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We propose a kinetic model to describe trade among
different populations, living in different countries.
The interaction rules are assumed depending on the
trading propensity of each population and also on non
deterministic (random) effects. Moreover, the possible
transfers of individuals from one country to another
are also taken into account, by means of suitable
Boltzmann–type operators. Consistent macroscopic
equations for number density and mean wealth of
each country are derived from the kinetic equations,
and the effects of transfers on their equilibrium values
are commented on. Finally, a suitable continuous
trading limit is considered, leading to a simpler
system of Fokker–Planck–type kinetic equations, with
specific contributions accounting for transfers.

1. Introduction
The kinetic theory proposed by Boltzmann for the
description of rarefied gases has been then generalized
to various kinds of interacting systems, providing
reasonable models for the evolution of wealth distribution
[16], for the opinion formation [28], for the spread of an
epidemics [14] and so on. For the evolution of wealth,
the pioneering models based on binary exchanges, with
individuals saving a fraction of their wealth in each trade,
may be found in [8,9]. A good kinetic model should be
able to reproduce the fact, noted by the Italian economist
V. Pareto in [25], that for high values of wealth the
distribution function may be approximated by a suitable
inverse power of the wealth itself; this means that a
great part of the total wealth of the considered country
is owned by a small fraction of the population [10,11]. A
model able to justify in a rigorous way the formation (for
long times) of Pareto tails has been proposed by Cordier,
Pareschi and Toscani in [12]; the basic idea consists in
taking into account not only the deterministic wealth
exchanges between agents, but also random effects
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allowing to amplify gains or losses in the market. This CPT model has been extensively
investigated, also from the numerical point of view [24], and generalized introducing for instance
wealth–dependent transaction parameters [4], the influence of personal knowledge [23], possible
debts [27], taxation and redistribution of the collected wealth [5], and so on. The major part of
kinetic models for socio–economic sciences concern the investigation of exchanges (of goods,
wealth, opinion, ...) among a single population, characterized thus by a unique distribution
function. However, in several econophysics problems it is natural to study the time–evolution
of different interacting populations. This leads to a system of kinetic equations, one for each
population, similarly to the Boltzmann description of gas mixtures, widely investigated in the
pertinent literature [7,18,20]. In [15,17] the authors propose the generalization of the CPT model
[12] to a set of different populations: for the i–th population, the interaction operator is provided
by a sum of binary Boltzmann operators, each one describing the effects due to trades with
individuals of only another population j; of course, the case i= j reproduces the classical CPT
operator for the “domestic” trade, while options j ̸= i describe “international” trade between two
different countries. In this paper we aim at following this line, but in addition we allow transfers
of agents from a country to another. The passage of individuals from a category to another has
already been taken into account in models for the spread of an epidemics (essentially of SIR
type), where a susceptible individual could become infected and then removed for healing or
death [14]. In such models the number of transfers is essentially measured by the number of
probable contacts among individuals, and no exchanges of goods occur during the shift. In the
present work we adopt a different approach: we assume that one of the two agents decides to
change country during a binary trading (in order to join his trading partner, or to invest his
money in a different market). Such phenomenon, combining classical trading with transfers of
individuals, may be modelled by scattering operators of Boltzmann type similar to the ones used
for gas mixtures undergoing chemical reactions (where particles change their nature, i.e. pass
from one species to another) [13,20,26]. Unlike previous CPT–type models for wealth distribution,
in the present frame the number of individuals of each country is no more constant, and this will
cause significant modifications in the evolution of macroscopic moments and in the trend to the
equilibrium configuration.

Specifically, the paper is organized as follows. In Section 2 we introduce our frame and
assumptions, as well as kinetic equations with interaction rules and all required Boltzmann
operators for domestic and international trade. Particular attention is given to the construction
of transfer operators, at first to their “strong form” and then also to their “weak form”, that is
useful to derive macroscopic equations even if it turns out to be more complicated than the one
for the classical CPT operator because of the lack of symmetry between the gain and the loss
terms in the transfers. Then, Section 3 is devoted to the evolution equations for number density
and mean wealth of single countries, and to the discussion of their equilibrium values for varying
parameters. In Section 4 we perform a suitable asymptotic analysis (continuous trading limit)
that, as usual in this kind of models [12], allows to pass from integro–differential Boltzmann
kinetic equations to a set of PDEs of Fokker–Planck type, with additional terms due to the transfer
operators. Section 5 finally contains some conclusions and perspectives.

2. Boltzmann equations for international trade and individual
transfers

In this section we build up a kinetic model for the international trade among various populations
(typically, of different countries), taking also into account the possibility of individual transfers
from one country to another. The domestic and international trade will be modelled by means of
binary interaction rules similar to the ones proposed in [12,17], while transfers will be described
by operators of Boltzmann type similar to the ones modelling bimolecular and reversible chemical
reactions [13,20,21]. In order to simplify a bit the presentation (especially of the transfer operators),
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we show the present model for a set of two populations i= 1, 2, but it could be easily extended to
N populations.

