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Abstract

A critical issue in the structural design of glazed surfaces is the evaluation of the
strain consequent to temperature variations due to environmental actions such as solar
radiation, which represents one of the main causes of breakage. In the practice, ap-
proximate solutions are used, where the temperature profile across the glass thickness
is constant or linear, but the consequent thermal stress cannot be adequately estimated
from these. On the other hand, sophisticated thermal software is available only for
important tasks.

Here, we propose a semi-analytical approach, easily implementable in a simple FEM
code, to evaluate the time-dependent temperature profile through the thickness of lay-
ered glazing, which is based on the variational method proposed by Biot in the Fifties.
A prompt evaluation not only of the temperature field, but also of the heat flux, can
be obtained. Compared to other numerical approaches, this method rigorously ac-
counts for energy conservation and, since it does not involve temperature gradients in
the formulation, it is particularly efficient for problems with steep temperature vari-
ations. Temperature profiles that are not necessarily linear can be approximated by
Hermite splines, for a precise evaluation of the thermally-induced stress. Comparisons
with a direct numerical solution of the heat-conduction differential equations confirm
the accuracy and the effectiveness of the proposed approach.
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1 Introduction

The use of glass in transparent envelopes and façades of prestigious buildings has been
constantly increasing. This industrialized use of glass is relatively recent if compared to
more traditional materials such as timber, steel, concrete or masonry, but requires particular
attention due to its intrinsic brittleness [26, 16]. The design has to consider not only the self-
weight and service loads, but also the effects of the surrounding environment. A key aspect,
unfortunately often overlooked in the practice, consists in the evaluation of the thermal
stress due to temperature variations induced by climatic changes because, indeed, this is
the most experienced cause of breakage [53, 48, 27]. This is why the precise evaluation of
the temperature field inside the glass pane consequent to variable environmental conditions
is of paramount importance to glass designers and manufacturers.

The temperature field in the glazing depends upon a large number of environmental
and geometric parameters, such as internal/external temperatures, solar radiance, material
thermal properties, shadowed portions [58, 24], pane inclination [46, 22]. Structural engi-
neers are usually not familiar with the use of sophisticated thermal software and, on the
other hand, the actual boundary conditions are affected by uncertainties. This is why, the
common design practice relies upon codes and standards [1, 3], which provide simplified
formulas to evaluate the temperature distribution in the glazing. There should be some
caution in using these formulations because the assumptions on which they are based are
practically never described in background documents. Consequently, the regulatory rec-
ommendations, and the software which implements them, are black boxes to which the
designer must submit. The authors have recently [30] reviewed existing methods proposed
in standards and proposed an comprehensive engineering method for the evaluation of the
temperature field, but this is based on strong simplifying hypotheses and applies to single
glazing only.

Substantial research is dedicated to the analysis of the heat exchange phenomena in
glazing, but this has been mainly addressed towards determining the overall thermal trans-
mittance of the unit [60, 43]. On the other hand, what is important for the integrity of
glass is a precise determination of the temperature profile inside the glazing, from which
the thermal strain and, hence, the thermal stress, can be readily estimated. Most of the
proposed methods rely on the assumption of thermally thin glass panels, where the tem-
perature is considered to be uniform in-the-thickness, while the most refined approaches
assume a linear trend. These hypotheses are usually consistent when evaluating the insu-
lating properties of the glazing, but the associated thermal strain is compatible, i.e., in an
isolated plate it does not give raise to thermal-induced eigenstresses [32]. The situation is
more complicated in laminated and layered glass panes, where the temperature profile in
the direction of the thickness is strongly influenced by the presence of coating(s) and inter-
layer(s) foil(s) [9, 49, 12]. The aforementioned approximations roughly interpret the spatial
dependence of the temperature field, which is the source of stress. Very accurate estimates
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of the temperature field in architectural glazings are obtained, by specialized engineers, by
solving the governing equations with finite difference techniques, in both space and time
[36, 9, 54], or by using sophisticated Finite Element codes, but this can be realistically done
only for the most important projects. What is needed is a reliable simplified method to be
used for the structural verification.

Analytical methods of solution for heat conduction problems have received consider-
able attention from the Fifties to the Eighties [38, 59, 15], but they are now abandoned
due to the massive use of numerical codes. Here, we propose a method to evaluate the
time-dependent temperature distribution across the thickness of layered glazing, which is
based on the ingenious variational method proposed by Biot [13, 14]. This provides a very
effective weak formulation of the heat conduction equation, which is now specialized to
the one-dimensional problem of multilayer laminated glass. A semi-analytical method of
solution, where each layer composing the panel is regarded as a 1-dimensional element, can
be obtained by approximating the relevant fields with Hermite splines, combining optimal
localization and excellent approximation power [23, 25, 51]. The resulting algebraic system
of linear equations can be solved numerically or, more in general, the whole method can be
implemented in a simple FEM software.

From a theoretical point of view, the matrix formulation presents a strong analogy
with the equation governing the Lagrangian mechanics for the slow motion of a dissipative
system with negligible inertia forces. Indeed, Biot’s Variational Method (BVM) treats the
energy balance as a holonomic constraint, which is rigorously satisfied also in the numerical
approximation. Another great advantage is that no temperature gradients are involved in
the weak form of the governing equations: in this way, it is possible to consider problems
involving steep variation of the temperature profile with no need of a very fine mesh, as
instead is the case in the most used FEM approaches. The shape functions are smooth,
whereas in other methods they are assumed piecewise linear, but the irregularity spoils the
evaluation of the thermally-induced stress field. Moreover, this approach allows a prompt
evaluation not only of the temperature field, but also of the heat flux.

