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Abstract When the number of interacting agents in

a multi-agent system is large, the detailed study of

the dynamics of each agent tends to obfuscate the col-

lective, and possibly emergent, dynamics of the multi-

agent system as a whole. When the interest is on the

collective properties of the multi-agent system, a statis-

tical study of the dynamics of the states of the agents

can provide a more effective perspective on the system.

In particular, a statistical approach can better focus

on the long-time asymptotic properties of the studied

multi-agent system. The initial part of this paper out-

lines a framework to approach the study of the collec-

tive properties of multi-agent systems. The framework

targets large and decentralized multi-agent systems in

which the relevant collective properties emerge from in-

teractions. Then, the paper exemplifies the use of the
framework to study the long-time asymptotic proper-

ties of multi-agent systems in which agents interact us-

ing the symmetric gossip algorithm. The state of each

agent is represented as a real number, and the use of

the framework shows that all agents exponentially con-

verge to the average of their initial states. The analytic

results provided by the framework are confirmed by in-

dependent multi-agent simulations. Finally, the paper

is concluded with a brief discussion of related works and

with an overview of future extensions.
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1 Introduction

Large and decentralized multi-agent systems (e.g., large

fleets of autonomous connected vehicles in an urban

area [16,37,44]) are the principal target of relevant re-

search efforts that jointly form the basis of the studies

on collective adaptive systems (e.g., [23,28]). These sys-

tems also find relevant applications in various topics re-

lated to distributed artificial intelligence (e.g., [30,54]).

Usually, the study of the dynamics of these systems as-

sumes that each agent is associated with a state that

changes dynamically. The state of an agent changes be-

cause of multiple causes and, in particular, it changes

because of the interactions that occur when the agent

gets in touch with another agent. Accordingly, the de-

scriptions of how interactions change the states of the

agents are central to the study of the dynamics of these

systems, and they must consider all phenomena that

cause agents to change their states. Therefore, these de-

scriptions strongly depend on the considered phenom-

ena and on the specific characteristics of the multi-agent

system under investigation.

When the number of agents in the considered multi-

agent system is large, the study of the dynamics of the

state of each agent is not feasible. For example, consider

a large swarm of droids or autonomous taxis in urban

areas: on the one hand, tracking the position, veloc-

ity, and battery level of each agent might be extremely

expensive, if not impossible. On the other hand, what

really matters is that the group as a whole achieves

its overall objectives, which can include properly shap-

ing the intended choreography for droids or uniformly

covering the urban areas for taxis. Actually, when the

number of agents in the considered multi-agent system

is large, the study of the collective behavior [32,53] of

the multi-agent system as a whole is preferred, which
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requires focusing on the characteristics of the states

of the agents that jointly form the relevant collective

properties of the multi-agent system as a whole. Under

the mild assumption that the relevant characteristics of

the states of the agents can be represented as real num-

bers, the collective, and possibly emergent, properties of

the considered multi-agent system can be studied using

a statistical approach. Although statistical approaches

are mainly concerned with the study of aggregate val-

ues, which are not normally sufficient to obtain detailed

descriptions of the state of each agent, these aggregate

values are sufficient to describe the collective dynamics

of the multi-agent system as a whole.

This paper reports initial results intended to shed

the light on a general-purpose approach to study the

asymptotic collective dynamics of large and decentral-

ized multi-agent systems. The discussed approach is

based on a specific instantiation of mathematical ki-

netic theories (e.g., [4,5]) that we call Kinetic Theory of

Multi-Agent Systems (KTMAS ). Mathematical kinetic

theories are not necessarily restricted to the study of

physical phenomena, and they are generally intended

to investigate the collective properties of groups of in-

teracting peers under the assumption that the relevant

characteristics of a group emerge from local interactions

among peers and from environmental forces, which is

the case for several interesting problems (e.g., [40,41]).

Actually, mathematical kinetic theories provide inter-

esting results when the characteristics of studied sys-

tems justify a statistical approach and when the interac-

tions among peers are the main causes of the dynamics

of studied systems. In this context, KTMAS is instead

specifically designed to analytically study the long-time

asymptotic properties of large and decentralized multi-

agent systems in which agents affect each other’s state

via direct message passing [6,7].

The major contribution of this paper is to review

and extend the results reported in [42] to broaden the

discussion on an analytic framework intended to charac-

terize KTMAS. Note that the framework can effectively

support both descriptive and prescriptive reasoning on

the long-time asymptotic behavior of the collective, and

possibly emergent, properties of large and decentralized

multi-agent systems. As a descriptive tool, the frame-

work benefits from solid mathematical foundations to

represent a valid alternative to multi-agent simulations.

As a prescriptive tool, the framework can be effectively

used to design the interactions capable of producing the

target collective dynamics. These uses of the framework

are exemplified in Sect. 3, where the framework is con-

cretely applied to the study of the collective dynamics of

multi-agent systems in which agents use the symmetric

gossip algorithm [12,13]. The analytic results obtained

using the framework are compared with independent

multi-agent simulations, and the discussed comparison

shows that the analytic results can accurately account

for the results of simulations.

This paper is organized as follows. Sect. 2 provides

a brief, but detailed, introduction to KTMAS by show-

ing how the adopted analytic framework is obtained

from general considerations and appropriate assump-

tions. Sect. 3 applies the framework to study the dy-

namics of multi-agent systems in which agents use the

symmetric gossip algorithm. Sect. 4 compares the an-

alytic results obtained using the framework with inde-

pendent multi-agent simulations to confirm the effec-

tiveness of the used approach. Sect. 5 briefly presents

relevant related literature. Finally, Sect. 6 concludes the

paper and overviews future research.

