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Beam-Space MIMO Radar for Joint
Communication and Sensing with OTFS

Modulation
Saeid K. Dehkordi1, Lorenzo Gaudio2, Mari Kobayashi3, Giuseppe Caire1, Giulio Colavolpe2

Abstract—Motivated by automotive applications, we consider
joint radar sensing and data communication for a system
operating at millimeter wave (mmWave) frequency bands, where
a Base Station (BS) is equipped with a co-located radar receiver
and sends data using the Orthogonal Time Frequency Space
(OTFS) modulation format. We consider two distinct modes of
operation. In Discovery mode, a single common data stream is
broadcast over a wide angular sector. The radar receiver must
detect the presence of not yet acquired targets and perform
coarse estimation of their parameters (angle of arrival, range, and
velocity). In Tracking mode, the BS transmits multiple individual
data streams to already acquired users via beamforming, while
the radar receiver performs accurate estimation of the afore-
mentioned parameters. Due to hardware complexity and power
consumption constraints, we consider a hybrid digital-analog ar-
chitecture where the number of RF chains and A/D converters is
significantly smaller than the number of antenna array elements.
In this case, a direct application of the conventional MIMO radar
approach is not possible. Consequently, we advocate a beam-space
approach where the vector observation at the radar receiver is
obtained through a RF-domain beamforming matrix operating
the dimensionality reduction from antennas to RF chains. Under
this setup, we propose a likelihood function-based scheme to
perform joint target detection and parameter estimation in
Discovery, and high-resolution parameter estimation in Tracking
mode, respectively. Our numerical results demonstrate that the
proposed approach is able to reliably detect multiple targets while
closely approaching the Cramér-Rao Lower Bound (CRLB) of
the corresponding parameter estimation problem.

Index Terms—MIMO radar, joint sensing and communication,
OTFS, beamforming design.

I. INTRODUCTION

In mmWave communications, it is crucial to compensate the
high isotropic path-loss with a highly directional beamforming
(BF) gain [1]. This requires fast and accurate initial beam
acquisition, which must be established before reliable data
transmission can take place (see, e.g., [2], [3] and references
therein). For mobile applications, e.g., a BS operating as a
road-side infrastructure node and communicating with moving
vehicles, beam acquisition for new not yet connected vehicles
entering the cell is particularly challenging. Furthermore, beam
tracking is necessary for the already connected users in order
to follow their motion [4], [5], [6]. In this paper, we consider
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an enhanced BS, equipped with a co-located radar receiver.
While transmitting a data modulated signal in the downlink,
the BS uses the backscatter signals in order to detect unknown
users and estimate parameters of already acquired users. We
assume that the user terminals (i.e., targets) are large metal
objects with a good radar cross-section such as vehicles [7],
[8], [9]. As an extension of our previous works [10], this paper
studies the joint target detection and parameter estimation
problem at the enhanced BS using OTFS, a multi-carrier
modulation proposed in [11] and already studied in different
Multiple-Input Multiple-Output (MIMO) configurations (see,
e.g., [12], [13]).

Motivated by the need for low-latency initial beam ac-
quisition and accurate beam tracking mentioned above, we
consider two distinct modes. In the first one, referred to as
Discovery mode, a single OTFS modulated signal (e.g., some
cell-dependent beacon/control signal) is broadcast over a wide
angular sector and the goal of the radar receiver is to detect
the presence of targets (vehicles) that are not yet acquired, as
well as estimating their relevant parameters (angle of arrival,
range, and velocity). In the second one, referred to as Tracking
mode, the BS sends multiple individually beamformed OTFS
modulated data streams to already acquired users, and the goal
of the radar receiver is to provide high-resolution estimates
of the users’ parameters. Note that in the system studied in
this paper the communication subsystem reduces to completely
conventional OTFS with RF beamforming. The communica-
tion performance of such systems has been extensively studied
in numerous works (e.g. [14]) and need not be repeated here.
The “joint communication and sensing” aspect of our work
consists precisely in considering the radar sensing performance
of the two modes, namely, discovery and tracking, while
leaving the communication system untouched. Hence, we
focus only on the target detection and parameter estimation
problems in the two modes of interest.

We further stress the fact that the two radar subsystem
operation modes (discovery and tracking) are not necessarily
related. From a holistic system design perspective, one would
alternate the two phases, in analogy with currently deployed
mmWave 5G systems, where beam sweeping for beam acqui-
sition is periodically repeated at the beginning of some frame
or super-frame structure. For example, the output of the radar
detector in the discovery mode can be used to speed up the
initial beam acquisition of new users entering the cell (e.g., see
[15]), and the parameters estimated in tracking mode can be
fed into suitable algorithms for beam tracking (e.g., see [4]).
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The exploitation of such radar sensing functions in specific
communication systems is however beyond the scope of the
present paper. A specific frame structure alternating between
discovery and tracking modes (in correspondence with wide-
angle beacon signaling and beamformed data transmission
slots) is highly application-dependent and is intentionally left
open in this work.

There are basically two ways to estimate the angular po-
sition of a target: either using a highly directional Tx/Rx
beam [16] and scanning different angular “bins” in successive
slots or exploring simultaneously the whole angle domain
with a wide angle Tx beam and using an antenna array
observation at the Rx side, exploiting some array processing
technique for Angle of Arrival (AoA) estimation. The latter
approach is usually referred to as MIMO radar (see, e.g., [17]).
The advantage of MIMO radar is that the AoA estimation
can be accomplished “off the grid” by some super-resolution
estimation technique [18], and therefore does not suffer from
the discretization error in the angle domain. On the other hand,
wide-angle illumination and array reception do not provide
directional BF gain, which may be a problem when the Signal-
to-Noise Ratio (SNR) at the radar receiver is low. Furthermore,
demodulating and sampling a large number of antennas tightly
integrated in a monolithic structure is highly impractical in
terms of chip area and power consumption/heat management,
especially when the data signal has a large bandwidth as
in mmWave applications. While this problem does not exist
in standard automotive radar based on specifically designed
waveforms such as Frequency Modulated Continuous Wave
(FMCW), that are locally narrowband [16], it is definitely
one of the major technological hurdles for digitally modulated
waveforms at mmWave. Therefore, its solution represents
a critical step in order to enable joint communication and
sensing, which is recognized as an important trend in 6th
generation wireless systems [19], [20].