To illustrate both accuracy and computational efficiency, the proposed method is applied
to monolithic and laminated glass elements. First, the simplest case of constant environ-
mental conditions is considered, in order to evaluate the time needed to reach the steady
state. Successively, the transient response is analyzed under daily variations of the bound-
ary conditions, according to standard environmental and climate parameters. The obtained
results are compared with a direct numerical solution of the heat-conduction partial differ-
ential equation, which however necessitates of a much higher numerical effort. Results are
found in excellent agreement.
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2 The thermoelastic problem for layered panes

The considered model problem is that of a layered glazing pane, representing the component
of a façade. The pane is composed of an arbitrary number N of layers of thickness si,
i = 1, . . . , N , made of different materials characterized by different physical and thermal
properties (mass per unit volume, specific heat, thermal conductivity, emissivity, reflectivity,
absorptivity and transmissivity with respect to the solar radiation). Although the theory
is developed in general, the practical case is certainly represented by laminated glass, for
which the layers are the glass plies and the polymeric interlayers. In general the thermal
properties of the glass plies can differ one another within the same laminated package.

(a) (b)

Figure 1: a) Scheme of the laminated package and b) reference system.

The thermoelastic problem is uncoupled [17, 19], i.e., the temperature distribution is
not affected by the stress and displacement fields and, hence, it is determined by the heat
transfer equations only. The state of stress is found “in cascade”, by considering the thermal
strain as an applied action, varying with time.

Consider the reference frame (x, y, z) of Figure 1(b), with the x, y axes parallel to surface
of the panel, and the z axis at right angle to that. The “front” surface, in contact with
the external environment, is that at z = 0, while the “back” indoor surface is at z = s,
where s =

∑N
i=1 si is the total thickness of the pane. Thermal energy can be stored in

each layer, according to the heat capacity; heat exchange is regulated by convection with
internal and external air and radiation from environmental source. In the simplest case, the
heat conduction with frames or shadowed parts of the panel at different temperature is not
considered, while the panel is assumed to be large in the x and y directions in comparison
to its thickness in the z direction. From these hypotheses, a 1-D version of the problem
can be formulated, in which the temperature field depends only on the z coordinate and on
time.
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2.1 The boundary value problem in heat transfer

Let Text(t) and Tint(t) denote the absolute temperatures of the external and internal environ-
ment, respectively. In general, Text(t) undergoes daily and seasonal fluctuations according
to the location, whereas Tint(t) is much more stable, and can be considered almost constant
in the calculation.

Heat convection is regulated by the convective heat transfer coefficients with the internal
and external environment, respectively denoted by hiC and heC , whose standard values are
provided by Standards [4, 6]. The external surface is irradiated by the sky vault, which
is treated as large enclosure surface, at an absolute temperature Tsky(t) [1, 56], while the
internal surface are irradiated by the inner-room surfaces at Tint(t) [1, 44]. The exchanged
radiant energy depends upon the difference of the forth powers of the absolute temperatures
of the involved surfaces [40], but if the temperature difference is small with respect to their
mean value, a linear dependence can be conveniently assumed according to the radiation
heat transfer coefficients, here indicated as hiR and heR for the internal and external heat
exchange, respectively. If TF (t) and TB(t) are the absolute temperatures of the front and
the back surfaces of the pane, respectively, one can write

heR = 4εσ

[
Tsky(t) + TF (t)

2

]3
, hiR = 4εσ

[
Tint(t) + TB(t)

2

]3
. (2.1)

These coefficients are time-dependent, but since the daily change in temperature is of the
order of 20 K, their variation is small. This is why, as also suggested by standards [6, 3], in
the engineering practice both heR and hiR are provided as fixed conventional values1.

In conclusion, the heat fluxes qF (t) and qB(t) though the front and back surfaces of the
pane, respectively, take the form

qF (t) = heC [Text(t) − TF (t)] + heR [Tsky(t) − TF (t)] = he

[
T̃ext(t) − TF (t)

]
, (2.2a)

qB(t) = (hiC + hiR) [TB(t) − Tint(t)] = hi [TB(t) − Tint(t)] , (2.2b)

where hi = hiC +hiR and he = heC +heR are the total heat transfer coefficients (accounting
for convection and infra-red radiation), whereas

T̃ext(t) =
heCText(t) + heRTsky(t)

he
(2.3)

1It should be mentioned that the general method proposed by [3] suggests that, for a refined calculation,
the dependence on the time-varying temperatures of heR and hiR should be considered: their values is found
via an iterative calculations, by updating the values at each iteration until convergence.
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is a fictitious temperature, accounting for the heat flow from the external environment.

In addition, the pane is hit by the solar radiation G(t), whose intensity depends on
various factors (presence of shadows [58, 24], season, façade orientation, geographic location,
time of day, panel inclination [46, 22]). This is absorbed in the volume of the layers, as
schematically indicated in Figure 1(a).

2.2 Thermal equations

With reference to Figure 1(a), a set of local non-dimensional coordinates

ζi :=
z −

∑i−1
k=1 sk
si

(2.4)

is defined, so that ζi ∈ [0, 1] for the i−th ply, i = 1, . . . , N . The temperature field is
described by the functions Ti(ζi, t).

A part of the energy G(t) associated with the solar radiation is absorbed, another part is
reflected and the remain part is transmitted: each layer is characterized by the absorptivity
αi, the reflectivity ri and the transmissivity τi, i = 1 . . . N . The solar energy hitting the
i-th layer is τ iG(t), where

τ i :=

{
1 for i = 1 ,∏i−1

k=1 τk for i = 2, . . . , N .
(2.5)

Due to absorption, the solar radiation is attenuated, i.e., the “available” energy decreases
along the thickness, depending on the extinction coefficient pi of the material. According
to the Bouguer-Beer-Lambert law [40, 34], the absorbed energy Ei(ζi, t) at the generic local
coordinate ζi is given by [10, 36, 49]

Ei(ζi, t) =
(

1 − e−pisiζi
)

τ i G(t) . (2.6)

Obviously, the material absorptivity αi, corresponding to the part absorbed in the whole
layer, corresponds to Ei(1, t) and reads [40] αi = 1−e−pisi . However, a common approxima-
tion [60], which will be used here, consists in assuming a linear dependence in the thickness
of the layer, in the form

Ei(ζi, t) = αi ζi τ i G(t) . (2.7)

Following [34], this is acceptable for laminated glass, since the thickness of the plies is
so small that the crossing radiation is only mildly attenuated. The approximation (2.7)
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can also be used for the polymeric interlayers, taking into account that their absorption
coefficient and thickness is much smaller than that of glass.

