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Abstract
In this work, we investigate the effect of anti-site disorder on the half-metallic properties of a
Mn2FeAl Heusler alloy thin film. The film was grown on TiN-buffered MgO 001 substrates via
magnetron sputtering. A detailed structural characterization using x-ray diffraction (XRD) and
anomalous XRD showed that the film crystallizes in the partially disordered L21B structure with
33% disorder between the Mn(B) and Al(D) sites. We measure a positive anisotropic
magnetoresistance in the film, which is an indication of non-half metallic behaviour. Our x-ray
magnetic circular dichroism sum rules analysis shows that Mn carries the magnetic moment in
the film, with a positive Fe moment. Experimentally determined moments correspond most
closely with those found by density functional calculated for the L21B structure with Mn(B) and
Al(D) site disorder, matching the experimental structural analysis. We thus attribute the
deviation from half-metallic behaviour to the formation of the L21B structure. To realize a
half-metallic Mn2FeAl film it is important that the inverse Heusler XA structure is stabilized
with minimal anti-site atomic disorder.
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1. Introduction

Spin transport electronics, or simply spintronics [1] is a rapidly
growing field that studies how to exploit the magnetic spins of
electrons in addition to their charge. The field was invigorated
in 1988 when Peter Grünberg [2] and Albert Fert [3] demon-
strated the giant magnetoresistance (GMR) effect. Since then
there have been many breakthroughs in the field, for example
the hard disk drive with high storage capacity [4], magnetic
random-access memory [5] and low power computing [6].

Half-metallic materials have a bandgap in one spin-
orientation at the Fermi level and metallic behaviour in the
other spin band [7], which results in the conduction of only
one spin orientation, and hence a 100% spin polarized cur-
rent. Half-metallic materials are therefore of great interest
for spintronic devices, for example for enhancing the mag-
netoresistance in both magnetic tunnel junctions [8–12] and
current-perpendicular-to-plane (CPP-GMR) devices [13–16].
Unfortunately, some of the raw elements of the various mag-
netic layers in available magnetic tunnel junctions and CPP-
GMR devices have been identified as critical [17], and there-
fore it is crucial to investigate alternative materials made from
readily available and cheaper elements [18, 19].

Heusler alloys are a group of intermetallic alloys [20] which
provide a very promising framework to design new sustain-
ablematerials [19] to replace those currently used in spintronic
devices. Elemental and composition tuning in Heusler alloys
can lead to different types of magnetism [21], in addition to
properties that are advantageous for enhancing the sensitivity
of spintronics devices, such as half-metallicity [7].

Regarding half-metallic Heusler alloys, previous studies
have focused on the Co-based Heusler alloys [22] and devices
based on these alloys such as tunnelling magnetoresistance
[12, 23–26] and CPP-GMR devices [14, 15, 27, 28]. How-
ever, Co is one of the elements that is considered critical
[29]. Amongst half-metallic Heusler alloys comprised of only
sustainable elements, Mn2FeAl (inverse Heusler structure,
XA, space group No. 216) is promising because of its pre-
dicted half-metallic behaviour [30] and low magnetization
(1 µB/ f.u.) [31], allowing for the realization of sensitive and
densely packed spintronic devices. However, the half-metallic
behaviour in Heusler alloys is sensitive to anti-site disorders
[32–36] and it is therefore important that careful character-
ization of the atomic disordering and its effect on the spin-
polarization in Mn2FeAl is carried out.

Current studies have focused on bulk polycrystalline
Mn2FeAl which was stabilized in the β-Mn structure [37, 38].
Mn2FeAl Heusler thin films were successfully fabricated by
growth using molecular beam epitaxy [39, 40]. Whilst Lv et al
[40], suggest that their MBE grown Mn2FeAl film has D03

disorder, no direct evidence is provided. Moreover, they sug-
gest that the magnetic moment of their films decreases with
D03 disorder, in contrast to the Slater-Pauling prediction [31].