2 An Overview of the KTMAS Framework

Mathematical kinetic theories are all based on a com-

mon general framework (e.g., [4,5]) intended to study

the collective dynamics of groups of interacting peers.

This general framework assumes that the properties

that characterize peers change because of interactions

and environmental forces, and that studied groups are

so large that their collective, and possibly emergent,

properties can be adequately studied using a statisti-

cal approach. Note that this general framework is not

sufficient to study specific groups of interacting peers

because it must be turned into a model by completing it

with the details needed to study specific phenomena in

specific contexts. A model obtained by completing this

general framework with the needed details can then be

used to study the collective dynamics of the groups of

peers for which the provided details are sufficiently de-

scriptive of interactions and environmental forces.

2.1 The Strong Form of the Boltzmann Equation

The KTMAS framework, as outlined in this section, is a

specific instantiation of the general framework of math-

ematical kinetic theories intended to study large and

decentralized multi-agent systems composed of agents

that autonomously exchange messages. In particular,

the framework studies multi-agent systems composed of

a static and large number n ∈ N+ of interacting agents,

where each agent is uniquely identified by a natural

number between 1 and n. Each agent has a state and,

without major loss of generality, it is assumed that the

state of an agent is represented as a real number q ∈ Q,

where Q ⊆ R is an arbitrary open interval that contains

the different states an agent can assume.
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Agents experience autonomous interactions in the

multi-agent system. Interactions are assumed to take

the form of message exchanges, and each interaction in-

volves only two agents. Therefore, the only considered

form of interaction regards an agent r (the receiver) re-

ceiving a message from an agent s (the sender). Note

that other forms of interaction (e.g., multicast or stig-

mergic [21]) can be treated by reducing them to pair-

wise message exchanges or by considering them explic-

itly in the KTMAS framework. Only the first option is

used in this paper, and the second option is left for a

future development of the framework.

Interactions are assumed to be instantaneous, which

means that if an agent is involved in an interaction, then

the interaction is completed before the agent can ex-

perience any other interaction. Therefore, interactions

are mutually independent, and the effects of an interac-

tion depend only on the states of involved agents. Each

agent can interact with any other agent in the multi-

agent system. Since interactions are the only interesting

events in the current form of the KTMAS framework,

time is modeled as a real variable in R≥0, and interac-

tions occur at the instants of a Poisson point process

with average rate ν ∈ R+.

In its current form, the KTMAS framework does

not consider environmental forces. Therefore, the state

of an agent can change only because of interactions. In-

teractions are described in terms of how they change

the states of the involved agents. In detail, the cur-

rent form of the framework assumes that interactions

are described in terms of proper interaction rules that

link the pre-interaction states with the respective post-

interaction states. Interaction rules are specific to the

multi-agent system under investigation, and the frame-

work leaves them unspecified until a model of the sys-

tem is needed to actually study interesting collective,

and possibly emergent, properties. Fig. 1 illustrates an

example of an interaction in a multi-agent system. In

particular, Fig. 1(a) shows that, at time ti, an agent in

state qs = 0.3 interacts with an agent in state qr = 0.5.

Instantaneously, the states of the two agents change,

and Fig. 1(b) shows the corresponding states q′s = 0.36

and q′r = 0.44 reached after the interaction. Note that

previous interactions, which occur at times ti−1 and

ti−2, are sketched with dashed lines.

In accordance with the general framework of mathe-

matical kinetic theories, f : Q×R≥0 → R is a function,

called density function, such that f(q, t) dq counts the

number of agents whose states are in (q, q+dq) at time

t ∈ R≥0. Note that f is assumed to be sufficiently reg-

ular to support the analytic developments discussed in

the remaining of this paper. The introduction of the

density function f is sufficient to count the number of

qs=0.3

qr=0.5

ti
ti−2

ti−1

(a)

q′s=0.36

q′r=0.44

ti
ti−2

ti−1

(b)

Fig. 1 Illustrative example of an interaction at time ti with
(a) pre-interaction states qs = 0.3 and qr = 0.5, and (b)
post-interaction states q′s = 0.36 and q′r = 0.44.

agents n ∈ N+ in the multi-agent system

n =

∫
Q

f(q, t) dq, (1)

where the dependence of n on t is dropped because the

number of agents in the multi-agent system is assumed

to be static. Moreover, the introduction of the density

function f can be used to characterize two relevant col-

lective properties of the multi-agent system: the average

state and the variance of the states. The average state

at time t ∈ R≥0 is

q̄(t) =
1

n

∫
Q

q f(q, t) dq, (2)
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while the variance of the states at time t ∈ R≥0 is

σ2(t) =
1

n

∫
Q

(q − q̄(t))2f(q, t) dq. (3)

In order to study the evolution of the density func-

tion f , and therefore, to study the dynamics of the av-

erage state and of the variance of the states, recall that

the current form of the KTMAS framework considers

multi-agent systems in which interactions involve only

two agents. If t ∈ R≥0 is an instant in which an inter-

action occurs in the multi-agent system, let

dP (s, r, qs, qr, t) (4)

be the probability that:

1. An arbitrary agent s is involved in the interaction;

2. An arbitrary agent r is involved in the interaction;

3. For an arbitrary qs ∈ Q, agent s is in a state in

(qs, qs + dqs); and

4. For an arbitrary qr ∈ Q, agent r is in a state in

(qr, qr + dqr).