We aim at studying the evolution of the wealth distribution function of two countries, fi(v, t)
(with i= 1, 2) depending on the individual wealth v ∈R+ and on time t∈R+. As usual in such
kinetic models, debts are not allowed, namely we assume that there are no individuals with
negative wealth. More precisely, for the sake of continuity of wealth distributions as v→ 0, we
assume also that fi(0, t) = 0, so that all agents have a positive wealth. The moments of distribution
functions

Mi
s =

∫+∞

0
vs fi(v, t) dv , s≥ 0,

provide information on the wealth distribution. The option s= 0 yields the number of individuals
of each population

ρi =

∫+∞

0
fi(v, t) dv , (2.1)

that will vary in time due to individual transfers. The moments Mi
1 =:Mi correspond to the total

wealth of the i–th country; the mean wealth is consequently provided by mi =Mi/ρi. The second
moment Mi

2 is related to the variance of the i–th distribution with respect to its mean value. It is
well known that, in realistic economies, for v→+∞ the wealth distribution is asymptotic to an
inverse power law of v, therefore not all moments are convergent; specifically, one defines

αi = sup
{
s∈R+ :Mi

s <+∞
}
,

which is called Pareto index of the i–th distribution, in honour of the Italian economist V. Pareto
that in [25] pointed out this phenomenon.

The Boltzmann equations for distributions fi(v, t) may be cast as

∂fi(v, t)

∂t
=

2∑
j=1

Qi(fi, fj)(v) +QT
i (f1, f2)(v) , i= 1, 2. (2.2)

Here, Qi(fi, fj) is the binary trading operator, describing the effects on the i–th distribution due
to trade with individuals of j–th population (including of course the case j = i); then, QT

i (f1, f2)

takes into account transfers from the first to the second population, or vice versa.
The construction of Qi(fi, fj) is well known [12,24], but we summarize the basic steps in

order to be able to generalize them to the new operator QT
i (f1, f2). When a pair of individuals

of countries (i, j), with wealths (v, w) respectively, interacts through a binary trade, the post–
collision wealths (v∗, w∗) are defined by a proper trading rule

(v∗, w∗) = hij(v, w)

which characterizes the model. If the trades are considered as independent events, namely the
number of encounters in a time unit between individuals with wealths (v, w) is simply provided
by χij fi(v, t) dv fj(w, t) dw (where χij is the interaction probability, assumed independent of
wealths for simplicity, and such that χji = χij ), then the binary Boltzmann operator Qi(fi, fj) is
given by the difference between a gain and a loss term as

Qi(fi, fj)(v) = χij

∫+∞

0

(
1

Jij
fi(v∗) fj(w∗)− fi(v) fj(w)

)
dw ; (2.3)

in the gain term, (v∗, w∗) denote the pre–interaction wealths producing (v, w) as post–interaction
wealths, and Jij is the Jacobian of the transformation hij . Indeed, in the form (2.3) of the
interaction operator it is implicitly assumed the trading rule to be invertible. In order to be able
to relax this assumption, which might be somehow restrictive since trade is governed also by non
deterministic parameters, it turns out to be useful to write the operator in weak form. Indeed, by
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multiplying by a smooth function φ(v) and integrating over v ∈R+, one gets∫+∞

0
φ(v)Qi(fi, fj)(v) dv= χij

∫∫+∞

0
φ(v)

(
1

Jij
fi(v∗) fj(w∗)− fi(v) fj(w)

)
dv dw

= χij

{∫∫+∞

0
φ(v) fi(v∗) fj(w∗)dv∗ dw∗ −

∫∫+∞

0
φ(v) fi(v) fj(w) dv dw

}
= χij

∫∫+∞

0

[
φ(v∗)− φ(v)

]
fi(v) fj(w) dv dw ,

(2.4)

where last equality takes into account that (v, w) = hij(v∗, w∗) as well as (v∗, w∗) = hij(v, w). The
weak form (2.4) involves thus only the post–trade wealth and not the pre–trade one, therefore
there is no need to invert the interaction rule.

In this paper we assume the interaction rule of the CPT model [12,17], since it is known to be
able to reproduce a realistic long time behaviour, with the formation of Pareto tails. Specifically,
we take {

v∗ = (1− γi) v + γj w + ηij v

w∗ = γi v + (1− γj)w + ηji w
(2.5)

The parameter γi represents the exchange propensity of the i–th population, namely the fraction
of the owned wealth that one individual gives to the trading partner. The quantities ηij (with
i, j = 1, 2) denote random variables, taking into account the non deterministic effects of the
market, and that, as shown for the first time in [12], turn out to be crucial in order to recover the
wealth diffusion and the formation of Pareto tails. Random variables ηij are assumed identically
distributed, with zero mean (random gain and loss effects compensate) and with variance σ2

ij ,
depending on the interacting species in order to reflect the different amount of risks in the
various countries. In order to ensure that the post–trade wealths are non–negative, we assume
ηij ≥−1 + γi, ∀i, j = 1, 2. The presence of random variables in the trading rule (2.5) implies that
the weak form of the trading Boltzmann operator has to be cast as∫+∞

0
φ(v)Qi(fi, fj)(v) dv= χij

〈∫∫+∞

0

[
φ(v∗)− φ(v)

]
fi(v) fj(w) dv dw

〉
, (2.6)

where ⟨·⟩ denotes the operation of mean with respect to all random variables.
We build up now the operators QT

i , describing the transfers of individuals. We assume that
transfers occur after a binary interaction (with also some small change of goods). We consider
both the situation in which an interaction between a pair of individuals of the same country gives
rise to the transfer of one of them to the other country, i.e.