In our work we show how anti-site disorder affects the half-
metallic properties of a Mn2FeAl. We directly confirm the
structure and level of disorder in a Heusler Mn2FeAl thin film,
grown via magnetron sputtering, using a combination of both
x-ray diffraction (XRD) and anomalous XRD [41]. We also
present for the first time, x-ray magnetic circular dichroism
characterization ofMn2FeAl to determine the element-specific
magnetic moments of Fe and Mn. We compare our experi-
mental structural analysis and determined magnetic moments
with theoretical predictions calculated by density functional
theory. Our accurate quantification of the atomic order and Fe
and Mn magnetic moments will allow for future optimization
of Mn2FeAl thin films with half-metallic character.

2. Experimental

All data presented in the main paper were obtained from a
single sample: 20 nm thick Mn2FeAl deposited on a 2 nm
TiN-buffered MgO 001 substrate, and capped with a 1.5 nm
Ti /1.5 nm TiN bilayer. Film deposition was carried out
using DC/RF-magnetron sputter deposition in a UHV sputter-
ing chamber built by BESTEC GmbH, with a base pressure
below 1 × 10−8 Pa. During all deposition steps the substrate
(10 × 10 mm2) was rotated at 10 RPM to ensure homogen-
ous deposition across the surface. Film deposition took place
at Ar or Ar/N2 (6 N) gas pressure of 0.2 Pa. The MgO 001
substrates were loaded directly from the supplier’s (CrysTec
GmbH) vacuum-sealed packaging.

The TiN buffer (2 nm) and cap (1.5 nm) were depos-
ited at substrate temperature of 600 ◦C (using a radiative
heater positioned at the back of the substrate holder) and
room temperature, respectively, using reactive sputtering (RF-
source), in mixed Ar/N2 sputtering gas (Ar flow = 10 sccm;
N2 = 0.8 sccm). The deposition rate was 0.01 nm s–1 and
was in the fully poisoned regime [42] which indicates that
the Ti target (99.995% purity) surface was covered with
a nitride layer (supplementary note 1 available online at
stacks.iop.org/JPhysD/55/185305/mmedia). The TiN buffer
was chosen as its lattice parameter matches well (ε ∼ 0.71%)
with MgO (001) [43]. Furthermore, it resulted in better ori-
ented and smoother Mn2FeAl films (supplementary note 2).

The 20 nm Mn2FeAl film was deposited at 450 ◦C from
three individual DC targets: Fe (99.95% purity), Mn (99.9%
purity) andAl (99.999%purity), at a total rate of∼0.13 nm s–1.
The film was then capped with a 1.5 nm thick Ti film (RF-
source) at room temperature (and 0.17 nm s–1) to protect the
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surface from N2 bombardment during subsequent deposition
of the TiN final cap.

The individual element deposition rates were first calib-
rated in situ, using a quartz crystal microbalance and con-
firmed by x-ray reflectivity (XRR) measurements (for Fe and
Mn) and atomic force microscopy (AFM, Brucker MM8) (for
Al). The composition of the film was then verified to be
Mn2.02±0.01Fe0.98±0.01Al1.04±0.01 from a 600 nm–thick sample
using energy dispersive x-ray analysis (EDX) in a Zeiss
LEO 1530 scanning electron microscope with an Amptek
X-123SDD EDX detector. A 15 keV voltage was used to
obtain the K and L lines for quantification.

High resolution x-ray diffraction (XRD) was performed
using a four-circle Panalytical Empyrean vertical θ/θ diffracto-
meter with a hybrid 2-bounce primary monochromator. A pro-
portional counter was used for the 2θ/θ and ω scans and a 2D
PIXCEL position sensitive detector for collecting the recip-
rocal space maps (RSMs). A Bruker D8 4-axes diffractometer
with a mirror to give a pseudo-parallel beam was used to
obtain the φ-scans, the 200, 400 2θ/θ scans without χ-offset
and the 111, 220, 222 2θ/θ scans with χ-offset (supplement-
ary note 3) to calculate the ordering parameters. The exper-
imental peak intensities were determined by profile fitting
using HighScore+ software. The theoretical intensities were
calculated as outlined in supplementary note 3. A Philips
X’Pert Pro MPD θ/θ diffractometer was used to obtain the
XRR scans.

