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Abstract 

Liquid crystalline elastomers (LCEs) exhibit some remarkable physical properties, such as the reversible large mechanical 
deformation induced by proper environmental stimuli of different nature, such as the thermal stimulus, allowing their use as 
soft actuators. The unique features displayed by LCE are originated from their anisotropic microstructure characterized by the 
preferential orientation of the mesogen molecules embedded in the polymer network. An open issue in the design of LCEs is 
how to control their actuation effectiveness: the amount of mesogens molecules, how they are linked to the network, the order 
degree, the cross-link density are some controllable parameters whose spatial distribution, however, in general cannot be 
tuned except the last one. In this paper, we develop a theoretical micromechanical-based framework to model and explore the 
effect of the network cross-link density on the mechanical actuation of elements made of liquid crystalline elastomer. In this 
context, the light-induced polymerization (photopolymerization) for obtaining the elastomers’ cross-linked network is of 
particular interest, being suitable for precisely tuning the cross-link density distribution within the material; this technology 
enables to obtain a molecular-scale architected LCEs, allowing the optimal design of the obtainable actuation. The possibility 
to properly set the cross-link density arrangement within the smart structural element (LCE microstructure design and 
optimization), represents an intriguing way to create molecular-scale engineered LCE elements having material 
microstructure encoded desired actuation capabilities. 

Keywords: polymers; liquid crystal elastomers; cross-link density; actuation 

 

 

1. Introduction 

The increasing demand for smart and responsive devices 
in advanced applications, has stimulated the interest in the 
development of new materials that are nowadays constantly 
being developed for obtaining new performances and new 
functionalities. A common feature shown by all smart 
materials, is their responsiveness to proper environmental 
inputs, which can range within a broad family of stimuli such 
as those of chemical, physical and mechanical nature [1–7]. 
Smart materials have, to some extent, several similarities to 
living systems: in order to optimize the function they are 

devoted to, they adapt their physical, chemical properties or 
geometrical shape in response to environmental stimuli. 

Different types of smart responsive materials, 
characterized by different mechanical properties and 
response mechanisms, have been developed so far. Polymer-
based materials have been often considered for the 
development of responsive devices because of the low cost 
and light weight, good processability, good corrosion 
resistance, high level of biocompatibility, ease of inserting 
particular molecules within their network [8], and because 
their mechanical properties are suitable to mimic biological 
tissues and living organisms [9,10]. Among the most 
intriguing applications of responsive polymers, it is worth 
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mentioning their use as artificial muscles, in industrial 
manufacturing, for health and micro-electromechanical 
systems (MEMS), for the development of drug delivery 
systems, sensors, actuators, etc. [11–13]. 

Among the smart polymers, it worth recalling those 
capable of a reversible mechanical deformation induced by 
an electrical potential, such as dielectric elastomers (DEs) 
[14] and ionic polymer–metal composites (IPMC) [15]. 

Within the huge family of smart materials, a group of 
polymers – embedding at the same time properties of both 
liquid crystals and elastomers – usually referred to as liquid 
crystal elastomers (LCEs), is of particular interest. They are 
characterized by a peculiar microstructural anisotropy 
providing the capability of responding to external stimuli 
with a large mechanical reversible deformation, similar to 
that observed in soft living systems [16]. 

Differently by DEs and IPMCs, LCEs are particularly 
suitable in applications requiring unthetered devices, capable 
of easily responding reversibly to environmental stimuli such 
as heat and light. 

They contain mesogens units whose preferential spatial 
alignment provides a self-organization nature to the material; 
the stimuli-induced change of the orientational order of the 
network’s chains structure can be readily exploited to induce 
self-deformation in the material.  

Due to the anisotropic nature of the spatial arrangement of 
the rod-like molecules contained in liquid crystal elastomers 
in the nematic state, LCEs exhibit a liquid crystalline 
structure: the mesogenic units – whose organization has a 
certain preferential orientation – remain individually mobile 
and thus flow past each other.  

LCEs have been recognized to be particularly useful and 
promising materials because of their multiple properties, 
such as high deformability, elastic response, good strength, 
durability, light weight, significant reversible actuation, etc. 

The self-organization, typical of liquid crystals, and the 
deformation capabilities of elastomers, are the key elements 
allowing large and reversible dimensional change, taking 
place accompanied by a noticeable force density and 
mechanical strength, in response to environmental stimuli 
[17–19]. 

When the material is in the nematic phase, the mesogenic 
units are preferentially aligned in one specific direction 
named the nematic director; if mesogens are topologically 
connected – via their incorporation into a cross-linked 
polymer network – a distortion of the polymer network, 
usually detectable at the macroscale, takes place because of 
the liquid crystalline nematic-isotropic phase transition. Such 
a reversible anisotropic-isotropic transition can be induced 
by various stimuli such as non-mesogenic solvents, heating, 
or, in some cases, ultraviolet (UV) light. During this phase 
transition, a monodomain nematic LCE material will contract 
along the director and expand in the perpendicular direction. 
It is worth recalling that uniaxial deformations up to 300% 
during the phase change have been observed in experiments 
[20]; these large deformation values make LCEs suitable to 

be applied in artificial muscle technologies and in the 
production of soft actuators, soft robots and compliant 
responsive devices. 

The nature of the mesogen molecules, the cross-linking 
degree, the way the mesogen units are connected to the 
polymer network (side-chain or main-chain), are all factors 
affecting the responsiveness whose intensity is quantified by 
the length change and the mechanical force shown by the 
material.  

A customized LCE actuation can be obtained by properly 
arranging the nematic orientation within the material domain 
and/or playing with the cross-link density of the material 
itself, for example through the use of modern 3D printing 
technologies [21–25]. 

By considering the light-induced polymerization in 
elastomer synthesis (such as in the so-called additive 
manufacturing stereolithography (SLA) technology), the 
possibility to design molecular-scale architected LCE 
elements showing specific actuation capabilities, becomes 
easily feasible. A desired cross-link density distribution can 
be obtained by adjusting the light intensity (typically UV 
light is adopted) as well as the exposure time.  

Various models have been proposed for modeling LCE 
materials; in [26] the Helmholtz free energy and a Rayleigh 
dissipation energetic term have been used to model the shape 
change of LCEs under light stimulus. Similarly, in [27] the 
order tensor – originally introduced for nematic fluids [28] - 
has been extended for modelling LCEs. Mechanical models 
describing the mechanics of particular structural elements 
(such as plates, membranes, etc.) have been also proposed, 
[29], while phenomenological approaches, based on the 
implementation in FE models of the experimentally 
determined deformation-temperature relationship, have been 
proposed for modeling shape morphing of LCE elements 
[30]. Despite existing approaches provide a suitable 
description of the nematic-isotropic transition-dependent 
deformation of LCEs and of the related macroscopic 
structural elements, they usually do not take into account 
how the cross-link density affects the actuation capability of 
LCEs. 

In the present paper, starting from the well-known 
molecular theory of rubber elasticity developed by Warner 
and Terentjev for LCEs [31–34], we propose a physics-based 
model capable of considering the effect of the chains cross-
link density on the actuation capability of LCE materials 
through its effect on the chain distribution tensor, a quantity 
strictly related to the step length tensor. 

In this paper, based on experimental evidences, we 
investigate the mechanical response of LCEs by accounting 
for the role played by the cross-link density distribution 
within the material. Another relevant parameter affecting the 
actuation effectiveness of LCEs, is represented by the so-
called order parameter quantifying the degree of mesogens 
alignment; however, as shown by several experimental 
observations, a simple way of tuning the actuation in LCEs 
(especially in the so-called main chain LCEs), is through the 
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cross-link density of their underneath chain network [35]. 
Starting from a micromechanical-based theory of LCEs, we 
investigate the role played by the cross-link density on the 
actuation capability of LCE elements with thermal-induced 
nematic-isotropic transition. The developed theoretical 
model, implemented in a finite element (FE) framework, has 
been used to study the actuation provided by various LCE 
elements and to reproduce experimental data. 

2. Micromechanical model of LCEs 

2.1 Mechanics of a polymer network 

The microstructure of an elastomeric material consists of 
an amorphous arrangement of entangled chains joined at 
discrete points to form a network; the mechanics of this class 
of materials can be conveniently modelled by adopting a 
statistical-based approach describing the spatial chain 
arrangement [36–40]. 

