergence are the asymptotic breakdown point, as in
Equation (14), and the asymptotic efficiency, as in Equation (19). Figure 4 shows these two properties
as functions of α over the range 0 ≤ α ≤ 3. As bdp increases from zero towards 0.5, eff decreases from 1
to 0.2894. These are generic shapes for robust estimators, quantifying the trade-off between robustness
and efficiency. Figure 5 shows plots of efficiency against breakdown point for S power divergence
and four of the other ρ functions of Figure 3 (the Huber function being excluded because it has a zero
breakdown point). In order to generate these curves, we fix a particular value of breakdown point
and find the associated tuning constant α for PD or c for the other estimators (the details are in the
Appendix). In the case of the Hampel ρ functions, the three extra parameters c1, c2, and c3 have been
set equal to 2, 4, and 8. For the hyperbolic tangent estimator the extra parameter k, which reflects the
log of the change of variance sensitivity of the M-estimator, has been set equal to 4.5. Given the value
of the tuning constant, we found the corresponding value of the efficiency.
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ic

 e
ffi

ci
en

cy

Figure 4. S power divergence: breakdown point and efficiency as functions of α.

It is clear from the figure that the general asymptotic performance of the five methods is similar.
The optimal function is best for small bdp but worst for values slightly larger than 0.25. The situation
for Hampel is the reverse, being worst for small bdp and best for bdp values above approximately 0.4.
For small bdp, the power divergence is the second worst but behaves much like the hyperbolic and
biweight functions for larger values of bdp. For 50% bdp (as the inset in the figure shows), the ordering
is (we give the exact numbers in parenthesis ) hyperbolic (0.3019), Hampel (0.2924), power divergence
(0.2894), biweight (0.2868), and last the optimal (0.2428). Hössjer [17] proves that, for normal theory
linear models, the maximum efficiency when bdp = 0.5 is 0.329.

Some further insight into the balance between breakdown point and efficiency comes from varying
the parameters of the Hampel and hyperbolic functions. In Figure 5, the parameters for the Hampel
were c1 = 2, c2 = 4, and c3 = 8. The left-hand panel of Figure 6 compares the breakdown point and
efficiency of Hampel’s rho function with these values to those when c1 = 1.5, c2 = 3.5, and c3 = 8.
The original procedure is better for breakdown point less than around 0.3, with the modified version
being slightly better for larger values. For the hyperbolic rho function in the right-hand panel the freely
variable parameter, other than c, is k. The curves for three values of k are shown in the right-hand
panel of Figure 6. The difference is largest for small values of bdp, when k = 6 has the highest
efficiency. In other words, imposing a looser constraint in the change of variance parameter produces
higher efficiency for small values of bdp. For breakdown points near 0.5, the order is reversed,
with k = 6 being the least efficient, although, in this region, the differences are less than for low bdp.
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The conclusion from this figure reinforces that from Figure 5; no one rho function has the highest
breakdown point and efficiency over the whole range of bdp from 0 to 0.5. These results also implicitly
show that the choice of the ρ function is not a crucial aspect since all (provided they are bounded) have
similar behavior in terms of breakdown point and efficiency. These theoretical results are in line with
the empirical findings in Salini et al. [18], where it is shown that the size of the test for outlier detection
is much more affected by the choice of the requested level of efficiency or breakdown point than by the
choice of the ρ function.
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Figure 5. Breakdown point and efficiency as parameters vary for five rho functions: TB = Tukey
biweight; HA = Hampel; OPT = optimal; PD = power divergence and HYP = hyperbolic. The inset is a
zoom of the main figure for high breakdown point.
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Figure 6. Breakdown point and efficiency as parameters vary for the Hampel and hyperbolic
rho functions.
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It is hard to reconcile the conclusions from these graphs with the statement in the opening
paragraph of Jones et al. [19] that “quite small values of α were found to afford considerable robustness
while retaining very high efficiency relative to maximum likelihood”. Although it may be argued
that S power divergence has good properties as a robust procedure, the figure shows that these
fully agree with those for other S estimators. We now turn from asymptotics to data analysis to allow
non-asymptotic comparisons and analysis of the ‘brute force’ approach to power divergence estimation.

5. Monitoring and Comparisons with Data

In order to compare the finite sample properties of robust estimators in regression, Riani et al. [20]
introduced the idea of monitoring the properties of robust analyses as tuning constants are changed.
For power divergence, this would be the value of α, or equivalently changes in nominal values of bdp
or eff, which are how the range of monitored values was specified for other ρ functions. The most
incisive information comes from looking at displays of residuals. Typically, for contaminated data,
these display many outliers for very robust analyses, which suddenly are much reduced in magnitude
at a specific value of the tuning constant. At this point, the procedure becomes close to maximum
likelihood including the outliers. The sharp transition between the two regions allows estimation of the
empirical breakdown point and so to the robust analysis with the highest efficiency. The monitoring
process starts with bdp=0.5, which is the maximum fraction of contamination that an affine equivariant
estimator can resist.