One of the major assumptions of mathematical kinetic

theories, which is often called molecular chaos assump-

tion or Stosszahlansatz (German for assumption on the

count of collisions), regards the possibility of expressing

dP (s, r, qs, qr, t) as the product of three factors. These

factors correspond to the following three events, which

are considered as mutually independent by the molec-

ular chaos assumption:

1. Agent s and agent r are chosen uniformly, and in-

dependently of previous interactions, to be the two

agents involved in the considered interaction;

2. The state of agent s is in (qs, qs + dqs); and

3. The state of agent r is in (qr, qr + dqr).

Note that the molecular chaos assumption oversimpli-

fies the dynamics of the interactions in the studied

multi-agent system. However, if the multi-agent sys-

tem is sufficiently large, and if the interactions can be

treated as instantaneous, then the molecular chaos as-

sumption is often sufficiently accurate. If the molecular

chaos assumption holds, then dP (r, s, qs, qr, t) can be

immediately written as

dP (s, r, qs, qr, t) =
2

n2
· f(qr, t)

n
dqr ·

f(qs, t)

n
dqs, (5)

where the three factors of the product correspond to

the probabilities of the three considered events. Actu-

ally, the molecular chaos assumption allows treating

these events as mutually independent, and therefore

their probabilities can be multiplied.

Now, let dL(qr, t) be the average loss of agents with

states in (qr, qr + dqr) caused by the interaction that

occurs at time t ∈ R≥0. Note that dL(qr, t) can be

computed by properly averaging dP (s, r, qs, qr, t) over

the state qs and over the agents r and s. Therefore,

dL(qr, t) =

n∑
r=1

n∑
s=1

∫
Q

dP (t, r, s, qr, qs). (6)

The molecular chaos assumption can be used to explic-

itate dL(qr, t), as follows

dL(qr, t) = dqr

n∑
r=1

n∑
s=1

∫
Q

2

n2
· f(qr, t)f(qs, t)

n2
dqs. (7)

The previous expression of dL(qr, t) can be easily sim-

plified to obtain

dL(qr, t) =
2

n2
dqr

∫
Q

f(qr, t)f(qs, t) dqs. (8)

Recall that the current form of the KTMAS framework

assumes instantaneous interactions, and therefore the

considered interaction rule t : Q2 → Q2 is such that

(q′s, q
′
r) = t(qs, qr). (9)

Note that a loss of agents whose states are in the in-

tervals (qs, qs + dqs) and (qr, qr + dqr) equals a gain of

agents whose states are in the intervals (q′s, q
′
s + dq′s)

and (q′r, q
′
r + dq′r). Let dG(q′r, t) be the average gain of

agents with states in (q′r, q
′
r + dq′r) caused by the inter-

action that occurs at time t ∈ R≥0. The considerations

used to obtain (8) can be used to obtain

dG(q′r, t) =
2

n2
dqr

∫
Q

f(qr, t)f(qs, t) dqs. (10)

The additional assumption that the interaction rule t

is invertible over Q2 allows reformulating dG(q′r, t) as

dG(q′r, t) =
2

n2
dq′r

∫
Q

1

J(q′s, q
′
r)
f(qr, t)f(qs, t) dq′s, (11)

where J(q′s, q
′
r) is the Jacobian of the considered inter-

action rule, which is defined as the absolute value of

the determinant of the Jacobian matrix ∂t of t, and

the inverse of t is used to compute

(qs, qr) = t−1(q′s, q
′
r). (12)

Note that the use of words gain and loss to refer to,

respectively, increments and decrements of the number

of agents in certain states is common to mathematical

kinetic theories. Moreover, note that the additional as-

sumption that the considered interaction rule is invert-

ible over Q2 severely limits the interactions that can be

studied using the discussed form of the KTMAS frame-

work. However, the results obtained in this section, in

particular the weak form of the Boltzmann equation
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discussed at the end of this section, can be extended to

locally invertible interaction rules at the cost of using

a more involved notation.

Given a time interval [t, t+dt), the assumption that

the interactions among agents occur at the instants of a

Poisson point process with average rate ν ∈ R+ implies

that an average of ν dt interactions occur in the consid-

ered interval. Therefore, the average loss of agents with

states in (q′r, q
′
r + dq′r) in the considered time interval

can be computed using (8) as

β dtdq′r

∫
Q

f(q′r, t)f(q′s, t) dq′s, (13)

where β = 2
n2 ν. Similarly, the average gain of agents

with states in (q′r, q
′
r + dq′r) in the considered time in-

terval can be computed using (11) as

β dtdq′r

∫
Q

1

J(q′s, q
′
r)
f(qr, t)f(qs, t) dq′s. (14)

Therefore, the balance of the average gain and the aver-

age loss can be used to compute the average net incre-

ment of agents f(q′r, t+ dt) dq′r − f(q′r, t) dq′r, as follows

β dq′r dt

∫
Q

1

J(q′s, q
′
r)
f(qr, t)f(qs, t)

− f(q′r, t)f(q′s, t) dq′s, (15)

which immediately leads to the following (strong form

of the) Boltzmann equation

∂f

∂t
(q′r, t) = β

∫
Q

1

J(q′s, q
′
r)
f(qr, t)f(qs, t)

− f(q′r, t)f(q′s, t) dq′s. (16)

Note that the name chosen for this equation is not in-

cidental. Actually, (16) is a generalization to the ab-

stract setting of mathematical kinetic theories of the

classic equation devised for the kinetic theory of gases

by Ludwig Boltzmann in 1872. The Boltzmann equa-

tion for a group of peers is the core of all mathematical

kinetic theories because it expresses the dynamics of

the group once a model of the considered interactions

is chosen and the overall dynamics of interactions is

coherent with the molecular chaos assumption.