Because of the disordered arrangement of the chains, the 
physical state of the network is well described by the 
entropic energy rather than by the standard deformation 
energy, the latter being typical of solids with an ordered 
microstructure such as in crystalline ones. According to the 
freely-jointed chain model (FJC) a polymer chain is usually 
assumed to be made of 𝑁 rigid (Khun’s) segments 
(monomers) of equal length 𝑏, arranged in the 3D space 
according to the random-walk theory [39]. The maximum 
disorder degree of the network usually takes place in the 
stress-free state of the material; upon stretching, the chains 
are forced to elongate in the load direction and, because of 
the increasing order taking place during the deformation, the 
entropic energy reduces. The above-mentioned assumption 
related to the structure of a single chain, entails a limit for its 
maximum extension because of the rigidity of the 
constituting monomer segments; as a consequence, the 
maximum length of a stretched chain cannot overcome its 
contour length 𝑁𝑏, and the corresponding maximum stretch 

becomes equal to 𝜆௠௔௫ = √𝑁. It has also been observed that 
the so-called end-to-end vector 𝒓, identifying the relative 
position of the two chain’s extremities, represents a suitable 
parameter identifying the chain’s physical state [39]. 

By harnessing this concept, the statistical description of 
the chain arrangement provides a suitable tool for describing 
the state of the polymer. Let us now introduce the function 
𝜌଴(𝒓) describing the chain end-to-end vector distribution in 
the stress-free state of the material: 

𝜌଴(𝒓) = 𝑐௔  𝜑଴(|𝒓|) ,  

being   𝜑଴(|𝒓|) = ቀ
ଷ

ଶగே௕మቁ

య

మ
exp ቀ−

ଷ|𝒓|మ

ଶே௕మቁ  
(1) 

where 𝑐௔ represents the chain density (number of cross-
linked chains per unit volume) while 𝜑଴ is the normalized 
distribution function, usually assumed to be the 3D Gaussian 
function characterized by mean value |𝒓| = 0 and standard 

deviation 𝑏ඥ𝑁/3 .  According to the above definition, the 

integration of the function 𝜌଴(𝑟) over the chain space 
(spanning all the possible chain lengths and orientations) 
must provide the number of mechanically active chains: 

𝑐௔ = 〈𝜌଴〉 = ∫ 𝜌଴ 𝑑Ω
ஐ

=

∫ ∫ ቀ∫ 𝜌଴(𝒓) |𝒓|ଶ𝑑𝑟
ே௕

଴
 ቁ sin 𝜃 𝑑𝜃𝑑𝜔

గ

଴

ଶగ

଴
, where the integral 

takes into account only the ‘mechanically active’ chains, i.e. 
those fully connected to the network that are able to 
contribute to the load carrying mechanism induced by the 
applied deformation. It is worth mentioning that the chain 
concentration 𝑐௔  is strictly related to the shear modulus 𝜇 of 
the material through the well-known expression: 𝜇 =

𝑐௔  𝑘௕ 𝑇, where 𝑘஻ and 𝑇 are the Boltzmann constant and the 
absolute temperature, respectively [39]. 

A simplifying hypothesis, often made in rubber elasticity, 
is the so-called affine deformation hypothesis: the polymer 
chains deform at the microscopic scale as the material does at 
the continuum level. Hereafter, we are going to adopt such as 
assumption in the development of our theory. As a 
consequence, the energy density of the polymer is provided 
by the following integral, 𝛹 = ∫ 𝜌(𝒓, 𝑡) 𝜓(|𝒓|) 𝑑Ω

ஐ
, where 

the term 𝜓(|𝒓|) represents the deformation energy per single 
chain, usually expressed as a function of the end-to-end 
vector distance |𝒓|; according to the Gaussian statistics the 
deformation energy per single chain is expressed as 𝜓(|𝒓|) =
ଷ௞ಳ்

ଶே௕మ
|𝒓|ଶ, while,  according to the more realistic Langevin 

assumption, the chain energy is given by 𝜓(|𝒓|) =

𝑁𝑘஻𝑇 ቀ𝛽𝐿ିଵ(𝛽) + ln
௅షభ(ఉ)

ୱ୧୬୦[௅షభ(ఉ)]
ቁ, being 𝐿ିଵ(𝛽) the inverse 

of the Langevin function (with 𝛽 = |𝒓|/𝑁𝑏) characterized by 
an unlimited value when the chain length tends to its contour 
length, i.e. 𝜓(|𝒓|) → ∞ when |𝒓| → 𝑟௠௔௫ ≅ 𝑁𝑏) [36]. 

The configuration of the network at a generic time 𝑡 is 
fully known through the corresponding distribution function 
𝜌(𝒓, 𝑡) that, starting from the initial chain configuration 
quantified by the distribution function 𝜌଴(𝒓), evolves 
because of the applied mechanical deformation and/or in a 
LCE, due to the self deformation induced by the change in 
the nematic order [32,41]. 

Figure 1 sketches how the distribution function 𝜌(𝒓) (or 
equivalently its dimensionless counterpart  𝜑(𝒓)) changes 
because of the change of the mesogens preferential 
orientation induced by cooling down or heating up the 
material. 

 
Figure 1. - Scheme of the distribution function at a generic material 
point of a liquid crystal elastomer at a temperature above (a) and 
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below (b) the transition temperature 𝑇ேூ. The distribution function 
𝜑(𝒓), whose values are schematically represented by the intensity 
of the background green colour,  is isotropic in the first state 
(random orientation of the mesogens) and anisotropic in the other 
(nematic state with mesogens preferentially aligned along the 𝑥-
direction). 

The current elastic energy density of a deformed network, 
evaluated with respect to its initial (stress-free) state, is 
expressed as: 

Δ𝛹(𝑡) = 𝛹(𝑡) − 𝛹଴ + 𝐴 =  

= 𝑐௔〈[𝜑(𝒓, 𝑡) − 𝜑଴(𝒓)]𝜓〉 +
+𝑝[det(𝑭) − 1]  

(2) 

where  𝑭 = 𝜕𝒙/𝜕𝑿 = 𝟏 + 𝜕𝒖/𝜕𝑿 is the deformation 
gradient tensor, 𝟏 is the second order identity tensor, and 𝒖 is 
the displacement field, while 𝑝 is the hydrostatic pressure 
playing the role of a multiplier constraint required to fulfill 
the incompressibility condition (hereafter always assumed 
for the LCEs) expressed by 𝐽 = det(𝑭) = 1. 

By introducing the distribution tensor 𝝁, quantifying the 
number of chains with a given end-to-end distance and 
orientation in the 3D chain space [42], the previous energy 
density can be rewritten as follows: 

Δ𝛹(𝑡) =
3𝑐௔𝑘஻𝑇

2𝑁𝑏ଶ
tr[𝝁(𝑡) − 𝝁଴]

+ 𝑝[det(𝑭(𝑡)) − 1] 
(3) 

where 𝝁଴ = 〈𝜑଴(𝒓, 𝑡 = 0)𝒓 ⊗ 𝒓〉 is the distribution tensor in 
the initial stress-free state, while 𝝁 = 〈𝜑(𝒓, 𝑡) 𝒓 ⊗ 𝒓〉 refers 
to the current deformed configuration. 

In a standard polymer having a chain network without any 
preferential direction, the chain orientations are distributed 
isotropically in the stress-free state and, by adopting the 
Gaussian statistics for the chain’s energy, the distribution 

tensor assumes the simple expression 𝝁଴ =
ே௕మ

ଷ
𝟏. 

It is worth mentioning that the distribution tensor can 
be thought of as an extension to the so-called structure’s 
tensor [43]. By harnessing the expression of the power 
density of the material: 

Δ�̇�(𝑡) = 𝑐௔〈�̇�(𝒓, 𝑡)𝜓〉 =  

=
ଷ௖ೌ௞ಳ்

ே௕మ
[𝝁(𝑡) − 𝝁଴]: 𝑳(𝑡) + 𝑝(𝑡) tr 𝑳(𝑡) =   

= 𝝈(𝑡) ∶ 𝑫(𝑡)     

(4) 

The Cauchy stress tensor 𝝈(𝑡) at the time 𝑡 can be 
easily identified to be expressed as [42]: 

𝝈(𝑡) = 𝐽ିଵ𝑷(𝑡)𝑭்(𝑡) =
ଷ௖ೌ௞ಳ்

ே௕మ
[𝝁(𝑡) − 𝝁଴] +  𝑝(𝑡) 𝟏  (5) 

In Eq. (4), 𝑫 is the symmetric part of the velocity gradient 
tensor 𝑳, namely 𝑫 = sym 𝑳=(𝑳 + 𝑳்)/2, being 𝑳 = �̇�𝑭ିଵ, 
while the symbol : indicates the double contraction operator. 
In the cases where both damage (i.e. chain loss) and self-
healing (i.e. chain gain) mechanisms do not take place, 𝑐௔ 
remains constant all along the whole mechanical deformation 
process and the time evolution of the distribution function �̇�, 
required to evaluate (4), can be determined from the chain 

density conservation relation 
஽

஽௧
∫ 𝜑(𝒓, 𝑡) 𝑑𝑉

௏
= 0, stating 

that the time variation of the chain concentration 𝑐௔ is zero 
(the number of chains in the volume 𝑉 is constant in time), 
i.e. �̇�௔ = 𝑐௔ 〈�̇�〉 = 0, → 𝜕𝜑(𝒓, 𝑡)/𝜕𝑡 = −(∇𝜑 ⊗ 𝒓 +

 𝜑 𝟏): 𝑳 [42].  