The 1-D heat-conduction equation for the i−th ply reads [40]

ρicp;i
∂Ti(ζi, t)

∂t
=

λi

s2i

∂2Ti(ζi, t)

∂ζ2i
+

1

si

∂Ei(ζi, t)

∂ζi
, (2.8)

where ρi, cp;i and λi respectively denote the mass per unit volume, the specific heat and
the thermal conductivity of the i−th ply. The term on the l.h.s. of (2.8) represents the
heat storage in the glass element, whereas on the r.h.s. one finds the heat conduction and
the contribution of the solar radiation. Observe that 1

si

dEi(ζi)
dζi

represents the absorbed solar
radiation per unit thickness per unit time [10, 36, 34], which is constant if (2.7) is used.

The boundary conditions for the front and back surfaces, in contact with the external
and internal environments, are of the third (Robin) kind, i.e.,

− λ1

s1

∂T1(ζ1, t)

∂ζ1

∣∣∣∣
ζ1=0

= he

[
T̃ext(t) − TF (t)

]
, (2.9a)

− λN

sN

∂Tn(ζN , t)

∂ζN

∣∣∣∣
ζN=1

= hi [TB(t) − Tint(t)] . (2.9b)

At the interfaces between adjacent plies both the temperature field and the heat conduction
flux must be continuous [9], that is

Ti(ζi, t)|ζi=1 = Ti+1(ζi+1, t)|ζi+1=0 , (2.10a)

− λi

si

∂Ti(ζi, t)

∂ζi

∣∣∣∣
ζi=1

= −λi+1

si+1

∂Ti+1(ζi+1, t)

∂ζi+1

∣∣∣∣
ζi+1=0

, i = 1, . . . , N − 1 . (2.10b)

The second of (2.10) implies that, at the interfaces, the spatial derivative of the left and
right temperature fields are not equal, being related by the ratio between the thermal
conductivities of the two materials.

An approximate solution can be found by neglecting the heat storage, represented by
the term ∂Ti(ζi,t)

∂t in (2.8), which corresponds to the steady state in which the energies
flowing inwards and outwards are equal and no heat is stored. This can occur only in the
(unrealistic) case where the external temperatures Text(t), Tsky(t), and the solar radiation
G(t) are constant in time. More in general, this thermal equilibrium can be reached when
the time-scale of the environmental conditions is much higher than the time required to
reach steady-state condition, but, as discussed in [30], this is not the case for architectural
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glazing. In fact, the time required to reach the steady state temperature is usually of the
order of one hour, but the solar radiance and the external temperature can substantially
vary in a similar time interval.

The solution for the steady state is quite simple and provides that the temperature field
is piecewise parabolic. At the i-th interface, the first spatial derivative of the temperature
distribution are inversely proportional to the ratio between the thermal conductivities of
the two materials2, as per (2.10)2.

2.3 Temperature-induced state of stress

In order to apply the equation of elasticity, we will refer to the physical coordinate z of Figure
1(b), instead of the normalized coordinate ζ. Let ∆T (z) be the temperature variation and
denote by αT the thermal expansion coefficient of the material. Denoting by I the identity
tensor, the thermal strain tensor εT is given by

εT = αT∆T (z)I . (2.11)

The stress tensor reads σ

σ = C (ε− εT ) , (2.12)

where C is the elasticity tensor and ε is the strain tensor, which shall satisfy the com-
patibility conditions. Once εT is known, the state of stress can be determined using any
commercial FEM code.

For a qualitative analysis, it is instructive to consider the simplest case of a monolithic
plate (N = 1), undergoing a given in-the-thickness temperature variation with respect to
the reference value. For a plate that can in-plane freely expand or contract, the elastic
solution can be found by superposition [32]. First the plate is fictitiously constrained at
its edges in the (x, y) directions: the in-plane stress consequent to the thermal variation is
uniform and equi-biaxial at each level z = const and reads [42]

σx = σy = − αTE

1 − ν
∆T (z) , (2.13)

where E and ν are the Young’s modulus and the Poisson’s coefficient, respectively. The
constrain reactions are orthogonal to the border, so to equilibrate the state of stress (2.13).

2More precisely, ∂Ti(ζi,t)
∂ζi

and
∂Ti+1(ζi+1,t)

∂ζi+1
are inversely proportional to the ratio of the thermal con-

ductivities per unit thickness λ/s of the two materials. The first derivatives with respect to z are instead
inversely proportional to the ratio of the thermal conductivities λ of the two materials.
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Since the real plate is not constrained, one has thus to superimpose to this state of
stress the one obtained by applying to the plate the constrain reactions with opposite signs.
It can be directly verified [27] that, when ∆T (z) is either constant or linearly varying
along the plate thickness, the stress distribution due to these is opposite to that given by
(2.13), providing a null total stress. This is because the thermal strain tensor εT fulfills the
compatibility relations and, hence, both equilibrium and compatibility are satisfied when
the plate is in a stress free state, with ε = εT and σ = 0. Of course, the plate expand
and/or inflects due to the non-null strain.

