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Abstract
We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl
groupHn , whose prototype is theDirichlet problem for the p-fractional subLaplace equation.
These problems arise in many different contexts in quantum mechanics, in ferromagnetic
analysis, in phase transition problems, in image segmentations models, and so on, when non-
Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur.We
prove general Harnack inequalities for the related weak solutions. Also, in the case when
the growth exponent is p = 2, we investigate the asymptotic behavior of the fractional
subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the
differentiability exponent s goes to 1.

Mathematics Subject Classification Primary 35B10 · 35B45; Secondary 35B05 · 35H05 ·
35R05 · 47G20

1 Introduction

We deal with a very general class of nonlinear nonlocal operators, which include, as a
particular case, the fractional subLaplacian. Precisely, let � be a bounded domain in the
Heisenberg-Weyl groupHn , and let g be in the fractional Sobolev space Ws,p(Hn), for any
s ∈ (0, 1) and any p > 1.We shall prove general Harnack inequalities for the weak solutions
to the following class of nonlinear integro-differential problems,

{
Lu = f in �,

u = g in Hn
� �,

(1.1)
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where f = f (·, u) belongs to L∞
loc(H

n) uniformly in �, and L is the operator defined by

Lu(ξ) = P.V .

∫
Hn

|u(ξ) − u(η)|p−2
(
u(ξ) − u(η)

)
do(η−1 ◦ ξ)Q+sp

dη, ξ ∈ Hn, (1.2)

with do being a homogeneous norm on Hn , and Q = 2n + 2 the usual homogeneous
dimension of Hn . The symbol P.V . in the display above stands for “in the principal value
sense”. We immediately refer the reader to Sect. 2 below for the precise definitions of the
involved quantities and related properties, as well as for further observations in order to relax
some of the assumptions listed in the present section.

Integral-differential operators in the form as in (1.2) do arise as a generalization of the
fractional subLaplacian on the Heisenberg group, naturally defined in the fractional Sobolev
space Hs(Hn) for any s ∈ (0, 1) as follows

(−�Hn )su(ξ) := C(n, s) P.V .

∫
Hn

u(ξ) − u(η)

|η−1 ◦ ξ |Q+2s
Hn

dη, ξ ∈ Hn, (1.3)

where | · |Hn is the standard homogeneous norm of Hn , and C(n, s) is a positive constant
which depends only on n and s. In this fashion, the prototype of the wide class of problems
in (1.1) reads as follows, {

(−�Hn )su = 0 in �,

u = g in Hn
� �,

(1.4)

In the last decades, a great attention has been focused on the study of problems involving frac-
tional equations, both from a pure mathematical point of view and for concrete applications
since they naturally arise in many different contexts. Despite its relatively short history, the
literature is really toowide to attempt any comprehensive treatment in a single paper; we refer
for instance to the paper [33] for an elementary introduction to fractional Sobolev spaces and
for a quite extensive (but still far from exhaustive) list of related references. For what con-
cerns specifically the family of equations in (1.1) and the corresponding energy functionals,
both in the nonlocal and in the local framework, the link with several concrete models arises
from many different contexts in Probability (e.g., in non-Markovian coupling for Brownian
motions [5]), in Physics (e.g., in group theory in quantum mechanics [46], in ferromagnetic
trajectories [34], in image segmentation models [13], in phase transition problems described
by Ising models [38], and many others), where the analysis in sub-Riemannian geometry
revealed to be decisive. In this respect, as proven in the literature, Harnack-type inequalities
constitute a fundamental tool of investigation.

Let us focus now merely on regularity and related results in the fractional panorama in
the Heisenberg group. It is firstly worth stressing that one can find various definitions of
the involved operator and related extremely different approaches. In the linear case when
p = 2, an explicit integral definition can be found in the relevant paper [41], where several
Hardy inequalities for the conformally invariant fractional powers of the sublaplacian are
proven, and [11] for related Hardy and uncertainty inequalities on general stratified Lie
groups involving fractional powers of the Laplacian; we also refer to [2], where, amongst
other important results,Morrey and Sobolev-type embeddings are derived for fractional order
Sobolev spaces. Still in the linear case when p = 2, very relevant results have been obtained
based on the construction of fractional operators via a Dirichlet-to-Neumann map associated
to degenerate elliptic equations, as firstly seen for the Euclidean framework in the celebrated
Caffarelli-Silvestre s-harmonic extension. For this, wewould like tomention the very general
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approach in [22]; the Liouville-type theorem in [12]; theHarnack andHölder results in Carnot
groups in [16]; the connection with the fractional perimeters of sets in Carnot group in [17].

For what concerns the more general situation as in (1.2) when a p-growth exponent is
considered, in our knowledge, a regularity theory is very far from be complete; nonetheless,
very interesting estimates have been recently proven, as, e. g., in [26, 45], and in our recent
paper [32] where local boundedness and Hölder estimates have been proven for the weak
solutions to (1.1).

In order to state our main results, we need to introduce a special quantity which plays
a central role when dealing with nonlocal operators. Namely, we define the nonlocal
tail Tail(u; ξ0, R) of a function u centered in ξ0 ∈ Hn of radius R > 0,

Tail(u; ξ0, R) :=
(
Rsp

∫
Hn

�BR(ξ0)

|u(η)|p−1|η−1 ◦ ξ0|−Q−sp
Hn dη

) 1
p−1

. (1.5)

We immediately notice that the quantity above is finitewheneveru ∈ Lq(Hn),withq ≥ p−1.
The nonlocal tail in (1.5) can be seen as the natural generalization in the Heisenberg setting
of that originally introduced in [14, 15], and subsequently revealed to be decisive in the
analysis of many different nonlocal problems when a fine quantitative control of the long-
range interactions is needed; see for instance the subsequent results proven in [23, 28–30]
and the references therein.

Our main result reads as follows,

Theorem 1.1 (Nonlocal Harnack inequality) For any s ∈ (0, 1) and any 1 < p < 2n/(1−
s), let u ∈ Ws,p(Hn) be a weak solution to (1.1) such that u ≥ 0 in BR ≡ BR(ξ0) ⊂ �.
Then, for any Br such that B6r ⊂ BR, it holds

sup
Br

u ≤ c inf
Br

u + c
( r
R

) sp
p−1

Tail(u−; ξ0, R) + c r
sp
p−1 ‖ f ‖

1
p−1
L∞(BR) , (1.6)

where Tail(·) is defined in (1.5), u− := max{−u, 0} is the negative part of the function u,
and c depends only on n, s, p, and the structural constant � defined in (2.2).

Notice that in the case when u is nonnegative in the wholeRn , the formulation in (1.6) does
reduce to that of the classical Harnack inequality.

In the particular situation when u is merely a weak supersolution to Problem (1.1), still
in analogy with the classical case when s = 1, a weak Harnack inequality can be proven, as
stated in the following

Theorem 1.2 (Nonlocal weak Harnack inequality) For any s ∈ (0, 1) and any 1 < p <

2n/(1− s), let u ∈ Ws,p(Hn) be a weak supersolution to (1.1) such that u ≥ 0 in BR ⊆ �.
Then, for any Br such that B6r ⊂ BR, it holds(

−
∫
Br

ut dξ

) 1
t ≤ c inf

B 3
2 r

u + c
( r
R

) sp
p−1

Tail(u−; ξ0, R) + cχ, (1.7)

where

χ =
⎧⎨
⎩r

Qsp
t(Q−sp) ‖ f ‖

Q
t(Q−sp)

L∞(BR) for t <
Q(p−1)
Q−sp if sp < Q,

r
Q(s−ε)

tε ‖ f ‖
s
tε
L∞(BR) for any s − Q/p < ε < s and t <

(p−1)s
ε

if sp ≥ Q,

Tail(·) is defined in (1.5), and u− := max{−u, 0} is the negative part of the function u. The
constant c depends only on n, s, p, and the structural constant � defined in (2.2).
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As expected, a nonlocal tail contribution should be still taken into account, and, again, such
a contribution in (1.7) will disappear in the case when the function u is nonnegative in the
wholeRn . Also, notice that the bound from above in the nonlinear growth exponent, namely
p < 2n/(1 − s) ≡ (Q − 2)/(1 − s), always includes the linear case when p = 2 for
any s ∈ (0, 1), even when n = 1, and the more differentiability we have, the less such a
bound is restrictive; in particular, in clear accordance with the analogous results in local case,
such a bound does disappear when s goes to 1. Such a bound naturally arises in view of the
discrepancy between the dimension 2n + 1 and the homogeneous dimension Q = 2n + 2
in the non-Euclidean framework considered here. We refer to Remark 4.2 in [32] for further
details.

It is now worth noticing that the main difficulty into the treatment of the equation in (1.1)
lies in the very definition of the leading operatorL defined in (1.2),which combines the typical
issues given by its nonlocal feature together with the ones given by its nonlinear growth
behaviour and with those naturally arising from the non-Euclidean geometrical structure.

For this, some very important tools recently introduced in the nonlocal theory and success-
fully applied in the fractional sublaplacian on the Heisenberg group, as the aforementioned
Caffarelli-Silvestre s-harmonic extension, and the approach via Fourier representation, as
well as other successful tools, like for instance the commutator estimates in [43], the pseudo-
differential commutator compactness in [36], and many others, seem not to be adaptable to
the framework we are dealing with. However, even in such a nonlinear non-Euclidean frame-
work, we will be able to extend part of the strategy developed in [14] where nonlocal Harnack
inequalities have been proven for the homogeneous version of the analogue of problem (1.1)
in the Euclidean framework. Further efforts are also needed due to the presence of the non
homogeneous datum f , as well as in order to deal with the limit case when sp = Q, both of
them are novelty even with respect to the results proven in the Euclidean framework in [14].

Let now focus on the linear case when p = 2 when the datum f in the right-hand side
of the equation in (1.1) is zero. It is worth mentioning that the necessity of the presence of
the tail term in the Harnack inequalities stated above is a very recent achievement. Indeed,
during the last decades, the validity of the classicalHarnack inequalitywithout extra positivity
assumptions on the solutions has been an open problem in the nonlocal setting, and more in
general for integro-differential operators of the form in (1.1) even in theEuclidean framework.
An answer has been eventually given byKassmann in his breakthrough papers [24, 25], where
a simple counter-example is provided in order to show that positivity cannot be dropped nor
relaxed even in the most simple case when L does coincide with the fractional Laplacian
operator (−�)s ; see Theorem 1.2 in [24]. The same author proposed a new formulation of
the Harnack inequality without requiring the additional positivity on solutions by adding an
extra term, basically a natural tail-type contribution on the right-hand side, in accordance
with the result presented here; see Theorem 3.1 in [25], where the robustness of the estimates
as s goes to 1 is also presented. In the same spirit, we also investigate the special linear case
in which L does reduce to the pure fractional subLaplacian, namely problem (1.4). Firstly,
as expected, we prove that the fractional subLaplacian (−�Hn )s effectively converges to
the standard subLaplacian −�Hn as s goes to 1, as stated in Proposition 1.3 below. For
this, we shall carefully estimate the weighted second order integral form of the fractional
subLaplacian with the aim of a suitable Mac-Laurin-type expansion in the Heisenberg group.