2.2 Mechanics of a Liquid Crystal Elastomer 

Various models aimed at describing the behavior of liquid 
crystals based on the description of molecular force 
interaction, have been proposed in the literature [41,44]. 

The universally-recognized physics-based theory of 
Warner, Terentjev et al. has had the merit to extend the 
classical molecular rubber elasticity to nematic elastomers by 
accounting for the molecular anisotropy induced by the 
coupling of the mesogens reorientation to the elastomer 
network [31,33,34]. The physical state of a nematic 
elastomer is usually described by the director field, whose 
change triggers the appearance of a spontaneous 
deformations occurring even if the elasticity of the network 
partially hinders the mesogen reorientation. 

Hereafter, by harnessing the statistical description of the 
network arrangement through the use of the above-
mentioned distribution tensor, the mechanics of LCEs is 
developed based on the classical molecular rubber elasticity 
[31–34]. 

Differently from classical polymers having a random 
isotropic distribution of the chains orientation in the stress-
free state (in such a case the distribution tensor 𝝁଴ is 
characterized by a spherical symmetry and has three identical 
eigenvalues, 𝜇଴ଵ = 𝜇଴ଶ = 𝜇଴ଷ), polymers polymerized in the 
nematic state have the network’s chains preferentially 
aligned to the nematic ordering of the mesogens. This 
implies that the distribution function 𝜑଴ is non-isotropic, and 
in this case a general expression for 𝜑଴ to be used in place of 
Eq. (1) is the following [32]: 

𝜑଴(𝒓) = ቀ
ଷ

ଶగே௕
ቁ

య

మ
ቀ

ଵ

ୢୣ୲ 𝓵𝟎
ቁ

భ

మ
 exp ቂ−

ଷ 𝒓⋅𝓵బ
షభ𝒓

ଶே௕
ቃ  (6) 

being 𝓵଴ = ℓ଴ୄ 𝟏 + (ℓ଴∥ − ℓ଴ୄ) 𝒏 ⊗ 𝒏 the step-length 
tensor of the chain distribution; it quantifies the anisotropy of 
the polymer chains at the time of cross-linking and is 
expressed through the effective initial step lengths ℓ଴ୄ and 
ℓ଴∥, measured parallel and perpendicular to the director 𝒏, 
respectively (Figure 2a). In the nematic state it happens to be 
ℓ଴∥ ≫ ℓ଴ୄ, while in a perfectly isotropic state the step length 
tensor reduces to 𝓵଴ = 𝑏𝟏 and the averaged square of the 

end-to-end distance becomes 〈𝑟௜
ଶ〉 =

ே௕మ

ଷ
, 𝑖 = 1,2,3 [33,39]. 

In the following, at the time of cross-linking we assume 
the state of the polymer to be stress-free; it can be easily 
shown that in this case the distribution tensor is related to the 

step-length tensor simply by: 𝝁଴ =
ே௕

ଷ
𝓵଴ [45]. 

In its principal directions’ frame of reference the 
distribution tensor can be expressed as 𝝁଴௣ = 𝑹்𝝁଴ 𝑹 =

∑ 𝜇଴௜
ଷ
௜ୀଵ 𝒎௜ ⊗ 𝒎௜, being 𝑹 a second order rotation tensor 
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and 𝒎௜ the versor of the 𝑖 − 𝑡ℎ principal direction
(𝜇଴ଵ, 𝜇଴ଶ, 𝜇଴ଷ) are the three eigenvalues of 
principal directions are superposed to the axes of the frame 
of reference, 𝝁଴௣ assumes the simple diagonal form 

𝜇଴௜ 𝛿௜௝, 𝑖, 𝑗 = 1,2,3.  
It is worth mentioning that, when the principal directions 

of the distribution tensor are aligned with the coordinate 
axes, the eigenvalues (𝜇଴ଵ, 𝜇଴ଶ, 𝜇଴ଷ) are related to the 
standard deviation of the end-to-end distance components 
measured along the axes, namely 𝜇଴௜ = 〈𝑟

when the mesogen units are preferentially aligned along the 

3rd Cartesian axis: 𝜇ଵ = 〈𝑟ଵ
ଶ(𝑡)〉 =

ே௕

ଷ

〈𝑟ଶ
ଶ(𝑡)〉 =

ே௕మ

ଷ
[1 − 𝑄(𝑡)] and 𝜇ଷ =

2𝑄(𝑡)]. 
In the principal direction frame of reference, the 

distribution tensor can be graphically represented 
ellipsoid whose axes are the principal directions
mechanical deformation, as well as the order imposed by the 
nematic mesogens, have the effect of induc
of such an ellipsoid in the respective direction
stretch or that of the nematic director) and, because of the 
material incompressibility constraint, a contraction in the 
perpendicular directions arises. 

The so-called order parameter at the time 
expressing the dispersion of the angle 𝜃
mesogen units with respect the their average direction 

director 𝒏 (Figure 2a) – is defined as 𝑄(𝑡

12, and the corresponding distribution tensor 

𝝁(𝑡) =
ே௕

ଷ
𝓵(𝑡) =

ே௕

ଷ
𝑏[(1 − 𝑄(𝑡)) 𝟏 + 3𝑄

particular, when the order parameter (whose possible domain 
is defined as −1/2 ≤ 𝑄 ≤ 1) is equal to 
order of the mesogens is perfect, and they are all 
aligned along a well defined direction, while
they are randomly oriented, such as in a standard isotropic 
arrangement of polymeric chains. When 
mesogens are characterized by an intermediate degree of 
alignment, where the degree of the orientation dispersion 
increases as 𝑄 → 0. Finally, the value 
nematic order parameter indicates that all 
lay to the 𝑥, 𝑦 plane. 

When  the case of a temperature-driven order change is 
concerned, i.e. 𝜃(𝑡) = 𝜃(𝑇(𝑡)), the distribution tensor 
describing the chain distribution in space becomes itself a 
function of the temperature. The above-defined distribution 
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principal direction, while 
are the three eigenvalues of 𝝁଴. When the 

principal directions are superposed to the axes of the frame 
diagonal form 𝝁଴௣ =

, when the principal directions 
of the distribution tensor are aligned with the coordinate 

) are related to the 
end distance components 

〈𝑟଴௜
ଶ 〉, 𝑖 = 1,2,3, i.e. 

when the mesogen units are preferentially aligned along the 
మ

[1 − 𝑄(𝑡)], 𝜇ଶ =

〈𝑟ଷ
ଶ(𝑡)〉 =

ே௕మ

ଷ
[1 +

In the principal direction frame of reference, the 
represented by an 

ellipsoid whose axes are the principal directions. A 
rder imposed by the 

inducing the elongation 
of such an ellipsoid in the respective direction (i.e. that of the 

and, because of the 
incompressibility constraint, a contraction in the 

at the time 𝑡, 𝑄(𝑡) – 
𝜃(𝑡) formed by the 

mesogen units with respect the their average direction of the 

𝑡) = 〈
ଷ

ଶ
cosଶ 𝜃(𝑡) −

distribution tensor becomes 

𝑄(𝑡) 𝒏 ⊗ 𝒏]. In 

(whose possible domain 
 𝑄 = 1 the nematic 

and they are all ideally 
, while when 𝑄 = 0 

such as in a standard isotropic 
When 0 < 𝑄 < 1 the 

mesogens are characterized by an intermediate degree of 
the degree of the orientation dispersion 

value 𝑄 = −1/2 of the 
indicates that all the rod molecules 

driven order change is 
, the distribution tensor 

the chain distribution in space becomes itself a 
defined distribution 

tensor can be related to the so
𝑸(𝑡) (or the de Gennes order tensor
relation: 

𝑸(𝑡) =
𝑄(𝑡)

2
(3𝒏 ⊗ 𝒏 − 𝟏)

=
ଵ

ଶ
ቀ3

𝝁(௧)

ே௕మ − 𝟏ቁ   

As mentioned in the introduction, 
is strictly related to the temperature of the material: for 
𝑇 < 𝑇ேூ  the order parameter is 
of the nematic order at the time of cross
occur in the nematic state, while if 
the chain configuration tends to become

Figure 2. Preferential orientation of mesogen molecules 
director 𝒏 here in the figure assumed to be 
𝑥 −axis. (b) Nematic-isotropic transition in LCE induced by a 
temperature increase crossing the transition temperature 
left to right). 