When the temperature variation is not a linear function of z, εT does not satisfy the com-
patibility relations. In this case, the thermal stress is not nil. It is worth mentioning that,
when analyzing the thermal profiles through glazed surfaces, it is customary to approximate
the temperature field as linearly varying along the panel thickness: the thermally-induced
stress cannot be determined from this. If one is interested in evaluating the possible risks of
rupture due to thermal gradients, it is therefore necessary to consider a more refined model
to determine the temperature field. This is particularly important for laminates, where
the layer-wise mismatch of thermal and elastic properties can induce stress concentrations
[33, 28].

3 Application of Biot’s Variational principle

The ingenious variational approach proposed by Biot [13, 14] can be applied to solve the
complete thermal analysis through the definition of spatial shape functions for the temper-
ature field. Here the method is extended to the case of multi-layered domains.

3.1 The variational approach for layered elements

Before passing to the specialization for a layered pane, it is useful to recall Biot’s variational
principle in general terms, for a homogeneous body of density ρ, with specific heat cp and
conductivity λ. The principle is stated in terms of the heat flow vector field H, also referred
to as heat displacement, whose time rate of change Ḣ is the heat flux across an area normal
to Ḣ. For an arbitrary volume V with surface S and outer normal n, conservation of energy
provides

∫
V
H · n dV = −

∫
S
ρcpT dS ⇒ −ρcpT = ∇ ·H , (3.1)

where T is the temperature field above equilibrium temperature. Notice that this relation
does not involve any time derivative, and it may be regarded as a holonomic constraint in the
sense of classical mechanics. As remarked in [14], the temperature and the heat displacement
are conjugate variables, analogue to force and displacement in classical mechanics.
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The variational principle can be stated as

δV + δD = −
∫
S
TδH · n dS , (3.2)

where

V =
ρcp
2

∫
V
T 2dV , (3.3a)

δD =
1

λ

∫
V
Ḣ · δH dV . (3.3b)

Here V is the thermal potential which is related to the thermal energy of the system, whereas
the dissipation function D equals the production of entropy in the system. The variation
of the thermal potential V, together with the conservation of energy (3.1), yields

δV = ρcp

∫
V
TδT dV = −

∫
S
TδH · n dS +

∫
V
δH · ∇T dV , (3.4)

so that the variational principle (3.2) leads

∫
V

[
∇T + (1/λ)Ḣ

]
· δH dV = 0 . (3.5)

For an arbitrary variation δH, this reduces to the heat conduction equation

λ∇T + Ḣ = 0 . (3.6)

Taking the divergence on both side, and recalling (3.1), one obtains the equation

λ(∇ · ∇T ) = ρcpṪ . (3.7)

It is important to note that the heat displacement cannot be completely evaluated from
the variational principle, since this involves only its time derivative, i.e., the heat flux.
The heat displacement can be determined up to an additive function, which depends upon
the boundary conditions. This indeterminacy, though inessential, is congenital in Biot’s
variational principle. Indeed, in the general derivation leading to (3.7) from (3.6), the
addition of a time-independent solenoidal vector field to the heat displacement H would
provide the same result.
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We now pass to the problem of the layered pane. The 1D equation are set in terms of
the local coordinates ζi defined in (2.4), for which it is important to recall that si

∂
∂ζi

= ∂
∂z .

Moreover, the heat displacement is now represented by the scalar variable H, whose time
rate Ḣ indicates the heat flux in the positive direction of the axis z. It is convenient to
specify this field for the i−th layer, i = 1 . . . N , as Hi = Hi(ζi, t), defined for ζi ∈ [0, 1].

For the i−th layer the conservation of energy, i.e., the counterpart of (3.1), reads

∂Hi(ζi, t)

∂ζi
= −ρicp;isi Ti(ζi, t) . (3.8)

Following (3.3), for the i−th layer one defines the thermal potential Vi and the dissipa-
tion function Di as

Vi =
ρicp;isi

2

∫ 1

0
T 2
i (ζi, t) dζi , (3.9a)

δDi =
si
λi

∫ 1

0
Ḣi(ζi, t)δHi(ζi, t) dζi . (3.9b)

Considering the variation of the temperature field and of the heat displacement field,
related by the olonomic constrain (3.8), the first variation of the thermal potential Vi can
be written as

δVi = ρicp;isi

∫ 1

0
TiδTi dζi = −

∫ 1

0
Ti

∂

∂ζi
δHi dζi = −

[
TiδHi

]1
0

+

∫ 1

0

∂Ti

∂ζi
δHi dζi , (3.10)

where, here and further, the dependence of Ti and Hi on ζi and t is omitted for brevity.
With respect to (3.4), one should notice that the domain where the integrals are evaluated
is not represented by an arbitrary volume V , but by the whole layer. This choice is dictated
by the form of the shape functions through which the temperature and heat displacement
fields will be approximated.

In order to consider the fact that there are heat sources in the system, following [14] the
additional fields H∗

i , i = 1, . . . , N , are introduced, which represent the contribution of the
absorbed part of the solar radiation. The total heat displacement is hence

Hi = Hi + H∗
i . (3.11)

Recalling that the energy absorbed per unit volume in the i−th layer is given by ∂Ei(ζi, t)/∂ζi,
with Ei(ζi, t) given by (2.6) or (2.7), this can be written as
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∂H∗
i

∂ζi
=

∫ t

0

∂Ei(ζi, t)

∂ζi
dt . (3.12)

The function Ei(ζi, t) is a datum, so that the l.h.s. is assigned. However, as pointed out
in [14], this equation does not determine H∗

i uniquely, but the indeterminacy is inessential
since any field satisfying (3.12) can be chosen.