Proposition 1.3 For any u ∈ C∞
0 (Hn) the following statement holds true

lim
s→1−(−�Hn )su = −�Hn u, (1.8)
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where (−�Hn )s is defined by (1.3), and �Hn is the classical subLaplacian in Hn.

Notice that a proof of the result above for fractional subLaplacian on Carnot groups can be
found in the relevant paper [17], via heat kernel characterization.

Secondly, we revisit the proofs of Theorems 1.1-1.2 by taking care of the dependance of
the differentiability exponent s in all the estimates, so that we are eventually able to obtain
the results below in clear accordance with the analogous ones in the Euclidean framework
[25], by proving that the nonlocal tail term will vanish when s goes to 1, in turn recovering
the classical Harnack formulation.

Theorem 1.4 For any s ∈ (0, 1) let u ∈ Hs(Hn) be a weak solution to (1.4) such that u ≥ 0
in BR(ξ0) ⊂ �. Then, the following estimate holds true for any Br such that B6r ⊂ BR,

sup
Br

u ≤ c inf
Br

u + c (1 − s)
( r
R

)2s
Tail(u−; ξ0, R), (1.9)

where Tail(·) is defined in (1.5) by taking p = 2 there, u− := max{−u, 0} is the negative
part of the function u, and c = c (n, s).

Theorem 1.5 For any s ∈ (0, 1) let u ∈ Hs(Hn) be a weak supersolution to (1.4), such
that u ≥ 0 in BR(ξ0) ⊆ �. Then, the following estimate holds true for any Br such that
B6r ⊂ BR, and any t < Q/(Q − 2s),

(
−
∫
Br

ut dξ

) 1
t ≤ c inf

B 3r
2

u + c (1 − s)
( r
R

)2s
Tail(u−; ξ0, R), (1.10)

where Tail(·) is defined in (1.5) by taking p = 2 there, u− := max{−u, 0} is the negative
part of the function u, and c = c (n, s).

Further developments. Starting from the results proven in the present paper, several ques-
tions naturally arise.

• Firstly, it is worth remarking that we treat general weak solutions, namely by truncation
and dealing with the resulting error term as a right hand-side, in the same flavour of the
papers [14, 15, 29], in the spirit of De Giorgi-Nash-Moser. However, one could approach
the same family of problems by focusing solely to bounded viscosity solutions in the
spirit of Krylov-Safonov.

• Still in clear accordancewith the Euclidean counterpart, onewould expect self-improving
properties of the solutions to (1.1). For this, one should extend the recent nonlocal
Gehring-type theorems proven in [30, 43, 44].

• One could expect nonlocal Harnack inequalities and other regularity results for the
solutions to a strictly related class of problems; that is, by adding in (1.1) a second integral-
differential operators, of differentiability exponent t > s and summability growth q > 1,
controlled by the zero set of a modulating coefficient: the so-called nonlocal double
phase problem, in the same spirit of the Euclidean case treated in [7, 21], starting from
the pioneering results in the local case, when s = 1, by Colombo and Mingione; see for
instance [19, 20] and the references therein.
In the same spirit, it could be interesting to understand if our methods do apply in non-
Euclidean settings for even more general nonlocal nonstandard growth equations, as the
one recently considered in [10, 40].
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• Recently, mean value properties for solutions to fractional equations have been of great
interest. It could be interesting to generalize such an investigation in a fractional non-
Euclidean framework as the one considered in the present paper; we refer to the relevant
results in [8, 9] and the references therein.

• Moreover, to our knowledge, nothing is known about Harnack inequalities and more
in general about the regularity for solutions to parabolic nonlocal integro-differential
equations involving the nonlinear operators in (1.2).

• Finally, by starting from the estimates proven in the present paper, in [39] regularity
results up to the boundary have been proven for very general boundary data, and for
the related obstacle problem. As expected, a tail contribution naturally appears in those
estimates in order to control the nonlocal contributions coming from far.Many subsequent
related problems are still open, and not for free because of the possible degeneracy and
singularity of L, as for instance boundary Harnack inequalities or Carleson estimates for
the homogeneous case. The boundary Hölder estimates and the comparison results in
the aforementioned paper [39] together with the Harnack estimates presented here could
be a starting point for such a delicate investigation. Still for what concerns boundary
Harnack inequalities, we also refer the reader to [42] for general strategy for equations
with possibly unbounded right hand-side data.

To summarize. The results in the present paper seem tobe thefirst ones concerningHarnack
estimates for nonlinear nonlocal equations in the Heisenberg group. We prove that one can
extend to the Heisenberg setting the strategy successfully applied in the fractional Euclidean
case ([14, 15, 30]), by attacking even a more general equation which applies to non-zero data
and also to the case when sp ≥ Q. From another point of view, our results can be seen as
the (nonlinear) nonlocal extension of the Heisenberg counterpart of the celebrated classical
Harnack inequality ([1, 6, 31]). Moreover, since we derive all our results for a general class
of nonlinear integro-differential operators, via our approach by taking into account all the
nonlocal tail contributions in a precise way, we obtain alternative proofs that are new even
in the by-now classical case of the pure fractional sublaplacian operator (−�Hn )s ; also, in
such a case, we are able to prove the robustness of the Harnack estimates with respect to s in
the limit as s goes to 1.

We would guess that our estimates will be important in a forthcoming nonlinear nonlocal
theory in the Heisenberg group.

The paper is organized as follows. In Sect. 2 belowwe set up notation, andwe briefly recall
our underlying geometrical structure, by also recalling the involved functional spaces, and
providing a few remarks on the assumptions on the data. A few classical technical tools are
also stated. In Sect. 3 we present very recent results for fractional equations in the Heisenberg
group. In Sect. 4, we firstly carry out a suitable positivity expansion and some tail estimate.
Then we complete the proof of the Harnack inequality with tail, and the weak Harnack
inequality with tail, respectively. Section 5 is devoted to the asymptotic of the fractional
subLaplacian operator, and the robustness of the Harnack inequalities in the linear case.

2 Preliminaries

In this section we state the general assumptions on the quantity we are dealing with. We
keep these assumptions throughout the paper. Firstly, notice that we will follow the usual
convention of denoting by c a general positive constant which will not necessarily be the
same at different occurrences and which can also change from line to line. For the sake of
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readability, dependencies of the constants will be often omittedwithin the chains of estimates,
therefore stated after the estimate. Relevant dependencies on parameters will be emphasized
by using parentheses.

2.1 The Heisenberg-Weyl group

We start by very briefly recalling a few well-known facts about the Heisenberg group; see
for instance [6] for a more exhaustive treatment.

We denote points in R2n+1 by ξ := (z, t) = (x1, . . . , xn, y1, . . . , yn, t).
For any ξ, ξ ′ ∈ R2n+1, consider the group multiplication ◦ defined by

ξ ◦ ξ ′ := (
x + x ′, y + y′, t + t ′ + 2〈y, x ′〉 − 2〈x, y′〉)

=
(
x1 + x ′

1, ..., xn + x ′
n, y1 + y′

1, ..., yn + y′
n, t + t ′ + 2

n∑
i=1

(
yi x

′
i − xi y

′
i

))
.

For any λ > 0, the automorphism group (
λ)λ>0 onR2n+1 is defined by ξ �→ 
λ(ξ) :=
(λx, λy, λ2t), and, as customary, Q ≡ 2n + 2 is the homogeneous dimension of R2n+1

with respect to (
λ)λ>0, so that the Heisenberg-Weyl group Hn := (R2n+1, ◦,
λ) is a
homogeneous Lie group.

The Jacobian base of the Heisenberg Lie algebra hn ofHn is given by

X j := ∂x j + 2y j∂t , Xn+ j := ∂y j − 2x j∂t , 1 ≤ j ≤ n, T := ∂t .

Since [X j , Xn+ j ] = −4∂t for every 1 ≤ j ≤ n, it plainly follows that

rank
(
Lie{X1, . . . , X2n, T }(0, 0)

)
= 2n + 1,

so thatHn is a Carnot group with the following stratification of the algebra

hn = span{X1, . . . , X2n} ⊕ span{T }.
We have now the following

Definition 2.1 A homogeneous norm on Hn is a continuous function (with respect to the
Euclidean topology ) do : Hn → [0,+∞) such that:

(i) do(
λ(ξ)) = λdo(ξ), for every λ > 0 and every ξ ∈ Hn ;
(ii) do(ξ) = 0 if and only if ξ = 0.

A homogeneous norm do is symmetric if do(ξ−1) = do(ξ), for all ξ ∈ Hn ;

If do is a homogeneous norm onHn , then the function � defined by

�(ξ, η) := do(η
−1 ◦ ξ)

is a pseudometric on Hn .
We recall that the standard homogeneous norm | · |Hn onHn is given by

|ξ |Hn := (|z|4 + t2
) 1
4 , ∀ξ := (z, t) ∈ R2n+1. (2.1)

For any fixed ξ0 ∈ Hn and R > 0 we denote with BR(ξ0) the ball with center ξ0 and radius R
defined by

BR(ξ0) :=
{
ξ ∈ Hn : |ξ−1

0 ◦ ξ |Hn < R
}

.
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It is now worth noticing that for any homogeneous norm do on Hn one can prove the
existence of a positive constant c such that

�−1|ξ |Hn ≤ do(ξ) ≤ �|ξ |Hn , ∀ξ ∈ Hn . (2.2)

As a consequence, in most of the estimates in the forthcoming proofs, one can simply take
into account the pure homogeneous norm defined in (2.1) with no modifications at all.

In the analysis of the special case when the integro-differential operator (1.2) does reduce
to the standard fractional subLaplacian, we will need to obtain fine estimates by taking into
account the differentiability exponent s near 1, and thus several modifications with respect
to the proof of similar estimates in the Euclidean framework are needed. In particular, in
order to obtain the desired characterization of the asymptotic behaviour as s goes to 1 of the
fractional subLaplacian, and consequently proving the consistency of our Harnack estimates
with tail in the limit (see Sect. 5), we are able to overcome some difficulties coming from
the non-Euclidean structure considered here by making use of a suitable MacLaurin-type
expansion.

Definition 2.2 Let u ∈ C∞(Hn;R). Then, for any m ∈ N ∪ {0} there exists a unique
polynomial P being 
λ-homogeneous of degree at most m such that

(X1, . . . , X2n, T )β P(0) = (X1, . . . , X2n, T )βu(0)

for any multi-index β = (β1, . . . , β2n+1) with |β|Hn = β1 + · · · + β2n + 2β2n+1 ≤ m. We
say that P := Pm(u, 0)(ξ) is “the MacLaurin polynomial of 
λ-degree m associated to u”.