The nematic order-temperature dependence is influenced 
by the  physical-chemical properties of the 
the cross-link density and can be determined from
experimental tests [47]. Typically
temperature change because the initial order of the mesogen 
units is progressively destroied when the material is heated 
above the so-called nematic-isotropic transition temperature 
𝑇ேூ . This process is  fully reversible and provides a 
noticeable actuation force [32]
assume the nematic order parameter to be related to the 
temperature change by the  relationship: 

with 𝑔(𝑇) = ቂ1 + exp
்ି்ಿ಺

௖
ቃ

ି

dependent parameter. The function 
the transition of the order parameter from 
to the isotropic one occurs as the temperature increases 
beyond the transition temperature 
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tensor can be related to the so-called nematic order tensor 
(or the de Gennes order tensor [32,46]), through the 

) =
1

2
ቆ

𝓵(𝑡)

𝑏
− 𝟏ቇ = 

(7) 

As mentioned in the introduction, the nematic order of LCEs 
related to the temperature of the material: for 

the order parameter is 𝑄 = 𝑄଴ , being 𝑄଴ the value 
of the nematic order at the time of cross-linking assumed to 

nematic state, while if 𝑇 > 𝑇ேூ   then 𝑄 → 0, i.e. 
tends to become isotropic.  

 
Preferential orientation of mesogen molecules about the 

assumed to be nearly aligned with the 
isotropic transition in LCE induced by a 

crossing the transition temperature 𝑇ேூ (from 

temperature dependence is influenced 
chemical properties of the mesogens and by 

and can be determined from 
. Typically, LCEs are responsive to a 

temperature change because the initial order of the mesogen 
units is progressively destroied when the material is heated 

isotropic transition temperature 
his process is  fully reversible and provides a 

[32]. In the present study we 
assume the nematic order parameter to be related to the 

relationship: 𝑄(𝑇) = 𝑄଴ 𝑔(𝑇), 

ቃ
ିଵ

, being 𝑐 a material-

The function 𝑔(𝑇) quantifies the way 
transition of the order parameter from 𝑄଴ (nematic state) 

as the temperature increases 
beyond the transition temperature 𝑇ேூ  (Figure 2b).  
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The precise tuning of such a transition function is 
important if the nematic-isotropic transient response has to 

be determined, while it is not so important if only the final 
self-deformation arising because of the temperature change is 
sought.  

Dealing with LCE materials, in general 
considered that the distribution tensor 
changes in time because of: i) the applied mechanical
deformation, and ii) the spontaneous deformation 
the nematic-isotropic transition induced by an
stimulus. The evolution of the distribution tensor 
expressed through its time rate �̇�(𝑡) 
following contributions: 

�̇�(𝑡) = �̇�𝑭(𝑡) + �̇�௡(𝑡) 

where the term �̇�𝑭 indicates the stress distribution tensor rate 
induced by the mechanical deformation, while 
associated with the change of the nematic order. Explicitly, 
the above rates can be evaluated as follows

�̇�𝑭(𝑡) =  డ𝝁(௧) 

డ௧
ቚ

௡
= 〈𝜑(𝑡) 𝒓 ⊗ 𝒓〉 𝑳(𝑡) = 𝑳

+[𝑳(𝑡) 𝝁(𝑡)]்  

�̇�௡(𝑡) =  డ𝝁(௧) 

డ௧
ቚ

𝑭
= 2

ே௕మ

ଷ
ൣ�̇�(𝑡) − 𝑾(𝑡)𝑸(

+𝑸(𝑡) 𝑾(𝑡)]  

where the notations  ∎|௡,  ∎|𝑭 indicate the evaluation of the 
quantity ∎ at constant nematic order and at constant 
deformation, respectively, while 𝑾 = ½(

spin tensor [27]. The distribution tensor at the current time 
instant 𝑡 can be evaluated by integrating 
rates over the time interval (0, 𝑡) as 

∫ [�̇�𝑭(𝜏) + �̇�௡(𝜏)]𝑑𝜏
௧

଴
. 

By assuming that the order parameter 
environmental temperature while the principal directions of 

Figure 3. Effect of the cross-link density on the actuation effectiveness of LCEs. Data from 
to be graphically represented in the same graph. The best fitting of the experimental data through the function 
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The precise tuning of such a transition function is 
isotropic transient response has to 

ned, while it is not so important if only the final 
deformation arising because of the temperature change is 

in general it must be 
considered that the distribution tensor 𝝁(𝑡) evolves and 

applied mechanical 
and ii) the spontaneous deformation induced by 
isotropic transition induced by an external 

distribution tensor can thus be 
̇  splitted into the 

(8) 

indicates the stress distribution tensor rate 
deformation, while  �̇�௡ is the rate 

nematic order. Explicitly, 
as follows [7,45]: 

𝑳(𝑡) 𝝁(𝑡) +

) (𝑡) +

]

(9a) 
 
 

(9b) 

indicate the evaluation of the 
at constant nematic order and at constant 

(∇�̇� − ∇�̇�்) is the 
distribution tensor at the current time 

 the above-defined 
as 𝝁(𝑡) = 𝝁(0) +

the order parameter is related to the 
principal directions of 

𝑸 do not change, the rate of the nematic order tensor 
expressed by 

�̇�(𝑡) =
ଵ

ଶ

�̇�(

௕

being    �̇�(𝑡) = 𝑏�̇�(𝑡) [

with    �̇�(𝑡) =
డொ

By considering a generic deformation
deformation gradient 𝑭 taking place while the material 
undergoes a nematic order change due to a temperature 
variation, the energy density 
respect to the initial stress-free state 
is [45]: 

Δ𝛹(𝑡) =
ଷఓ

ଶே௕మ tr(𝝁(𝑡

=
ఓ

ଶ
[tr(𝑭 𝓵଴𝑭

where the affine deformation hypothesis, 
𝒓 = 𝑭𝒓଴, has been adopted; Eq.
of the deformation energy of the classical rubber elasticity 
theory [39]. Since the order tensor in the spatial is r
that in the reference domain through
the distribution tensor in the current deformed configuration 
is related to the initial step length tensor as fo
ே௕

ଷ
𝑭𝓵଴𝑭், being 𝝁଴ =

ே௕

ଷ
𝓵଴. 

3. Effect of the degree of polymerization on the 
mechanics of LCEs 

The possibility to realize 
means of LCE elements, whose respons
controlling their degree of cross
nowadays easily feasible through

link density on the actuation effectiveness of LCEs. Data from [35,52] have been considered and elaborated 
phically represented in the same graph. The best fitting of the experimental data through the function 
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do not change, the rate of the nematic order tensor �̇�(𝑡)  is 

̇ (௧)

௕
  

[3 𝒏 ⊗ 𝒏 − 𝟏]  
డொ(்)

డ்
�̇�  

(10) 

By considering a generic deformation, quantified by the 
taking place while the material 

a nematic order change due to a temperature 
variation, the energy density increment (evaluated with 

free state for which 𝛹଴ = 3𝜇/2), 

( (𝑡) − 𝝁଴) =  

𝑭்𝓵ି𝟏) − 3]  
(11) 

the affine deformation hypothesis, expressed as 
adopted; Eq. (11) provides an extension 

the classical rubber elasticity 
. Since the order tensor in the spatial is related to 

through [32] 𝑸 = 𝐽ିଵ𝑭𝑸଴𝑭், 
the distribution tensor in the current deformed configuration 
is related to the initial step length tensor as follows: 𝝁 =

of the degree of polymerization on the 

The possibility to realize programmable actuation by 
whose responsiveness is tuned by 

ir degree of cross-linking, has become 
nowadays easily feasible through a proper setting of the 

have been considered and elaborated 
phically represented in the same graph. The best fitting of the experimental data through the function 𝜙ூூ(𝑐௔) is also reported. 
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photo-cross-linking parameters (such as the UV light 
intensity and exposure time) – and has been recently 
demonstrated [35]. As a matter of fact, on one side tuning the 
cross-linking of the LCE matrix allows changing the phase 
transition temperature 𝑇ேூ  and on the other side affects the 
deformation capability and the stiffness of the material. The 
role played by the cross-link density on the self deformation 
capabilities of LCEs, represents an issue which depends on a 
variety of factors such as the type of mesogens, the value of 
the order parameter reached during the polymerization, the 
nature of cross-links, the polymer chemistry, etc. [35,48,49]. 