The anomalous XRD (AXRD) measurements were per-
formed at the BL13XU beamline using a six-circle diffracto-
meter at SPring-8. To evaluate the atomic ordering in the
Mn2FeAl film, the 111 peak intensity (I111) was measured at
the Mn and Fe K absorption edges. Simulations of the I111
were performed from 6.3–6.7 keV for Mn and 7.0–7.3 keV
for Fe assuming an XA-type Mn2FeAl structure (figure 1(a)).

The x-ray adsorption spectroscopy and magnetic circular
dichroism (XAS and XMCD) measurements were performed
on the I06 beamline at the Diamond Light Source. The atomic
magnetic moments were measured using total electron yield
mode and the element specific hysteresis loops were meas-
ured using fluorescence detection. To determine the magnetic
moments, the Mn and Fe L3,2 edges were probed for paral-
lel (I+) and antiparallel (I–) alignment of photon helicity with
respect to a 2 T applied magnetic field at an angle 60◦ with
respect to the sample normal. The XMCD signal (I+ − I–)
was then analysed using the XMCD sum rules [44] to extract
the overall magnetic moments of Fe andMn and separate their
orbital and spin contributions. In this work, 4.5 and 3.4 for
the number of holes in the 3d band for Fe [45] and Mn [46]
were used respectively. To remove intermixing complications
between the Mn L3 and L2 edges, a 1.47 correction factor [47]
was used to adjust the Mn spin moment.

To measure the anisotropic magnetoresistance (AMR), the
Mn2FeAl film was patterned into Hall-bar devices using pho-
tolithography followed by an Ar ion-milling step. A Quantum
Design physical properties measurement system (PPMS Dyn-
aCool) was used to carry out the AMR measurement. A con-
stant 1 mA DC current was applied and the magnetic field was
rotated in the plane of the film.

We calculated the density of states (DOS) of ordered
and disordered Mn2FeAl using density functional theory
(DFT) and the Korringa-Kohn-Rostoker (KKR) method [48,
49], implemented in the Akai-KKR software package [50].
The generalized gradient approximation was used for the
exchange-correlation energy [51] and the disordered states
were treated within the coherent potential approximation. The
lattice parameters were set to a = 5.948 Å and c = 5.776 Å,
determined via XRD. The Brillouin-zone integration was per-
formedwith 10× 10× 10 k points. Under these conditions, we
calculated the DOS of XA-ordered (figure 1(a)), L21B -ordered
(100% (Mn(A)↔ Fe(C) disorder) (figure 1(b)), and other vari-
ations of disorder in Mn2FeAl (table 1).

3. Results

The high resolution XRD characterization of the Mn2FeAl
film grown on a 2 nm TiN buffered MgO (001) substrate
shows both the principal 400 reflection and the 200 superlat-
tice reflection indicating a degree of B2 ordering (figure 1(c)).
Satellite peaks (thickness fringes) around the MgO (002) peak
(indicated by the black arrows) stemming from the 2 nm
TiN buffer layer are observed illustrating uniform buffer layer
growth. To gain in-plane information about the film, a RSM
of the 206 reflection was collected (figure 1(d)). To obtain
accurate peak positions, the sample was aligned using the
224 peak of the MgO substrate. The out of plane, c, and in-
plane, a, lattice parameters were calculated from the Mn2FeAl
reflections in figures 1(c) and (d) to be 5.776 ± 0.001 Å and
5.948 ± 0.001 Å respectively. The in-plane lattice constant,
a, is larger than the out of plane lattice parameter, c, indic-
ating tetragonal distortion due to strain induced by the lat-
tice matching of the Mn2FeAl film and the TiN buffer layer.
There is a 45◦ in-plane rotation of the Mn2FeAl lattice relat-
ive to the TiN buffer layer in order to achieve lattice matching
(aTiN ≈ aMn2FeAl cos45◦). To confirm this, a RSM was taken
for a 40 nm thick TiN film (supplementary note 1), in which
the in-plane lattice parameter calculated for the TiN film is
4.206± 0.001Å, giving a lattice spacing of 5.948± 0.001Å at
a 45◦ in-plane rotation, matching theMn2FeAl in-plane lattice
parameter.