(a) 1 + 1→ 1 + 2 , (b) 2 + 2→ 1 + 2 , (2.7)

and also the reverse transfers, where a trade between individuals of different populations makes
them to decide to live in the same country, i.e.

(c) 1 + 2→ 1 + 1 , (d) 1 + 2→ 2 + 2 . (2.8)

Boltzmann–type operators QT
i should thus take into account the effects due to all four types of

transitions (a), (b), (c), (d), hence

QT
i (v) =

∑
j∈{a,b,c,d}

QT (j)
i (v) . (2.9)

We detail the construction of operators relevant to transfer (a), the others may be built up
analogously. In the interaction (a), we denote as before by (v∗, w∗) the post–trade wealths of
individuals of populations (1, 2), respectively, corresponding to pre–trade wealths (v, w). The
interaction rule k1211 such that (v∗, w∗) = k1211(v, w) will be explicitly defined later, and it will fulfill
the obvious symmetry property k1211(w, v) = (w∗, v∗). Concerning population 1, let us bear in
mind that f1(v, t) dv represents the number of individuals with wealth in (v, v + dv), and notice
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that in each time unit the transfer (a) causes both a loss and a gain of such agents. The gain term
is provided by the encounters such that the post–interaction wealth of individual 1 belongs to
(v, v + dv). For any fixed w ∈R+, the number of trades providing as output a pair (v, w) is

β12
11 f1(v∗) f1(w∗) dv∗ dw∗ = β12

11 f1(v∗) f1(w∗)
1

J12
11

dv dw ,

where (v∗, w∗) =
(
k1211

)−1
(v, w), and β12

11 is the (constant) probability that the transfer (a) occurs.
Integrating over all possible w we get the gain term(

QT (a)
1

)
+
(v) dv= β12

11 dv

∫+∞

0

1

J12
11

f1(v∗)f1(w∗) dw .

On the other hand, the loss term takes into account all interactions involving individuals with
wealth v: (

QT (a)
1

)
−
(v) dv=−2β12

11 f1(v) dv

∫+∞

0
f1(w) dw ,

hence the total Boltzmann operator may be cast as

QT (a)
1 (v) = β12

11

∫+∞

0

(
1

J12
11

f1(v∗)f1(w∗)− 2 f1(v) f1(w)

)
dw . (2.10)

For population 2, the transition (a) produces only a gain of individuals,(
QT (a)

2

)
+
(w) dw= β12

11 dw

∫+∞

0

1

J12
11

f1(v∗)f1(w∗) dv ,

hence, owing to the symmetry of the interaction rule,

QT (a)
2 (v) = β12

11

∫+∞

0

1

J12
11

f1(v∗)f1(w∗) dw . (2.11)

In order to get the evolution of macroscopic fields, use will be made of the weak form of the
interaction operators∫+∞

0
φ(v)QT (a)

1 (v) dv= β12
11

∫∫+∞

0
φ(v) f1(v∗)f1(w∗)dv∗ dw∗ − 2β12

11

∫∫+∞

0
φ(v) f1(v) f1(w) dv dw ,

(2.12)∫+∞

0
φ(v)QT (a)

2 (v) dv= β12
11

∫∫+∞

0
φ(v) f1(v∗) f1(w∗) dv∗ dw∗ . (2.13)

The operators for the interaction (b) in (2.7) are very similar, one has formally to exchange
the role of indices 1 and 2. Of course the transition probabilities and the trading rules could be
different, i.e. β12

22 ̸= β12
11 and k1222(v, w) ̸= k1211(v, w). Skipping all details, Boltzmann operators in

strong form read as

QT (b)
1 (v) = β12

22

∫+∞

0

1

J12
22

f2(v∗)f2(w∗) dw , (2.14)

QT (b)
2 (v) = β12

22

∫+∞

0

(
1

J12
22

f2(v∗)f2(w∗)− 2 f2(v) f2(w)

)
dw . (2.15)

In the interaction (c), population 1 involves one individual in the trading pair, and two
individuals after the trade, thus this country has a net gain of one individual; on the other
hand, population 2 loses one individual and its operator will be made only by a loss term.
We denote by (v, w) the pre–trade wealths of the pair (1,2), and we define the interaction rule
(v∗, w∗) = k1112(v, w). Since both agents could have post–trade wealth in (v, v + dv), one has to
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pay attention to the gain term of population 1; indeed, we have