In the case of the Heisenberg group one can explicitly write the MacLaurin polynomial of

λ-degree 2; we have

P2(u, 0)(x1, . . . , x2n, t) = u(0) + ∇Hn u(0) · z + ∂t u(0) · t + 1

2
〈x, D2,∗

Hn u(0) · x〉,

where the subgradient ∇Hn u is given by ∇Hn u(ξ) := (X1u(ξ), . . . , X2nu(ξ)), and D2,∗
Hn is

the symmetrized horizontal Hessian matrix; that is,

D2,∗
Hn u(ξ) :=

(
1

2

(
Xi X ju(ξ) + X j Xiu(ξ)

))
i, j=1,...,2n

(2.3)

Definition 2.3 Let u ∈ C∞(Hn;R), ξ0 ∈ Hn , and m ∈ N ∪ {0}. Let us consider the
MacLaurin polynomial Pm(u(ξ0 ◦ ·), 0) of the function ξ �−→ u(ξ0 ◦ ξ) The polynomial

Pm(u, ξ0)(ξ) := Pm(u(ξ0 ◦ ·), 0)(ξ−1
0 ◦ ξ),

is the Taylor polynomial ofHn-degree m centered at ξ0 associated to u.

One can prove the following

Proposition 2.4 (see for instance [6, Corollary 20.3.5]). For every u ∈ Cm+1(Hn;R), ξ0 ∈
Hn and m ∈ N ∪ {0}, we have that

u(ξ) = Pm(u, ξ0)(ξ) + o(|ξ−1
0 ◦ ξ |n+1

Hn ).
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2.2 The fractional framework

We now introduce the natural fractional framework; we point out that our setup is in align
with Sect. 2 in [32].

Let p > 1 and s ∈ (0, 1), the Gagliardo seminorm of a measurable function u : Hn → R

is given by

[u]Ws,p :=
(∫

Hn

∫
Hn

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξdη

) 1
p

, (2.4)

and the fractional Sobolev space Ws,p(Hn) given by

Ws,p(Hn) :=
{
u ∈ L p(Hn) : [u]Ws,p(Hn) < +∞

}
, (2.5)

is equipped with the natural norm

‖u‖Ws,p(Hn) :=
(
‖u‖p

L p(Hn) + [u]pWs,p

) 1
p
, ∀u ∈ Ws,p(Hn). (2.6)

Similarly, given a domain � ⊂ Hn , the fractional Sobolev space Ws,p(�) is given by

Ws,p(�) :=
⎧⎨
⎩u ∈ L p(�) :

(∫
�

∫
�

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξdη

) 1
p

< +∞
⎫⎬
⎭ (2.7)

endowed with the norm

‖u‖Ws,p(�) :=
(

‖u‖p
L p(�) +

∫
�

∫
�

|u(ξ) − u(η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξdη

) 1
p

, ∀u ∈ Ws,p(�). (2.8)

We denote by Ws,p
0 (�) the closure of C∞

0 (�) in Ws,p(Hn).
We conclude this section by recalling the natural definition of weak solutions to the class

of problem we are deal with; that is,{
Lu = f � ⊂ Hn,

u = g Hn
� �,

(2.9)

where the datum f ≡ f (·, u) ∈ L∞
loc(H

n) uniformly in �, the nonlocal boundary datum g
belongs to Ws,p(Hn), and the leading operator L is an integro-differential operator of dif-
ferentiability exponent s ∈ (0, 1) and summability exponent p > 1 given by

Lu(ξ) = P.V .

∫
Hn

|u(ξ) − u(η)|p−2
(
u(ξ) − u(η)

)
do(η−1 ◦ ξ)Q+sp

dη, ξ ∈ Hn,

with do being an homogeneous norm according to Definition 2.1.
For any g ∈ Ws,p(Hn), consider the classes of functions

K±
g (�) :=

{
v ∈ Ws,p(Hn) : (g − v)± ∈ Ws,p

0 (�)
}
,

and

Kg(�) := K+
g (�) ∩ K−

g (�) =
{
v ∈ Ws,p(Hn) : v − g ∈ Ws,p

0 (�)
}
.

We have the following
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185 Page 10 of 30 G. Palatucci, M. Piccinini

Definition 2.5 A function u ∈ K−
g (�) (respectively, K+

g (�)) is a weak subsolution (respec-
tively, supersolution) to (2.9) if∫

Hn

∫
Hn

|u(ξ) − u(η)|p−2(u(ξ) − u(η))(ψ(ξ) − ψ(η))

do(η−1 ◦ ξ)Q+sp
dξdη

≤ (≥, resp.)
∫
Hn

f (ξ, u(ξ))ψ(ξ)dξ,

for any nonnegative ψ ∈ Ws,p
0 (�).

A function u is a weak solution to problem (2.9) if it is both a weak sub- and supersolution.

A couple of remarks are in order.

Remark 2.6 The requirement on the boundary datum g to be in the whole Ws,p(Hn) can be
weakened by assuming a local fractional differentiability, namely g ∈ Ws,p

loc (�), in addition
to the boundedness of its nonlocal tail; i.e., Tail(g; ξ0, R) < ∞, for some ξ0 ∈ Hn and some
R > 0. This is not restrictive, and it does not bring modifications in the rest of the paper. For
further details on the related “Tail space”, we refer the interested reader to papers [28, 29].

Remark 2.7 The presence of a nonzero datum f is a novelty with respect to the Euclidean
counterpart studied in [14]. In addition, in clear accordance with the classical elliptic theory,
with no severe modifications in the forthcoming proofs, one could also consider the case
when the local boundedness assumption on the datum f is replaced by a uniformly growth
control from above, as, e. g., | f (ξ, u)| ≤ a + b|u|q for some suitable exponent q > 1, for
a. e. ξ ∈ � and any u ∈ R.

2.3 Classical technical tools

As in the classical variational approach to local Harnack estimates, the following well-known
iteration lemmata are needed.

Lemma 2.8 Let β > 0 and let {A j } j∈N be a sequence of real positive numbers such that

A j+1 ≤ c0b j A1+β
j with c0 > 0 and b > 1.

If A0 ≤ c
− 1

β

0 b
− 1

β2 , then we have A j ≤ b− j
β A0, which in particular yields lim

j→∞ A j = 0.

Lemma 2.9 Let g = g(t) be a nonnegative bounded function defined for 0 ≤ T0 ≤ t ≤ T1.
Suppose that for T0 ≤ t < τ ≤ T1 we have

g(t) ≤ c1(τ − t)−θ + c2 + ζ g(τ ),

where c1, c2, θ and ζ < 1 are nonnegative constant. Then, there exists a constant c depending
only on θ and ζ , such that for every ρ, R, T0 ≤ ρ < R ≤ T1, we have

g(ρ) ≤ c
(
c1(R − ρ)−θ + c2

)
.

3 Some recent results on fractional operators in the Heisenberg group

Similarly to what happens in the Euclidean case, a fractional Sobolev embedding can be
proved in the non-Euclidean setting of the Heisenberg group. Indeed, the following result
holds true,
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Theorem 3.1 Let p > 1 and s ∈ (0, 1) such that sp < Q. For any measurable compactly
supported function u : Hn → R there exists a positive constant c = c(n, p, s) such that

‖u‖p
L p∗ (Hn)

≤ c[u]pWs,p ,

where p∗ := Qp
Q−sp is the critical Sobolev exponent.

For the proof of the previous statement we refer to Theorem 2.5 in [26], where the authors
extend the same strategy used in [33, 37] in order to prove the fractional Sobolev embedding
in the Euclidean setting.

We also use throughout the following the next result whose proof can be found in [2,
Lemma 5.1].

Lemma 3.2 Let s′ ∈ (0, 1) and p′ ∈ [1,∞) such that 2 < s′ p′ < Q. Then there exists a
constant c = c(n, s′, p′) > 0 such that for any measurable set D ⊂ R2n+1 with |D| < ∞∫

D

dxdydt

(|(x, y)|4 + t2)
s′ p′
4

≤ c|D|1− s′ p′
Q . (3.1)

Hence, x, y ∈ Rn, t ∈ R and |D| denotes the Lebesgue measure of D.

Before proving the weak Harnack inequality, namely Theorem 1.2, we also need to recall
a boundedness estimate and a Caccioppoli-type one for the weak sub- and super-solution
to (1.1).

Theorem 3.3 (Local boundedness [Theorem 1.1 in [32]]). Let s ∈ (0, 1) and p ∈
(
1, 2n

1−s

)
,

let u ∈ Ws,p(Hn) be a weak subsolution to (1.1), and let Br ≡ Br (ξ0) ⊂ �. Then the
following estimate holds true, for any δ ∈ (0, 1],

sup
Br/2

u ≤ δ Tail(u+; ξ0, r/2) + c
δγ

(
−
∫
Br

u p
+d ξ

) 1
p

, (3.2)

where Tail(u+; ξ0, r/2) is defined in (1.5), u+ := max {u, 0} is the positive part of the
function u, γ = (p−1)Q

sp2
, and the constant c depends only on n, p, s, ‖ f ‖L∞(Br ) and the

structural constant � defined in (2.2).

Theorem 3.4 (Caccioppoli estimateswith tail) [Theorem1.3 in [32]]. Let p > 1, q ∈ (1, p),
d > 0 and let u ∈ Ws,p(Hn) be a weak supersolution to problem (1.1) such that u ≥ 0 in
BR(ξ0) ⊂ �. Then, for any Br ≡ Br (ξ0) ⊂ BR(ξ0) and any nonnegative φ ∈ C∞

0 (Br ), the
following estimate holds true∫

Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn |w(ξ)φ(ξ) − w(η)φ(η)|p dξdη

≤ c
∫
Br

∫
Br

|η−1 ◦ ξ |−Q−sp
Hn

(
max

{
w(ξ), w(η)

})p|φ(ξ) − φ(η)|p dξdη

+ c

(
sup

ξ∈suppφ

∫
Hn

�Br
|η−1 ◦ ξ |−Q−sp

Hn dη + d1−p R−sp[Tail(u−; ξ0, R)]p−1

)

×
∫
Br

w p(ξ)φ p(ξ) dξ + cd1−qr Q‖ f ‖L∞(BR) , (3.3)

where w := (u + d)
p−q
p , and the constant c depends only on n, p, q, ‖φ‖L∞(suppφ) and the

structural constant � defined in (2.2).
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4 Proofs of the Harnack estimates with tail

For the sake of readability, from now on we adopt the following notation,

dν := do(η
−1 ◦ ξ)−Q−sp dξdη. (4.1)

4.1 Expansion of positivity

In this sectionwe prove a careful estimate of the weak supersolutions to (1.1), by generalizing
the original strategy applied in the local framework as well as that in the fractional Euclidean
one. Clearly, we have to take into account the needed modifications to handle the difficulties
given in the fractional Heisenberg framework; also, the presence of the nonhomogeneous
datum f would require further care when some iterative argument will be called.