To illustrate this structure, we re-analyze regression data from Atkinson and Riani [21] (Table A2)
comparing S power divergence with the BF version, using numerical minimization. We start
monitoring from a bdp of 50% and use the very robust version of Least Median of Squares regression
(Rousseeuw [22]) to provide initial estimates of β and σ2. After this initial minimization for α = 3,
successive minimizations for lower values of α start from the estimates for the immediately higher
value of α.

The regression data consist of 60 response observations and three explanatory variables.
The scatter-plot matrix of the data does not reveal any outlying observations. The upper panel
of Figure 7 is the monitoring plot of the residuals for BF power divergence as α goes from 3 to 0. There
is a very clear transition from the robust analysis in the left-hand part of the plot to the non-robust
analysis in the right-hand part, which occurs just before bdp = 0.21, giving an empirical breakdown
point of 0.23. What is striking about this figure, apart from the clear transition point, is the distinct
near constancy of the residuals in the two parts of the plot.
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Figure 7. Regression data: residuals as bdp decreases. Upper panel, Brute Force (BF)-estimation, lower
panel S-estimation.
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The lower panel of Figure 7 is the same plot but for the analysis using S power divergence.
The conclusion is similar, with an empirical breakdown point of 0.27, higher than that in the upper
panel; BF therefore provides more efficient estimates. Although the residuals in the non-robust
right-hand part are constant, those from the robust analysis decrease in magnitude as the analysis
becomes less robust. This effect is caused by the gradual increase in the estimate of σ2 as the analysis
becomes less robust. A monitoring plot of the two estimates of σ is in the left-hand panel of Figure 8.
The BF estimate is indeed virtually constant up to a bdp of nearly 0.3, increasing more rapidly to
bdp = 0.2 with a jump corresponding to the switch from robust to non-robust analysis. At this point,
it is close to that from S-estimation, which has been continually increasing. Both estimates of course
coincide when bdp = 0, that is, for non-robust least squares.

These plots show the importance of the empirical breakdown point, found as α, and hence
bdp, decrease. We monitor at values αi, i = 1, . . . , nα, corresponding to breakdown values bdpi.
In our examples, nα = 50. At each i, we calculate a property of the fit, Pi and find the difference
Di = |Pi −Pi−1|. Let the empirical breakdown point be bdp∗. Then,

Definition 1. The empirical breakdown point bdp∗ = bdpi∗ , where

i∗ = arg maxDi, i = 1, . . . , nα − 1.

Some choices of the property Pi are

1. The residual sum of squares.
2. Changes in the parameter estimates β̂i or σ̂.
3. Measures of correlation between successive sets of residuals, rather than the sum of squares

(Riani et al. [20]).

This definition is for fixed finite n. If there are m outliers with responses y′j = yj + ∆j, j = 1, . . . , m,
determination of bdp∗ is sharp as ∆j → ∞. As ∆j → 0, a threshold should be applied in the calculation
of i∗.

We ran a number of simulations and studied the monitoring plots. For a data set of
100 observations without outliers, the trajectories of the residuals were smooth and uneventful,
although a similar structure was observed to that of Figure 7: the residuals from BF were sensibly
constant until around α = 1 and then began gently to become less extreme. On the other hand, the S
residuals steadily decreased in magnitude. The plot of the estimates of σ was similar to that of the
left-hand panel of Figure 8. As is correct in the absence of outliers, neither plot of residuals nor σ

indicated the need for robust analysis.

00.10.20.30.4

bdp

0.6

0.8

1

1.2

BF
PD

00.10.20.30.4

bdp

1

1.5

2

2.5
BF
PD

Figure 8. Comparison of estimates of σ as bdp decreases. Left-hand panel, regression data: right-hand
panel, data with moderate outliers.
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When the outliers in our simulations were very remote, both methods clearly indicated the
outliers, although the monitoring plot for S estimation, unlike that using BF, did not show a sharp
transition between two regions. The challenge for robust methods is when the outliers are less remote.
As an example, we again simulated 100 observations with σ2 = 1, but now a value of 5 was added
to 20 responses. The two panels of Figure 9 show the resulting monitoring plots. Both display the
same set of scaled residuals for 50% bdp, although those from BF are larger in magnitude. BF shows
relatively sharp transitions at a breakdown point of 0.16, whereas S estimation shows a gradual
decrease in the magnitude of the residuals as bdp (α) decreases. The right-hand panel of Figure 8
plots the two estimates of σ. As in the results for the regression data, the estimate from S-estimation
increases gradually as bdp decreases, but the BF estimates are sensibly constant until a bdp around
0.16, when there is a distinct increase due to non-robust estimation.
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Figure 9. Data with moderate outliers: residuals as bdp decreases. Upper panel, BF-estimation; lower
panel S-estimation.