The explicit expression of (16) requires to carefully

select the details to include in the description of the in-

teractions among peers, but these details are normally

left unspecified in the general framework of mathemat-

ical kinetic theories. Sect. 3 implicitly uses an expres-

sion of (16) that details how agents interact to follow

the symmetric gossip algorithm. This expression is suf-

ficient to prove the correctness of the algorithm un-

der the assumptions of the KTMAS framework and to

study the expected long-time asymptotic dynamics of

the studied multi-agent systems.

2.2 The Weak Form of the Boltzmann Equation

The strong form of the Boltzmann equation (16) pro-

vides a fine-grained characterization of the dynamics of

the states of the agents, which is normally too fine-

grained to be feasible for large multi-agent systems.

Therefore, the study of the dynamics of relevant col-

lective properties is often preferred. Consider a suffi-

ciently regular test function φ : Q→ R. Then, multiply

by φ(q′r) and integrate in q′r over Q both sides of (16)

to obtain the following right-hand side

β

∫
Q

∫
Q

1

J(q′s, q
′
r)
f(qr, t)f(qs, t)

− f(q′r, t)f(q′s, t)φ(qr) dq′s dq′r. (17)

Now, note that (16) can be rewritten by swapping the

roles of agent r and agent s to obtain

∂f

∂t
(q′s, t) = β

∫
Q

1

J(q′s, q
′
r)
f(qr, t)f(qs, t)

− f(q′r, t)f(q′s, t) dq′r, (18)

whose both sides can be multiplied by φ(q′s) and inte-

grated in q′s over Q to obtain the right-hand side

β

∫
Q

∫
Q

1

J(q′s, q
′
r)
f(qs, t)f(qr, t)

− f(q′s, t)f(q′r, t)φ(q′s) dq′r dq′s. (19)

Since J(qs, qr) = J(qr, qs) and dummy variables in in-

tegrals can be freely renamed, previous considerations

lead to the following equation∫
Q

∂f

∂t
(qs, t)φ(qs) dqs =

β

2

∫
Q

∫
Q

∆(qs, qr)

· f(qs, t)f(qr, t) dqr dqs, (20)

where

∆(qs, qr) = φ(q′r) + φ(q′s)− φ(qr)− φ(qs), (21)

which depends only on qs and qr because of (9). Note

that (20) is normally called weak form of the Boltzmann

equation. Finally, note that if the considered interaction

rule is such that t(qr, qs) = t(qs, qr), then (20) can be

easily simplified to∫
Q

∂f

∂t
(qs, t)φ(qs) dqs = β

∫
Q

∫
Q

(φ(q′r)− φ(qr))

· f(qs, t)f(qr, t) dqr dqs, (22)

which is easier to use because it does not depend on

q′s. Also, note that the interaction rule considered in

Sect. 3 exhibits this symmetry, and therefore (22) is

used in Sect. 3 instead of (20).
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The relevance of the weak form of the Boltzmann

equation to study the collective properties of multi-

agent systems can be clarified as follows. If the details

of the interactions that occur in the multi-agent system

are made explicit, by stating an explicit expression of

the interaction rule, the right-hand sides of (20) and

(22) can be also made explicit. Therefore, for an ex-

plicit interaction rule and a fixed φ, the weak form of

the Boltzmann equation becomes an ordinary differen-

tial equation that describes the dynamics of the collec-

tive property entailed by the chosen φ. For example, if

φ(q) = q is chosen, then (22) can be written as

n
dq̄

dt
(t) = β

∫
Q

∫
Q

(q′r − qr) f(qr, t)f(qs, t) dqr dqs, (23)

which is the equation used in Sect. 3 to study the aver-

age state of the agents. Similarly, if φ(q) = (q − q̄(t))2
is chosen, then (22) can be written as

n
dσ2

dt
(t) = β

∫
Q

∫
Q

[
(q′r − q̄(t))2 − (qr − q̄(t))2

]
· f(qs, t)f(qr, t)f(qs, t) dqr dqs, (24)

and this equation can be used to study the dynamics

of the variance of the states of the agents. This choice

of φ is used in Sect. 3 to prove that the variance of the

states of the agents that follow the symmetric gossip

algorithm tends to zero as time tends to infinity, which

ensures that all agents would eventually tend to have

the same asymptotic state.

3 A Study of the Symmetric Gossip Algorithm

The distributed averaging problem (e.g., [12,13]) is a

well-known problem related to multi-agent systems that

finds important applications, for example, in sensor net-

works and social networks. The motivating application

in sensor networks is related to sensors that jointly mea-

sure the characteristics of physical phenomena. For ex-

ample, a toy scenario to motivate the distributed aver-

aging problem regards the sensing of the temperature

in a room using a network of sensors [12,13]. Sensors

are deployed to measure the temperature of the region

and, to combat minor fluctuations in ambient tempera-

ture and noise in sensor readings, sensors need to aver-

age their readings. The application in social networks is

similar, and it is about compromise (e.g., [40]), which is

one of the fundamental phenomena that govern opinion

formation, and which is considered as the major force

that enables decentralized consensus in multi-agent sys-

tems. In the assortment of algorithms proposed to solve

the distributed averaging problem, the algorithm first

introduced in [13], and called symmetric gossip algo-

rithm in the nomenclature proposed in [26], can be used

to describe a concrete application of the KTMAS frame-

work. The remaining of this section applies the KTMAS

framework to study the long-time asymptotic proper-

ties of multi-agent systems in which agents follow the

symmetric gossip algorithm.