The formation of cross-links between the polymer chains 
prevents them from flowing past each other, making the 
material a solid rather than a liquid melt; however, a 
sufficiently low value of the polymerization degree still 
allows the thermal motion of the polymer chains but does not 
hinder the formation of the liquid crystal order [50], leading 
to a certain self-deformation capability. On the other hand, 
for a given nematic-transition temperature and an initial 
order parameter, a too high cross-link density may reduce the 
thermal-induced motion of the polymer chains because of the 
liquid-crystal reorder, and thus could hinder the deformation 
capacity of LCE materials. 

The physics-based understanding of the cross-link-related 
mechanical response of LCEs, allows designing the 
underneath network – leading to a so-called micro-scale 
architected material – aimed at obtaining a desired 
functionality in term of mechanical response (degree and 
pattern of deformation) obtainable out of the device being 
developed. 

As a matter of fact, it has been experimentally shown that 
the deformation capabilities of LCE, as well as other relevant 
physical properties, are affected by the degree of cross-
linking (chain density) of the network. LCE samples with 
different cross-link densities have been investigated in [48]; 
LCE samples have been pre-stretched in the isotropic state 
(𝑇 = 75°𝐶) and then – passing through the transition 
temperature – cooled-down to 𝑇 = 0°𝐶 to get an elongation 
of the sample, followed by re-heating to 𝑇 = 75°𝐶 to induce 
contraction [48]. Despite the well-known nematic-isotropic 
reversibility, hysteresis of the actuation heating-cooling 
loops was observed; irrespectively of the applied tension, the 
maximum actuation strain decreased as the cross-link density 
increased, leading to some issues in designing LCE actuators.  

According to [48], depending on the LCE’s outcome we 
are interested in – deformation capability or force actuation – 
two different aspects arise: i) the actuation can be increased 
by decreasing the cross-link density (i.e. lower cross-link 
densities enable higher deformation capacity); ii) 
correspondingly, the actuation force reduces because 
decreasing the cross-link density entails a the reduction of 
the stiffness of the material. 

For instance, it has been demonstrated that an increase of 
the amount of an acrylate cross-linker in the solution, 
provides an increase of the nematic-isotropic transition 

temperature, as well as a reduction of the strain induced in 
the material when thermally-stimulated [51]. 

The effect of using two types of cross-linking agents at 
different concentrations, with the purpose of optimizing the 
output strain and the transition temperature, has been studied 
and exploited to tune the physical properties of the LCE 
matrix [52]. LCE films made of a combination of a 
nematogen units (C411U8) with a cross-linker (TAC-4) at 
various percentages have shown an increase of the elastic 
modulus of about 4 times by tripling the amount of TAC-4 
cross-linker; moreover, an increasing of the TAC-4 cross-
linker led to a decrease of the transition temperature and of 
the strain of the sample in thermoelastic experiments [52]. 

On the other hand, by increasing the cross-linker 
concentration in LCE samples, a greater deformation has 
been obtained [53]; according to the Authors, this happens 
because a high value of the cross-linker entails a higher value 
of the order parameter due to the formation of stronger bonds 
between the polymer chains with a consequent better 
alignment of the mesogens [53]. 

A better deformation capability of main-chain (i.e. LCEs 
having the mesogen units bonded within the chains) with 
respect to side-chain LCEs has been observed in [54]. 

In the present study we are interested in modeling the 
actuation response of LCE elements by varying the cross-link 
density of the network; in particular, the reduction of the 
actuation with increasing the cross-link density will be 
considered. To this aim let us consider the actuation of a 
LCE element (quantified in terms of the deformation or the 
rotation shown by an element undergoing a temperature 
change crossing the transition temperature 𝑇ேூ) as the 
measure of the self-deformation effectiveness; in the 
following, we indicate with 0 ≤ 𝑓 ≤ 1 such a deformation 
intensity, where 𝑓 = 0 indicates no actuation and 𝑓 = 1 
indicates the maximum possible actuation. 

By changing the cross-link density 𝑐௔ of the elastomer 
from zero to the maximum value 𝑐௧ (for which the actuation 
does not take place because of the too strong constraint 
exerted by the highly cross-linked chains of the polymer), 
under the same stimulus the degree of actuation changes 
because of the effect of the cross-link density. We assume 
that the maximum actuation takes place when the elastomer 
has the optimal cross-link density 𝑐௔̅. For cross-link densities 
lower than 𝑐௔̅ the actuation increases as 𝑐௔ increases (region 
𝐼 in Figure 3, [53]), while if 𝑐௔̅ ≤ 𝑐௔ ≤ 𝑐௧ the actuation 
decreases (region II in Figure 3). In order to compare the 
actuations provided by LCEs with different cross-link 

densities, a reference cross-link density 𝑐௔
(௥௘௙) is adopted for 

sake of expressing the cross-link density 𝑐௔ in dimensionless 
form. In Figure 3 such a behaviour is illustrated for different 
LCEs (𝑖 = 1,2,3, …) each one characterized by its own 

optimal (𝑐௔̅
(௜)) and maximum (𝑐௧

(௜)) cross-link densities. It can 
be observed that for 𝑐௔̅ ≤ 𝑐௔ ≤ 𝑐௧ (region II) the actuation 
effectiveness, measured through the LCE chain mobility (see 
below), decreases until the maximum cross-link density 
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suitable for the actuation to occur, 𝑐௧, is attained. The 
decreasing of the chain mobility, quantified through the 
parameter 0 ≤ 𝜙 ≤ 1, is material-dependent so the different 
curves indicate the different cross-link density dependence of 
the LCEs actuation effectiveness. For sake of representing 
the curves related to different materials in the same graph, in 
Figure 3 the same value of the optimal chain concentration 
𝑐௔̅ has been assumed for all of them. It is worth mentioning 
that no experimental data have been found to quantitatively 
describe the cross-link actuation dependence occurring in 
region 𝐼. However, the increase of actuation due to the 
increase of cross-link density taking place in such a region is 
related to the polymer chains mobility [50]. 

From the above discussion, it appears that creating a 
specific microstructure characteristics distribution within a 
LCE element – such as the cross-link density but also the 
mesogen orientation and the corresponding gradient, the 
actuation temperature, etc. – offers the possibility to extend 
the design space of LCE elements aimed at tuning and 
adjusting the actuation capabilities arising when the nematic 
to isotropic transition occurs [21], [55]. 

This possibility is nowadays offered by modern additive 
manufacturing (AM) technologies, enabling to get a precise 
microscale arrangment of the structure of the material; to this 
end, it is worth recalling the so-called Direct Ink Writing 
(DIW) [55], [56] or the photopolymerization (SLA) 
technologies among others [57]. 

4. Micromechanics of a partially cross-linked network 

Because of the increasing constraint induced by increasing 
the cross-links existing among the network chains, it is 
reasonable to assume that the effectiveness of the mesogens 
in driving the polymer’s network from the anisotropic to the 
isotropic state could be limited. In other words, we assume 
that a fraction of the elastomer with mesogen units is 
effective in inducing the self-deformation while the 
remaining is not; from a micromechanical perspective, this 
can be seen as the case of a polymer characterized by a 
multiple network structure, i.e. by a cross-linked network 
influenced by the phase transition of the mesogen units and 
another one not involved in the transition at all. 