To address this problem, this paper considers a novel MIMO
radar approach in the beam-space domain, where the radar
receiver employs a Hybrid Digital-Analog (HDA) architecture,
widely proposed for mmWave frequency bands (see, e.g., [2],
[21] and references therein). In this case, the number of Radio
Frequency (RF) chains (Nrf ), implementing demodulation
from RF to baseband and A/D conversion, is much smaller
than the number of antenna array elements (Na), and the
dimensionality reduction from the Na antenna elements to
the Nrf antenna ports is operated by a reduction matrix
implemented in the analog RF domain. The columns of the re-
duction matrix define the coefficients of Nrf RF beamforming
vectors. The role of such beamformers is twofold. On the one
hand, they aim to “cover” sufficiently well the desired AoA
domain. On the other hand, they should provide sufficient BF
gain in order to achieve a good operating SNR of the radar
receiver. The main contributions of this paper are summarized
as follows:

1) We propose the use of multi-block processing with a
randomized ensemble of carefully designed reduction ma-
trices across the blocks to exploit the sparsity of mmWave
channels in the beam-space domain. We demonstrate the
superiority of the proposed BF codebook with respect

to baseline choices, in particular, when the reduction
matrices are constructed from Discrete Fourier Transform
(DFT) beamforming vectors or from antenna selection.

2) For Discovery mode, we propose a sequential target de-
tection, parameter estimation, and Successive Interference
Cancellation (SIC) that at each detection step performs a
likelihood ratio threshold test. SIC is used to avoid the
masking effect of strong targets on weaker targets located
at different ranges from the BS and not sufficiently
separated in the Doppler-delay-AoA domain (near-far
effect). The proposed scheme achieves multiple target
detection over a relatively wide Field of View (FoV) and
ranges comparable to Short/Medium range automotive
radar systems [22], [23]. Furthermore, the range can be
extended by increasing the number of processed blocks.

3) For Tracking mode, we propose a Maximum Likelihood
(ML)-based scheme providing high-resolution (off-grid)
estimation of AoA, delay, and Doppler parameters for
multiple targets. We demonstrate through simulations that
the parameter estimation performance approaches very
closely the CRLB when the receiver SNR is not too
small. In this mode, since the already acquired targets
are individually illuminated by highly directive (narrow)
beams, we obtain good parameter estimation accuracy
for ranges comparable to Medium/Long range automotive
radars [22].

The rest of the paper is organized as follows. In Section II
we define the system model and review OTFS modulation
introducing the necessary notations. In Section III we present
the design of the proposed beamforming codebook for multi-
block detection/estimation in the beam-space domain. Section
IV discusses the details of the target detection and parameter
estimation schemes. Section V presents simulation results
and comparisons to alternative and more conventional MIMO
radar schemes. Finally, Section VI provides our concluding
remarks. The details of the BF design algorithm are presented
in Appendix A and the method to calculate the adaptive
threshold for the target detection scheme is given in Appendix
B. We adopt the following notations.(·)T denotes the trans-
pose operation. (·)H denotes the Hermitian (conjugate and
transpose) operation. |x| denotes the absolute value of x if
x ∈ R while |X | denotes the cardinality of a set X . ‖x‖
denotes the `2-norm of a complex or real vector x. Im denotes
the m × m identity matrix. We let [n] = {1, . . . , n} and
[0 : n] = {0, 1, . . . , n} for a positive integer n.

II. SYSTEM MODEL

A. Backscatter Channel Model

We consider a system operating over a channel with carrier
frequency fc and bandwidth W sufficiently smaller than fc,
such that the narrowband array response assumptions holds
[24], [25].1 We consider a BS transmitter equipped with Nrf

Tx RF chains driving an antenna array with Na elements,
and a radar receiver co-located with the BS. For simplicity
of exposition, we assume that the Tx array and the Rx radar

1In particular, this means that the baseband array response vector is
essentially invariant with frequency in the interval [−W/2,W/2].



3

array coincide and that the Tx and Rx signals are separated
by some full-duplex processing.2 However, all our results can
be easily generalized to the case where the two arrays are
different and sufficiently spatially separated such that the Tx
signal does not saturate the radar Rx front-end.

We consider a point target model, such that each target is
characterized by its Line-of-Sight (LoS) path only. This model
is widely used in the literature (e.g., see [29], [30], [31]) and in
our case it can be justified by our motivating scenario of a BS
operating as road-side infrastructure node and communicating
with moving vehicles on the road.

By letting φ ∈ [−π2 , π2 ] denote the steering angle and
considering a Uniform Linear Array (ULA) with λ/2 inter-
element antenna spacings, the Tx/Rx array response is given
by a(φ) = (a1(φ), . . . , aNa(φ))T ∈ CNa , where

an(φ) = ej(n−1)π sin(φ), n = 1, . . . , Na. (1)

Since this paper focuses on the radar processing, we consider
the channel model for the backscatter signal. For the case of P
targets, this is given by the superposition of P rank-1 channel
matrices, each of which corresponds to the LoS propagation
from the Tx array to each target and back to the radar Rx array
along the same LoS path. This results in the Na × Na time-
varying MIMO channel with matrix impulse response given
by [32]

H(t, τ) =

P−1∑
p=0

ρpa(φp)a
H(φp)δ(τ − τp)ej2πνpt , (2)

where for each target p, ρp is a complex channel gain includ-
ing the LoS pathloss and the radar cross-section coefficient,
νp =

2vpfc
c is the round-trip Doppler shift, τp =

2rp
c is the

round-trip delay (time of flight), and φp denotes the AoA.3 We
assume that the channel parameters {ρp, φp, νp, τp}Pp=1 remain
constant over the coherence processing interval of B time-
frequency blocks, where each time-frequency block consists of
a frame of (roughly) WTframe signal dimensions, with Tframe

denoting the frame duration.

B. OTFS Modulation

We consider the OTFS modulation format as it is known to
be robust to high Doppler shifts and efficient in the presence
of sparse channels in the Doppler-delay domain [10]. OTFS is
a multicarrier scheme with M subcarriers with separation ∆f ,
such that the total bandwidth is W = M∆f . We let T denote
the symbol time and N denote the number of OTFS symbols
per frame, yielding a frame duration of Tframe = NT . We also
consider T∆f = 1, which is typical in most OTFS literature
[10], [11], [33]. Let Ns denotes the number of data streams
per frame to be sent by the BS, where Ns = 1 corresponds
to the broadcasting of a single data stream (Discovery mode)

2Full-duplex operations can be achieved with sufficient isolation between
the transmitter and the (radar) detector and possibly interference analog pre-
cancellation in order to prevent the (radar) detector saturation [26], [27], [28].

3In the expressions of νp and τp, c denotes the light speed, vp is the
velocity component of the p-th target in the radial direction with respect to
the radar receiver, and rp is the distance between the p-th target and the radar
receiver.

and 1 < Ns ≤ Nrf corresponds to the transmission of Ns

individual users’ data streams (Tracking mode).
In what follows, we derive the relation between the block

of data symbols and the signal at the radar receiver. Since
OTFS is a linear modulation and the propagation channel is
a linear (time-varying) system, this relation will be a linear
mapping. For simplicity of exposition, we focus on a generic
time-frequency block of NM symbols and neglect the block
index. Section IV will consider the received signal across B
blocks explicitly.