QT (c)
1 (v) = β11

12

∫+∞

0

(
1

J11
12

f1(v∗) f2(w∗) +
1

J11
12

f1(v̄∗) f2(w̄∗)− f1(v) f2(w)

)
dw , (2.16)

where (v∗, w∗) =
(
k1112

)−1
(v, w), and (v̄∗, w̄∗) =

(
k1112

)−1
(w, v); notice that it could be (v̄∗, w̄∗) ̸=

(w∗, v∗), since the interacting individuals are of different countries, therefore we cannot exchange
their indices inside the operator and in the interaction rule. For country 2, the operator is much
simpler and is provided by

QT (c)
2 (v) =−β11

12 f2(v)

∫+∞

0
f1(w) dw . (2.17)

Analogous results are in order for the transfer (d), by exchanging the role of populations 1
and 2; specifically, we have

QT (d)
1 (v) =−β22

12 f1(v)

∫+∞

0
f2(w) dw , (2.18)

QT (d)
2 (v) = β22

12

∫+∞

0

(
1

J22
12

f1(v∗) f2(w∗) +
1

J22
12

f1(v̄∗) f2(w̄∗)− f1(w) f2(v)

)
dw , (2.19)

where (v∗, w∗) =
(
k2212

)−1
(v, w), and (v̄∗, w̄∗) =

(
k2212

)−1
(w, v).

Notice that, since transfer Boltzmann operators may be non symmetric, it is not convenient to
follow a procedure analogous to (2.4) in order to look for a more manageable version of the weak
form of such operators. As already shown in (2.12)–(2.13) for the operators relevant to transfer (a),
in the weak form use will be made only of the property (1/Jhk

ij ) dv dw= dv∗ dw∗. For the transfers
(b), (c), (d) we get∫+∞

0
φ(v)QT (b)

1 (v) dv= β12
22

∫∫+∞

0
φ(v) f2(v∗) f2(w∗) dv∗ dw∗ , (2.20)

∫+∞

0
φ(v)QT (b)

2 (v) dv= β12
22

∫∫+∞

0
φ(v) f2(v∗) f2(w∗) dv∗ dw∗ − 2β12

22

∫∫+∞

0
φ(v) f2(v) f2(w) dv dw ,

(2.21)∫+∞

0
φ(v)QT (c)

1 (v) dv= β11
12

∫∫+∞

0
φ(v) f1(v∗) f2(w∗) dv∗ dw∗

+β11
12

∫∫+∞

0
φ(v) f1(v̄∗) f2(w̄∗) dv̄∗ dw̄∗ − β11

12

∫∫+∞

0
φ(v) f1(v) f2(w) dv dw ,

(2.22)

∫+∞

0
φ(v)QT (c)

2 (v) dv=−β11
12

∫∫+∞

0
φ(v) f2(v) f1(w) dv dw , (2.23)

∫+∞

0
φ(v)QT (d)

1 (v) dv=−β22
12

∫∫+∞

0
φ(v) f1(v) f2(w) dv dw , (2.24)

∫+∞

0
φ(v)QT (d)

2 (v) dv= β22
12

∫∫+∞

0
φ(v) f1(v∗) f2(w∗) dv∗ dw∗

+β22
12

∫∫+∞

0
φ(v) f1(v̄∗) f2(w̄∗) dv̄∗ dw̄∗ − β22

12

∫∫+∞

0
φ(v) f2(v) f1(w) dv dw .

(2.25)

In each transfer (a), (b), (c), (d), the most important event is the passage of one
individual from one country to the other, and the wealth exchange could also be small.
For this reason we take interaction rules very simple and completely deterministic, where
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each population is characterized by an exchange parameter ωi; specifically, for (i, j, h, k)∈
{(1, 1, 1, 2), (2, 2, 1, 2), (1, 2, 1, 1), (1, 2, 2, 2)}, the trading rule (v∗, w∗) = khkij (v, w) is defined as{

v∗ = (1− ωi) v + ωj w

w∗ = ωi v + (1− ωj)w
(2.26)

More complicated effects, as the non–deterministic phenomena in the wealth evolution, are
already taken into account in the trading rules (2.5), which involve any possible pair of agents
(i, j)∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. Main notations introduced in this section are summarized in
the following table.

Classical trades (without transfer)
(v∗, w∗) post–interaction wealths corresponding to (v, w)

(v∗, w∗) pre–interaction wealths corresponding to (v, w)

χij interaction probabilities
γi trading propensity of the i–th population
ηij random variables with zero mean and variance σ2

ij

Trades with transfers
(v∗, w∗) post–interaction wealths corresponding to (v, w)

(v∗, w∗) pre–interaction wealths corresponding to (v, w)

(v̄∗, w̄∗) pre–interaction wealths corresponding to (w, v)

βik
ij probability of the transfer i+ j → i+ k

ωi exchange parameter of the i–th population in a transfer

3. Macroscopic equations for individual numbers and mean
wealths

In the kinetic model presented in the previous section, the bi–population binary trades cause
a passage of wealth from a population to the other, and some of these interactions give also
rise to transfer of individuals. In this section we derive evolution equations for the number of
individuals and the mean wealth of both populations.