Lemma 4.1 Let with s ∈ (0, 1) and p ∈
(
1, 2n

1−s

)
, and let u ∈ Ws,p(Hn) be a weak

supersolution to problem (1.1) such that u ≥ 0 in BR ≡ BR(ξ0) ⊂ �. Let k ≥ 0, and
suppose that there exists σ ∈ (0, 1] such that∣∣B6r ∩ {u ≥ k

}∣∣ ≥ σ |B6r |, (4.2)

for some r > 0 such that B8r ⊂ BR. Then there exists a constant c̄ ≡ c̄
(
n, p, s,

‖ f ‖L∞(BR), �
)
such that∣∣∣∣B6r ∩
{
u ≤ 2δk − 1

2

( r
R

) sp
p−1

Tail(u−; ξ0, R)

}∣∣∣∣ ≤ c̄

σ log
( 1
2δ

) |B6r | (4.3)

holds for all δ ∈ (0, 1/4), where Tail(·) is defined in (1.5).

Proof We firstly notice that with no loss of generality one can suppose Tail(u−; ξ0, R) > 0,
otherwise (4.3) plainly follows from (4.2) by choosing the constant c̄ large enough.

Take a smooth function φ ∈ C∞
0 (B7r ) such that

0 ≤ φ ≤ 1, φ ≡ 1 in B6r , and |∇Hnφ| ≤ c/r ,

an set

d := 1

2

( r
R

) sp
p−1

Tail(u−; ξ0, R), and ũ := u + d . (4.4)

Now, choose ψ := ũ1−pφ p as a test function in Definition 2.5 by making use of the fact that
u is a supersolution. It follows∫

Hn
f (ξ, u)ũ1−p(ξ)φ p(ξ)dξ

≤
∫
B8r

∫
B8r

|ũ(ξ) − ũ(η)|p−2(ũ(ξ) − ũ(η)
)(
ũ1−p(ξ)φ p(ξ) − ũ1−p(η)φ p(η)

)
dν

+
∫
Hn

�B8r

∫
B8r

|ũ(ξ) − ũ(η)|p−2(ũ(ξ) − ũ(η)
)
ũ1−p(ξ)φ p(ξ) dν

−
∫
B8r

∫
Hn

�B8r
|ũ(ξ) − ũ(η)|p−2(ũ(ξ) − ũ(η)

)
ũ1−p(η)φ p(η) dν

=: I1 + I2 + I3 , (4.5)
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where we have also used the definition of ũ and the translation invariant property of the
fractional seminorms.

We start by estimating the integral contribution in the left-hand side. Thanks to the hypoth-
esis on f and in view of the definition of ψ , we have get∫

Hn
f (ξ, u)ũ1−p(ξ)φ p(ξ) dξ ≥

∫
B6r

(
f (ξ, u)

)
+ũ

1−p(ξ) dξ − cr Qd1−p‖ f ‖L∞(BR).

Now, we focus on the terms on the right-hand side. We can treat the first integral I1 as in the
proof of the Logarithmic Lemma 1.4 in [32], so that

I1 ≤ −1

c

∫
B6r

∫
B6r

∣∣∣∣log
(
ũ(ξ)

ũ(η)

)∣∣∣∣
p

dν + cr Q−sp .

We now proceed to estimating the second integral I2 in (4.5), in turn obtaining an estimate
for I3 as well. We split I2 as follows,

I2 =
∫
Hn

�B8r∩{ũ(η)<0}

∫
B8r

|ũ(ξ) − ũ(η)|p−2(ũ(ξ) − ũ(η)
)
ũ1−p(ξ)φ p(ξ) dν

+
∫
Hn

�B8r∩{ũ(η)≥0}

∫
B8r

|ũ(ξ) − ũ(η)|p−2(ũ(ξ) − ũ(η)
)
ũ1−p(ξ)φ p(ξ) dν

=: I2,1 + I2,2. (4.6)

The contribution in I2,1 can be estimated as follows

I2,1 =
∫
Hn

�B8r

∫
B8r

|ũ(ξ) + (ũ(η))−|p−1ũ1−p(ξ)φ p(ξ) dν

≤ cr Q
∫
Hn

�B8r

(
1 + (u(η))−

d

)p−1

|η−1 ◦ ξ0|−Q−sp
Hn dη

≤ cr Q−sp + cr Qd1−p R−spTail(u−; ξ0, R)p−1

= c(n, s, p,�)r Q−sp ,

where we have used that, for any ξ ∈ B7r and any η ∈ Hn
� B8r ,

|η−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn
≤ (|η−1 ◦ ξ |Hn + |ξ ◦ ξ0|Hn )

|η−1 ◦ ξ |Hn

≤ 1 + 7r

|η−1 ◦ ξ0|Hn − |ξ−1 ◦ ξ0|Hn
≤ 8. (4.7)

For I2,2, notice that ũ ≥ 0 in B7r . Then, ũ(ξ) − ũ(η) ≤ ũ(ξ), for every η ∈ Hn
� B8r ∩{

ũ(η) ≥ 0
}
and every ξ ∈ B7r ; we get

I2,2 ≤ cr Q−sp. (4.8)

Thus, by combining (4.6) with (4.7) and (4.8), we arrive at

I2 + I3 ≤ cr Q−sp ,

for a constant c depending only on n, p, s and �. All in all,∫
B6r

∫
B6r

∣∣∣∣log
(
ũ(ξ)

ũ(η)

)∣∣∣∣
p

dν +
∫
B6r

(
f (ξ, u)

)
+ũ

1−p(ξ)dξ

≤ cr Q−sp + cr Qd1−p‖ f ‖L∞(BR) .
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Now, recalling the particular choice of d in (4.4), one can deduce the existence of a constant
c := c(n, p, s, ‖ f ‖L∞(BR), �) such that∫

B6r

∫
B6r

∣∣∣∣log
(
ũ(ξ)

ũ(η)

)∣∣∣∣
p

dν +
∫
B6r

( f (ξ, u))+ũ1−p(ξ) dξ ≤ cr Q−sp. (4.9)

For any δ ∈ (0, 1/4), define

v :=
(
min

{
log

1

2δ
, log

k + d

ũ

})
+

.

Since v is a truncation of log(k + d) − log(ũ), the estimate in (4.9) yields∫
B6r

∫
B6r

|v(ξ) − v(η)|p dν ≤
∫
B6r

∫
B6r

∣∣∣∣log
(
ũ(ξ)

ũ(η)

)∣∣∣∣
p

dν ≤ cr Q−sp

By the fractional Poincaré inequality (see, e.g., Sect. 2.2 in [3]), we have∫
B6r

|v(ξ) − (v)B6r |p dξ ≤ crsp
∫
B6r

∫
B6r

|v(ξ) − v(η)|p dν ≤ cr Q . (4.10)

Notice that, in view of the definitions of v and ũ, we have{
v = 0

} = {ũ ≥ k + d
} = {u ≥ k

}
.

Therefore, the inequality in (4.2) yields∣∣B6r ∩ {v = 0
}∣∣ ≥ σ |B6r |.

Also, notice that

log
1

2δ
= 1

|B6r ∩ {v = 0}|
∫
B6r∩{v=0}

(
log

1

2δ
− v(ξ)

)
dξ

≤ 1

σ

[
log

1

2δ
− (v)B6r

]
.

which integrated on B6r ∩ {v = log(1/2δ)} gives∣∣∣∣B6r ∩
{
v = log

(
1

2δ

)}∣∣∣∣ log
(

1

2δ

)
≤ 1

σ

∫
B6r

|v(ξ) − (v)B6r | dξ

≤ 1

σ
|B6r |

1
p′
(∫

B6r
|v(ξ) − (v)B6r |p dξ

) 1
p

≤ c

σ
|B6r | ,

where we also used (4.10) and the Hölder inequality.
From all the previous estimates we finally arrive at

∣∣B6r ∩ {ũ ≤ 2δ(k + d)
}∣∣ ≤ c

σ

1

log 1
2δ

|B6r | ,

so that the desired inequality plainly follows by inserting the definition of d given in (4.4). ��
We are now in the position to refine the estimates in order to prove the main result of this

section; i. e.,
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Lemma 4.2 Let s ∈ (0, 1) and p ∈
(
1, 2n

1−s

)
and let u ∈ Ws,p(Hn) be a weak supersolution

to problem (1.1) such that u ≥ 0 in BR(ξ0) ⊂ �.
Let k ≥ 0 and suppose that there exists σ ∈ (0, 1] such that

|B6r ∩ {u ≥ k}| ≥ σ |B6r |,
for some r satisfying 0 < 6r < R. Then, there exists a constant δ ∈ (0, 1/4) depending on
n, s, p, σ and �, such that

inf
B4r

u ≥ δk −
( r
R

) sp
p−1

Tail(u−; ξ0, R) . (4.11)

Proof We immediately notice that in the case when k = 0, the inequality (4.11) does trivially
hold, since u ≥ 0 in BR . Also, with no loss of generality, we can assume that for δ > 0( r

R

) sp
p−1

Tail(u−; ξ0, R) ≤ δk. (4.12)

Now, for any r ≤ ρ ≤ 6r , take a smooth function φ ∈ C∞
0 (Bρ) such that 0 ≤ φ ≤ 1,

and consider the test function ψ := w−φ p , where w− := (� − u)+, for any � ∈ (δk, 2δk).
Testing Definition 2.5 with such a smooth function ψ yields∫

Bρ

f (ξ, u)w−(ξ)φ p(ξ) dξ

≤
∫
Bρ

∫
Bρ

|u(ξ) − u(η)|p−2(u(ξ) − u(η)
)(

w−(ξ)φ p(ξ) − w−(η)φ p(η)
)
dν

+
∫
Hn

�Bρ

∫
Bρ

|u(ξ) − u(η)|p−2(u(ξ) − u(η)
)
w−(ξ)φ p(ξ) dν

−
∫
Bρ

∫
Hn

�Bρ

|u(ξ) − u(η)|p−2(u(ξ) − u(η)
)
w−(η)φ p(η) dν

=: J1 + J2 + J3. (4.13)

We begin to estimate the term on the left-hand side. As done in our proof of Lemma 4.1, we
obtain that ∫

Bρ

f (ξ, u)w−(ξ)φ p(ξ) dξ =
∫
Bρ

( f (ξ, u))+w−(ξ)φ p(ξ)dξ

−
∫
Bρ

( f (ξ, u))−w−(ξ)φ p(ξ)dξ

≥ − �‖ f ‖L∞(BR)|Bρ ∩ {u < �}|.
Now we focus on the right-hand side of (4.13). It is convenient to split J2 as follows

J2 =
∫
Hn

�Bρ∩{u(η)<0}

∫
Bρ

|u(ξ) − u(η)|p−2(u(ξ) − u(η))w−(ξ)φ p(ξ) dν

+
∫
Hn

�Bρ∩{u(η)≥0}

∫
Bρ

|u(ξ) − u(η)|p−2(u(ξ) − u(η))w−(ξ)φ p(ξ) dν

=: J2,1 + J2,2.

Now, notice that

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2(u(ξ) − u(η)

)
w−(ξ)φ p(ξ)

123



185 Page 16 of 30 G. Palatucci, M. Piccinini

≤ (
� + (u(η))−

)p−1
�

(
sup

ξ∈suppφ

|η−1 ◦ ξ |−Q−sp
Hn

)
χBρ∩{u<�}(ξ) ,

which yields

J2,1 ≤ �

(
sup

ξ∈suppφ

∫
Hn

�Bρ

(� + (u(η))−)p−1|η−1 ◦ ξ |−Q−sp
Hn dη

) ∣∣Bρ ∩ {u < �
}∣∣ .