Following the standard derivation of the input-output re-
lation of OTFS (see, e.g., [11], [10]), the Ns-dimensional
data symbol vectors {xk,l ∈ CNs×1

: k ∈ [0 : N −
1], l ∈ [0 : M − 1]}, belonging to some suitable QAM
constellation, are arranged in an N × M two-dimensional
grid Γ =

{(
k
NT ,

l
M∆f

)
, k ∈ [0 : N − 1], l ∈ [0 : M − 1]

}
,

referred to as the Doppler-delay domain. We can visualize
{xk,l} as a N×M×Ns three-dimensional block of data, where
each horizontal layer of dimensions N×M represents one data
stream. The Tx applies the Inverse Symplectic Finite Fourier
Transform (ISFFT) layer by layer, converting the Doppler-
delay domain data block {xk,l} into the corresponding time-
frequency data block {Xn,m}, defined by

Xn,m =

N−1∑
k=0

M−1∑
l=0

xk,le
j2π(nk

N −ml
M ), (3)

for n ∈ [0 : N − 1], m ∈ [0 : M − 1]. The symbols across
time-frequency and data stream dimensions are uncorrelated,
and we assume the average Tx power normalization

E[Xn,mXH
n,m] =

Pavg

Ns
INs

, ∀ (n,m).

Then, the Tx generates the Ns-dimensional continuous-time
signal

s(t) =
N−1∑
n=0

M−1∑
m=0

Xn,mgtx(t− nT )ej2πm∆f(t−nT ). (4)

For mmWave multiuser MIMO applications, different HDA ar-
chitectures have been considered in the literature to handle the
fact that the number Nrf of RF chains is generally significantly
smaller than the number Na of antenna array elements (e.g.,
[34], [2]). Letting F ∈ CNa×Ns and U ∈ CNa×Nrf denote the
Tx and the Rx BF matrices, respectively, from (4) and (2), the
Nrf -dimensional continuous-time received signal at the radar
Rx is obtained as4

r(t) =

P−1∑
p=0

ρpU
Ha(φp)a

H(φp)Fs(t− τp)ej2πνpt . (5)

The output of the Rx filter-bank adopting a generic receive
shaping pulse grx(t) is given by (6).

4Here, we focus only on the useful part of the received signal expression.
However, it is obvious that the received signal also contains an additive white
Gaussian noise term which is neglected here for the sake of brevity.



4

Y(t, f) =

∫
r(t′)g∗rx(t′ − t)e−j2πft′dt′ =

∫
t′
g∗rx(t′ − t)

P−1∑
p=0

ρpU
Ha(φp)a

H(φp)Fs(t′ − τp)ej2πνpt
′
e−j2πft

′
dt′

=
∑

p,n′,m′

ρpU
Ha(φp)a

H(φp)FXn′,m′

∫
t′
g∗rx(t′ − t)gtx(t′ − τp − n′T )ej2πm

′∆f(t′−τp−n′T )ej2π(νp−f)t′dt′ (6)

By sampling at t = nT and f = m∆f , we obtain

Yn,m = Y(t, f)|f=m∆f
t=nT =

N−1∑
n′=0

M−1∑
m′=0

Hn,n′,m,m′Xn′,m′ ,

(7)

where Hn,n′,m,m′ is given by (8).
and where we defined the cross ambiguity function

Cu,v(τ, ν)
∆
=
∫∞
−∞ u(s)v∗(s − τ)e−j2πνsds as in [35], let

hp
∆
= ρpe

j2πνpτp , and used the fact that e−j2πmn
′∆fT = 1,

∀n′,m, under the hypothesis T∆f = 1. Finally, the received
signal in the Doppler-delay domain is obtained by the appli-
cation of the Symplectic Finite Fourier Transform (SFFT)

yk,l =
1

NM

∑
n,m

Yn,me
j2π(ml

M −nk
N ). (9)

In order to express (9) in a more explicit and useful form,
we defined the general Doppler-delay crosstalk coefficient as
given by (10).

Then, using (7), (8), with (10), in (9), the signal component
of the channel output at a given Doppler-delay pair k, l can
be written as

yk,l =

P−1∑
p=0

hpU
Ha(φp)a

H(φp)F
∑
k′,l′

Ψk,k′,l,l′(νp, τp)xk′,l′ .

(11)

In Discovery mode, the BS sends a single data stream (Ns = 1)
through a beamforming vector (i.e., F = [f ] is formed by
a single column). The beamforming vector f is designed to
uniformly cover a given wide angular sector as the BS has no
a priori knowledge of the location of the targets. In Tracking
mode, the BS sends Ns = P ≥ 1 data streams through a
beamforming matrix F = [f1, . . . , fNs

] where fq denotes the
q-th column of F associated to the q-th data stream. Appendix
A presents the general method used in this work to design the
Tx beamforming vectors f and the columns of U.

We remark that (11) corresponds to a single-input (for Ns =
1) or multiple input (for Ns = P > 1) multiple-output channel
with Inter-Symbol Interference (ISI), where the ISI occurs in
the Doppler-delay domain.

III. BEAM-SPACE MIMO RADAR WITH MULTIPLE BLOCK
RECEPTION

The fact that the number of RF chains Nrf is typically
much smaller than the number of array antenna elements Na

yields the following fundamental problem: if the columns of
the reduction matrix U correspond to narrow beams with a
high BF gain, the AoA domain is not well explored (e.g.,
some targets might be missed). In contrast, if the columns of

U correspond to wide angle beamforming patterns, the SNR
at each receiver RF chain may be too low and the spatial
resolution of each observation may be too coarse.

In order to circumvent this problem, we consider the joint
processing of B consecutive blocks, where the reduction
matrix varies from one block to another (we let Ub denote
the reduction matrix in block b ∈ [B]). The idea is that
while each reduction matrix consists of a set of narrow beams,
the ensemble of B blocks is able to explore the FoV of
interest without “holes”. At each block b, we obtain an Nrf -
dimensional observation, where each dimension corresponds
to a beam pattern defined by a column of Ub. Hence, we
refer to this approach as beam-space MIMO radar.

We consider a BF codebook formed by a set of flat-
top beams to span the required FoV, designed to provide
sufficiently large BF gain (and therefore maintain a good
receiver SNR) over a given angular span as compared to sharp
“Fourier” beams (i.e., beamforming vectors obtained from the
columns of a Na × Na DFT matrix). Let Ω = [θmin, θmax]

denote the FoV and, for given step ∆θ, we divide | Ω |∆=
|θmax − θmin| into an integer number |Ω|∆θ of intervals of size
∆θ. Each interval is further partitioned into an integer number
∆θ
δθ of subintervals of size δθ. We let C := {ûi,j , i ∈ [0 :
|Ω|
∆θ − 1], j ∈ [0 : ∆θ

δθ − 1]} denote a BF codebook, where
each atom ûi,j ∈ CNa×1 is a direction-shifted version of
the fundamental flat-top beam û0,0 of width ∆θ (designed
using the method in Appendix A), with beam center direction
given by θmin + i∆θ + jδθ. The parameters ∆θ and δθ are
selected to seek a good trade-off between BF gain, angle
coverage, and complexity of the beamforming codebook. We
have constructed pseudo-random sequences of B reduction
matrices such that at every block b, Ub consists of “non-
overlapping” atoms from C , (i.e., such that any two n 6= n′

columns of Ub satisfy uH
b,nub,n′ ≈ 0), and over the B blocks

the union of the covered angular span is maximal. An example
of such multi-directional beam patterns is illustrated in Fig. 1.