The equations for densities ρi (i= 1, 2) are provided by the weak forms of the Boltzmann
equations (2.2) corresponding to the test function φ(v) = 1. As expected, from (2.6) one has that
contribution of binary trades vanishes, and the variations of the individual numbers are due only
to the transfers described by the operators QT (j)

i , with i= 1, 2 and j = a, b, c, d. Putting φ(v) = 1

in the corresponding weak forms we get

dρ1
dt

= −β12
11 (ρ1)

2 + β12
22 (ρ2)

2 +
(
β11
12 − β22

12

)
ρ1 ρ2 ,

dρ2
dt

= β12
11 (ρ1)

2 − β12
22 (ρ2)

2 −
(
β11
12 − β22

12

)
ρ1 ρ2 .

(3.1)

The stationary state of such equations is achieved when

ρ2 = αρ1 , with α=
−
(
β11
12 − β22

12

)
+

√(
β11
12 − β22

12

)2
+ 4β12

11 β
12
22

2β12
22

,

thus, taking into account that the sum of individuals is constant, i.e. ρ1 + ρ2 = ρ̄, the unique
equilibrium state is provided by

(ρ1)∞ =
ρ̄

1 + α
, (ρ2)∞ =

α ρ̄

1 + α
. (3.2)

If the probabilities of transfer towards the i–th country take a common value, namely

β2
1 := β12

11 = β22
12 , β1

2 := β12
22 = β11

12 , (3.3)
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and this assumption will be adopted from now on, then α= β2
1/β

1
2 and the equilibrium values

become

(ρ1)∞ =
β1
2

β2
1 + β1

2

ρ̄ , (ρ2)∞ =
β2
1

β2
1 + β1

2

ρ̄ . (3.4)

In the particular case β2
1 = β1

2 , we get (ρ1)∞ = (ρ2)∞ = ρ̄/2.
We focus the attention now on the evolution of the total wealth Mi of each country, owing

to the weak forms of Boltzmann equations with φ(v) = v. From (2.6), since in the trading
rule (2.5) one has v∗ − v= (ηij − γi) v + γj w and the random variables have zero mean wealth,
the contributions due to operators Qi(fi, fj) are

∫+∞

0
vQi(fi, fj)(v) dv= χij

(
γj ρi Mj − γi ρj Mi

)
. (3.5)

For the transfers among two different countries, resorting to the rule (2.26) and bearing in mind
the relations between pre- and post–trade wealths inside each weak operator, we get, under the
assumptions (3.3),

∫+∞

0
vQT (a)

1 (v) dv=−
∫+∞

0
vQT (a)

2 (v) dv=−β2
1 ρ1 M1 ,∫+∞

0
vQT (b)

1 (v) dv=−
∫+∞

0
vQT (b)

2 (v) dv= β1
2 ρ2 M2 ,∫+∞

0
vQT (c)

1 (v) dv=−
∫+∞

0
vQT (c)

2 (v) dv= β1
2 ρ1 M2 ,∫+∞

0
vQT (d)

1 (v) dv=−
∫+∞

0
vQT (c)

2 (v) dv=−β2
1 ρ2 M1 .

(3.6)

Therefore, equations for total wealths Mi read as

dM1

dt
= χ12

(
γ2 ρ1 M2 − γ1 ρ2 M1

)
− β2

1 ρ̄M1 + β1
2 ρ̄M2 ,

dM2

dt
= χ12

(
γ1 ρ2 M1 − γ2 ρ1 M2

)
+ β2

1 ρ̄M1 − β1
2 ρ̄M2 .

(3.7)

Notice that, since random effects have been taken with zero mean and bounded from below
in order to have non–negative post–trade wealths, we obtain that total wealth is preserved,
i.e. M1 +M2 = M̄ . In other more complicated formulations, with unbounded random variables
and suitable Heaviside functions in the kernels of Boltzmann equations in order to remove
interactions giving non admissible (negative) wealths, it has been proved that total wealth can
increase exponentially in time [12].

By combining results (3.7) and (3.1), we get the following equations for the mean wealth mi =

Mi/ρi of each country:

dm1

dt
= χ12 ρ2

(
γ2 m2 − γ1 m1

)
+ β1

2 ρ2

(
1 +

ρ2
ρ1

)
(m2 −m1) ,

dm2

dt
= χ12 ρ1

(
γ1 m1 − γ2 m2

)
+ β2

1 ρ1

(
1 +

ρ1
ρ2

)
(m1 −m2) .

(3.8)

The stationary points of this system, taking into account the values of equilibrium number
densities (3.4), are provided by the manifold

m2 = ξ m1 , with ξ =
χ12 γ1 + β2

1 + β1
2

χ12 γ2 + β2
1 + β1

2

.
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Bearing in mind that ρ1 m1 + ρ2 m2 = M̄ , the unique equilibrium state is given by

(m1)∞ =
M̄

(ρ1)∞ + ξ (ρ2)∞
=

M̄

ρ̄

β2
1 + β1

2

ξ β2
1 + β1

2

,

(m2)∞ =
ξ M̄

(ρ1)∞ + ξ (ρ2)∞
=

M̄

ρ̄

ξ β2
1 + ξ β1

2

ξ β2
1 + β1

2

.