According to Figure 3, the effectiveness of the mesogen 
units, quantified in terms of the actuation strain, can be 
expressed as: 

𝑓(𝑐௔) =
ఌ(௖ೌ)

ఌ(௖̅ೌ )
=

ఌ(௖ೌ)

ఌ೘ೌೣ
  (12) 

where 𝜀(𝑐௔) is the deformation relevant to the problem in 
turn for the actual cross-link density 𝑐௔, while 𝜀(𝑐௔̅) = 𝜀௠௔௫ 
is the corresponding maximum deformation obtained for the 
optimal cross-link density 𝑐௔̅ of the elastomer. The scalar 
function 𝑓 can be considered as a macroscopic measure of 
the mesogens effectiveness in inducing the deformation of 
the network. On the other hand, from a microscopic 
viewpoint, according to the experimental observations it is 

reasonable to express the mesogen self-deformation 
effectiveness 𝜙 to be related to the cross-link density 𝑐௔ 
through the expressions: 

𝜙ூ(𝑐௔) =
ଵ

ଵାቀ
೎തೌష೎ೌ

೎ೌ
ቁ

ഀ಺ ,           0 ≤ 𝑐௔ ≤ 𝑐௔̅   (region I) 

𝜙ூூ(𝑐௔) = 1 − ቀ
௖ೌି௖̅ೌ

௖೟ି௖̅ೌ
ቁ

ఈ಺಺
,   𝑐௔̅ ≤ 𝑐௔ ≤ 𝑐௧   (region II) 

(13a) 
 
(13b) 

where we remind that 𝑐௧ is the degree of cross-link at which 
the actuation vanishes, and 𝛼ூ (or 𝛼ூூ) is a material’s 
parameter required for tuning the model (Figure 3) whose 
effect when its value increases is shown in the previous 
Figure. In other words, moving from 𝑐௔ ≅ 0 (correspondig to 
a purely liquid monomer for which no actuation takes place 
because the chains are not cross-linked and thus can flow 
freely past each other) up to 𝑐௔̅, the actuation increases 
because the interconnections between the chains enable the 
mesogen units to orient the chains (Eq. (13a)). This aspect 
has been justified in [50], and is expected to be confirmed by 
experimental data. On the other hand, it is worth mentioning 
that all the examples illustrated in Sect. 5 refer only to region 
II where experimental data are available (see Figure 3). 

By further increasing 𝑐௔ beyond the optimal density 𝑐௔̅ up 
to 𝑐௧ (corresponding to no actuation at all), the self-
deformation shown by LCE decreases because of the 
progressive reduction of the chains mobility induced by the 
increasing degree of constraint existing in the network (Eq. 
13b). By assuming 𝜙 to be proportional to 𝑓, we can use the 
macroscopic deformation effectiveness, quantified by the 
scalar 𝑓, to estimate the parameters 𝑐௔̅ , 𝑐௧ , 𝛼 appearing in the 
function 𝜙. This assumption comes from the chains 
alignment driven by the mesogens: the degree of order-
disorder of the network is reasonably proportional to the 
amount of mesogen units linked to the polymer chains, i.e. to 
the cross link density, i.e. to the mesogen molecules joined to 
the network itself. When the optimal chain concentration 𝑐௔̅ 
exists,  the network displays the maximum self deformation, 
being all the mesogens effective in modifying the chains 
orientation arrangement. When the actual chain density 
𝑐௔ ≠ 𝑐௔̅ exists in the network, only the fraction 𝜙 ≤ 1 of the 
mesogens is effective in the deformation, whose intensity is 
now 𝑓 times lower than that of the optimal cross link 
condition (see Eq. (12)).   

These aspects can be easily accounted for through the 
concept of elastomers made of multiple networks; in order to 
generalize this hypothesis, let us assume that a polymer is 
made of a series of 𝐼 = 1, … , 𝑀 non-interacting entangled 
networks, each one associated with its own chain 
concentration 𝑐ூ. 

Under these conditions, in the stress-free state the network 
statistics are represented by 𝑀 distribution functions 𝜑଴ூ and 
by the corresponding distribution tensors: 

𝝁ூ(𝒓, 𝑡 = 0) = 𝝁଴ூ(𝒓) = 〈𝜑଴ூ(𝒓) 𝒓 ⊗ 𝒓〉 ,   

𝐼 = 1, … , 𝑀  
(14) 
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whose evolution due to deformation is expressed as: 

�̇�𝑭ூ(𝑡) = 𝑫 𝝁𝑭ூ(𝑡) + 𝝁𝑭ூ(𝑡) 𝑫 (15) 

while the total chain concentration is given by  𝑐௔ =
∑ 𝑐௔ூ

ெ
ூୀଵ   and the overall distribution tensor 𝝁 representing 

the entire multiple network is provided by: 

𝝁(𝑡) =
ଵ

௖ೌ
  ∑ 𝑐௔ூ  𝝁ூ(𝑡)ெ

ூୀଵ    (16) 

By assuming that the polymer has a mass density 
independent of the chain’s cross-link density, i.e. the number 
of chains per unit volume is the same irrespectively of the 
number of cross-links per unit volume and all the networks 
are chemically identical, the chain concentration can be used 
to express the volume fraction of the network 𝐼 in the 
multiple network elastomer, i.e. 

𝑣௙ூ =
௩಺

௩
=

௖ೌ಺

௖ೌ
   (17) 

Since we assume that the networks are non interacting 
with each other, the elastic energy stored in the material can 
be additively decomposed as: 

Δ𝛹 =
ଷ௞ಳ்

ଶே௕మ
∑ 𝑐௔ூ  tr(𝝁ூ − 𝝁଴ூ) ெ

ூୀଵ +

+𝑝[det(𝑭) − 1] =  

=
ଷ௖ೌ௞ಳ்

ଶே௕మ
∑ 𝑣௙ூ  tr(𝝁ூ − 𝝁଴ூ) ெ

ூୀଵ +

+𝑝[det(𝑭) − 1]   

(18) 

The new expression of the Cauchy stress tensor follows 
directly from Eq. (5), where the distribution tensor for 
multiple networks has to be used. 

In the case of liquid crystal elastomers in which the cross-
link density effect has to be accounted for, we can adopt the 
concept of multiple network for quantifying the nematic-
isotropic driven deformation of the network. 

According to Eq. (13a), the mesogens effectiveness in the 
actuation is maximum when the cross-link density is 𝑐௔̅; 
correspondingly, the network can be reasonably assumed to 
be made of a single network containing the mesogen 
molecules, i.e. 𝑣௙ଵ = 1. On the other hand, when 0 < 𝑐௔ <

𝑐௔̅ (region I) or 𝑐௔̅ < 𝑐௔ < 𝑐௧  (region II) the effectiveness of 
the obtainable actuation is lower, and the network can be 
assumed to be made of a double network (only from the 
mesogen orientation-induced deformation point of view): by 
focusing on region II, the effective network can be assumed 
to have concentration 𝑐௔ଵ = 𝑐௔̅ whose effectiveness has to be 
weighted by the parameter 𝜙(𝑐௔), while the second one, with 
concentration 𝑐௔ଶ = 𝑐௔ − 𝑐௔̅, is assumed to have no self-
deformation effectiveness on the material. The splitting of 
the network in two sub-networks has been introduced only 
for the proper quantification of the deformation effectiveness 
related to the actual cross-link density, while it is not 
required – despite formally correct – to account for the 
mechanical deformation. Of course, when 𝑐௔ > 𝑐௧ the self-
deformation effectiveness of the LCE vanishes, i.e. 𝜙 = 0. 

 
Figure 4. Scheme of the double network assumption adopted for 
modelling the effect of the cross-link density on the self-
deformation capability of LCEs. The rate of the distribution tensor 
�̇� depends on the mechanical deformation (�̇�𝑭) and on the nematic-
isotropic transition due to the first network only (�̇�௡ଵ). 

According to the above assumption, the sub-network 1 can 
be assumed to produce the maximum possible actuation, 
while the network 2 has no effect on the deformation due to 
the nematic-isotropic transition hindered by the too low 
(region I) or by the too high (region II) cross-link density, 
respectively. 

Thus, in order to account for the cross-link density effect 
on the self-deformation capabilities of LCEs, Eq. (8) has to 
be updated as follows (Figure 4): 

�̇�(𝑡) = �̇�𝑭(𝑡) + �̇�௡(𝑐௔, 𝑡) =  

= �̇�𝑭ଵ(𝑡) + �̇�𝑭ଶ(𝑡) + 𝜙(𝑐௔) �̇�௡ଵ(𝑐௔̅, 𝑡)  
(19) 

where the contribution of the second network to the nematic-
isotropic-driven deformation, has been neglected being 
unable to produce any actuation, i.e. �̇�௡ଶ(𝑐௔ଶ, 𝑡) = 0. 

The above-described micromechanical approach, properly 
implemented into a finite element (FE) framework (see [45] 
for more details), is hereafter employed to simulate the 
actuation induced by the self-deformation shown by LCE 
elements under a temperature change. 