Extensive system simulations show that the system perfor-
mance strongly depends on B for given Nrf and Na but, for
relatively large B, it is almost independent on the specific
pseudo-random choice of the matrices {Ub} constructed ac-
cording to the above principle.

Remark 1. An alternative to the use of directive beams in the
HDA set-up discussed above consists of directly sampling Nrf

antennas per block. We refer to this as the Antenna Selection
scheme, where the dictionary C is formed by the columns of
an Na ×Na identity matrix such that, at each block b ∈ [B],
each column of Ub consists of zeros except a single one
corresponding to the antenna port being sampled. Another
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Hn,n′,m,m′ =

P−1∑
p=0

hpU
Ha(φp)a

H(φp)FCgtx,grx((n− n′)T − τp, (m−m′)∆f − νp)ej2πn
′Tνpe−j2πm∆fτp (8)

Ψk,k′,l,l′(ν, τ)
∆
=
∑

n,n′,m,m′

Cgrx,gtx((n− n′)T − τ, (m−m′)∆f − ν)

NM
ej2πn

′Tνe−j2πm∆fτe
j2π
(

n′k′
N −m′l′

M

)
e−j2π(nk

N −ml
M ) (10)

C = {ûi,j} i = 0, 1, 2, ..., 2θmax

∆θ − 1, j = 0, 1, 2, ..., ∆θ
δθ − 1

i = 0 i = 1 i = 2 i = 9

δθ
∆θ

u0,0 u2,1 u9,3

... θmax
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Fig. 1: (Top) Illustrative description of the atoms of the BF codebook.
Without loss of generality, we assume a symmetric FoV covering
[−θmax, θmax]. (Bottom) An example with Nrf = 4 beams per block
for B = 2 consecutive blocks (corresponding to the different colors),
and a total of NrfB = 8 explored directions.

alternative for beam-space MIMO radar consists of using a
grid of DFT beams, i.e., the dictionary C is formed by the
columns of a Na ×Na unitary DFT matrix. In Section IV-C,
Fig. 2, a comparison between these alternatives in terms of
the achieved CRLB for parameter estimation will be provided.
We will show that antenna selection and the DFT dictionaries
achieve generally worse performance than the proposed one
for two opposite reasons: antenna selection provides good
angle exploration but very low SNR at each sampled antenna
port. The DFT dictionary provides very high BF gains but too
limited angular support. ♦

IV. JOINT DETECTION AND PARAMETERS ESTIMATION

We denote the true value of the parameters as θ̊ =
{̊hp, ν̊p, τ̊p, φ̊p} and use θ = {hp, νp, τp, φp} to denote the
arguments of the likelihood function. We shall write the
received signal expression (11) in a compact form by blocking
the NM Doppler-delay signal components into NM × 1
vectors. In order to avoid notation ambiguity, we use underline
to denote blocked quantities. For each b ∈ [B], we define the
effective channel matrix of dimension NrfNM ×NsNM as

Gb(ν, τ, φ) ,
(
UH

ba (φ) aH(φ)F
)
⊗Ψ(ν, τ) , (12)

where Ψ(ν, τ) is defined such that [Ψ(ν, τ)]kM+l,k′M+l′ =
Ψk,k′,l,l′(ν, τ) for k, k′ ∈ [0 : N − 1] and l, l′ ∈ [0 : M − 1],
where Ψk,k′,l,l′(ν, τ) is defined in (10), and ⊗ is the Kronecker
product. In (12), F is formed by a single column (Discovery
mode with Ns = 1) or multiple columns (Tracking mode with

Ns = P ). Thus, by stacking the N ×M ×Ns OTFS symbol
block into a NsNM -dimensional vector xb and defining the
blocked output vector y

b
of dimension NrfNM × 1, the

received signal takes on the form

y
b

=

(
P−1∑
p=0

h̊pGb(̊νp, τ̊p, φ̊p)

)
xb + wb, b ∈ [B], (13)

where wb denotes the additive white Gaussian noise (AWGN)
vector with independent and identically distributed entries of
zero mean and variance σ2

w.

A. Target detection and parameter estimation in discovery
mode

In Discovery mode, the unknown number P of targets
are simultaneously illuminated by a single wide FoV beacon
signal. In this case, a near target may “mask” the presence of
a far target with similar AoA. Hence, we propose to detect
the targets sequentially and, after a target is detected and its
parameters are estimated, we use a SIC approach in order to
cancel it from the received signal and proceed to the detection
of the next target. The procedure stops when no more targets
are detected.5

At each detection step of the above described procedure,
we are in the presence of a binary hypothesis testing where
hypotheses H0 and H1 correspond to absence or presence
of the p-th target only. In fact, when detecting a target and
estimating the relevant parameters, the targets already detected
are assumed to be already canceled from the received signal
whereas the contribution of the remaining targets is assumed
to be an additional noise. The observation under the two
hypotheses is given by

y
b

=

{
wb b ∈ [B] under H0

h̊pGb(̊νp, τ̊p, φ̊p)xb + wb b ∈ [B] under H1 .

(14)

In the following, we neglect the arguments in Gb(τp, νp, φp)
to avoid excessive clutter in the notation. The log-likelihood
ratio for the binary hypothesis testing problem, multiplied by
σ2
w for convenience, is given by (15).

5Alternative stopping criteria can be considered. For example, one may set
a limit on the maximum number of targets to be detected at each detection
cycle since this operation is repeated periodically with a certain duty cycle.
This depends on the specific application. Note that, in the estimation mode,
each acquired user is served via a dedicated RF chain, therefore a limit for the
number of detections can be bounded by the number of available RF chains.
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`(hp, νp, τp, φp) = σ2
w log

exp

(
− 1
σ2
w

∑B
b=1

∥∥∥y
b
− hpGbxb

∥∥∥2
)

exp
(
− 1
σ2
w

∑B
b=1 ‖yb‖2

) = 2Re

{(
B∑
b=1

yH
b
Gbxb

)
hp

}
− |hp|2

B∑
b=1

‖Gbxb‖2 (15)

Target detection is formulated here as a standard Neyman-
Pearson hypothesis testing problem [36], for which the so-
lution that maximizes the detection probability subject to a
bound on the false-alarm probability is given by the Likelihood
Ratio Test

`(hp, νp, τp, φp)
H1

≷
H0

Tr, (16)

where the threshold Tr determines the tradeoff between detec-
tion and false-alarm probabilities. Since the true value of the
parameters is unknown, we use the Generalized Likelihood
Ratio Test

max
hp,νp,τp,φp

`(hp, νp, τp, φp)
H1

≷
H0

Tr. (17)

The maximization of (15) with respect to hp for fixed
τp, νp, φp is immediately obtained as