An XRR scan (figure 1(e)) revealed Kiessig fringes
over the entire 5◦ range for the 20 nm thick film. The
roughness is determined to be ∼0.55 nm from the scan
simulation.

φ-scans from the Mn2FeAl 220 and the MgO 220 reflec-
tions, shown in figure 1(f), confirm the in-plane 45◦ rotation of
the Mn2FeAl film relative to the TiN-buffered MgO substrate:
(Mn2FeAl(001)[110] || TiN(001)[100] ||MgO(001)[100]). The
φ-scans also confirm the presence of the 111 peak from the
Mn2FeAl film.

We have performed a quantitative analysis of the XRD pat-
terns to determine the degree of B2 and XA ordering [52] in
the film, via the order parameters SB2 and SXA respectively.
SB2 was calculated as the average of the intensity ratios of the
superlattice 002 and 222 reflections versus the fundamental
220 and 400 reflections respectively as:
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Figure 1. Structural characterization using x-ray diffraction (XRD). (a) XA and (b) L21BMn2FeAl crystal structures. The A, B, C, and D
sites correspond to 4a, 4c, 4b, and 4d Wyckoff positions respectively. (c) High resolution XRD 2θ/θ scan, ∗ indicates the MgO 002
reflection and the grey arrows indicate the satellite peaks of the 2 nm TiN buffer layer. (d) Reciprocal space map of the Mn2FeAl 206 and
MgO 224 reflections. (e) X-ray reflectivity scan in which the open circles and the solid lines represent the measured and simulated curves
respectively. (f) φ-scans of the MgO 220 (bottom), Mn2FeAl 220 (middle) and 111 (top) reflections.

Table 1. Summary of the Mn2FeAl structures and disorders studied in this work.

Structure Disorder Stoichiometry

I XA n/a Mn1.0Mn1.0Fe1.0Al1.0
II L21B Mn(A) ↔ Fe(C) (Mn0.5Fe0.5)Mn1.0 (Mn0.5Fe0.5)Al1.0
III D03 Mn(A,B) ↔ Fe(C) (Mn0.67Fe0.33)(Mn0.67Fe0.33)(Mn0.67Fe0.33)Al1.0
IV L21B with partial B2 disorder L21B + 33%-Mn(B) ↔ Al(D) (Mn0.5Fe0.5)(Mn0.67Al0.33)(Mn0.5Fe0.5)(Al0.67Mn0.33)
V L21B with partial D03 disorder L21B + 50%-Mn(B) ↔ Fe(A,C) (Mn0.75Fe0.25)(Mn0.5Fe0.5)(Mn0.75Fe0.25)Al1.0
VI L21B with partial A2 disorder L21B + 40%-Mn(A,C) ↔ Al(D) (Mn0.3Fe0.5Al0.2)Mn1.0(Mn0.3Fe0.5Al0.2)(Al0.6Mn0.4)
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Figure 2. Confirmation of structure and ordering using anomalous x-ray diffraction (AXRD). Simulated AXRD 111 reflection intensity
(I111) of Mn2FeAl in the XA structure as a function of Mn(A) ↔ Fe(C) disorder from 0% to 50%, near the (a) Mn K-edge and the (b) Fe
K-edge; (c) and (d) corresponding experimental data (filled black circles are the raw data and the dashed black lines are guides for the eyes
only). The specific K-edges of both Mn and Fe are indicated by the dashed vertical green lines.