For J2,2, since u ≥ 0 in Bρ , we can write

|η−1 ◦ ξ |−Q−sp
Hn |u(ξ) − u(η)|p−2(u(ξ) − u(η)

)
w−(ξ)φ p(ξ)

≤ �p

(
sup

ξ∈suppφ

|η−1 ◦ ξ |−Q−sp
Hn

)
χBρ∩{u<�}(ξ) .

By reasoning as above for the integral J3, we finally arrive at

J2 + J3 ≤ c�

(
sup

ξ∈suppφ

∫
Hn

�Bρ

(� + (u(η))−)p−1|η−1 ◦ ξ |−Q−sp
Hn dη

)
|Bρ ∩ {u < �}| .

It remains to estimate the contribution J1, and for this one can proceed as seen in the
Euclidean setting (see Theorem 1.4 in [15]); it follows

J1 ≤ −c
∫
Bρ

∫
Bρ

|w−(ξ)φ(ξ) − w−(η)φ(η))|p dν

+
∫
Bρ

∫
Bρ

(
max

{
w−(ξ), w−(η)

})p|φ(ξ) − φ(η)|p dν.

Combining all the above estimates, we get∫
Bρ

∫
Bρ

|w−(ξ)φ(ξ) − w−(η)φ(η))|p dν

≤ c
∫
Bρ

∫
Bρ

(max{w−(ξ), w−(η)})p|φ(ξ) − φ(η)|p dν

+ c�|Bρ ∩ {u < �}|
(

sup
ξ∈suppφ

∫
Hn

�Bρ

(� + (u(η))−)p−1|η−1 ◦ ξ |−Q−sp
Hn dη

+‖ f ‖L∞(BR)

)
. (4.14)

At this point an iteration argument is needed. To this aim, define

� ≡ � j := δk + 2− j−1δk, ρ ≡ ρ j := 4r + 21− j r , and

ρ̃ j := ρ j+1 + ρ j

2
, ∀ j = 0, 1, ...

Note that both 4r < ρ j , ρ̃ j < 6r and

� j − � j+1 = 2− j−2δk ≥ 2− j−3� j .

Moreover, in view of (4.12), we have

�0 = 3

2
δk ≤ 2δk − 1

2

( r
R

) sp
p−1

Tail(u−; ξ0, R) ,
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which yields

{
u < �0

} ⊂
{
u < 2δk − 1

2

( r
R

) sp
p−1

Tail(u−; ξ0, R)

}
. (4.15)

We are now in the position to apply the estimate in Lemma 4.1; we arrive at

|B6r ∩ {u < �0}|
|B6r | ≤ c̄

σ log 1
2δ

. (4.16)

Now,

w− ≡ w j = (� j − u)+ ≥ (� j − � j+1)χBρ∩{u<� j+1}
≥ 2− j−3� jχBρ∩{u<� j+1}, ∀ j = 0, 1, ...

Denote by Bj := Bρ j (ξ0) and let φ j ∈ C∞
0 (Bρ̃ j ) be such that

0 ≤ φ j ≤ 1 φ j ≡ 1 on Bj+1, |∇Hnφ j | ≤ 2 j+3/r .

We have

(� j − � j+1)
p
( |Bj+1 ∩ {u < � j+1}|

|Bj+1|
) p

p∗ ≤
(

−
∫
Bj+1

w
p∗
j φ

p∗
j dξ

) p
p∗

≤ c

(
−
∫
Bj

w
p∗
j φ

p∗
j dξ

) p
p∗

≤ crsp−
∫
Bj

∫
Bj

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p dν,

(4.17)

where in the last inequality we have used the Sobolev embedding with p∗ = Qp/(Q − sp).
Let us estimate (4.17) with the aid of (4.14). Firstly, by the particular choice of φ, we have

c
∫
Bj

∫
Bj

(
max

{
w j (ξ), w j (η)

})p|φ j (ξ) − φ j (η)|p dν

≤ c2 j p�
p
j r

−p
∫
Bj

∫
Bj∩{u<� j }

|η−1 ◦ ξ |−Q−sp+p
Hn dξdη

≤ c2 j p�
p
j r

−sp|Bj ∩ {u < � j }| ,
where, proceeding as in the proof of the Logarithmic Lemma 1.4 in [32], and in view
of Lemma 3.2, we have that∫

Bj

|η−1 ◦ ξ |p−Q−sp
Hn dη ≤ cr p−sp.

Now, notice that, for any η ∈ Hn
� Bj and any ξ ∈ suppφ j ⊂ Bρ̃ j , it holds

|η−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn
≤ |η−1 ◦ ξ |Hn + |ξ−1 ◦ ξ0|Hn

|η−1 ◦ ξ |Hn
≤ c2 j .

Thus,

sup
ξ∈ suppφ j

|η−1 ◦ ξ |−Q−sp
Hn ≤ c2 j(Q+sp)|η−1 ◦ ξ0|−Q−sp

Hn , ∀η ∈ Hn
� Bj ,
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which yields

sup
ξ∈ suppφ j

∫
Hn

�Bj

(� j + (u(η))−)p−1|η−1 ◦ ξ |−Q−sp
Hn dη

≤ c2 j(Q+sp)�
p−1
j r−sp + c2 j(Q+sp)r−sp

( r
R

)sp [Tail(u−; ξ0, R)]p−1

≤ c2 j(Q+sp)r−sp�
p−1
j , (4.18)

where we have also used the fact that u ≥ 0 in BR , the estimate in (4.12), and the fact
that δk < � j .

From (4.14), (4.17), and (4.18), we arrive at( |Bj+1 ∩ {u < � j+1}|
|Bj+1|

) p
p∗ ≤ c2 j(Q+p+sp)

max{�pj , � j }
(� j − � j+1)p

(1 + rsp‖ f ‖L∞(BR))

×|Bj ∩ {u < � j }|
|Bj | .

We are finally in the position to apply the classic iteration Lemma 2.8. We set

A j := |Bj ∩ {u < � j }|
|Bj |

the previous estimate can be rewritten as follows

A
p
p∗
j+1 ≤ c

2 j(Q+p+sp) max
{
�
p
j , � j

}
(
� j − � j+1)p

(1 + rsp‖ f ‖L∞(BR)

)
A j .

Also, since

max{�pj , � j }
(� j − � j+1)p

≤ cp2
j p max{1, 3

2
(δk)1−p} ≤ c2 j p,

it follows

A j+1 ≤ c12
j( Qp∗

p +2p∗+sp∗)A1+β
j , with β = sp

Q − sp
,

and c
p
p∗
1 = c

(
1 + rsp‖ f ‖L∞(BR)

)
. Choosing δ > 0 as follows,

δ := 1

4
exp

⎧⎪⎨
⎪⎩− c̄c

Q−sp
sp

1 2
(
Q
p +s+2) Q(Q−sp)

ps2

σ

⎫⎪⎬
⎪⎭ <

1

4
,

and using the estimate in (4.16), we arrive at

A0 = |B6r ∩ {u < �0}|
|B6r | ≤ c

− Q−sp
sp

1 2
−(

Q
p +s+2) Q(Q−sp)

ps2 ,

which gives

lim
j→∞ A j = 0,

so that infB4r u ≥ δk, and hence (4.11) plainly follows.
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We consider now the case when sp = Q. For this, we choose 0 < ε < s and, calling sε :=
s − ε, we have that sε p < Q. Then, for p < q < p∗

ε := Qp
Q−sε p

, we apply the Sobolev
inequality in Theorem 3.1; it follows

(
−
∫
Bj

w
q
j φ

q
j dξ

) p
q

≤ |Bj |
(p∗ε −q)p

qp∗ε − p
q

(∫
Bj

w
p∗
ε

j φ
p∗
ε

j dξ

) p
p∗ε

≤ c
rsε p

r Qj

(∫
Bj

w
p∗
ε

j φ
p∗
ε

j dξ

) p
p∗ε

.

Thus, by the inequality above we get

(� j − � j+1)
p
( |Bj+1 ∩ {u < � j+1}|

|Bj+1|
) p

q

≤ c

(
−
∫
Bj

w
q
j φ

q
j dξ

) p
q

≤ c
rsε p

r Qj

(∫
Bj

w
p∗
ε

j φ
p∗
ε

j dξ

) p
p∗ε

≤ crsε p −
∫
Bj

∫
Bj

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p
|η−1 ◦ ξ |Q+sε p

Hn

dξdη

≤ crsε p
(

−
∫
Bj

w
p
j φ

p
j dξ

+ −
∫
Bj

∫
Bj

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p
|η−1 ◦ ξ |Q+sp

Hn

dξdη

)
, (4.19)

where in the last inequality we have split the seminorm [w jφ j ]pWsε ,p in the following way∫
Bj

∫
Bj

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p
|η−1 ◦ ξ |Q+sε p

Hn

dξdη

=
∫
Bj

∫
Bj∩{|η−1◦ξ |H≥1}

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p
|η−1 ◦ ξ |Q+sε p

Hn

dξdη

+
∫
Bj

∫
Bj∩{|η−1◦ξ |Hn<1}

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p
|η−1 ◦ ξ |Q+sε p

Hn

dξdη,

and we have estimated the two integrals above as done in [32, Proposition 2.8].
The first term on the right-hand side of (4.19) can be treated as follows

c rsε p −
∫
Bj

w
p
j dξ ≤ c rsε p �

p
j

|Bj ∩ {u < � j }|
|Bj | .

On the other hand, using the same techniques applied in the subcritical case when sp < Q,
we have that the second term on the right-hand side in (4.19) becomes

crsε p −
∫
Bj

∫
Bj

|w j (ξ)φ j (ξ) − w j (η)φ j (η)|p|η−1 ◦ ξ |−Q−sp
Hn dξdη

≤ c r−εp 2 j(Q+p+sp) max{�pj , � j }(1 + r Q ‖ f ‖L∞(BR))
|Bj ∩ {u < � j }|

|Bj | ,
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Setting, as before,

A j := |Bj ∩ {u < � j }|
|Bj | ,

we get

A j+1 ≤ c12
j
(
Qq
p +2q+sq

)
A1+β
j ,

with c
p
q
1 := c r−εp (1 + r Q + r Q‖ f ‖L∞(BR)) and β := q−p

p . Choosing now

0 < δ := 1

4
exp

⎧⎪⎨
⎪⎩− c̄c

p
q−p
1 2

(
Q
p +s+2

)
qp2

(q−p)2

σ

⎫⎪⎬
⎪⎭ <

1

4
,

from (4.16) we get that

A0 = |B6r ∩ {u < �0}|
|B6r | ≤ c

− p
q−p

1 2
−(

Qq
p +2q+sq)

p2

(q−p)2 .