ĥp =

(∑B
b=1 yH

b
Gbxb

)∗
∑B
b=1 ‖Gbxb‖2

. (18)

Replacing (18) into (15) we obtain the log-likelihood ratio in
the form

`(ĥp, νp, τp, φp) =

∣∣∣∑B
b=1 yH

b
Gbxb

∣∣∣2∑B
b=1 ‖Gbxb‖2

. (19)

For future use, we define the function S(ν, τ, φ) given by
(19) after replacing νp ← ν, τp ← τ, φp ← φ. The proposed
successive target detection, parameter estimation, and target
signal cancellation works as follows. We define the coarse
Doppler-delay-angle search grid Γ×Ω̂ where Γ is the Doppler-
delay grid defined in II-B and Ω̂ is a suitably defined grid of
discrete angles in the designed FoV Ω. The list of detected
targets is initialized as “empty”. For each detection step
p = 0, 1, 2, . . ., the algorithm repeats the following steps:

1) Compute the adaptive threshold function Tr(ν, τ, φ) for
all grid points (ν, τ, φ) ∈ Γ × Ω̂ according to the
Constant False Alarm Rate Detection (CFAR) approach.
In particular, here we use the Ordered Statistic Constant
False Alarm Rate (OS-CFAR) method, which is known
to provide good performance in a realistic scenario when
the statistic of noise and interference is not uniformly
distributed across the three-dimensional grid (see e.g.
[18, Chapter 6.5]). The details of the computation of
Tr(ν, τ, φ) are given in Appendix B.

2) Compare S(ν, τ, φ) with the threshold function and define
the set of “above threshold” grid points

T = {(ν, τ, φ) ∈ Γ× Ω̂ : S(ν, τ, φ) ≥ Tr(ν, τ, φ)}.
(20)

3) If T = ∅ (if T is empty, i.e., S(ν, τ, φ) < Tr(ν, τ, φ)
for all grid points), the algorithm exits.

4) If T 6= ∅ (and no other stopping criterion is reached), let

(ν̂p, τ̂p, φ̂p) = arg max
(ν,τ,φ)∈T

S(ν, τ, φ), (21)

and declare the new detected p-th target with coarse
estimated parameters (ν̂p, τ̂p, φ̂p).

5) Refine the coarse estimate of the parameters over fine
grid search localized in the neighborhood of (ν̂p, τ̂p, φ̂p)
in the 3-dimensional search space, and let (ν̌p, τ̌p, φ̌p)
denote the arg-max of S(ν, τ, φ) on the local search fine
grid.

6) Replace (ν̌p, τ̌p, φ̌p) into (18) and find the corresponding
estimate ȟp of the channel coefficient. Then, subtract the
p-th path signal contribution from the received signal, i.e.,

y
b
← y

b
− ȟpGb(ν̌p, τ̌p, φ̌p)xb, for b ∈ [B].

Go back to Step 1 and repeat.

B. Refined parameter estimation in tracking mode

In Tracking mode, the P users served in spatial divi-
sion multiple access are chosen by some multiuser MIMO
scheduling/grouping scheme (e.g., see [37]) so that they are
sufficiently separated in the angle domain thus suffering from
very small inter-user interference. It follows that, by design,
we have aH(φp)fq ≈ 0 for p 6= q. From the radar estimation
viewpoint, this implies that in this scenario the (known) targets
are always clearly distinguishable in the angle domain. Notice
that there is no loss of generality in this assumption precisely
because we are considering the tracking of already connected
users, which are scheduled for data transmission and hence
chosen (by the multiuser scheduler) to be separable in the
angle domain. In other words, if two users are not separable
in the angle domain, the BS schedules them in different data
frames. This implies that the matrix Gb(̊νp, τ̊p, θ̊p) defined in
(12) can be partitioned into P vertical slices of dimension
NrfNM × NM , where all but the p-th slice are ≈ 0. We
define the p-th vertical slice of the channel matrix as

Gb,p(̊νp, τ̊p, φ̊p) =
(
UH
b a(φ̊p)a

H(φ̊p)fp

)
⊗Ψ(̊νp, τ̊p). (22)

The received signal (13) after neglecting the effect of the
almost zero “slices” can be written as

y
b
≈
P−1∑
p=0

h̊pGb,p(̊τp, ν̊p, φ̊p)xb,p + wb, b ∈ [B], (23)

where xb,p is the NM × 1 b-th symbol block of the p-th
user data stream. We shall develop our ML-based parameter
estimation scheme under the assumption that (23) holds with
equality. Of course, in simulation, we shall test the scheme
with the true channel model given by (13). The excellent
performance of the resulting estimator (closely approaching
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the CRLB) demonstrates the validity of this approximation,
which in turns yields a greatly simplified and low complexity
estimation scheme.

As before, we neglect the arguments in Gb,p(τp, νp, φp).
The log-likelihood function, neglecting irrelevant terms, is
given by (24) at the top of the following page.

Defining the P × 1 vector of path coefficients h =
(h0, . . . , hP−1)T, the vector of signal correlations r with p-th
element

rp =

B∑
b=1

xH
b,pG

H
b,pyb, (25)

the P × P matrix A with (p, q) element

Ap,q =

B∑
b=1

xH
b,pG

H
b,pGb,qxb,q, (26)

and neglecting the irrelevant first term in the RHS of (24), with
some abuse of notation, the equivalent log-likelihood function
can be written as

Λ({hp, νp, τp, φp}) = 2Re{hHr} − hHAh. (27)

The maximization with respect to h is readily obtained as
ĥ = A−1r. Replacing this into (27), the reduced log-
likelihood function with respect to the parameters of interest
{νp, τp, φp} is given by the quadratic form

Λ1({νp, τp, φp}) = rHA−1r. (28)

Notice that (28) must be maximized with respect to the 3P pa-
rameter variables in order to find the ML parameter estimator.
In Tracking mode, the BS has already a coarse knowledge of
the parameters of each target (user) since it is transmitting data
to them. Therefore, it knows (with some coarse approximation)
the AoA (necessary to point the transmit beams), while the
delay and Doppler shifts can be obtained (for example) from
the data in the uplink. Nevertheless, even with a coarse
knowledge of the parameters, a brute-force maximization of
(28) is not feasible. For example, a search over a fine grid with
10 points per parameter around their coarse estimates yields
already 103P evaluations of (28). For P = 3 this yields 1
billion of points!

This problem is overcome here by noticing a further simpli-
fication of the likelihood function. Since the data blocks xb,p
are formed by independent zero mean random variables and
the block size NM is large, the signal correlation terms Ap,q
are negligible for p 6= q. Neglecting the off-diagonal terms
in the matrix A the reduced log-likelihood function becomes
separable in the individual targets parameters. In fact, it is
easily seen that under this simplification we obtain

Λ1({νp, τp, φp}) =

P−1∑
p=0

∣∣∣∑B
b=1 yH

b
Gb,pxb,p

∣∣∣2∑B
b=1 ‖Gb,pxb,p‖2

. (29)

Each term in the sum in (29) has a form similar to the function
S(ν, τ, φ) defined in (19) and can be maximized individually
with respect to the corresponding parameters {νp, τp, φp}
using the same 3-dimensional grid search as done for the target
detection scheme. The numerical results in our simulations are
based on this simplified ML-based scheme.