5. Numerical simulations and discussion 

5.1 Simulation of an experimental test 

In this section, we compare the results provided by the 
present micromechanical model with an experimental case 
reported in [52]. The uniaxial contraction of a single layer 
LCE element, obtained with different cross-linker content 
during a thermoelastic experiment by heating the material 
above the 𝑇ேூ , is studied. We analyze three different LCE 
strips whose matrix has been prepared by combining 
nematogen units (C411U8) with a cross-linker (TAC-4) at 
three different percentages, leading to different values of the 
material’s Young’s modulus that has been assumed 
according to [52] to be 𝐸(஺) = 3 MPa, 𝐸(஻) = 8.5 MPa and 
𝐸(஼) = 14.5 MPa corresponding to 5; 10; 15 % mol content 
of TAC-4 cross-linker, respectively. 

From the above mentioned Young’s modulus values, the 

corresponding chain concentrations 𝑐௔
(஺), 𝑐௔

(஻) and 𝑐௔
(஼) have 

been evaluated through the standard rubber elasticity 

relationship (see Sect. 2.1) 𝑐௔
  (௜)

= 𝜇(௜)𝑘஻𝑇 with 𝑖 = 𝐴, 𝐵, 𝐶, 
see Figure 5. In the numerical model, we simulate a LCE 
monodomain strip with initial order parameter 𝑄଴ = 0.5 
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having the mesogen units aligned with the horizontal 
direction in order to provide a contraction of the sample 
when heated above the transition temperature 
while the parameter governing the phase transition has been 
assumed to be 𝑐 = 8. Since we consider the maximum 
actuation achievable after the nematic-isotropic transitio
took place (i.e. at 𝑇௕ ≫ 𝑇ேூ), the exact 
dependence on the cross-linker content, as emphasized in 
[52], is neglected. 

 

Figure 5. Actuation strain (contraction) vs chain concentration for a 
fixed optimal cross-link density (𝑐௔̅) and different maximum chain 

concentrations (𝑐௧
(௜), 𝑖 = 1, … ,5). Comparison with the experimental 

data from [52] is reported. 

We assume the material to be in region 
with the optimal cross-link density 𝑐௔̅ corresponding to the 
optimal shear modulus �̅�௔ = 1 MPa, while the parameter 
in Eq. (13a) has been assumed to be 0.65. Since the value of 
the maximum cross-link density 𝑐௧ hindering the self
deformation is not known, for each of the three investigated 

Figure 6. Deformed shapes of the LCE bi-layer element (middle line) at two different temperatures (

the bottom surface. Different top to bottom layer cross

of the lower layer 𝑐௔
(ଵ) corresponding to a soft (A) and very soft material (B) is considered.
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the mesogen units aligned with the horizontal 
a contraction of the sample 

when heated above the transition temperature 𝑇ேூ = 65 °𝐶, 
while the parameter governing the phase transition has been 

. Since we consider the maximum 
isotropic transition 

), the exact 𝑇ேூ  value and its 
linker content, as emphasized in 

 
ation strain (contraction) vs chain concentration for a 

different maximum chain 

). Comparison with the experimental 

We assume the material to be in region 𝐼𝐼 (see Fig. 3), 
corresponding to the 

, while the parameter 𝛼ூூ 
. Since the value of 

hindering the self-
or each of the three investigated 

materials we consider five different values of such a cross

link density, namely 𝑐௧
 (ଵ), 𝑐௧

 (ଶ

Figure 5), whose values have been determined by assuming 

the following values of the shear modulus 

𝜇௧
 (ଶ)

= 5 MPa, 𝜇௧
 (ଷ)

= 6 MPa, 
20 MPa, evaluated through the
density-shear modulus relationship
numerical simulations are reported
experimental data are also shown; it appears that
of 𝑐௧ decreases, the contraction deformation reduces in the 

considered range of cross-link densities, 

observed that the maximum cross
that best fits the experimental results. 

It is important to emphasize that when 
the mesogen effectiveness disappears and no deformation 
takes place in the material; this is the case of

characterized by the smallest 
response is represented by empty triangles in 
bottom right portion of the curve 
cross-link density in such a region overcome

cross-link density 𝑐௧
 (ଵ) of the material.

 

5.2 Bi-layer LCE beam with different chain 
concentrations 

In this section we numerically 
deformation shown by a bi
superposed connected layers with identical thickness

one with its own cross-link concentrations

layer and 𝑐௔
(ଶ) in the upper layer

By applying a temperature rate 
temperature of the bottom surface of the lower layer is made 
to increased from the room temperature 
𝑇௕ = 150 °C. 

The temperature evolution within the 
determined by solving the heat conduction problem in the 
domain occupied by the material 

ca
(1)

layer element (middle line) at two different temperatures (𝑇௕/𝑇

the bottom surface. Different top to bottom layer cross-link density ratios 𝑐௔
(ଵ)

/𝑐௔
(ଶ)

= 1.00, … ,2.50 are assumed. The cross

corresponding to a soft (A) and very soft material (B) is considered. 

 R Brighenti et al  

  

five different values of such a cross-
ଶ), 𝑐௧

 (ଷ), 𝑐௧
 (ସ) and 𝑐௧

 (ହ) (see 
), whose values have been determined by assuming 

the following values of the shear modulus 𝜇௧
 (ଵ)

= 3 MPa, 

, 𝜇௧
 (ସ)

= 10 MPa and 𝜇௧
 (ହ)

=

the above-mentioned cross-link 
relationship. The results of the 

numerical simulations are reported in Figure 5 where the 
experimental data are also shown; it appears that, if the value 

the contraction deformation reduces in the 

link densities, 𝑐௔
(஺)

− 𝑐௔
(஼). It can be 

observed that the maximum cross-link density 𝑐௧
 (ଷ) is the one 

that best fits the experimental results.  
that when 𝑐௔ is greater than 𝑐௧ 

the mesogen effectiveness disappears and no deformation 
takes place in the material; this is the case of the material 

characterized by the smallest 𝑐௧, namely 𝑐௧
 (ଵ), whose 

response is represented by empty triangles in Figure 5: the 
bottom right portion of the curve goes to zero because the 

link density in such a region overcomes the maximum 

of the material. 

beam with different chain 

numerically simulate the self-
deformation shown by a bi-layer plate made of two 

with identical thickness, each 

link concentrations, 𝑐௔
(ଵ) in the lower 

layer. 
By applying a temperature rate �̇� = 2.083 °C sିଵ, the 

temperature of the bottom surface of the lower layer is made 
to increased from the room temperature 𝑇௕ = 25 °C up to 

The temperature evolution within the element is 
determined by solving the heat conduction problem in the 

occupied by the material whose thermal conductivity 

𝑇ேூ = 0.75, a; 𝑇௕/𝑇ேூ = 2, b) of 

are assumed. The cross-link density 
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and specific heat are assumed to be 𝜅 =0.8 W/mK and 
𝐶 =1050 J/Kg K, respectively, while the geometric sizes of 
the bi-layer cantilever beam, restrained along the edge 
marked with  in Figure 6, are 𝐿 = 8 mm, ℎ = 𝑡 =

0.5 mm (Figure 6). 
In order to exclude further deformations not related to the 

phase change of the LCE, the thermal expansion of the 
material is assumed to be negligible in the temperature range 
considered.  

Unless differently stated, for all the LCE parts we assume 
the nematic-isotropic transition temperature to occur at 
𝑇ேூ = 50 °C, while the parameters describing the transition 
from the initial nematic (the mesogens are assumed to be 
initially aligned with the horizontal direction) to the final 
isotropic state are assumed to be 𝑄଴ = 0.3 and 𝑐 = 20 (see 
the expression for the function 𝑔(𝑇), Sect. 2.2). The chain 

concentrations of the double network, expressed through the 
corresponding shear moduli �̅�௔, 𝜇௧, are as follows: �̅�௔ =

𝑐௔̅  𝑘஻  𝑇 = 0.4 MPa, 𝜇௧ = 𝑐௧  𝑘஻ 𝑇 = 6 MPa while the 
exponent in Eq.(13a) has been adopted to be 𝛼ூூ = 2. 
In Figure 6, the deformed pattern of the middle plane of the 
bi-layer element is shown for two dimensionless 

temperatures of the bottom surface, namely 𝑇௕/𝑇ேூ = 0.75 
(Figure 6a) and 𝑇௕/𝑇ேூ = 2.0 (Figure 6b) by varying the 

relative cross-link density, 𝑐௔
(ଵ)

/𝑐௔
(ଶ), of the composing 

layers. In this figure as well as in the following, geometrical 
quantities are plotted by using the dimensionless coordinates 
𝑥/𝐿 and 𝑦/ℎ, where 𝑥 and 𝑦 represent the current ones, i.e. 
evaluated in the deformed configurationt (see the adopted 
frame of reference in Figure 6b). The greater the difference 
of the cross-link density of the two layers, the larger the 
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Figure 8. Deformed pattern of the middle line of the LCE bi-layer element for two different bottom to top chain concentration ratios 

𝑐௔
(ଵ)

/𝑐௔
(ଶ) (1.25, a; 2.5, b) and various layer thickness ratios, ℎ(ଵ)/ℎ = 0.5, 0.8, 0.9 (ℎ(ଶ)/ℎ = 0.5, 0.2, 0.1) for a temperature of the bottom 

surface of the element equal to 𝑇௕/𝑇ேூ = 2. 