Then, Lemma 2.8, with

c0 := c1 and b := 2
Qq
p +2q+sq

,

yields

lim
j→∞ A j = 0;

which implies infB4r u ≥ δk and hence (4.11) when sp = Q.
The case when sp > Q can be deduced as in the latter, without relevant modifications,

choosing the parameter ε > (s − Q/p). With such a choice in hand, we can use the Sobolev
embedding forWsε,p in Theorem 3.1 and the desired result plainly follows as in the previous
case when sp = Q. ��

4.2 Proof of Theorem 1.1

In order to derive the Harnack inequalities with tail, we firstly need the estimate (4.20)
below, which is a straightforward consequence of the refined positivity expansion proven
in the previous section, together with the classical Krylov-Safonov covering lemma (whose
proof can be found for instance in [27, Lemma 7.2]), which can be adjusted to our framework
thanks to the role of the nonlocal tail, as shown in the Euclidean framework in the proof of
[14, Lemma 4.1].

Lemma 4.3 Let s ∈ (0, 1), p ∈
(
1, 2n

1−s

)
and let u ∈ Ws,p(Hn) be a weak supersolution

to (1.1) such that u ≥ 0 in BR ≡ BR(ξ0) ⊂ �. Then, for any B6r ≡ B6r (ξ0) ⊂ BR, there
exist constants α ∈ (0, 1) and c = c(n, s, p,�) ≥ 1 such that

(
−
∫
Br

uα dξ

) 1
α ≤ c inf

Br
u + c

( r
R

) sp
p−1

Tail(u−; ξ0, R), (4.20)

where Tail(·) is defined in (1.5).
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In the next lemma, we prove that the tail of the positive part of the weak solutions to (1.1)
can be controlled in a precise way.

Lemma 4.4 Let s ∈ (0, 1), p ∈
(
1, 2n

1−s

)
and u ∈ Ws,p(Hn) be a weak solution to (1.1)

such that u ≥ 0 in BR(ξ0) ⊂ �. Then, for any 0 < r < R,

Tail(u+; ξ0, r) ≤ c sup
Br

u + c
( r
R

) sp
p−1

Tail(u−; ξ0, R) + cr
sp
p−1 ‖ f ‖

1
p−1
L∞(BR), (4.21)

where Tail(·) is defined in (1.5) and c = c(n, s, p,�).

Proof Set k := supBr u and choose a cut-off function φ ∈ C∞
0 (Br ) such that 0 ≤ φ ≤ 1,

φ ≡ 1 on Br/2 and |∇Hnφ| ≤ 8/r . Take now the test function ψ := (u − 2k)φ p . We have∫
Br

f (ξ, u)(u(ξ) − 2k)φ p(ξ)dξ

=
∫
Br

∫
Br

|u(ξ) − u(η)|p−2(u(ξ) − u(η)
)(

(u(ξ) − 2k)φ p(ξ) − (u(η) − 2k)φ p(η)
)
dν

+
∫
Hn

�Br

∫
Br

|u(ξ) − u(η)|p−2(u(ξ) − u(η)
)(
u(ξ) − 2k)φ p(ξ) dν

−
∫
Br

∫
Hn

�Br
|u(ξ) − u(η)|p−2(u(ξ) − u(η)

)(
u(η) − 2k)φ p(η

)
dν

=: H1 + H2 + H3. (4.22)

The last two integral in the identity above can be estimated as in the proof of Lemma 4.2 in
[14]; we have

H2 + H3 ≥ ck|Br |r−sp[Tail(u+; ξ0, r)]p−1 − ck pr−sp|Br | − ck|Br |R−sp

×[Tail(u−; ξ0, R)]p−1. (4.23)

For what concerns the contribution H1 in (4.22), we have

H1 ≥ −ck pr−p
∫
Br

∫
Br

|η−1 ◦ ξ |p−Q−sp
Hn dξdη

≥ −ck pr−sp|Br |, (4.24)

where we argued as in the proof of Lemma 1.4 in [32], by applying the estimate in Lemma 3.2
here.

The contribution given by the datum f can be easily estimated as follows,∫
Br

f (ξ, u)(u(ξ) − 2k)φ p(ξ) dξ ≤ k|Br |‖ f ‖L∞(BR). (4.25)

Finally, combining (4.22) with (4.23), (4.24), and (4.25), we obtain

Tail(u+; ξ0, r) ≤ ck + c
( r
R

) sp
p−1

Tail(u−; ξ0; R) + cr
sp
p−1 ‖ f ‖

1
p−1
L∞(BR) ,

which gives the desired inequality by recalling the definition of k . ��
Armed with the tail estimate in Lemma 4.4, and the interpolative inequality given by The-

orem 3.3, we are ready to complete the proof of the Harnack inequality with tail in (1.6). The
strategy does generalize that successfully applied in [14] in the analysis of the homogeneous
case in the Euclidean framework.
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Proof Combining the supremum estimate (3.2) in Theorem 3.3 with the tail estimate (4.21),
we get

sup
Bρ/2

u ≤ cδ−γ

(
−
∫
Bρ

u p
+ dξ

) 1
p

+ cδ sup
Bρ

u

+ cδ
( ρ

R

) sp
p−1

Tail(u−; ξ0, R) + cδρ
sp
p−1 ‖ f ‖

1
p−1
L∞(BR).

We now set ρ := (σ − σ ′)r , with 1/2 ≤ σ ′ < σ ≤ 1, so that

sup
Bσ ′r

u ≤ c
δ−γ

(σ − σ ′)
Q
p

(
sup
Bσr

u
) p−α

p
(

−
∫
Bσr

uα dξ

) 1
p + cδ sup

Bσr

u

+ cδ
( r
R

) sp
p−1

Tail(u−; ξ0, R) + cδr
sp
p−1 ‖ f ‖

1
p−1
L∞(BR) ,

where α ∈ (0, 1) is the one given by Lemma 4.3. We choose the interpolation parameter δ =
(4c)−1, and we obtain

sup
Bσ ′r

u ≤ 1

2
sup
Bσr

u + c

(σ − σ ′)
Q
α

(
−
∫
Br

uα dξ

) 1
α

+ c
( r
R

) sp
p−1

Tail(u−; ξ0, R) + cr
sp
p−1 ‖ f ‖

1
p−1
L∞(BR) , (4.26)

where we also used a suitable Young inequality. Note that by Jensen’s inequality, recalling
that the exponent α given by Lemma 4.3 is in (0, 1), we have that(

−
∫
Br

uα dξ

) 1
α =

(
−
∫
Br

u
α
p p dξ

) 1
α ≤

(
−
∫
Br

u p dξ

) 1
p

< ∞,

since u ∈ L p(Br ). Thus the right-hand term in (4.26) is finite. Finally, the classic iteration
Lemma 2.9, with g(t) := supBt u, τ = σr , t := σ ′r , θ := Q

α
, and ζ := 1

2 , yields

sup
Br

u ≤ c

(
−
∫
Br

uα dξ

) 1
α + c

( r
R

) sp
p−1

Tail(u−; ξ0, R) + cr
sp
p−1 ‖ f ‖

1
p−1
L∞(BR) ,

which gives the desired inequality (1.6) thanks to the result in Lemma 4.3. ��

4.3 Proof of Theorem 1.2

Let 1/2 < σ ′ < σ ≤ 3/4, and let φ ∈ C∞
0 (Bσr ) be such that φ ≡ 1 on Bσ ′r , and |∇Hnφ| ≤

4/(σ − σ ′)r .
We firstly deal with the case when sp < Q. In such a case one can apply Theorem 3.1 to

the function wφ, with w := ũ
p−q
p = (u + d)

p−q
p , to get(

−
∫
Br

|w(ξ)φ(ξ)|p∗
dξ

) p
p∗ ≤ c

rsp

r Q

∫
Br

∫
Br

|w(ξ)φ(ξ) − w(η)φ(η)|pdν. (4.27)

Now, notice that, by the very definition of φ, it follows

|φ(ξ) − φ(η)|p ≤ c|η−1 ◦ ξ |pHn sup
Bσr

|∇Hnφ|p ≤ c(
(σ − σ ′)r

)p |η−1 ◦ ξ |pHn ,
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which yields∫
Br

∫
Br

(
max{w(ξ),w(η)})p|φ(ξ) − φ(η)|pdν ≤ cr−sp

(σ − σ ′)p

∫
Bσr

w p(η) dη , (4.28)

where we have also used the estimate below, which holds true in the case when p <

2n/(1 − s) and because of Lemma 3.2,∫
Br

do(η
−1 ◦ ξ)−Q−sp+pdξ ≤ cr p−sp.

Collecting the estimates (4.27) and (4.28) with the Caccioppoli inequality of Theorem 3.4,
we obtain(

−
∫
Br

|w(ξ)φ(ξ)|p∗
dξ

) p
p∗

≤ c

(
c

(σ − σ ′)p
+ d1−p

( r
R

)sp [Tail(u−; ξ0, R)]p−1
)

−
∫
Br

w p(ξ)φ p(ξ) dξ

+ cd1−qrsp‖ f ‖L∞(BR) , (4.29)

where we have used the fact that

sup
ξ∈suppφ

∫
Hn

�Br
do(η

−1 ◦ ξ)−Q−spdη ≤ cr−sp.

Now, we choose d as in the proof of Lemma 4.1; see (4.4) there. It follows

(
−
∫
Bσ ′r

ũ(p−q)
Q

Q−sp dξ

) Q−sp
Q

≤ c

(σ − σ ′)p
−
∫
Bσr

ũ p−q dξ + crsp‖ f ‖L∞(BR), (4.30)

where c depends only on n, p, s and the structural constant � defined in (2.2).
Let t = (p − q)Q/(Q − sp) for any q ∈ (1, p). Thanks to a standard finite Moser

iteration, the inequality in (4.30) becomes⎛
⎝−
∫
B r
2

utdξ

⎞
⎠

1
t

≤ c

⎛
⎝−
∫
B 3r

4

ũt
′
dξ

⎞
⎠

1
t ′

+ cr
Qsp

t(Q−sp) ‖ f ‖
Q

t(Q−sp)

L∞(BR) , (4.31)

for any 0 < t ′ < t < (p − 1)Q/Q − sp. Since 6r < R, we can apply Lemma 4.3 with
α = t ′ there; it follows⎛

⎝−
∫
B r
2

utdξ

⎞
⎠

1
t

≤ c inf
B 3r

4

u + c
( r
R

) sp
p−1

Tail(u−; ξ0, R) + cr
Qsp

t(Q−sp) ‖ f ‖
Q

t(Q−sp)

L∞(BR) ,

which provides the desired inequality, up to relabelling r .
We investigate now the case when sp = Q. Fix 0 < ε < s, and set sε := s − ε.