C. Cramér-Rao Lower Bound (CRLB)
We consider the CRLB as a theoretical benchmark, in

particular to evaluate the “goodness” of various alternative
reduction matrix design (see Remark 1). We consider the
case of a single target (P = Ns = 1) and drop the index
p for simplicity of notation. Letting A = |h| and ψ = ∠(h)
denote the amplitude and the phase of h, respectively, five real
parameters, denoted by θ = (A,ψ, τ, ν, φ), shall be estimated.
Let sb,k,l(θ) denote the noise-free received signal at Doppler-
delay bin (k, l) and block b, obtained by letting U← Ub and
P = 1 in (11). Since the signal is observed in AWGN, we can
use the general expression in [38, Sec. 3.9] to obtain the 5×5
Fisher information matrix with (i, j)-th element given by

[I(̊θ)]i,j =

Re

{
E
[
B∑
b=1

N−1∑
k=0

M−1∑
l=0

(
∂sb,k,l(θ)

∂θi

)H(
∂sb,k,l(θ)

∂θj

)]} ∣∣∣∣∣
θ=

˚θ

,

(30)

The complete derivation of the Fisher Information matrix
requires straightforward but very cumbersome algebra. The
desired CRLB is then obtained by taking the diagonal ele-
ments of the inverse Fisher information matrix. The complete
derivation of the CRLB is available in an online version of
this work [39].

Fig. 2 provides a comparison of the CRLB for different
alternative designs of the reduction matrices {Ub} and for
the system parameters defined in Table I. This comparison
considers three approaches: 1) Proposed method with Flat-
Top beams. 2) Random selection of Nrf antenna elements at
each block. 3) A strategy similar to the proposed one, with
beams from a DFT grid of beams of size Na. Additionally, as
a reference, a fully digital system with Nrf = Na and U = INa

with only a single integration block is considered. Although
this is highly impractical for implementation (as pointed out in
Section I), it is provided here as a useful term of comparison.

V. NUMERICAL RESULTS

TABLE I: System parameters

N = 64 M = 64

fc = 28.25 [GHz] W = 64 [MHz]

Pavg = 24 [dBm] σrcs = 1 [m2]

Noise Figure (NF) = 2 [dB] Noise PSD N0 = 2 · 10−21 [W/Hz]

Na = 64 Nrf = 4

A. Simulation Setup
We set the number of RF chains to Nrf = 4, such that

a single equipment (e.g., BS) is able to jointly track and
communicate to Nrf distinct targets (or groups of targets),
while Nrf � Na. A summary of the system parameters is
provided in Table I.

The radar two-way pathloss is defined as [18, Chapter 2]
PL = (4π)3r4

λ2 , and the resulting SNR at the radar receiver is
given by

SNR =
λ2σrcs

(4π)
3
r4

Pavg

σ2
w

, (31)
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Λ({hp, νp, τp, φp}) =−
B∑
b=1

∥∥∥∥∥yb −
P−1∑
p=0

Gb,pxb,p

∥∥∥∥∥
2

=−
B∑
b=1

‖y
b
‖2 + 2Re

{
P−1∑
p=0

h∗p

(
B∑
b=1

xH
b,pG

H
b,pyb

)}
−
P−1∑
p=0

P−1∑
q=0

h∗phq

(
B∑
b=1

xH
b,pG

H
b,pGb,qxb,q

)
(24)
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Fig. 2: Comparison of the receive-beamforming strategies over SNR
and varying number of integration blocks. SNR values are defined
according to (31).

where λ = c
fc

is the wavelength, c is the speed of light, σrcs

is the radar cross-section of the target in m2, r is the distance
between Tx and Rx, and σ2

w is the variance of the AWGN with
Power Spectral Density (PSD) of N0 in W/Hz. We choose
σrcs = 1 [m2] as an indicative value, while different choices
for specific cases may be found in literature [40], [41].

Remark 2. In the radar literature, it is customary to consider
the resolution limits of each parameter individually. For ex-
ample, the target (radial) velocity with respect to the radar
receiver is given by v = νc

2fc
, and the range (distance between

the target and the radar receiver) is given by r = τc
2 . The

corresponding velocity, range [42], and approximate angular
[22] resolutions, expressed in terms of the system parameters
of Table I, are given by

vres =
cW

2NMfc
[m/s] , rres =

c

2W
[m] , Θres = 1.22

λ

L
[rad],

(32)
where for the Uniform Linear Array (ULA) described in
section II-A, the electrical antenna length L is equal to Naλ

2 .
It can be observed that the velocity and range resolutions
are directly proportional to target illumination time (total

frame duration) and RF bandwidth, respectively. The single-
parameter resolution is (approximately) the minimum spacing
such that two targets are distinguishable (i.e., identifiable)
in the domain corresponding to the given parameter. At this
point, two important observations are in order: 1) in Discovery
mode, since the proposed scheme performs a search over
the three-dimensional parameter space, two targets become
indistinguishable if they are separated by less than the res-
olution limit in all three parameters, Doppler, delay, and
AoA. For example, two targets may be seen under the same
distance and radial velocity, but at different AoA, and yet our
scheme with successive detection can detect them with high
probability (see for example Fig. 4 marked with †). 2) The
resolution limits have little to do with the accuracy (in terms
of Mean-Square Error) with which the parameters of detected
targets can be estimated in Tracking mode. In fact, our ML-
based parameter estimator operates a sort of super-resolution
estimation on a much finer search grid, and when not limited
by the discretization of the grid, it can approach very closely
the CRLB for parameter estimation. ♦

B. Simulation Results

We consider separately the detection performance in Dis-
covery mode and the parameter estimation performance in
Tracking mode.

1) Discovery Mode: In this section, we consider the de-
tection probability Pd of the proposed method as a function
of target range and varying number of integration blocks B
for single and multi-target scenarios. Note that range and
SNR are related through (31). Given that the initial target
acquisition has a direct impact on the latency with which
new users can connect to the BS (e.g., during a handover
operation), we consider using only relatively small values of
B = {6, 10, 18}. Fig. 3 depicts the simulated scenario for
the plots reported in Fig. 4. The plots are obtained by Monte
Carlo simulations at each SNR point, where the angles and
Doppler shifts of the targets are randomly changed within a
wide angular FoV = [−45◦, 45◦] and radial velocity range
[10 − 60] m/s, respectively. More specifically, for the single
target scenario in Fig. 3(a), the range parameter takes values
in [10, 20, ..., 140] [m] and the corresponding Pd is reported
in Fig. 4(a).
We consider that a target is correctly detected if the estimated
AoA, φ̂p fulfills |φ̂p − φp| ≤ ε, with ε = 0.5◦, since
this simulation corresponds to the coarse estimation stage in
Discovery mode. We can observe the effect of integration gain
on the target detection performance, for which the performance
improves with the number of blocks B.