S2B2 =
Imeasured
superlattice

/
Imeasured
fundamental

Icalculatedsuperlattice

/
Icalculatedfundamental

. (1)

SXA was calculated from the average of the intensity ratios
of the superlattice 111 reflections versus the fundamental 220
and 400 reflections as:

[
SXA

(
2− SB2

2

)]2

=

Imeasured
superlattice

/
Imeasured
fundamental

Icalculatedsuperlattice

/
Icalculatedfundamental

. (2)

The reflection intensities were corrected by the Lorentz-
Polarization factor and for geometrical effects which result
from the changes in the x-ray and sample interaction volume
with the χ-angle offset due to sample tilting (supplementary
note 3). It is found that the degree of SB2 is larger than SXA,
0.86 ± 0.17 and 0.29 ± 0.10 respectively. The implication of
the calculated SB2 and SXA on the actual atomic ordering in the
film depends on whether the film crystallizes in the ordered
inverse Heusler structure (XA), as predicted [31], or another
structure with partial or full-disorder between Fe and Mn like
the L21B-Heusler structure.

Since Fe and Mn have similar scattering factors, it is chal-
lenging to determine the specific atomic ordering of our film
using XRD [53]. If we were to analyse SL21B in the same
way as above, by using the XRD data, based on the L21B
structure shown in figure 1(b), we would get almost the same
value as SXA in the Mn2FeAl film. Thus, to determine the

exact crystal structure including Fe and Mn ordering, we
carried out AXRD experiments [41]. We first simulate the
x-ray energy dependence on I111 at the Mn (figure 2(a)) and
Fe (figure 2(b)) K absorption edges of XA-ordered Mn2FeAl.
By incrementing the amount of Mn(A) ↔ Fe(C), we observe
a change of the line shape of the simulated intensities, mainly
the gradual change from convex upward to downward at the
Mn K-edge and the suppression of the peak at the Fe K-edge.
By comparing the experimentally obtained I111 AXRD data
at the Mn (figure 2(c)) and Fe (figure 2(d)) K-edges with
the simulated data, we verify a high degree of Mn(A) ↔
Fe(C) disorder suggesting that the Mn2FeAl film is not XA-
ordered (figure 1(a)), but L21B-ordered (figure 1(b)). In the
L21B structure, the Mn and Fe atoms share the A(0,0,0)
and C(1/2, 1/2, 1/2) sites equally, unlike in the XA struc-
ture in which Mn atoms solely occupy the A(0,0,0) site and
Fe atoms solely occupy the C(1/2, 1/2, 1/2) site. Moreover,
recalling the order parameters, SXA ∼ 0.29 and SB2 ∼ 0.86,
determined by XRD, we can now also specify that this
small value of SXA results in 33% Mn(B) ↔ Al(D) disorder
(B2-disorder) in the L21B structure as verified by the Takamura
model [52].

XAS andXMCDmeasurements were performed to determ-
ine both the atomic magnetic moments of Mn (figures 3(a)
and (b)) and Fe (figures 3(c) and (d)) and to measure element-
selective hysteresis loops, at 1.5 K (figure 3(e)). Figure 3(e),
reveals that Mn has the larger magnetic moment compared to
Fe. This is further supported by the sum-rules-derived mag-
netic moments summarized in table 2, in which the total Mn

5
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Figure 3. X-ray adsorption spectroscopy and circular magnetic dichroism (XAS and XMCD) spectra and element specific hysteresis loops.
Averaged XAS spectra for the (a) Mn (six scans) and the (c) Fe (eight scans) L2 and L3 absorption edges. The XAS spectra were measured
with right (black) and left (red) circularly polarized light. The corresponding averaged XMCD spectra for (b) Mn and (d) Fe. XMCD
spectrum (green) and the integral of the XMCD spectrum (blue). The spectra were taken at T = 1.5 K in a 2 T applied magnetic field.
(e) XMCD element selective hysteresis loops for Fe (open circles) and Mn (filled circles) measured at T = 1.5 K and saturated to
±2 T – points were only collected to ±0.25 T. Points and solid lines represent raw data.