(3.9)

Notice that if the two populations have the same trading propensity, i.e. γ1 = γ2, then the
parameter ξ = 1 and (m1)∞ = (m2)∞, thus at the equilibrium configuration the mean wealth of
the two countries is the same. On the other hand, if for instance γ1 > γ2, namely the individuals
of the first country are more favourable to exchanging their wealth, then the mean wealth of the
second population will increase and (m2)∞ > (m1)∞. The total wealths (M1)∞ = (ρ1)∞ (m1)∞
and (M2)∞ = (ρ2)∞ (m2)∞ of course depend also on the numbers of individuals that, as
discussed above, are influenced by the transfer rates from one country to the other.

4. Continuous trading limit and Fokker-Planck approximation
As known in several kinetic models in socio–economic sciences [1–3,24], it is very difficult
to deduce analytical properties on the behaviour of distribution functions starting from the
Boltzmann equations (2.2). Even in our frame, more complicated due to transfers of individuals,
it could be convenient to study the asymptotic regime usually called “continuous trading limit”,
since it could lead to simpler kinetic equations of Fokker–Planck type, as in [12]. This regime
is based on the fact that, since the trading rules (2.5) and (2.26) concern each single binary
interaction, it is highly probable that the amount of exchanged wealth is very small so that, in
other words, the differences between post– and pre–interaction wealths are almost negligible.
The market is thus described as a huge amount of small binary trades, and it can be seen as a
continuum.

We measure all interaction coefficients in terms of a small parameter ε. In the trading rules (2.5)
we set the trading propensities γi and the variance of random variables ηij as

γi = γ̃i ε , σ2
ij = λij ε , i= 1, 2, (4.1)

and, analogously, in the interaction rules causing transfers we set

ωi = ω̃i ε , i= 1, 2. (4.2)

Moreover, since transfers of individuals are usually much rarer than wealth exchanges (2.5), we
take the following assumption for the interaction probabilities

max
{
β2
1 , β

1
2

}
≪min

{
χij , i, j = 1, 2

}
, (4.3)

and more specifically we assume

β2
1 = β̃2

1 ε , β1
2 = β̃1

2 ε . (4.4)

Since we are interested in the long time behaviour of distributions, taking into account all
phenomena involved in the model, we measure time in the same unit setting τ = ε t. The weak
form of the Boltzmann equations for the scaled distributions gi(v, τ) = fi(v, t), i= 1, 2, may thus
be cast as

d

dτ

∫+∞

0
φ(v) gi(v, τ) dv=

1

ε

2∑
j=1

∫+∞

0
φ(v)Qi(gi, gj)(v) dv +

1

ε

∫+∞

0
φ(v)QT

i (g1, g2) dv . (4.5)
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We investigate the asymptotic limit ε→ 0. In the weak form of trading operators (2.6), we can
resort to a second order Taylor expansion of the test function φ(v∗) around v, obtaining

φ(v∗)− φ(v) =φ′(v) (v∗ − v) +
1

2
φ′′(ṽ) (v∗ − v)2 =

=φ′(v)
[
ε (γ̃j w − γ̃iv) + ηij v

]
+

1

2
φ′′(ṽ)

[
ε2 (γ̃j w − γ̃iv)

2 + η2ij v
2 + 2 ε ηij v (γ̃j w − γ̃iv)

]
,

where ṽ= θ v + (1− θ) v∗ for some suitable θ ∈ [0, 1]. Bearing in mind that random variables ηij
have zero mean and variance λij ε, we get

lim
ε→0

1

ε

2∑
j=1

∫+∞

0
φ(v)Qi(gi, gj)(v) dv=

=

2∑
j=1

χij

∫∫+∞

0

[
φ′(v) (γ̃j w − γ̃iv) +

λij
2

φ′′(ṽ) v2
]
gi(v) gj(w) dv dw

=

2∑
j=1

χij

∫+∞

0

[
φ′(v) ρj(γ̃j mj − γ̃iv) +

λij
2

ρjφ
′′(ṽ) v2

]
gi(v) dv .

The fact that all higher order terms of the Taylor expansion, including the ones involving moments
of the random variables, are O(ε) and thus vanish in this limit may be rigorously proved [12]. By
integration by parts, we can pass the derivatives from the test function to the distribution gi(v)

and, under the assumptions that gi(0, t) = 0 (no individuals with zero wealth) and gi(v, 0) has
moments Ms bounded for s= 2 + δ for some δ > 0 (see [12,17] for further details), we get

lim
ε→0

1

ε

2∑
j=1

∫+∞

0
φ(v)Qi(gi, gj)(v) dv=

=

2∑
j=1

χij

∫+∞

0
φ(v)

{
− ρj

∂

∂v

[
(γ̃j mj − γ̃iv) gi(v)

]
+

λij
2

ρj
∂2

∂v2

(
v2 gi(v)

)}
dv .