9

BS BS

1

1

2

(a) (b)

Fig. 3: (a) Movement of a single target inside the considered FoV. (b)
Movement scenario of two targets inside the considered FoV, where
one target is located at a fixed closer distance and the second changes
its position.
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Fig. 4: Probability of detection of targets Vs. range within an
illuminated angular FoV of 90◦, as depicted in Fig. 3, with varying
B. Plot (a) shows Pd for a single target shown in Fig. 3(a). Plot (b)
depicts a two target scenario (Fig. 3(b)) where Pd for the second
target after detection and removal of the first target is reported.

To demonstrate the effectiveness of the SIC technique of
Section IV-A, we consider two distinct experiments. In the first
experiment, shown in Fig. 3(b), we consider a two target case,
where two targets are present and the detection performance
for the second target at different distances is considered while
keeping the first target at a fixed short distance. More specifi-
cally, one target is located at a close distance of r = 10 m, and
the second target is located at a distance varying from r = 10
m to r = 140 m. The closer target creates a masking effect of
the second target. By comparing the detection probability Pd
versus range in the case of a single target in Fig. 4 (a) with
that of the second target in the two-target case in Fig. 4 (b),
plotted versus the range of the second target while the first is at
fixed short distance, we notice that the proposed SIC scheme
is able to cope well with the masked target effect. In fact, Pd
for the second target in Fig. 4 (b) is very close to Pd for the
single target case in Fig. 4 (a), showing that the presence of
a close masking target with strong near-far effect incurs only
a small degradation, at least in the relevant range up to 80 m.
It should be noted that the effective reliable detection range
is a function of transmit power, which can be extended by
increasing the transmitter (Tx) power.
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Fig. 5: Target positions in Cartesian space.

In the second experiment, shown in Fig. 5, we consider four
targets and repeat the SIC target detection procedure over 200
runs, where the location of each of the targets is shown in
Fig. 5. In this experiment, we have considered two scenarios.
In the first scenario, for which the first column of Tab. II,
PSingled , reports the averaged detection probability for the
target individually, only a specific single (isolated) target is
present. The second column, PSICd , corresponding to the
second scenario, reports the detection probability of each target
when all four targets are present at the same time and they
are detected sequentially by the SIC procedure. The slight
degradation of the detection performance for the farther targets
arises from the residual of the closer (stronger) targets when
their contribution can not be exactly removed.

Simulation Scenario Blocks PSingle
d PSIC

d

Target 1 10 0.96 0.945
Target 2 10 0.935 0.905
Target 3 10 0.895 0.835
Target 4 10 0.84 0.765

TABLE II: Pd for multi-target scenario with SIC.

2) Tracking Mode: Next, the parameter estimation perfor-
mance of the Tracking mode is considered. Here, the BS sends
individually beamformed data streams to P already acquired
targets, i.e., Users. This results in a significantly higher BF
gain of the transmitter and, consequently, a better estimation
performance over a wider distance. As shown in Fig. 6, in the
simulated scenario three distinct users are considered where
the first and second are positioned at a fixed distance and angle
from the BS, and the third user’s location is changed. Notice
that this does not represent relative motion: at each location of
the third target, we consider fixed range, Doppler, and AoA
for all targets, and perform Monte Carlo simulation of the
parameter estimation scheme of Section IV-B. The results are
reported in Fig. 7.

We compare the achieved root MSE (RMSE) with the
corresponding CRLB for all users, indicated by the dashed
curves. Interestingly, when two targets have the same range,
i.e., location instances 3 and 7, we notice a slight increase
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Fig. 6: Simulation Scenario in Tracking mode where each of the pre-
viously acquired users receives a very narrow signal via a dedicated
RF chain.

in the estimation RMSE. This is because the targets are not
distinguishable in the delay domain. However, thanks to their
angular separation, the estimation of all the parameters (includ-
ing the range) remains very accurate. We have also noticed by
extensive simulation, that A in (27) can be safely considered
as diagonal, leading to the approximated ML estimator in (29).
This is further confirmed by the fact that the performance of
the proposed estimator follows closely the CRLB.

Remark 3. We would like to emphasize that the beam-space
MIMO approach proposed in this work is not limited to a
specific type of beam shape. As an example, when latency
is not of concern and therefore a large value of B can be
considered, a DFT beamforming dictionary can be used which
will increase the SNR at receiver due to higher BF gain. In
other applications with relatively narrow FoV requirements,
it is possible to replace these flat-top beams or DFT beams
with a BF codebook obtained from Slepian sequences, which
provide an optimal orthogonality condition and angle con-
centration around the currently estimated target AOA. This is
presented in another related work of ours [15]. ♦

VI. CONCLUSIONS

In this paper, we proposed a beam-space MIMO radar
approach for joint data transmission and radar parameter
estimation based on OTFS modulation and targeting mmWave
applications. The beam-space approach consists of reducing
the Na-dimensional received signal at the radar Rx antenna
array to an Nrf � Na projected observation, where the
projection is operated by analog BF. In this way, only Nrf

RF-chains (demodulation and A/D conversion) are needed.
We designed a suitable BF codebook and proposed a multi-
block detection/estimation scheme, where the projection beam
patterns are changed over B ≥ 1 blocks. We considered
two relevant scenarios for joint communication and sensing,
namely, Discovery and Tracking modes. In Discovery mode,
the BS transmits a wide angle beacon signal and aims to
detect known targets (e.g., users entering the cell). In Tracking
mode, the BS transmits multiple individually beamformed
(with narrow beams) data streams to already acquired users,
scheduled to be sufficiently separated in the angle domain.

For Discovery mode, we proposed a sequential target de-
tection with successive interference cancellation, able to cope
with the near-far effect yielding target masking in the case
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Fig. 7: Estimation performance of Tracking mode. Plot (a) indicates
the RMSE values of the three considered parameter estimates as
dictated by the CRLB over range (distance). The colored bars indicate
the values for the two fixed targets in the setup (see Fig. 6). Plots
(b)-(d) depict estimation performance for each target, in AoA, range
and radial velocity, respectively.

of multiple targets. For Tracking mode, we proposed an
approximated ML parameter estimator which has relatively
low complexity and is able to approach the CRLB on a wide
range of the parameters. A few interesting directions are left
for future work. These include the further optimization of the
hybrid beamforming matrices, the comparison with other radar
or/and communication waveforms, and the inclusion of such
radar-aided techniques in effective schemes for initial beam
acquisition (e.g., radar-enhanced initial beam alignment, for
which the Discovery mode is relevant [43]), and in effective
schemes for beam tracking (e.g., in conjunction with mobility
models and tracking algorithms, for which the Tracking is
relevant [44]).
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APPENDIX A
DESIGN OF THE BEAMFORMING VECTORS

Let f be a beamforming vector of dimension Na. Define a
discrete set of angles Ω = {φ̃i : i = 1, . . . , G}. The complex-
valued (amplitude and phase) beam pattern radiated by the
array at each sampling point φ̃i is given by the inner product
of f and the array response vector a(φ) at the given grid angle,
i.e., aH(φ̃i)f .