Since sε p < sp = Q, we can make use of the Sobolev inequality for the function wφ, to get(
−
∫
Br

|w(ξ)φ(ξ)|p∗
ε dξ

) p
p∗ε

≤ c
rsε p

r Q

∫
Br

∫
Br

|w(ξ)φ(ξ) − w(η)φ(η)|p|η−1 ◦ ξ |−Q−sε p
Hn dξdη
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≤ c rsε p
(

−
∫
Br

|w(ξ)φ(ξ)|p dξ

+ −
∫
Br

∫
Br

|w(ξ)φ(ξ) − w(η)φ(η)|p|η−1 ◦ ξ |−Q−sp
Hn dξdη

)
, (4.32)

where we have obtained the last inequality by following by the same argument used at the
end of the proof of Lemma 4.2. Now, we choose d as in (4.4), so that the inequality in (4.32)
becomes

(
−
∫
Br

|w(ξ)φ(ξ)|p∗
ε dξ

) p
p∗ε

≤ c r−εp
(

c

(σ − σ ′)p
+ d1−p

( r
R

)sp [Tail(u−; ξ0, R)]p−1 + r Q
)

−
∫
Br

|w(ξ)φ(ξ)|p dξ

+ cd1−qr (s−ε)p‖ f ‖L∞(BR)

≤ c

(σ − σ ′)p
−
∫
Br

|w(ξ)φ(ξ)|p dξ + cr (s−ε)p‖ f ‖L∞(BR) .

Thus, recalling the definition of w and that of the cut-off function φ, we have that

(
−
∫
Bσ ′r

ũ(p−q) s
ε dξ

) ε
s

≤ c

(σ − σ ′)p
−
∫
Bσr

ũ p−q dξ + c r (s−ε)p‖ f ‖L∞(BR) .

Set t = (p − q)s/ε, for any q ∈ (1, p); a standard application of the finite Moser iteration
yields

⎛
⎝−
∫
B r
2

utdξ

⎞
⎠

1
t

≤ c

⎛
⎝−
∫
B 3r

4

ũt
′
dξ

⎞
⎠

1
t ′

+ cr
Q(s−ε)

tε ‖ f ‖
s
tε
L∞(BR) ,

for any 0 < t ′ < t < (p − 1)s/ε.
Finally, we can conclude as in the proof in the case when sp < Q; that is, it suffices to

apply Lemma 4.3, with α = t ′ there, in order to get

⎛
⎝−
∫
B r
2

utdξ

⎞
⎠

1
t

≤ c inf
B 3r

4

u + c
( r
R

) Q
p−1

Tail(u−; ξ0, R) + c r
Q(s−ε)

tε ‖ f ‖
s
tε
L∞(BR) ,

which provides the desired inequality, up to relabelling r .
The case when sp > Q can be deduced as in the latter, without relevant modifications,

choosing the parameter ε > (s − Q/p). With such a choice in hand, it plainly follows
that sε p < Q, and thus one can use the Sobolev embedding in Theorem 3.1 and proceed as
done in the limit case when sp = Q. ��

5 The fractional subLaplacian case

In this section we focus our attention on the case when p = 2 in the particular situation in
which the operatorL defined in (1.2) does coincidewith the fractional subLaplacian (−�Hn )s
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on Hn , so that problem (1.1) does reduce to{
(−�Hn )s = 0 in � ⊂ Hn,

u = g in Hn
� �,

(5.1)

where g ∈ Hs(Hn) ≡ Ws,2(Hn).
We now recall the precise definition of the fractional subLaplacian operator; that is,

(−�Hn )su(ξ) = C(n, s) P.V .

∫
Hn

u(ξ) − u(η)

|η−1 ◦ ξ |Q+2s
Hn

dη, ∀ξ ∈ Hn, (5.2)

where | · |Hn is the norm defined in (2.1), and C(n, s) is given by

C(n, s) = c1(n, s)ω2n

nc2(n, s)
, (5.3)

with

c1(n, s) =
(∫

R2n+1

1 − cos(x1)

‖η‖1+2(n+s)
dη

)−1

and c2(n, s) =
∫

∂B1

x21
|η|Q+2s

Hn

dσ(η) , (5.4)

for η := (x1, · · · , x2n, t). In the display above, we denote by ‖ · ‖ the standard Euclidean
norm onR2n+1, and by σ the surface measure on ∂B1; see, e.g., Proposition 1.15 in [18].

5.1 Asymptotics of the fractional subLaplacian

Proof of Proposition 1.3 For the sake of readability, we denote the points ξ inHn as follows,

ξ := (x1, . . . , x2n, t) .

Also, it is convenient to use the weighted second order integral definition of the fractional
sublaplacian,

(−�Hn )su(ξ) = −1

2
C(n, s)

∫
Hn

u(ξ ◦ η) + u(ξ ◦ η−1) − 2u(ξ)

|η|Q+2s
Hn

dη, ∀ξ ∈ Hn ;

see, e.g., [17, Proposition 1.4] and [33, Proposition 3.2]. We also recall that, given D2,∗
Hn u(ξ)

in (2.3), one has

�Hn u ≡ Tr(D2,∗
Hn u) =

2n∑
i=1

X2
i u .

As the computation below shows, we have no contribution outside the unit ball in the limit
as s goes to 1−,∣∣∣∣∣

∫
Hn

�B1

u(ξ ◦ η) + u(ξ ◦ η−1) − 2u(ξ)

|η|Q+2s
Hn

dη

∣∣∣∣∣ ≤ 4‖u‖L∞(Hn)

∫
Hn

�B1

1

|η|Q+2s
Hn

dη

≤ 4c‖u‖L∞(Hn).

Hence, recalling (sps) and (5.9), it follows

lim
s→1− −C(n, s)

2

∫
Hn

�B1(0)

u(ξ ◦ η) + u(ξ ◦ η−1) − 2u(ξ)

|η|Q+2s
Hn

dη = 0. (5.5)
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It remain to estimate the integral contribution in the unit ball. In view of Proposition 2.4, for
any η = (x, t), one get

u(ξ ◦ η−1) = P2(u, ξ)(ξ ◦ η−1) + o(|η|3Hn ) as |η|Hn → 0 , (5.6)

where P2(u, ξ) is the Taylor polynomial of Hn-degree 2 associated to u and centered at ξ

presented in Sect. 2.1.
Also, by the very definition of Taylor polynomial, it follows

P2(u, ξ)(ξ ◦ η−1) = P2
(
u(ξ ◦ ·), 0)(η−1)

= u(ξ) − (∇Hn u(ξ), ∂t u(ξ)
) · η + 1

2
〈x, D2,∗

Hn u(ξ) · x〉.
Thus, inequality (5.6) yields

u(ξ ◦ η−1) = u(ξ) − (∇Hn u(ξ), ∂t u(ξ)
) · η + 1

2
〈x, D2,∗

Hn u(ξ) · x〉
+o(|η|3Hn ) as |η|Hn → 0 .

Using again the result in Proposition 2.4, we arrive at∣∣∣∣∣
∫
B1

u(ξ ◦ η) + u(ξ ◦ η−1) − 2u(ξ) − 〈x, D2,∗
Hn u(ξ) · x〉

|η|Q+2s
Hn

dη

∣∣∣∣∣
≤
∫
B1

|u(ξ ◦ η) − P2(u(ξ ◦ ·), 0)(η)| + o(|η|3Hn )

|η|Q+2s
Hn

dη

≤
∫
B1

o(|η|3Hn )

|η|Q+2s
Hn

dη

≤
∫
B1

1

|η|Q−1
Hn

=: c(n).

The preceeding estimate yields

lim
s→1− −C(n, s)

2

∫
B1

u(ξ ◦ η) + u(ξ ◦ η−1) − 2u(ξ)

|η|Q+2s
Hn

dη

= lim
s→1− −C(n, s)

2

∫
B1

〈x, D2,∗
Hn u(ξ) · x〉

|η|Q+2s
Hn

dη. (5.7)

Now, notice that for any i �= j it holds∫
B1

(
1

2
(Xi X ju(ξ) + X j Xiu(ξ))

)
xi · x j dη

= −
∫
B1

(
1

2
(Xi X ju(ξ) + X j Xiu(ξ))

)
x̃i · x̃ j dη̃,

where x̃i = xi , for i �= j , and x̃ j = −x j . Therefore,∫
B1

(
1

2
(Xi X ju(ξ) + X j Xiu(ξ))

)
xi · x jdη = 0, for i �= j . (5.8)

Moreover, for any fixed index i , making using of the polar coordinates, namely Proposi-
tion 1.15 in [18], we get that there exists a unique Borel measure σ on B1 such that, up to
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permutations, ∫
B1

X2
i u(ξ)x2i
|η|Q+2s

Hn

dη = X2
i u(ξ)

∫ 1

0

∫
∂B1

x21r
Q+1

|
r (η)|Q+2s
Hn

dσ(η) dr

= X2
i u(ξ)

∫
∂B1

x21
|η|Q+2s

Hn

dσ(η)

∫ 1

0

1

r2s−1 dr

= c2(n, s)

2(1 − s)
X2
i u(ξ).

where c2(n, s) is defined in (5.4).
Hence, recalling the result in [33, Corollary 4.2] which shows that

lim
s→1−

c1(n, s)

s(1 − s)
= 4n

ω2n
, (5.9)

whereω2n denotes the (2n)-dimensional Lebesgue measure of the unit sphere S
2n , we finally

obtain that

lim
s→1−(−�Hn )su(ξ) = lim

s→1− −C(n, s)

2

∫
B1

〈x, D2,∗
Hn u(ξ) · x〉

|η|Q+2s
Hn

dη

= lim
s→1− −C(n, s)

2

2n∑
i=1

∫
B1

X2
i u(ξ)x2i
|η|Q+2s

Hn

dη

= lim
s→1− −c1(n, s)ω2n

4n(1 − s)

2n∑
i=1

X2
i u(ξ) ≡ −�Hn u(ξ) ,

as desired. ��

5.2 Robustness of the nonlocal Harnack estimates

The proofs of Theorem 1.4 and Theorem 1.5 can be plainly deduced from the ones in Sect. 4
for the subcritical case, by taking there p = 2, f ≡ 0, and the Koranyi-Folland norm in
place of the generic homogeneous norm do. Below we stated the related needed lemmata,
by indicating only the modifications in the estimates where a special care on the involved
quantities is needed in order to successfully obtaining the desired robustness in the limit as
s goes to 1.

Firstly, we need the related positivity expansion, which can be condensed in the following
two lemmata.

Lemma 5.1 Let u ∈ Hs(Hn), with s ∈ (0, 1), be a weak supersolution to problem (5.1) such
that u ≥ 0 in BR(ξ0) ⊂ �. Let k ≥ 0. Suppose that there exists σ ∈ (0, 1] such that

|B6r ∩ {u ≥ k}| ≥ σ |B6r |, (5.10)

for some r > 0 such that B8r ≡ B8r (ξ0) ⊂ BR(ξ0). Then there exists a constant c̄ ≡ c̄ (n)

such that ∣∣∣∣B6r ∩
{
u ≤ 2δk − 1 − s

2

( r
R

)2s
Tail(u−; ξ0, R)

}∣∣∣∣ ≤ c̄

σ log 1
2δ

|B6r | (5.11)

holds for all δ ∈ (0, 1/4), where Tail(·) is defined in (1.5) taking p = 2 there.
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Proof It suffices to repeat the proof of Lemma 4.1 by choosing the parameter d in (4.4) as
follows,

d := 1 − s

2

( r
R

)2s
Tail(u−; ξ0, R) .