According to [14], the variational principle for the i−th layer can be stated as

δVi + δDi = −
[
TiδHi

]1
0
− si

λi

∫ 1

0
Ḣ∗

i δHi dζi , (3.13)

where the energy conservation (3.8) plays the role of a holonomic constraint. Following the
same arguments leading to (3.5), recalling (3.10) the expression (3.13) provides

δVi + δDi + [TiδHi]
1
0 +

si
λi

∫ 1

0
Ḣ∗

i δHi dζi =

∫ 1

0

[
∂Ti

∂ζi
+

si
λi

(
Ḣi + Ḣ∗

i

)]
δHi dζi = 0 . (3.14)

Since the variation δHi is arbitrary, one obtains

−Ḣi =
λi

si

∂Ti

∂ζi
+ Ei(ζi) . (3.15)

which corresponds to the heat conduction law (2.8), now written in terms of Hi. This can
be directly verified by taking the first derivative with respect to ζi and recalling (3.8).

For the whole layered panel, the variational principle may be stated as

δV + δD = −
N∑
i=1

[
TiδHi

]1
0
−

N∑
i=1

si
λi

∫ 1

0
Ḣ∗

i δHi dζi . (3.16)

where δV =
∑N

i=1 δVi and δD =
∑N

i=1 δDi. The strength of the variational approach consists
in the fact that the relevant fields Hi(ζi, t), and consequently Ti(ζi, t), can be approximated
with shape functions which depend on ζi ∈ [0, 1] and the associated coefficients, which are
a function of time. This procedure is classical in the Finite Element Method (FEM).

Therefore, the whole heat displacement field H = H(z, t), which is piecewise defined
by the fields Hi = Hi(ζi, t), i = 1, . . . , N , can be completely defined by M time-dependent
generalized coordinates fk(t), k = 1, . . . ,M , defining the field configuration. With a little
abuse of notation, one can schematically write
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H(z, t) =
N∑
i=1

Hi

(
ζi, f1(t), . . . , fM (t)

)
. (3.17)

Hence, the variational principle (3.16) provides [14] a system of M equations, in the form

∂V
∂fk

+
∂D
∂ḟk

= Qk + Q∗
k , (3.18)

where

D =
N∑
i=1

si
2λi

∫ 1

0

[
Ḣi

(
ζi, f1(t), . . . , fM (t)

)]2
dζi , (3.19)

is the overall dissipation function. Notice that, since the temperature field is related to
the heat displacement by (3.8), also the thermal potential V depends on the generalized
coordinates. In (3.18), Qk is the generalized driving force due to the temperature at the
boundary and interfaces, while Q∗

k is the generalized force due to the heat absorbed in the
volume element. These are defined as

Qk := −
N∑
i=1

[
Ti

∂Hi

(
ζi, f1(t), . . . , fM (t)

)
∂fk

]1

0

, (3.20a)

Q∗
k := −

N∑
i=1

si
λi

∫ 1

0
Ḣ∗

i

∂Hi

(
ζi, f1(t), . . . , fM (t)

)
∂fk

dζi . (3.20b)

Notice that in this variational description the interface conditions (2.10) should be taken
into account through compatible shape functions. No continuity conditions are a priori
required on the heat displacement field.

Biot observed [14] that equations (3.18) are of the same form as those of Lagrangian
mechanics for the slow motion of a dissipative system with negligible inertia forces, for which
V corresponds to the potential energy and D to the dissipation function. The quantities
Qk and Q∗

k appearing on the right-hand side represent generalized thermal driving forces
due to the temperature distribution at the boundary and to heat sources, and defined by
a method of virtual work as in mechanics. For this reason, they are referred to as thermal
forces.

3.2 Formulation à la Biot for layered glazing
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By approximating the relevant fields with appropriate shape-functions, the variational prin-
ciple can be used to define a FEM formulation of the thermal problem.

3.2.1 Shape functions and conformal mesh interfaces

Approximate the heat displacement and temperature fields in the i−th layer in the form

Hi(ζi, t) = n(ζi) · fi(t) , (3.21a)

Ti(ζi, t) = − 1

ρicp;isi
p(ζi) · fi(t) . (3.21b)

Here, fi(t) = [fi,1(t) fi,2(t) fi,3(t) fi,4(t) fi,5(t)]
T (where T denotes the transpose) is the

vector of the generalized coordinates for the i-th ply, while n(ζi) and p(ζi) are vectors of
spatial shape functions, defined as Hermite polynomials in the form

n(ζi) =


ζ4i /2 − ζ3i + ζi − 1/2
−ζ4i /2 + ζ3i
ζ4i /4 − 2ζ3i /3 + ζ2i /2 − 1/12
ζ4i /4 − ζ3i /3
1

 , p(ζi) =
d

dζi
n(ζi) =


2ζ3i − 3ζ2i + 1
−2ζ3i + 3ζ2i
ζ3i − 2ζ2i + ζi
ζ3i − ζ2i
0

 .

(3.22)

Notice that (3.8) is automatically satisfied. Observe as well that the fifth generalized coor-
dinate fi,5(t) is inessential for what concerns the temperature field, but it affects the heat
displacement and, hence, the heat flux Ḣi(ζi, t) = ni(ζi) · ḟi(t).

The generalized coordinates represent the nodal displacements of finite elements. In
fact, each layer composing the pane is regarded as a 1-dimensional element, for which the
temperatures and its first spatial derivatives at the boundary ζi = 0, 1 correspond to the
values of fi,k(t), k = 1, . . . , 4.

The interface conditions (2.10) provide

fi+1,1(t) = βi;i+1fi,2(t) ,

fi+1,3 = βi;i+1γi;i+1fi,4(t) , i = 1, . . . , N − 1, (3.23)

where we have defined
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βi;i+1 =
ρi+1cp;i+1si+1

ρicp;isi
, γi;i+1 =

λisi+1

λi+1si
. (3.24)

These 2(N − 1) equations represent the conditions for conformity, which reduces to 5N −
2(N−1) = 3N +2 the number of independent nodal coordinates. The corresponding vector
will be denoted by F(t).