(4.6)

Concerning the transfer operators, notice that the interaction rule (2.26) in the present scaling
implies φ(v∗) =φ(v) +O(ε) =φ(v∗) +O(ε). Consequently, taking into account that β2

1 and β1
2

are O(ε), for the operators relevant to transfer (a) we have

lim
ε→0

1

ε

∫+∞

0
φ(v)QT (a)

1 (v) dv= β̃2
1

∫∫+∞

0
φ(v∗) g1(v∗)g1(w∗)dv∗ dw∗ − 2 β̃2

1

∫∫+∞

0
φ(v) g1(v) g1(w) dv dw

=− β̃2
1 ρ1

∫+∞

0
φ(v) g1(v) dv ,

lim
ε→0

1

ε

∫+∞

0
φ(v)QT (a)

2 (v) dv= β̃2
1

∫∫+∞

0
φ(v∗) g1(v∗) g1(w∗) dv∗ dw∗ = β̃2

1 ρ1

∫+∞

0
φ(v) g1(v) dv .

(4.7)
The contributions due to operators relevant to transfers (b), (c) and (d) may be analogously
computed. In conclusion, skipping further details, the scaled distributions g1(v) and g2(v) are
weak solutions to the following equations

∂g1
∂t

=
1

2

(
χ11 λ11 ρ1 + χ12 λ12 ρ2

) ∂2

∂v2

(
v2 g1(v)

)
− ∂

∂v

{[
χ11 ρ1 γ̃1 m1 + χ12 ρ2 γ̃2 m2

− (χ11 ρ1 + χ12 ρ2) γ̃1 v
]
g1(v)

}
− β̃2

1 ρ̄ g1(v) + β̃1
2 ρ̄ g2(v) ,

∂g2
∂t

=
1

2

(
χ12 λ21 ρ1 + χ22 λ22 ρ2

) ∂2

∂v2

(
v2 g2(v)

)
− ∂

∂v

{[
χ12 ρ1 γ̃1 m1 + χ22 ρ2 γ̃2 m2

− (χ12 ρ1 + χ22 ρ2) γ̃2 v
]
g2(v)

}
+ β̃2

1 ρ̄ g1(v)− β̃1
2 ρ̄ g2(v) .

(4.8)
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These equations are, as expected, of Fokker–Planck type; in the derivation use has been made of
the assumption gi(v, t) = 0 for v≤ 0, but in [27] it has been shown that Fokker–Planck descriptions
are well suited even in presence of some debts. The first term on the right hand sides is a diffusion
operator, measuring the spread of wealth due to non–deterministic events; indeed, diffusion
coefficients depend on the variances λij of rescaled random variables, and vanish in absence
of random effects. The second addend on the right hand sides of (4.8) is a drift term, forcing the
agents wealth towards a suitable weighted average of the mean wealths of the two countries.
Finally, unlike classical CPT model [12] and its extension to international trade [17], here there
appear contributions accounting for the transfers of individuals from one country to the other, and
these make (4.8) a system of coupled PDEs for the unknown kinetic distributions g1(v) and g2(v).
A similar coupling has been found in [14], where a generalized SIR model has been recovered
from kinetic equations, allowing passages of susceptible individuals to the infected class and then
to the removed one.

It is in general not possible to compute analytically the steady distributions of system (4.8). It
is well known that steady solutions of pairs of Fokker–Planck equations could show a bimodal
shape, already discussed analytically and numerically in various socio–economic problems,
without ( [17]) or with ( [14]) transfers. This behaviour is expected also in the present model
for suitable choices of parameters, since the sum of the two equations (4.8) provides an equation
for total distribution analogous to that in [17]. The appearance of two peaks is due to the fact that
single country distributions (that are both vanishing for v→ 0+ and for v→+∞) assume their
maximum value in correspondence to different wealths. Anyway, as extensively discussed in [19],
a bimodal distribution may appear when the saving propensity for one population is really higher
than for the other (namely if the behaviour of the two countries is very different). In our model,
the mobility of individuals could compensate the differences between the two countries or else
favour the growth of one country (in number of individuals and in total wealth); in both these
scenarios the formation of bimodal distributions would become less probable. Just as illustrative
example, explicit results may be obtained in the particular case in which transfer from a selected
country to the other is much more probable than the reverse one. Let us consider the scaling
β1
2 = β̃1

2 ε and β2
1 =O(ε2). This assumption could model for instance a situation in which the

passage from country 1 to country 2 is allowed only if the amount of wealth of the individual
in transfer is very high; indeed, the costs related to transfers should be taken into account in the
interaction rules or in the kernels of collision operators. In this regime, the steady configuration
is provided to the leading order by all individuals living in country 1 thus, neglecting O(ε)

corrections that would vanish in the considered limit ε→ 0, one has (ρ1)∞ = ρ̄, (m1)∞ = M̄/ρ̄,
and (ρ2)∞ = 0, (m2)∞ = 0. Consequently, the steady distribution (g2)∞ is also vanishing, while
(g1)∞ is provided by the solution to the equation