��
Lemma 5.2 Let s ∈ (0, 1) and let u ∈ Hs(Hn) be a weak supersolution to problem (5.1)
such that u ≥ 0 in BR(ξ0) ⊂ �.

Let k ≥ 0 and suppose that there exists σ ∈ (0, 1] such that
|B6r ∩ {u ≥ k}| ≥ σ |B6r |,

for some r satisfying 0 < 6r < R. Then, there exists a constant δ ∈ (0, 1/4) depending on
n and σ for which

inf
B4r

u ≥ δk − (1 − s)
( r
R

)2s
Tail(u−; ξ0, R) . (5.12)

Proof The proof is basically contained in that of Lemma 4.2. It suffices to replace for-
mula (4.12) with

(1 − s)
( r
R

)2s
Tail(u−; ξ0, R) ≤ δk , (5.13)

so that the same iterative process will give

�0 = 3

2
δk ≤ 2δk − 1 − s

2

( r
R

)2s
Tail(u−; ξ0, R) ,

which in turn yields the following estimate (in place of (4.15) in Lemma 4.2)

{u < �0} ⊂
{
u < 2δk − 1 − s

2

( r
R

)2s
Tail(u−; ξ0, R)

}
.

The proof will then follow with no further modifications at all. ��
As well as in the proof in the general nonlinear framework presented in Sect. 4, we can

obtain for the pure subLaplacian case the analogue of the estimate in Lemma 4.3 and that
of the Tail control estimate stated in Lemma 4.4. For the sake of the reader, we prefer to
restate these results by stressing the novelty of the dependance on s here. No modifications
in the related proofs are essentially needed, thanks to the results obtained in Lemma 5.1 and
Lemma 5.2.

Lemma 5.3 Let u ∈ Hs(Hn) be a weak supersolution to (5.1) such that u ≥ 0 in BR ≡
BR(ξ0) ⊂ �. Then, for any B6r ≡ B6r (ξ0) ⊂ BR, there exist constants α ∈ (0, 1) such that(

−
∫
Br

uα dξ

) 1
α ≤ c inf

Br
u + c (1 − s)

( r
R

)2s
Tail(u−; ξ0, R).

where c depends only on n.

Lemma 5.4 Let s ∈ (0, 1) and u ∈ Hs(Hn) be a weak solution to (5.1) such that u ≥ 0 in
BR(ξ0) ⊂ �. Then, for any 0 < r < R,

Tail(u+; ξ0, r) ≤ c sup
Br

u + c (1 − s)
( r
R

)2s
Tail(u−; ξ0, R) ,

where c depends only on n.

123



Nonlocal Harnack inequalities in the Heisenberg group Page 29 of 30 185

Acknowledgements The authors are members of “Gruppo Nazionale per l’Analisi Matematica, la Probabilità
e le loro Applicazioni (GNAMPA)” of Istituto Nazionale di AltaMatematica (INdAM), with the support of the
project “Fenomeni non locali in problemi locali”, CUP_E55F22000270001 . The first author is also supported
by the University of Parma via the project “Regularity, Nonlinear Potential Theory and related topics”.

Funding Open access funding provided by Universitá degli Studi di Parma within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abedin, F., Gutiérrez, C.E., Tralli, G.: Harnack’s inequality for a class of non-divergent equations in the
Heisenberg group. Comm. Partial Differential Equations 42(10), 1644–1658 (2017)

2. Adimurthi, A., Mallick, A.: Hardy type inequality on fractional order Sobolev spaces on the Heisenberg
group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(3), 917–949 (2018)

3. Avelin, B., Kuusi, T., Mingione, G.: Nonlinear Calderón-Zygmund theory in the limiting case. Arch.
Rational Mech. Anal. 227, 663–714 (2018)

4. Balogh, Z.M., Fässler, K., Sobrino, H.: Isometric embeddings into Heisenberg groups. Geom. Dedicata.
195(1), 163–192 (2018)

5. Banerjee, S., Gordina, M., Mariano, P.: Coupling in the Heisenberg group and its applications to gradient
estimates. Ann. Probab. 46(6), 3275–3312 (2018)

6. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and their sub-Laplacians. Springer
Monographs in Mathematics, Springer, Berlin (2007)

7. Byun, S.-S., Ok, J., Song, K.: Hölder regularity for weak solutions to nonlocal double phase problems.
Preprint (2021). Available at arXiv:2108.09623

8. Bucur, C., Dipierro, S., Valdinoci, E.: On the mean value property of fractional harmonic functions.
Nonlinear Anal. 201, 112112 (2020)

9. Bucur, C., Squassina, M.: An Asymptotic Expansion for the Fractional p-Laplacian and for Gradient
Dependent Nonlocal Operators. Commun. Contemp. Math. 24, 2150021 (2022)

10. Chaker, J., Kim, M., Weidner, M.: Harnack inequality for nonlocal problems with non-standard growth.
To appear in Math. Ann. (2022). https://doi.org/10.1007/s00208-022-02405-9

11. Ciatti, P., Cowling, M.G., Ricci, F.: Hardy and uncertainty inequalities on stratified Lie groups. Adv.
Math. 277, 365–387 (2015)

12. Cinti, E., Tan, J.: A nonlinear Liouville theorem for fractional equations in the Heisenberg group. J. Math.
Anal. Appl. 433, 434–454 (2016)

13. Citti, G., Manfredini, M., Sarti, A.: Finite difference approximation of the Mumford and Shah functional
in a contact manifold of the Heisenberg space. Commun. Pure Appl. Anal. 9(4), 905–927 (2010)

14. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836
(2014)

15. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré
Anal. Non Linéaire 33, 1279–1299 (2016)

16. Ferrari, F., Franchi, B.: Harnack inequality for fractional Laplacians in Carnot groups. Math. Z. 279,
435–458 (2015)

17. Ferrari, F., Miranda, M., Jr., Pallara, D., Pinamonti, A., Sire, Y.: Fractional Laplacians, perimeters and
heat semigroups in Carnot groups, Discrete Cont. Dyn. Sys - Series S 11, 477–491 (2018)

18. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Prince-
ton University Press, Princeton, N. J. (1982)

19. De Filippis, C., Mingione, G.: On the regularity of minima of non-autonomous functionals. J. Geom.
Anal. 30(2), 1584–1626 (2020)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2108.09623
https://doi.org/10.1007/s00208-022-02405-9


185 Page 30 of 30 G. Palatucci, M. Piccinini

20. De Filippis, C., Mingione, G.: Manifold constrained non-uniformly elliptic problems. J. Geom. Anal.
30(2), 1661–1723 (2020)

21. De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differential
Equations 267(1), 547–586 (2019)

22. Garofalo, N., Tralli, G.: A class of nonlocal hypoelliptic operators and their extensions. Indiana J. Math.
70, 1717–1744 (2021)

23. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional p-Laplacian. Rev.
Mat. Iberoamericana 32(4), 1353–1392 (2016)

24. Kassmann, M.: The classical Harnack inequality fails for nonlocal operators. SFB 611-preprint 360
(2007). Available at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.223

25. Kassmann, M.: Harnack inequalities and Hölder regularity estimates for nonlocal operator revisited. SFB
11015-preprint (2011). Available at https://sfb701.math.uni-bielefeld.de/preprints/sfb11015.pdf

26. Kassymov, A., Surgan, D.: Some functional inequalities for the fractional p-sub-Laplacian.
arXiv:1804.01415 (2018)

27. Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers of metric space. Manuscripta Math.
105, 401–423 (2001)

28. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators.
Calc. Var. Partial Differential Equations 55, no. 3, Art. 63 (2016)

29. Korvenpää, J., Kuusi, T., Palatucci, G.: Fractional superharmonic functions and the Perron method for
nonlinear integro-differential equations. Math. Ann. 369(3–4), 1443–1489 (2017)

30. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)
31. Liu, H., Yang, X.: Asymptotic mean value formula for sub-p-harmonic functions on the Heisenberg

group. J. Funct. Anal. 264(9), 2177–2196 (2013)
32. Manfredini, M., Palatucci, G., Piccinini, M., Polidoro, S.: Hölder continuity and boundedness estimates

for nonlinear fractional equations in the Heisenberg group. Preprint (2022)
33. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci.

Math. 136, 521–573 (2012)
34. Ovando, G.P., Sublis, M.: Magnetic trajectories on 2-step nilmanifolds. Preprint 2022. Available at

arXiv:2201.02258
35. Palatucci, G.: The Dirichlet problem for the p-fractional Laplace equation. Nonlinear Anal. 177, 699–732

(2018)
36. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-

compactness for fractional Sobolev spaces. Calc. Var. Partial Differential Equations 50(3–4), 799–829
(2014)

37. Palatucci, G., Savin, O., Valdinoci, E.: Local and Global minimizers for a variational energy involving a
fractional norm. Ann. Mat. Pura Appl. 192(4), 673–718 (2013)

38. Pemantle, R., Steif, J.E.: Robust phase transitions for Heisenberg and other models on general trees. Ann.
Probab. 27(2), 876–912 (1999)

39. Piccinini, M.: The obstacle problem and the Perron Method for nonlinear fractional equations in the
Heisenberg group. Nonlinear Anal. 222, 112966 (2022)

40. Pucci, P., Temperini, L.: Existence for fractional (p, q) systems with critical and Hardy terms in R
N .

Nonlinear Anal. 211(4), 112477 (2021)
41. Roncal, L., Thangavelu, S.: Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg

group. Adv. Math. 302, 106–158 (2016)
42. Ros-Oton, X., Torres-Latorre, D.: New boundary Harnack inequalities with right hand side. J. Differential

Equations 288, 204–249 (2021)
43. Schikorra, A.: Nonlinear commutators for the fractional p-Laplacian and applications.Math. Ann. 366(1),

695–720 (2016)
44. Scott, J., Mengesha, T.: Self-Improving inequalities for bounded weak solutions to nonlocal double phase

equations. Comm. Pure Appl. Anal. 21(1), 183–212 (2022)
45. Wang, X., Du, G.: Properties of solutions to fractional p-subLaplace equations on the Heisenberg group.

Boundary Value Problems (2020), Art. 128
46. Weyl, H.: The theory of groups and quantummechanics. Dover Publications, NewYork, (1950). xxii+422

pp

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.223
https://sfb701.math.uni-bielefeld.de/preprints/sfb11015.pdf
http://arxiv.org/abs/1804.01415
http://arxiv.org/abs/2201.02258

	Nonlocal Harnack inequalities in the Heisenberg group
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Heisenberg-Weyl group
	2.2 The fractional framework
	2.3 Classical technical tools

	3 Some recent results on fractional operators in the Heisenberg group
	4 Proofs of the Harnack estimates with tail
	4.1 Expansion of positivity
	4.2 Proof of Theorem 1.1
	4.3 Proof of Theorem 1.2

	5 The fractional subLaplacian case
	5.1 Asymptotics of the fractional subLaplacian
	5.2 Robustness of the nonlocal Harnack estimates

	Acknowledgements
	References