Table 2. Summary of the XMCD sum rule analysis for the Mn2FeAl film as a function of temperature (mspin, morb and mtot (µB) denote the
measured spin, orbital and total magnetic moments respectively).

150 K 100 K 50 K 1.5 K

Mn
mspin 0.087 ± 0.019 0.085 ± 0.017 0.11 ± 0.03 0.18 ± 0.04
morb 0.012 ± 0.005 0.020 ± 0.008 0.03 ± 0.01 0.06 ± 0.03
mtot 0.099 ± 0.020 0.105 ± 0.021 0.14 ± 0.04 0.24 ± 0.05

Fe
mspin 0.071 ± 0.028 0.060 ± 0.030 0.077 ± 0.059 0.061 ± 0.006
morb 0.024 ± 0.002 0.005 ± 0.005 0.029 ± 0.028 0.017 ± 0.010
mtot 0.095 ± 0.040 0.065 ± 0.035 0.106 ± 0.076 0.078 ± 0.009

and Fe moments in Mn2FeAl at 1.5 K are 0.48 ± 0.10 µB and
0.078± 0.009 µB, respectively. The Fe moment is too small to
be strictly analysed in this study, which results in large error in
our sum rules calculations, nevertheless it is shown to be smal-
ler relative to the Mn moment up to a temperature of 150 K
(table 2).

To probe the half-metallic behaviour of the Mn2FeAl, an
AMR measurement was conducted. Figure 4 plots the AMR
ratio vs. the in-plane angle (φ) with respect to the 100 axis for
the Mn2FeAl film at 30 K, in which clear two-fold symmetric
curves are observed. The AMR ratio is shown to be posit-
ive which indicates that the film does not have half-metallic
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Figure 4. Anisotropic magnetoresistance (AMR). Dependence of the AMR ratio on the relative in-plane angle between the DC current and
external magnetic field, φ, in the Mn2FeAl epitaxial films at 30 K.

character as it has been previously shown that a negative AMR
ratio is an indication of half-metallic character in Heusler
alloy films [54–56]. Although we expect some shunting of the
electric current in the TiN buffer layer, it does not affect the
positive sign of the AMR we observed as the positive sign of
the AMR is an intrinsic property of the Mn2FeAl film.

4. Theoretical calculations and discussion

Atomic order in Heusler alloys significantly affects their elec-
tronic structure and their properties [32–36]. To elucidate the
role of ordering towards the destruction of the half-metallic
character of our Mn2FeAl film, as verified by our AMR meas-
urement, we calculated the spin-resolved DOS for the XA
structure (figure 5(a)), the L21B (figure 5(b)) structure, the
D03 structure (figure 5(c)) and L21B with various type of dis-
order (figures 5(d)–(f)). We summarize the corresponding spin
polarization values in figure 5(g).

The total DOS for the XA-structure (figure 5(a)) shows a
bandgap at the Fermi-energy (EF) in the spin-down states (red)
and a peak in spin-up state (blue), which is indicative of a
large spin polarization and half-metallic character. Using the
definition of the spin polarization: P(%) = D↑ −D↓/D↑ +
D↓, where D↑ and D↓ are the spin-up and spin-down DOS
at EF respectively, we calculate PXA = 94%. In contrast, for
the DOS for the L21B structure (figure 5(b)), the peak at EF

in the spin-up state is not present, and the gap in the spin-
down state is reduced. We calculate the spin polarization to
be 78% for the L21B structure, suggesting that the Mn2FeAl
is no longer a half-metal although having a pseudo-gap struc-
ture. We also calculate the DOS of our film structure as veri-
fied by both AXRD and XRD: L21B structure with partial
B2 disorder (figure 5(d)). We find that this 33% Mn(B) ↔
Al(D) disorder has a minimal effect on the spin polarization,
giving 77%.