3.1 The model of the multi-agent systems

In the studied multi-agent systems, each agent is char-

acterized by a state q ∈ Q, where Q ⊂ R is an open

and bounded interval, which is assumed to be (−1, 1)

without loss of generality. Each agent is requested to re-

peatedly exchange messages with other agents to reach

consensus on the average of their initial states. Each

agent s repeatedly chooses another agent r at random

and sends a message to agent r. A message from agent

s to agent r contains the current state of agent s, and it

is used by agent r to reply and update its state. Given

that agents update their states only upon receiving mes-

sages, the updates are based on their current states and

on the states contained in the received messages.

The symmetric gossip algorithm fixes the function

that an agent r uses to update its state upon receiving

a message from another agent s. The adopted function

is a linear combination of the current state of agent

r and of the state contained in the received message.

Moreover, the algorithm assumes that, immediately be-

fore updating its state, agent r replies with a message

containing its state, which is then used by agent s to

update its state. Note that the algorithm assumes some

form of synchronization because messages and related

replies are supposed to contain the current states of

interacting agents. This assumption is a characteristic

of the symmetric gossip algorithm, and it is considered

appropriate for intended applications.

If agent r, in state qr, interacts with agent s, in

state qs, the symmetric gossip algorithm requires agents

to mutually exchange their current states and to up-

date their states using the following interaction rule

(adapted from [13])

q′s = ts(qs, qr) = qs − γ(qs − qr)
q′r = tr(qs, qr) = qr − γ(qr − qs),

(25)

where q′s and q′r are the updated states of agent s and

of agent r, respectively, and γ ∈ (0, 12 ) is a parame-

ter of the symmetric gossip algorithm. Following the

nomenclature of mathematical kinetic theories, qs and

qr are the pre-interaction states of agent s and of agent

r, respectively, while q′s and q′r are the corresponding
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post-interaction states. Note that the adopted inter-

action rule (q′s, q
′
r) = t(qs, qr) is invertible because its

Jacobian matrix can be written as

∂t(qs, qr) =

(
1− γ γ

γ 1− γ

)
, (26)

and therefore the Jacobian J(qs, qr) = |1 − 2γ| is pos-

itive for γ ∈ (0, 12 ). Moreover, note that the adopted

interaction rule is such that, for all qs ∈ Q and qr ∈ Q,

ts(qs, qr) = tr(qr, qs).

Before using the KTMAS framework to study the

long-time asymptotic properties of the multi-agent sys-

tems in which the agents follow the symmetric gossip

algorithm, some considerations on the adopted interac-

tion rule are needed. First, note that post-interaction

states belong to interval Q = (−1, 1) because the fol-

lowing inequalities hold

|q′s| ≤ (1− γ)|qs|+ γ|qr| ≤ max{|qr|, |qs|} < 1

|q′r| ≤ (1− γ)|qr|+ γ|qs| ≤ max{|qr|, |qs|} < 1.
(27)

Then, note that the following equality can be easily

derived from the adopted interaction rule

q′s + q′r = qs + qr, (28)

which implies that interactions do not change the av-

erage state of the agents. Finally, note that each in-

teraction reduces the distance of the states of the two

interacting agents because γ ∈ (0, 12 ), and therefore the

following inequality holds

|q′s − q′r| = |1− 2γ||qs − qr| < |qs − qr|. (29)

These considerations ensure that, after a sufficiently
large number of interactions, all agents would eventu-

ally tend to the same state, which is necessarily the

average of the initial states. The understanding of how

quickly the states of the agents tend to the average

of the initial states requires further investigations, as

shown in the remaining of this section.

Finally, note that the symmetric gossip algorithm

assumes that an underlying interaction protocol [45] is

used by agents. In order to ensure that two interacting

agents can mutually exchange their states to compute

their new states using (25), it is necessary that two mes-

sages are exchanged. The KTMAS framework does not

provide a specific support to reason on interaction pro-

tocols, but in this case the protocol is only intended to

implement the adopted interaction rule, and therefore

it is supposed to be executed atomically in the scope of

a single interaction. Actually, this underlying protocol

is not problematic for the KTMAS framework because

it is embedded in adopted interaction rule. The pres-

ence of this embedded protocol is a characteristic of

the studied algorithm, which also justifies the symmet-

ric adjective in its name. Asymmetric variants of the

studied algorithm have already been proposed in the

literature (e.g., [2,25]). Their study using the KTMAS

framework represents an interesting application of the

framework reserved for future works.

3.2 Analytic results

The interest now is on using the KTMAS framework to

study the dynamics of the states of the agents. The fol-

lowing propositions accurately describe the dynamics of

the states of the agents using the KTMAS framework.

Proposition 1 Given a multi-agent system in which

the interactions follow the symmetric gossip algorithm

and that satisfies the molecular chaos assumption, the

average state of the agents is constant over time.