∂

∂v

{
λ11
2

∂

∂v

(
v2 (g1)∞(v)

)
− γ̃1

(
M̄

ρ̄
− v

)
(g1)∞(v)

}
= 0 . (4.9)

This is essentially the same equation obtained from CPT–like trading models for a single
population [4,12], and by standard techniques we get that the steady state may be cast as

(g1)∞(v) =C v
−

(
2 γ̃1
λ11

+2
)
exp

(
− 2 γ̃1 M̄

λ11 ρ̄

1

v

)
. (4.10)

The kinetic model is thus able to recover a realistic long time behaviour, with formation of Pareto
tails; specifically, the Pareto index of distribution (g1)∞ for country 1 is α1 = 1 + 2 γ̃1/λ11, and it
depends both on the trading propensity and on the random effects of such population.

5. Conclusion and perspectives
In this paper we have proposed a kinetic model to describe wealth distribution of a set of
countries, taking into account also possible transfers of individuals from one country to another.
The interaction rules are of the type proposed in [12], since they have already been proved
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to reproduce realistic long–time behaviours, as the formation of Pareto tails and, for suitable
options for the random variables not treated in this paper, also a time exponential increasing
of the total wealth. The transfers are assumed to occur as consequence of a trading interaction,
and their effects are described through Boltzmann–type operators, provided by the difference
between a gain and a loss term. The lack of symmetry between a transfer and the reverse
one (the probability of the reverse transfer is different, and also the interaction rule may vary)
does not allow to simplify the weak form of Boltzmann operators, and the inverse trading rule,
determining the pre–trade wealths corresponding to given post–trade ones, is explicitly required.
Unlike previous models for a simple market economy (even with international trade), in the
present model the number of individuals of each population is not constant (because of transfers),
and this has implications on the macroscopic equations and on the equilibrium configuration. The
equilibrium states for the number of agents and the mean wealth of each population are explicitly
determined and discussed in the case of two populations. Then, a continuous trading asymptotic
limit is investigated, corresponding to a small amount of exchange in each interaction and to a
low probability of transfers; in this regime, Boltzmann kinetic equations may be approximated
by simpler PDEs of Fokker–Planck type, but with additional contributions with respect to the
original CPT model [12,17] due to transfers of individuals. The equilibrium distributions may
be explicitly recovered in a special case, showing the desired Pareto tails, with Pareto index
depending on the variance of random variables. Unlike many papers on the matter, in this work
we have kept in the Boltzmann kernels different trading probabilities for any pair of interacting
populations, and also specific transfer probabilities in the additional transfer operators. These
(constant) parameters affect of course the evolution of the model and the equilibrium values of
macroscopic fields.

In this paper the model has been described in detail for a set of two interacting populations,
but it could be obviously extended to N > 2 different countries. The construction of Boltzmann–
type operators (and their weak form) would remain the same, only with indices ranging from 1
to N . Even the macroscopic equations for population densities and total or mean wealth could be
derived analogously to the procedure described in this paper. However, the steady values of these
fields (provided essentially by the solutions of linear systems) could not be determined explicitly,
since the constraints corresponding to preservations of total number of individuals and of total
wealth are not enough to provide a unique equilibrium configuration; a manifold of admissible
equilibria would appear, and their stability properties should be investigated by classical tools of
qualitative analysis of dynamical systems. The asymptotic reduction of the Boltzmann equations
to a set of Fokker–Planck–type PDEs could also be performed as in the case N = 2.

As future work, the kinetic description of transfers could be generalized in several ways. For
instance, since mobility has an intrinsic cost, it could be allowed only if the individual wealth
overcomes a suitable threshold V ; this would imply the presence of unit step functions in the
kernel of transfer Boltzmann operators, analogously to kinetic models for reacting gas mixtures,
where a chemical reaction may occur only if the impinging kinetic energy is enough [20,21].
The construction of macroscopic equations in this case is not trivial at all, and probably further
approximations should be adopted, since Boltzmann integrals with thresholds may be cast in
explicit form essentially when distributions take a Maxwellian shape (and this does not usually
occur in socio–economic frames). Of course, when the threshold V → 0+ one should recover
the model studied in the present paper, while the limit V →+∞ should provide the classical
CPT model (with no mobility), but all intermediate options are completely open problems. A
simpler way to take into account the costs due to the mobility could be the subtraction of a small
fraction of individuals wealth in each interaction giving rise to a transfer. In order to preserve
the conservation of total wealth in the considered economic system, the subtracted amount
should be suitably redistributed among the populations; suggestions for the construction of a
proper redistribution operator may be found in [5]. A possible simplification of the mathematical
investigation of such models could occur if the transfers of individuals are described by simpler
kinetic operators of BGK–type, similarly to BGK models for inert or reacting gas mixtures [6,22],
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that could also allow the analytical and numerical investigation of quite complicated asymptotic
regimes for N populations, with for instance some transfers much more probable than the others,
as it happens in realistic societies.

Data Accessibility. All data are provided in the paper.
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