Our results in Section 3.2.1 and 4 indicate the close relationship between Tukey’s biweight and the
power density rho functions. This is illustrated by the plot for S estimation using the biweight on these
data, which we do not show here, which is indistinguishable from that using the power divergence ρ.

As a final larger data example, we analyze 509 observations on the amount spent by loyalty
card holders at a supermarket chain in Northern Italy, introduced by Atkinson and Riani [23],
who recommended a Box-Cox transformation for the response with λ = 1/3. Perrotta et al. [24]
showed that a value of λ = 0.4 is to be preferred. We used this value in our analysis. The monitoring
plot of residuals from BF power divergence is in Figure 10. It shows stable trajectories of the residuals
for many values of α. A change starts around bdp = 0.17, indicating this as the empirical bdp. Again,
S power divergence, which we do not show, reveals the same extreme observations, but fails to
provide a sharp transition, so that the empirical breakdown point for efficient analysis is again not
easily determined.
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Figure 10. Loyalty card data: residuals for BF-estimation as bdp decreases.

6. Discussion

We have used the estimating equation for the linear parameters β to recast power divergence
estimation in the context of S-estimation. This leads straightforwardly to calculations of asymptotic
bdp and efficiency. This form of the power density estimate has asymptotic properties close to those of
S estimation using Tukey’s biweight.

An alternative to power divergence S-estimation is brute-force numerical minimization.
The non-asymptotic comparison of the two procedures has been performed with monitoring plots of
residuals as bdp varies, providing fits changing from very robust to maximum likelihood. S power
divergence estimation has properties very similar to those of S-estimation with Tukey’s biweight.
In both, there is often a smooth decrease in the magnitude of the residuals as bdp decreases. On the
other hand, BF minimization produces monitoring plots which show a clearer break between robust
and non-robust fits, leading to estimation of an empirical breakdown point and so to the most efficient
robust estimates.

One conclusion is that BF estimation provides more informative analyses than power density
S-estimation. However, the results of monitoring regression in Riani et al. [20] show that the
comparative behavior of estimators depends on the particular data set being analyzed. Figure 7
shows that S-estimation may produce monitoring plots with a sharp change, and further examples are
in Riani et al. [20]. Other methods providing a sharp change, and so guidance to efficient analysis,
are the Forward Search [25] and Least Trimmed Squares [22]. It remains to be seen how BF power
divergence compares with these other methods, both statistically and on larger, more complicated
models, such as linear mixed models, generalized linear models, or nonlinear models.
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Appendix A. Rho Functions

In this appendix, we summarize the characteristics of the ρ functions which have been used in the
paper. Since the hyperbolic tangent estimator is rarely used and, as far as we know, is not implemented
in any statistical package, we describe this estimator in greater detail.

The first ρ-function was proposed in Huber (1964):

ρ(u) =

{
(u2/2) |u/c| ≤ 1

c|u| − c2/2 |u/c| > 1.

It is easily seen that this ρ function is unbounded and, therefore, the corresponding estimator has
a zero breakdown point.

Perhaps the most popular ρ function for redescending M and S-estimates is Tukey’s Biweight
function [13]:

ρ(u) =

{
u2

2 −
u4

2c2 +
u6

6c4 if |u| ≤ c
c2

6 if |u| > c,
(A1)

the first derivative of which vanishes outside the interval [−c,+c]. Therefore, for this function c is the
crucial tuning constant, determining the efficiency or, equivalently, the breakdown point.

Hampel’s ρ function [14] (p. 150) has a similar, but less smooth, shape.

ρ(u) =



1
2 u2 if |u/c| ≤ c1

c1|u| − 1
2 c2

1 if c1 < |u/c| ≤ c2

c1
c3|u|− 1

2 u2

c3−c2
if c2 < |u/c| ≤ c3

c1(c2 + c3 − c1) if |u/c| > c3.

(A2)

The first derivative is piece-wise linear and vanishes outside the interval [−c3,+c3]. The crucial
tuning constant is c3. Huber and Ronchetti [26] (p. 101) suggest that the slope between c2 and c3 should
not be too steep.