The design problem of interest is to find f to approach
a desired radiation pattern b̄ ∈ RG, where the entries of
b̄ = [b̄1, ..., b̄G]T are the magnitudes of the radiation pattern
at the discrete angles in Ω. In particular, we fix b̄ to have
a constant level in a pre-determined angle range around the
boresight direction of the array (zero angle) and such that the
values corresponding to the rejection directions (sidelobes) are
below a certain threshold with respect to the maximum (center
beam). By letting A = [a(φ̃1), . . . ,a(φ̃G)], this problem can
be formulated as a magnitude least-squares problem which
belongs to the class of problems addressed by [45], [46].

min
f

‖AHf − b̄‖2

s.t. fHAHAf = 1 (33)

where the constraint in (33) imposes unit transmit power.
Problem (33) can be solved as a semidefinite relaxation of
the magnitude least-squares problem [46]. Depending on the
operating scenario, a beam pattern can focus the transmitted
energy on an angular sector of given width in the FoV defined
by Ω. In order to define our design in a flexible manner, the
FoV is divided into a central section Ωm covering Gm discrete
directions each with magnitude of σm and the remaining
sections (modulo the interval [−π, π] denoted by Ωp, with
Gp grid points and magnitude σp). The desired beam pattern
b̄ has a total power of Gmσ

2
m in the central sector and

Gpσ
2
p = 1−Gmσ2

m in the remaining peripheral sections. By
controlling the main and peripheral sections, we can control
the width of the main lobe and the side lobes rejection.

Fig. 8 shows a few examples of the used design beamform-
ing masks. Fig. 9 illustrates the achieved flat-top beampattern
for an FoV of 90◦, corresponding to the wide Tx beam used
in Discovery mode in this paper.

APPENDIX B
ADAPTIVE THRESHOLD FOR DETECTION

With reference to the notation introduced in Section
IV-A, the decision statistics at each Doppler-delay-angle bin
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Fig. 8: Examples of beampattern masks with varying main lobe
widths and sidelobe levels.
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Fig. 9: Tx beampattern for a FoV of 90◦ and Na = 64. The zoomed-
in plot depicts the minimal ripple within the main beam.

(ν, τ, φ) ∈ Γ× Ω̂ under hypothesis H0 if given by

SH0(ν, τ, φ) :=

∣∣∣∑B
b=1 wH

b Gb(ν, τ, φ)xb

∣∣∣2∑B
b=1 ‖Gb(ν, τ, φ)xb‖2

,

SH1(ν, τ, φ) :=

∣∣∣∑B
b=1 yH

b
Gb(ν, τ, φ)xb

∣∣∣2∑B
b=1 ‖Gb(ν, τ, φ)xb‖2

. (34)

We wish to compute an adaptive thresholds Tr(ν, τ, φ) to
compare the decision statistic S(ν, τ, φ) and decide for H0

or H1, such that a target false alarm probability is achieved.
Notice that the function SH0(ν, τ, φ) is the squared mag-

nitude of a Gaussian complex circularly symmetric random
variable obtained as the linear projection of the AWGN
vector. Hence, it is exponentially distributed (for given
{Gb(ν, τ, φ)xb}Bb=1).

We can estimate the distribution locally at each Doppler-
delay-angle bin (ν, τ, φ) ∈ Γ × Ω̂. Following the OS-

φτ

Cell Under Test S(ν0, τ, φ)

Cell Under Test S(ν0, τ, φ)

Fig. 10: Graphical representation of OS-CFAR windowing. For a
plane cut at ν = ν0, the window is shifted around each location
(ν0, τ, φ) in the search space.



12

Constant False Alarm Rate (CFAR) procedure [18, Chapter
6.5], we first define a set of neighboring bins, denoted by
C (ν, τ, φ), centered at (ν, τ, φ) (see Fig. 10). Let Nc =
max(ν,τ,φ)∈Γ×Ω̂|C (ν,τ,φ)| denote the size of the neighboring
bins for most of bins in the search space (notice that for
some bins in the boundary of the domain the size of the
neighboring set C (ν, τ, φ) may be less than Nc). For each
Doppler-delay-angle bin (ν, τ, φ) ∈ Γ × Ω̂, we evaluate the
value of S(ν′, τ ′, φ′) for (ν′, τ ′, φ′) ∈ C (ν, τ, φ) and sort them
in an increasing order such that

S(ν1, τ1, φ1) ≤ S(ν2, τ2, φ2) ≤ · · · ≤ S(νNc
, τNc

, φNc
)
(35)

where (νi, τi, φi) ∈ C (ν, τ, φ) denotes the i-th element in the
above ordered statistics of the neighboring set. Assuming that
no target falls in the neighboring set C (ν, τ, φ), the above
ordered statistics yields an empirical cumulative distribution
function (CDF) of S(ν, τ, φ). Hence, the threshold can be
determined by choosing a given percentile κ of this empirical
CDF, and scaling it by a factor α that depends on the specific
problem at hand and must be tuned through simulations.
Specifically, fixing κ ∈ (0, 1), we express the adaptive thresh-
old Tr(ν, τ, φ) as

Tr(ν, τ, φ) = αS(νdκNce, τdκNce, φdκNce). (36)

The corresponding false alarm probability at bin (ν, τ, φ) if
given by

Pfa(ν, τ, φ) = P(S(ν, τ, φ) > Tr(ν, τ, φ)|H0)

≈ 1− F̂SH0 (Tr(ν, τ, φ)) (37)

where F̂SH0 denotes the empirical CDF of SH0(ν, τ, φ) cal-
culated from the ordered statistics defined above. The average
false alarm probability is given by

P̄fa =
1

|Γ||Ω̂|
∑

(ν,τ,φ)∈Γ×Ω̂

Pfa(ν, τ, φ) (38)

and depends on κ and α. Then, we can tune these parameters
such that a target average false alarm probability is satisfied.
This is obtained by simulation (in our case) or by training (in
a real-world scenario).

Fig. 11 shows the three stages of the OS-CFAR procedure in
a 2-dimensional delay-angle space (a depiction in 2-D space is
shown for visualization clarity). Fig. 11 (a) shows the decision
statistics S(ν, τ, φ) for ν = 0, in the delay-angle plane. Fig. 11
(b) shows the threshold Tr(ν, τ, φ) calculated according to
the above OS-CFAR procedure. Fig. 11 (c) shows the portion
of the detection statistics in (a) above the adaptive threshold
in (b). This determines the set of points in the grid above
threshold T as defined in (20). Finally, the target is identified
by taking the position of the maximum of S(ν, τ, φ) for over
the set T , if this is not empty, otherwise hypothesis H0 (no
target) is declared.
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