Figure 7. Deformed shapes of the bi-layer LCE element and corresponding dimensionless order parameter fields, by adopting different 

cross-link density ratios 𝑐௔
(ଵ)

/𝑐௔
(ଶ) (bottom to top value ratio) of the two constituting layers for three different temperatures of the bottom 

surface. Specifically, the results displayed are referred to 𝑐௔
(ଵ)

/𝑐௔
(ଶ)

= 1.04 (a,b,c) and 𝑐௔
(ଵ)

/𝑐௔
(ଶ)

= 2.50 (d,e,f) for the three considered 
temperatures, respectively, namely 𝑇௕/𝑇ேூ = 0.5; 0.75; 2. The undeformed configurations are reported in grey colour. 
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bending actuation shown by the plate; when 𝑐௔
(ଵ)

/𝑐௔
(ଶ)

= 1 
the element shows a simple contraction without any bending 
actuation. In Figure 7 the deformed shapes of the LCE 
element with the corresponding values of the relative order 

parameter field, 𝑄(𝑇)/𝑄଴, for 𝑐௔
(ଵ)

 /𝑐௔
(ଶ)

= 1.04 (left 

column) and 𝑐௔
(ଵ)

 /𝑐௔
(ଶ)

= 2.50 (right column) are displayed.  

5.3 Bi-layer LCE beam with different layers’ thickness 

In this second parametric example, we consider the 
actuation shown by a bi-layer LCE element (the same 
boundary conditions assumed in the previous example are 
considered) whose constituent layers have different 
thicknesses and different chain concentrations. 

The bottom to top cross-link density ratio is assumed to be 

equal to 𝑐௔
(ଵ)

/𝑐௔
(ଶ)

= 1.25 and 2.5, while their relative 
thickness ratio is assumed to be equal to ℎ(ଵ)/ℎ =

0.5;  0.8;  0.9 (Figure 8). It can be appreciated that the 
bending actuation increases as much as the layers thickness 
tends to be identical, while a large relative thickness ratio is 
not effective in producing actuation. 

In the limit case of a very large value of the ℎ(ଵ)/ℎ(ଶ) 
ratio, the deformed shape tends to that of a single layer as 
shown in Figure 9e (simple contraction). 

As occurred in the previous parametric example, due 
to the small size of the element, for a fixed relative 

thickness ratio, a higher chain concentration ratio 

𝑐௔
(ଵ)

/𝑐௔
(ଶ) enables a larger bending actuation (see Figure 8a, 

b). 
Finally, in Figure 9 the deformed shapes of the element 

for two thickness ratios are displayed, while the filling colour 
quantifies the relative order parameter 𝑄(𝑇)/

𝑄଴ corresponding to the dimensionless temperature 𝑇௕/

𝑇ேூ  assigned at the bottom edge of the elemen; it is worth 
noticing that, due to the small size of the element, the 
temperature field is almost constant within its domain so the 
order parameter is uniform throughout the plate. 

5.4 LCE beam with graded cross-link density 

The actuation of a cantilever beam having a graded 
distribution of the cross-link density, is considered hereafter. 
The main parameters involved in the simulations are the 
same used in the previous examples; however, the beam is 
now assumed to have a fixed cross-link density at its top 
edge, 𝑐௔

(்) = 𝑐௔̅, while the cross-link density varies linearly 
through the thickness of the element, up to the maximum 
value reached at the bottom edge where it assumes the value 
𝑐௔

(஻) = 𝛼 𝑐௔̅ (2.5 ≤ 𝛼 ≤ 10), being 𝑐௔̅ the cross-link density 
corresponding to the shear modulus �̅� = 0.4 𝑀𝑃𝑎; the cross-
link density gradient parameter is thus defined as 𝜅 = (𝛼 −

1)/ℎ. The mesogen units are assumed to be initially aligned 
with the 𝑋-direction, while the initial order parameter has 
been assumed to be equal to 𝑄଴ = 0.3 (Figure 10). 

A greater chain density gradient produces a more 
pronounced self-deformation actuation of the element, with 
an increase of the actuation amplitude up to four times by 
amplifying the cross-link density gradient parameter from 

𝜅 = (𝛼 − 1)/ℎ = 1.5/ℎ up to  𝜅 = 9/ℎ. 
It can be appreciated that creating a graded cross-link 

density distribution across the thickness – nowadays easily 
obtainable by modern 3D printing technologies – can be used 
to encode the morphing capabilities of the element into the 
material’s microstructure. 
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Figure 9. Deformed shapes of the LCE bi-layer element with different layer thickness ratios ℎ(ଵ)/ℎ(ଶ) (equal to 2 and 4) and different cross-

link density ratios 𝑐௔
(ଵ)

 /𝑐௔
(ଶ) with the corresponding dimensionless order parameter field. The two cases with ℎ(ଵ)/ℎ(ଶ) = 4 (left column, a, 

b, c) and ℎ(ଵ)/ℎ(ଶ) = 9 (right column, d, e, f) are displayed for three different temperatures of the lower edge of the element, 𝑇௕/𝑇ேூ = 0.5, 
1.25, 2.5. The undeformed configurations are reported in grey colour. 
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6. Conclusions 

Liquid crystalline elastomers (LCEs) are intriguing 
polymers for making elements showing a large reversible 
self-deformation, when properly stimulated by environmental 
stimuli, thanks to the nematic to isotropic transition taking 
place in their molecular network. In LCEs, the amount of the 
deformation arising when the nematic-isotropic transition 
takes place (as occurs in temperature responsive LCEs when 
the transition temperature is overcome) strongly depends on 
the kind of the mesogen molecules, the way they are 
connected to the polymer network (side-chain or main-
chain), and the cross-linking degree. 

In particular, we have here considered the influence of the 
cross-link density, a property that can be nowadays easily 
controlled by using additive manufacturing (AM) 
technologies, on the actuation capabilities of LCEs. In the 
liquid state, corresponding to a purely monomer melt, LCE 
units are reciprocally disconnected and no self-deformation 
capability exists; by increasing the chain density, the 

actuation effectiveness increases until an optimal cross-link 

density, for which the actuation is maximum, is reached. By 
further increasing the cross-link density, the actuation 
decreases until a maximum cross-link density, at which no 
self-deformation takes place because of the excessive 
constraints existing among the network chains.  

A theoretical micromechanical-based approach has been 
proposed and implemented into a FE computational 
framework for the simulation of LCE elements by accounting 
for the role played by the cross-link density. It has been 
shown that tuning the cross-link density allows obtaining a 
molecular-scale architected material capable of providing 
tunable deformation functionalities, according to the smart 
material application field of interest. This way of encoding 
the responsiveness by operating at the molecular level, is of 
particular interest in small scale applications; this is made 
possible, for instance, by the advanced photopolymerization 
technique, widely used in AM production of polymers, 
thanks to its simplicity and high resolution, allowing to 
overcome the dimensional scale limitations of other 
production approaches. 
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Figure 10. Functionally graded beam with chain concentration gradient used for tuning the shape morphing. The dimensionless chain 

concentration varies linearly from 𝑐௔̅ at the top edge up to the maximum value 𝛼 𝑐௔̅ at the bottom edge (a).  Deformed pattern of the 
middle line of the LCE for different values of the parameter 𝛼 at 𝑇௕/𝑇ேூ = 2 (b).  Deformed shapes of the LCE graded element with 

different chain concentration gradients 𝜅 for two different temperatures of the lower edge of the element, 𝑇௕/𝑇ேூ = 0.5, 2. The 

undeformed configurations are reported in grey colour (c). 
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