We then consider other combinations of disorder that are
difficult to quantify using XRD due to the similar structure
factors of Mn and Fe: figure 5(c) illustrates D03 disorder (per-
fect Mn(A,B) ↔ Fe(C) disorder shown as III in table 1),
figure 5(e) L21B + partial D03 disorder (V in table 1) and
figure 5(f) L21B + partial A2 disorder (VI shown in table 1).
These disorders result in a suppression of the spin polarization
further: 8.7%, −34% and 2% respectively.

Lastly, in figure 5(h) we compare our XMCD-determined
Fe andMnmoments with the calculated moments of the struc-
tures shown in figures 5(a)–(f) (figure 5(h)). We show that
the D03 disordered structure, namely the XA structure with
Mn(A,C)↔Al(D) disorder that was reported by Lv et al [40],
results in an enhancement of the magnetization of Mn2FeAl
due to the strong enhancement of the Fe moment. This is in
conflict with their report of a magnetization which is smal-
ler than 1 µB/f.u due to calculation of the magnetic moment
assuming only the XA structure.

Our AXRD data clearly indicate that our Mn2FeAl film has
100% Mn(A) ↔ Fe(C) disorder (L21B structure). However,
since the ideal L21B structure shows a negative Fe moment
(figure 5(h)), which was not observed in our XMCD exper-
iments, we consider how the Mn and Fe moment changes
with additional atomic disorder in the L21B structure. We
exclude both the partial D03 disorder (Mn(B) ↔ Fe(C)) and
A2 disorder (Mn(A,C)↔Al(D)) which show a large enhance-
ment of the Fe moment compared to our XMCD-calculated
Fe moment. However, the Mn(B) ↔Al(D) disorder, which
was confirmed via our XRD measurements, results in the
reversal of the Fe moment, and matches the theoretical val-
ues of the XMCD-determined Mn and Fe moments most
closely. Moreover, because the L21B + partial B2 disorder
(Mn(B) ↔ Al(D)) has non-half-metallic electronic structure,
with a calculated spin polarization of 77%, we can conclude
that this disordered state agrees well with our experimental
observations.
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Figure 5. Density functional theory calculations and spin polarization. Spin resolved total density of states (DOS) for perfectly ordered
Mn2FeAl (a) XA; (b) L21B, and (c) D03. (d) L21B + partial B2 disorder (33% Mn(B) ↔ Al(D)), (e) L21B + partial D03 disorder (50%
Mn(B) ↔ Fe(A,C)), and (f) L21B + partial A2 disorder (40% Mn(A,C) ↔ Al(D)). The blue/red curves indicate the up/down spins.
(g) Calculated spin polarization values, and (h) experimental (XMCD, at 1.5 K) and calculated Fe and Mn elemental magnetic moments for
structures (a)–(f).

5. Conclusion

In summary, we investigated the effect of anti-site disorder
on the half-metallic properties of epitaxially grown Mn2FeAl
thin film. Our AMR measurements confirm that the film
is not a half-metal, which is supported by our DFT calcu-
lations that revealed the destruction of half metallicity in
L21B-ordered Mn2FeAl. Our XMCD measurements reveal
a small positive Fe moment and the Mn and Fe moments
match best with the high resolution XRD and AXRD determ-
ined structure: L21B Heusler structure, with 33% Mn(B) ↔
Al(D) disorder. In order to use Mn2FeAl as an environment-
ally friendly alternative ferromagnet for spin valve devices,
it is important that the XA structure is realized with minimal
disorder.
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