Yohai and Zamar [16] introduced a ρ function which minimizes the asymptotic variance of the
regression M-estimate, subject to a bound on a robustness measure called contamination sensitivity.
Therefore, this function is called the optimal ρ function.

ρ(u) =


1.3846

( u
c
)2 if |u| ≤ 2

3 c

0.5514− 2.6917
( u

c
)2

+ 10.7668
( u

c
)4 − 11.6640

( u
c
)6

+

+4.0375
( u

c
)8 if 2

3 c < |u| ≤ c

1 if |u| > c.

(A3)

Now, the first derivative vanishes outside the interval [−c,+c]. The resulting M-estimate
minimizes the maximum bias under contamination distributions (locally for a small fraction of
contamination), subject to achieving a desired nominal asymptotic efficiency when the data are
normally distributed.

Hampel et al. [14] (p. 328) considered another optimization problem, by minimizing the
asymptotic variance of the regression M-estimate, subject to a bound on the supremum of the Change of
Variance Curve (CVC) of the estimate. The CVC describes the infinitesimal increment of the logarithm
of the variance of the M estimator—that is by the reciprocal of Equation (16)—in the vicinity of the
null normal model, in the same way that the influence function reflects the infinitesimal asymptotic
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bias. This leads to the Hyperbolic Tangent ρ function, which, for suitable constants c, k, A, B, and d,
is defined as

ρ(u) =



1
2 u2 if |u| ≤ d
d2

2 − 2 A
B ln cosh[ 1

2

√
(k−1)B2

A (c− |u|)]+

+2 A
B ln cosh[ 1

2

√
(k−1)B2

A (c− d)] if d ≤ |u| ≤ c
d2

2 + 2 A
B ln cosh[ 1

2

√
(k−1)B2

A (c− d)] if |u| > c,

(A4)

where 0 < d < c is such that

d =
√
[A(k− 1)] tanh[

1
2

√
(k− 1)B2

A
(c− d)]. (A5)

Parameters A and B are found as:

A = E[ψ2(x)] and B = E[ψ′(x)].

The value of d is found by applying the Newton-Raphson method to Equation (A5). New values
of A and B are obtained (through numerical integration) and the procedure is iterated to convergence.
For additional details, see Hampel et al. [27]. The parameter k is defined as

k = sup
x
{CVC(ψ, x)}.

In Figures 3 and 5, we used a value of 4.5 for k. The right-hand panel of Figure 6 shows that,
for values of bdp close to 0.5, higher efficiencies are obtained when stronger constraints are imposed
on the value of CVC by decreasing k. Conversely, smaller efficiencies result for small values of bdp.
Figure A1 shows the ψ function of the hyperbolic tangent estimator for two different values of k. Note
that A, B, and d (and, consequently, also bdp and eff) are automatically determined after fixing k and c.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k=5

c
-c

k=4

Figure A1. Hyperbolic tangent ψ function for two values of the parameter k .

We have illustrated the use of the power divergence ρ function in regression. But all these ρ

functions can also be used for the estimation of robust location and covariance in the analysis of
multivariate data. In this case, the scaled residuals u are replaced by scaled Mahalanobis distances.
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All the functions ρ(x), ψ(x), w(x) = ψ(x)/x, ψ′(x), and ψ(x)x described in this appendix have
been implemented in the FSDA MATLAB toolbox, which is freely downloadable from the file exchange
of Mathworks. Each .m file has associated HTML documentation which is also present at web address
“http://rosa.unipr.it/FSDA”. The prefixes of the different links which have been used are “HU”, “TB”,
“OPT”, “HA”, “HYP”, and “PD”. The suffixes for the different ingredients are “rho”, “psi”, “wei”,
“psider”, and “psix”. For example, to see the corresponding documentation for the hyperbolic ρ

function, visit “http://rosa.unipr.it/FSDA/HYPrho.html”. For the corresponding documentation
of the derivative of the ψ function of Hampel, see “http://rosa.unipr.it/FSDA/HApsider.html”.
The routines for finding the constant c associated with a particular value of the breakdown point
end with the suffix bdp. For example, to compute the constant c associated with the Tukey biweight
for a given bdp, type “http://rosa.unipr.it/FSDA/TBbdp.html”. The routines to find the constant c
associated with a particular value of the efficiency end with the suffix eff. Finally, the routines which,
given a particular value of c compute bdp and eff, end with the suffix c. For example, to compute bdp
and eff for the power divergence estimator given c, call function PDc (the corresponding documentation
is on the web at “http://rosa.unipr.it/FSDA/PDc.html”).
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