It is convenient to decompose F(t) in the two subvectors: FT (t), with 2N+2 components
defined only by fi,k(t), k = 1, . . . , 4, i = 1, . . . , N , affecting the temperature field, and the
remaining part FH(t) with N , related to fi,5(t), i = 1, . . . , N , which has an effect on the
the heat displacement. Recalling (3.23), these vectors will be defined as

F(t) := [FT (t)|FH(t)]T ,

FT (t) := [f1,1(t), f1,2(t), f1,3(t), f1,4(t), f2,2(t), f2,4(t), . . . , fi,2(t), fi,4(t), . . . , fN,2(t), fN,4(t)]
T ,

FH(t) := [f1,5(t), . . . , fN,5(t)]
T . (3.25)

The vector F(t) is related to fi(t) by

fi(t) = Li F(t) , (3.26)

where Li are 5 × (3N + 2) matrices, whose expressions are recorded in the Appendix A.1.

Therefore, the variational principle (3.18) may be written in matrix form3 as

∂V
∂F(t)

+
∂D

∂Ḟ(t)
= Q + Q∗ , (3.27)

where, following (3.20), Q and Q∗ may be evaluated as

Q := −
N∑
i=1

[
Ti

∂Hi

∂F(t)

]1
0

, (3.28a)

Q∗ = −
N∑
i=1

si
λi

∫ 1

0
Ḣ∗

i

∂Hi

∂F(t)
dζi . (3.28b)

Accounting for (3.26), one can write

3We define the derivative of a scalar with respect to a column vector as a column vector.
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Hi(ζi, t) = [LT
i n(ζi)] · F(t) , (3.29a)

Ḣi(ζi, t) = [LT
i n(ζi)] · Ḟ(t) , (3.29b)

∂Hi

∂F(t)
=

∂Ḣi

∂Ḟ(t)
= LT

i n(ζi) , (3.29c)

Ti(ζi, t) = − 1

ρicp;isi
[LT

i p(ζi)] · F(t) . (3.29d)

By using (3.29d), the terms associated with the thermal potential (3.9a) provide

∂Vi

∂F(t)
=

1

ρicp;isi

∫ 1

0
[LT

i p(ζi)][L
T
i p(ζi)]

T dζi F(t) =
1

ρicp;isi
LT
i KLi F(t) ,

∂V
∂F(t)

=

[
N∑
i=1

1

ρicp;isi
LT
i KLi

]
F(t) , (3.30)

where K :=
∫ 1
0

[
p(ζ) pT (ζ)

]
dζ is a 5 × 5 non-dimensional matrix, the same for all the N

layers, whose explicit expression is recorded in the Appendix A.2.

Analogously, relations (3.29b) and (3.29c) applied to the dissipation function (3.9b) give

∂Di

∂Ḟ(t)
=

si
λi

∫ 1

0
Ḣi(ζi, t)

∂Hi(ζi, t)

∂Ḟ(t)
dζi

=
si
λi

∫ 1

0
[LT

i n(ζi)][L
T
i n(ζi)]

T dζi Ḟ(t) =
1

ρicp;isi
LT
i C

′Li Ḟ(t) ,

∂D
∂Ḟ(t)

=

[
N∑
i=1

si
λi

LT
i C

′Li

]
Ḟ(t) , (3.31)

where C′ :=
∫ 1
0

[
n(ζ) nT (ζ)

]
dζ is a non-dimensional 5 × 5 matrix whose expression can

also be found in Appendix A.2.

3.2.2 Boundary conditions and driving forces

The term Q of (3.28a) accounts for the thermal driving forces associated with the temper-
atures at boundaries and the interface between the layers, and can be rearranged as
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Q =

[
T1

∂H1

∂F(t)

]
ζ1=0

−
[
TN

∂HN

∂F(t)

]
ζN=1

−
N−1∑
i=1

{[
Ti

∂Hi

∂F(t)

]
ζi=1

−
[
Ti+1

∂Hi+1

∂F(t)

]
ζi+1=0

}
. (3.32)

Here, the first two terms are boundary condition of the third-kind. Following [14], they
are evaluated by considering that the heat flux Ḣ at the front and back boundaries ζ1 = 0
and ζN = 1 is defined by (2.2), i.e., Ḣ(ζ1, t)|ζ1=0 = qF (t) and Ḣ(ζN , t)|ζN=1 = qB(t), and
Ḣ∗

i (ζi, t) = Ei(ζi, t) as per eq. (3.12). The boundary temperatures are

T1(0, t) = − 1

he

[
Ḣ1(0, t) + Ḣ∗

1(0, t)
]

+ T̃ext(t)

= − 1

he
[L1n(0)] · Ḟ(t) + T̃ext(t) , (3.33a)

TN (1, t) =
1

hi

[
ḢN (1, t) + Ḣ∗

N (1, t)
]

+ Tint(t)

=
1

hi
[LNn(1)] · Ḟ(t) +

τNαNG(t)

hi
+ Tint(t) , (3.33b)

where T̃ext(t) is the fictitious temperature defined by (2.3). Therefore, one finds

[
T1

∂H1

∂F(t)

]
ζ1=0

= − 1

he

[
LT
1 C

′′
extL1

]
Ḟ(t) + T̃ext(t)L

T
1 n(0) , (3.34a)[

TN
∂HN

∂F(t)

]
ζN=1

=
1

hi

[
LT
NC′′

intLN

]
Ḟ(t) + Tint(t)L

T
Nn(1) +

τNαNG(t)

hi
LT
Nn(1) . (3.34b)

The matrices C′′
int := n(1)nT (1) and C′′

ext := n(0)nT (0) are indicated in Appendix A.2.