Proof The following equation is obtained by setting

φ(q) = q in (22) after ordinary manipulations

n
dq̄

dt
(t) = β

∫
Q2

(tr(qs, qr)− qr)

· f(qs, t)f(qr, t) dqs dqr. (30)

Then, using the adopted interaction rule (25) to expand

tr(qs, qr), the previous weak form of the Boltzmann

equation becomes

n
dq̄

dt
(t) = βγ

∫
Q2

(qs − qr)f(qs, t)f(qr, t) dqr dqs. (31)

Note that the right-hand side of the previous equation

can be rewritten as

βγ

(∫
Q

f(qr, t) dqr

∫
Q

qsf(qs, t) dqs

−
∫
Q

f(qs, t) dqs

∫
Q

qrf(qr, t) dqr

)
. (32)

Therefore, the weak form of the Boltzmann equation

for φ(q) = q becomes

dq̄

dt
(t) = 0, (33)

which ensures that the average state of the agents in

the multi-agent system is constantly equal to the initial

average q0 ∈ Q. ut

Proposition 2 Given a multi-agent system in which

the interactions follow the symmetric gossip algorithm

and that satisfies the molecular chaos assumption, the

variance of the states of the agents is

σ2(t) = σ2
0 e−

4
nγ(1−γ)νt, (34)
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where n ∈ N+ is the number of agents in the multi-

agent system, ν ∈ R+ is the average interaction rate,

γ ∈ (0, 12 ) is the parameter of the symmetric gossip

algorithm, and σ2
0 = σ2(0).

Proof The variance of the states can be studied by set-

ting φ(q) = (q− q̄)2 in the weak form of the Boltzmann

equation (22), dropping the dependence of q̄ on t be-

cause of Proposition 1. Therefore,

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)

· [(tr(qs, qr)− q̄)2 − (qr − q̄)2] dqs dqr. (35)

The previous equation can be simplified to

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)

· [t2r(qs, qr)− q2r − 2q̄(tr(qs, qr)− qr)] dqs dqr. (36)

Now, note that the term that contains (tr(qs, qr)− qr)
in the previous equation is proportional to the right-

hand side of (30), which Proposition 1 proves to equal

zero. Therefore, the previous formulation of the weak

form of the Boltzmann equation can be written as

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)

· (t2r(qs, qr) − q2r) dqs dqr. (37)

The adopted interaction rule (25) can be used to make

tr(qs, qr) explicit in the previous equation to obtain

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)

· [γ2(qr − qs)2 − 2γqr(qr − qs)] dqs dqr. (38)

Simple algebraic manipulations allow obtaining the fol-

lowing formulation of the weak form of the Boltzmann

equation for φ(q) = (q − q̄)2

n
dσ2

dt
(t) = 2βγ(γ − 1)n

·
(∫

Q

f(qr, t)q
2
r dqr − nq̄2

)
. (39)

Note that the last factor of the previous equation is

nothing but nσ2(t), and therefore, the following ordi-

nary differential equation that describes the dynamics

of the variance of the states is obtained

dσ2

dt
(t) = 2βγ(γ − 1)nσ2(t). (40)

The previous equation can be easily solved to obtain a

closed-form expression of the variance of the states

σ2(t) = σ2
0 e−2βγ(1−γ)nt, (41)

which proves the proposition because β = 2
n2 ν and the

initial variance of the states is σ2
0 = σ2(0). ut

4 A Comparison with Multi-Agent Simulations

Proposition 1 guarantees that the average state of the

agents in a multi-agent system in which agents follow

the symmetric gossip algorithm is constant over time.

Proposition 2 ensures that all agents would eventually

tend to the same state, which equals the initial average

state for Proposition 1. The following illustrative sim-

ulations compare the analytic results derived from pre-

vious propositions with the actual behavior of a multi-

agent system in which the agents follow the symmetric

gossip algorithm. Note that an in-depth comparison be-

tween the analytic results derived from previous propo-

sitions and the characteristics of the simulated multi-

agent system is out of the scope of this paper.

The considered multi-agent system is composed of

n = 100 agents that follow the symmetric gossip algo-

rithm. For each simulation, the states of the agents are

initially set to random values uniformly distributed in

Q = (−1, 1), so that the initial variance of the states

is σ2
0 = 1

3 . Each simulation comprises τ = 103 steps,

and at every step, which corresponds to one unit of

time, two agents are randomly chosen and their states

are updated using (25). Note that in this setting, the

average interaction rate ν equals one because only one

interaction occurs at each step of the simulation.

Fig. 2 and Fig. 3 show the variances of the states for

four simulations obtained using γ ∈ {0.1, 0.2, 0.3, 0.4}.
The corresponding variances computed using (41) are

also shown for β = 2 · 10−4. As expected, the shown

variances exponentially decrease toward zero as time

increases. A comparison among the plots confirms that

the variances obtained using (41) adequately fit the

variances obtained by simulations. In particular, for a

given γ ∈ {0.1, 0.2, 0.3, 0.4}, the largest distance be-

tween the variance obtained using simulations and the

corresponding variance obtained using (41) are: 0.025

for γ = 0.1, 0.022 for γ = 0.2, 0.018 for γ = 0.3,

and 0.023 for γ = 0.4. Also, the plots confirm that the

rate of convergence increases as γ increases. This is not

surprising because the adopted interaction rule is such

that the distance between the post-interaction states of

two interacting agents decreases as γ increases in (0, 12 ).

Note that this property of the adopted interaction rule

is confirmed by (41) because γ(1−γ) > 0 if γ ∈ (0, 12 ).
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Fig. 2 Plots in logarithmic scale of the variance σ̃2(t) ob-
tained with multi-agent simulations (solid lines) and the vari-
ance σ2(t) computed using (41) with β = 2 · 10−4 (dashed
line) for n = 100 agents whose initial states are uniformly dis-
tributed in Q = (−1, 1) and that follow the symmetric gossip
algorithm with (a) γ = 0.1 and (b) γ = 0.2.