The last term of (3.32) may be written as
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−

{[
Ti

∂Hi

∂F(t)

]
ζi=1

−
[
Ti+1

∂Hi+1

∂F(t)

]
ζi+1=0

}
=

1

ρicp;isi

[[
LT
i p(1)

]
· F(t)

]
LT
i n(1) − 1

ρi+1cp;i+1si+1

[[
LT
i+1p(0)

]
· F(t)

]
LT
i+1n(0)

=

[
1

ρicp;isi
LT
i M1Li −

1

ρi+1cp;i+1si+1
LT
i+1M0Li+1

]
F(t) . (3.35)

The expressions for the matrices M1 = n(1)pT (1) and M0 = n(0)pT (0) can be found in
Appendix A.2. Observe, in passing, that since the temperature field in the layered pane is
continuous as per (3.23), these terms are due to the discontinuities of the heat displacement
at the interfaces.

By defining the non-dimensional interface matrix

Mi;i+1 = LT
i M1Li −

1

βi;i+1
LT
i+1M0Li+1 , (3.36)

with βi;i+1 given by (3.24), the expression (3.32) for Q can be written as

Q = −
[

1

he

[
LT
1 C

′′
extL1

]
+

1

hi

[
LT
NC′′

intLN

]]
Ḟ(t)

+

[
N−1∑
i=1

1

ρicp;isi
Mi;i+1

]
F(t) + b̃(t) + b+(t) , (3.37)

where b̃(t) = T̃ext(t)L
T
1 n(0) − Tint(t)L

T
Nn(1) represents the forcing terms due to the heat

exchange with the surrounding environment, while b+(t) := − τNαNG(t)
hi

LT
Nn(1) is an addi-

tional driving force, related to the variation of heat flux along the panel thickness due to
the distributed effect of the solar radiation. Notice that the time-dependence is due to the
variation of the environmental conditions.

For what concerns the term Q∗ (3.28b), accounting for the absorption of the solar
radiation, this can be readily evaluated as

Q∗ = −
N∑
i=1

si
λi

∫ 1

0
Ei(ζi, t) LT

i n(ζ) dζ =: b∗(t) . (3.38)

When approximation (2.7) is used for the absorbed energy Ei(ζi, t),
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b∗(t) = −
N∑
i=1

si
λi

τ iαi G(t) LT
i a , (3.39)

where a :=
∫ 1
0 ζn(ζ) dζ is detailed in Appendix A.2.

3.2.3 Matrix form of the discretized problem

From (3.30), (3.31), (3.37) and (3.39), the variational principle provides the linear system
of differential equations

Ktot F(t) + Ctot Ḟ(t) = b(t) , (3.40)

where

Ktot :=
N∑
i=1

1

ρicp;isi
LT
i KLi −

N−1∑
i=1

1

ρicp;isi
Mi;i+1 , (3.41a)

Ctot :=

N∑
i=1

si
λi

LT
i C

′Li +
1

he

[
LT
1 C

′′
extL1

]
+

1

hi

[
LT
NC′′

intLN

]
, (3.41b)

b(t) := b̃(t) + b+(t) + b∗(t) . (3.41c)

In the language of structural dynamics, Ktot plays the role of the stiffness matrix, and
now accounts for the temperature distribution in the layers and for the discontinuities of
the heat displacement fields at their interfaces. Analogously, Ctot is the counterpart of the
damping matrix [52, 20], which considers the bulk dissipation and the dissipation from the
heat transfer at the boundary. The vector b(t) is the analogue of the externally applied
forces, which are now the thermal driving forces. In general Ktot and Ctot are band matrices.

It is useful to re-write (3.40) in terms of the sub-vectors defined in (3.25), in the form

[Ktot;T |Ktot;H ]

 FT (t)

FH(t)

 + [Ctot;T |Ctot;H ]

 ḞT (t)

ḞH(t)

 = b(t) , (3.42)

where Ktot;T and Ctot;T are (3N + 2) × (2N + 2) matrices, while Ktot;H and Ctot;H are
(3N + 2) ×N matrices.

It can be verified that, due to the choice of the generalized coordinates, Ktot;H = 0.
Therefore, FH(t) cannot be determined by solving the system (3.42), which provides only its
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time derivative ḞH(t). The values of FH(t) will depend on the initial conditions prescribed
on the heat displacement but, as already discussed in Section 3.1, these remain arbitrary
according to the definition of H.

The system (3.42) can be easily solved. A particular case is that in which the boundary
conditions are constant in time, that is b(t) = b. The corresponding asymptotic steady
state solution can be found by requiring that ∂Ti(ζi, t)/∂t = 0 ∀ i = 1, . . . , N : recalling
(3.21) and (3.25), this implies FT (t) = const , ḞT (t) = 0. Observe that the associated
temperature distribution corresponds to a heat flux Ḣi constant in time and uniform along
the element thickness, for which ḞH(t) = const.

The steady state hence corresponds to the solution of

[Ktot;T | 0 ]

 FT

FH(t)

 + [Ctot;T |Ctot;H ]

 0

ḞH

 = [Ktot;T |Ctot;H ]

 FT

ḞH

 = b , (3.43)

which is a system of (3N + 2) algebraic equations, from which one finds the (2N + 2)
components of FT and the N components of ḞH .

3.3 Advantages with respect to standard FEM approaches

The standard FEM approach [61, 35] starts from the governing equation (2.8) for the i-
th layer. The steady-state problem is formulated in the weak form, by multiplying the
governing equation and the boundary conditions by an arbitrary weight function. For one
layer (N = 1), denoting by v(ζ) the weight function, one obtains∫ 1

0

[
λ

s2
∂2T (ζ)

∂ζ2
+

1

s

∂E(ζ)

∂ζ

]
v(ζ) dζ + boundary terms = 0 . (3.44)

where the detailed expression of the boundary terms can be found, e.g., in [61, 35].