5 Related Work

Besides the importance of multi-agent systems for arti-

ficial intelligence, as witnessed by the significant body

of literature that originated, for example, from [33],

large multi-agent systems have been recently attracted

considerable attention for their direct link with relevant

applications like social networks and sensor networks.

It is common opinion that large multi-agent systems

have specific peculiarities, and that ordinary methods

and tools are not immediately applicable to study them

(e.g., [34]). In addition, large multi-agent systems are

particularly important in applications that are char-

acterized by decentralized control (e.g., [31]). This is
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(b)

Fig. 3 Plots in logarithmic scale of the variance σ̃2(t) ob-
tained with multi-agent simulations (solid lines) and the vari-
ance σ2(t) computed using (41) with β = 2 · 10−4 (dashed
line) for n = 100 agents whose initial states are uniformly dis-
tributed in Q = (−1, 1) and that follow the symmetric gossip
algorithm with (a) γ = 0.3 and (b) γ = 0.4.

not surprising since decentralized control is assumed

to scale for the number of agents better than central-

ized control, and therefore decentralized control is the

most effective, and obvious, choice when the number of

agents is large (e.g., [55]).

When multi-agent systems are large and decentral-

ized, the ordinary methods and tools to study their

dynamics (e.g., [46]) tend to become unfeasible, and

alternative approaches are needed. In these cases, sta-

tistical approaches provide preferable ways to investi-

gate the, possibly emergent, properties of multi-agent

systems because they move the focus from the dynam-

ics of single agents to the dynamics of the multi-agent

system as a whole (e.g., [1,15]).
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The KTMAS framework relies on a statistical ap-

proach, and it explicitly takes into account that stud-

ied multi-agent systems are assumed to be large and

decentralized. The framework uses a model-reduction

approach to obtain a reduced-order model that pre-

serves the important properties of the original model.

As such, the framework is related to relevant works

on chemical reaction networks (e.g., [18,20,27,52]) and

compartmental models (e.g., [14]). The analytic nature

of the framework ensures that it can be used as a pre-

scriptive tool to answer the major question of collective

intelligence: “How, without any detailed modeling of the

overall system, can one set utility functions [...] so that

the overall dynamics reliably and robustly achieves large

values of the provided world utility?” [53]

Mathematical kinetic theories share relevant simi-

larities with fluid approximation (e.g., [10]), which has

been recently introduced to study the collective proper-

ties of stochastic process algebra models of large popu-

lations. Fluid approximation can be applied if the stud-

ied model contains many instances of few agent types.

It works by treating as continuous the variables that

count how many agents of each type are in each state,

and by treating the rates of the stochastic transitions

as flows, thus obtaining ordinary differential equations

that describe the dynamics of the system. For exam-

ple, [17] uses fluid approximation to relate an approx-

imate majority protocol to chemical reactions in cells,

thus obtaining results on the speed of convergence that

are strongly related to the results shown in Sect. 3.

Note that [19] discusses in detail the relation between

fluid approximation and the dynamics of chemical re-

actions. Similarly to the KTMAS framework, the mod-

els discussed in [19] are based on the assumption that

molecules react with probabilities proportional to reac-

tion parameters and molecule concentrations.

Similarly to fluid approximation, mean-field approx-

imation (e.g., [11]) starts from a stochastic model de-

signed to study systems consisting of a large number of

interacting agents, each of which can be in one of few

states. Then, mean-field approximation can be used to

count how many agents are in a given state, thus ob-

taining a limit theorem similar to the corresponding

limit theorem for fluid approximation. Notably, mean-

field approximation was used to study multi-agent sys-

tems in which agents follow a variant of the symmetric

gossip algorithm discussed in Sect. 3, obtaining analo-

gous results [3]. In-depth comparisons of the KTMAS

framework with fluid approximation and mean-field ap-

proximation are reserved for future works.

In recent years, models based on the general ap-

proach of mathematical kinetic theories have been ap-

plied to diverse research domains to study groups of

peers that interact within a shared environment un-

der the influence of external forces. The prototypical

example of a mathematical kinetic theory is the clas-

sic kinetic theory of gases (e.g., [35]), which studies the

collective properties of gases, like temperature and pres-

sure, starting from the details of the interactions among

molecules (or atoms, for noble gases). A rather obvi-

ous parallelism between the molecules of a gas and the

agents of a multi-agent system can be drawn to adopt

generalizations of the kinetic theory of gases to study

collective, and possibly emergent, properties of multi-

agent systems. For example, [48] studies the similarity

between the distribution of wealth in a simple economy

and the density of molecules in a gas, and [9] stud-

ies the dynamics of wealth taking a similar approach.

Similarly, [41,49,51] study models of opinion dynamics

using a formalism based on the kinetic theory of gases,

while [40] extends previous studies on opinion dynam-

ics using the kinetic theory of gas mixtures (e.g., [8]).

Unfortunately, besides the general framework of math-

ematical kinetic theories, few analytic results from the

kinetic theory of gases can be used in the KTMAS

framework. Actually, the details of the collisions among

molecules in gases are significantly different from the

details of the interactions among agents in multi-agent

systems. Therefore, the KTMAS framework drops the

assumption that agents are immersed in the physical

world and that they are characterized by mechanical

properties, like positions and velocities. The KTMAS

framework abstracts this assumption away, thus sub-

stantially separating KTMAS from the kinetic theory

of gases and its generalizations.

Besides the multiple applications of the general ap-
proach of mathematical kinetic theories, the literature

proposes several papers that document how models in-

spired by physics are used to study the collective, and

possibly emergent, properties of multi-agent systems.

In the early 1990s, the word econophysics [22,24,36]

was proposed to designate an interdisciplinary research

field that applies methods developed by physicists to

study economic phenomena. Similarly, the word socio-

physics [22,29] was introduced to describe an interdis-

ciplinary research field that uses methods inspired by

physics to study the behaviors of groups of individuals.

Similar points of view have been proposed several times

(e.g., [43,47]). All proposals recognize that the collec-

tive, and possibly emergent, properties of multi-agent

systems can be studied by treating multi-agent systems

as complex systems [38,50]. The KTMAS framework

takes a similar approach, but the framework is not de-

scribed in terms of adaptations of existing formalisms.

Rather, the framework is only based on the character-

istics of large and decentralized multi-agent systems.
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6 Conclusion

This paper is intended to contribute results to advance

the research toward the definition of a complete and co-

herent KTMAS. The initial part of the paper motivates

the urge of effective methods and tools to study the

collective, and possibly emergent, properties of multi-

agent systems. Then, the paper outlines an analytic

framework, based on mathematical kinetic theories, de-

signed to study the collective, and possibly emergent,

properties of multi-agent systems taking a statistical

perspective. The discussed framework can be consid-

ered as the basis of the target KTMAS because it can

be effectively used to study the collective, and possi-

bly emergent, properties of multi-agent systems when

the studied systems can be considered as large and de-

centralized. In particular, the discussed KTMAS frame-

work targets the analytic study of long-time asymptotic

properties of large and decentralized multi-agent sys-

tems in which the collective, and possibly emergent,

properties derive from the decentralized interactions

among agents. Considered interactions are assumed to

be instantaneous and, to work toward analytic results

in closed form, sufficiently simple.

It is worth noting that, even if the KTMAS frame-

work is tightly connected to the kinetic theory of gases,

it derives from very general considerations regarding

the effects of interactions on the states of the agents.

Therefore, the equations of the framework are not sim-

ple variations of analogous equations of the kinetic the-

ory of gases as obtained, for example, by drawing sim-

plistic analogies between molecules and agents. Rather,

the equations obtained in Sect. 2 are genuine deriva-

tions from the assumptions taken to describe the effects

of interactions on the states of the agents in large and

decentralized multi-agent systems.

Finally, the paper describes the application of the

KTMAS framework to the study of an illustrative prob-

lem intended to show a concrete example of the use of

the framework. The problem is to study the collective,

and possibly emergent, properties of multi-agent sys-

tems in which agents interact following the symmetric

gossip algorithm. As expected, the application of the

framework allows demonstrating that the states of all

agents converge to a single value, which corresponds to

the initial average of the states of the agents. Moreover,

the framework allows demonstrating that the agents

tend to this value exponentially fast. Both these results

are confirmed by independent multi-agent simulations.

In particular, these simulations show that the collective

properties of the simulated multi-agent systems are ac-

curately predicted by the expected exponential conver-

gence to the initial average state.

Methodologically, the major advantages that are ex-

pected from the adoption of the KTMAS framework to

study the dynamics of large and decentralized multi-

agent systems derive from the analytic nature of the

framework. The analytic nature of the framework en-

sures that obtained results can be used both as de-

scriptive tools to explain observations and as prescrip-

tive tools to design the desired dynamics of multi-agent

systems. As a descriptive tool, the framework can be

used as an alternative to simulations. The validity of

the results of simulations depends on how much sim-

ulations are representative of the studied multi-agent

systems. On the contrary, the validity of analytic re-

sults is clearly identified by the assumptions adopted

to derive them. As a prescriptive tool, the framework

can support the design of multi-agent systems with de-

sired collective, and possibly emergent, properties. The

analytic results of the framework can be used to identify

the values of the design parameters to ensure that the

multi-agent system behaves as intended. Essentially,

the KTMAS framework addresses the major challenge

of the research on collective intelligence, which regards

designing interactions to obtain desired collective, and

possibly emergent, properties [53].

The results presented in this paper are not meant to

be conclusive. The discussed KTMAS framework tar-

gets multi-agent systems under specific assumptions,

which could be alleviated in future works. In particular,

the future developments of this research intend to pro-

vide a solid base for a complete and coherent KTMAS in

terms of four relevant extensions. First, stochastic inter-

action rules are urged to allow introducing randomness

in the interactions among agents (e.g. [39]). This is a

relevant extension of the discussed framework because

stochastic interaction rules can be used to model gen-

uinely random behaviors and behaviors whose details

are not sufficiently relevant to deserve exhaustive de-

scriptions. Second, interaction rules that involve more

than two agents are needed to extend the reach of the

framework to include real-world multi-agent systems

based on multicasting. Third, appropriate networks to

constraint the exchange of messages among agents are

required to study real-world multi-agent systems, which

rarely assume that an agent can freely interact with any

other agent. Note that, in the long term, the intention is

to incorporate dynamic and stochastic networks in the

KTMAS framework. Fourth, the treatment of dynamic

populations is needed to study multi-agent systems in

which agents dynamically join and leave the system.

Real-world multi-agent systems are often characterized

by dynamic populations, and they often have specific

interaction rules that are intended to govern the dy-

namic inclusion and exclusion of agents.
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