Then, both the temperature field and the weight function are approximated by using
spatial shape functions4, in a form analogous to (3.21b), determined by the nodal values.
The most used shape functions are of the first order. In general, this choice does not satisfy
the differential equation and boundary conditions: this results in an error called residual,
estimated by substituting the approximated solution T̃ (ζ) into the governing differential
expression, i.e.,

4In the most used approach à la Galerkin, the same shape functions for the temperature field are used
for the weight functions.
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r(T̃ (ζ)) :=
λ

s2
∂2T̃ (ζ)

∂ζ2
+

1

s

∂E(ζ)

∂ζ
+ boundary terms . (3.45)

The weak formulation (3.44) provides a system of algebraic equations for the nodal
values, which corresponds to the zeroing of the weighted average of the residuals. Hence, it is
usually referred to as the Weighted Residual Method. Since the shape functions are usually
chosen so to satisfy the boundary conditions, as well as continuity interface conditions, the
obtained solution is accurate at these points: the accuracy in the interior is obtained by
dividing the thickness in finite elements.

For transient problems, the time dependence of the temperature field is usually consid-
ered via a finite difference approximation [61, 19]. The solution at the first time step is
obtained by solving a set of algebraic equations; at each subsequent time step, the solution
is evaluated by considering a modified force vector, accounting for the forcing terms at
boundaries, and by using coefficient matrices dependent on the size of the time increment.
The accuracy depends the size of both the spatial mesh and the time step [39, 57, 11]. For
the thermal problems of architectural glazings, simpler methods are often used, consisting in
discretizing the governing equation of the problem by means of finite difference techniques,
in both space and time [36, 9, 10].

In all the aforementioned approaches, the condition of energy conservation is only ap-
proximately satisfied. To this respect, the proposed method based on Biot’s variational
approach is more consistent, because energy conservation is equivalent to an holonomic
constraint, not involving time, as per (3.1), which is rigorously verified at each time. This
improves the quality of the solution, especially for what concerns the relation between
temperature field and heat flux.

In addition, it should be mentioned that traditional continuous Galerkin FEMs are not
efficient in evaluating the peak values of temperatures and heat flux in thermal problems
involving high temperature gradients, even when a very refined mesh is used. For this kind of
problems, refined finite element formulations have been developed to efficiently capture steep
gradients. For example, the generalized finite element method represents a direct extension
of the standard FE method, enabling the accurate approximation of solutions with jumps,
kinks, singularities, and other locally non-smooth features within elements [55, 29, 47]. The
discontinuous Galerkin FEM [21, 41], first introduced by Reed and Hill [50] for the analysis
of neutron transport problems, allows for discontinuities of the physical unknowns within the
interior of the problem domain. The coordinate transformation approaches are capable of
conforming to the nonuniform and steep temperature profiles [8, 37]. However, the difficulty
is bypassed when using Biot’s variational principle, because in (3.16) the spatial derivatives
of Ti(ζi, t) are not involved. This is a direct consequence of the fact that the basic unknown
field, to be determined, is not the temperature field, but the heat displacement field, which
is related to the spatial integral of Ti(ζi, t), as per (3.8).

Moreover, the standard FEM approach does not permit the heat flux to be directly
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evaluated. It must be recovered a posteriori once the (approximate) temperature field is
known. On the other hand, the fields for the temperature, the heat displacement and the
heat flux can be directly evaluated in Biot’s variational approach, by using (3.29a), (3.29b),
(3.29d).

In particular, the proposed method presents a great advantage for what concerns the
evaluation of the thermal stress. Indeed, the traditional FEM methods, based on linear
shape functions, provide an approximated piecewise linear temperature distribution that, as
discussed in Section 2.3, may provide an erroneous estimate of the thermal stress because the
incompatibility of the thermal strain is concentrated at those points where the temperature
profile is not smooth. Moreover, the use of shape function of order higher than one does
not require a fine discretization, since the nodal points can be made to correspond to the
boundary of each layer, i.e., only one finite element per layer is required.

4 Examples and comparisons

To illustrate the FEM approach based on the Biot’s variational method, hereafter referred
to as BVM, the worked examples are those of a monolithic glass plate and a laminated
glass pane composed of two glass plies bonded by a PVB interlayer. Table 1 summarizes
the assumed physical and thermal properties of the materials.

Table 1: Values of physical and thermal properties of materials considered in the proposed examples.

Material Reference ρ [kg/m3] cp [J/(kg K)] λ [W/(m K)] α [−] τ [−] ε [−]

glass [7, 2] 2500 720 1 0.23 0.67 0.837

PVB [9, 18] 1087 1360 0.236 0.01 0.99 0

The values of the convective heat transfer coefficients heC =8 W/(m2K) and hiC =
3.6 W/(m2K), are taken from EN ISO 6946 [4] and EN 410 [5], respectively. Since the
glass surface temperatures are unknown, the radiant coefficients hiR and heR are evaluated
according to (2.1), by conventionally assuming the glass temperature equal to 10 ◦C.

We first consider fixed external conditions for a standard values winter scenario [3, 30],
for which G = 800 W/m2, Text = −12◦C, Tsky = −5◦C, Tint = 25 ◦C. Successively, we
analyze daily variation of environmental parameters as in [30]. In both cases, the solar
radiation is modeled by considering a linear attenuation according to (2.7).

The obtained results are compared with a direct numerical solution of the heat-conduction
partial differential equation under the aforementioned boundary and initial conditions. This
is done with the “pdepe” Matlab tool [45], conceived for solving parabolic and elliptic par-
tial differential equations of one spatial variable and time. Since a discretization in both
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space and time is required, the direct solution is found computationally more expensive
than the proposed BVM.

4.1 Transient state for fixed environmental conditions

The transient solution is calculated under fixed external temperatures Text and Tsky, and
solar radiation G. In the BVM, the temperature field is calculated by solving the system
(3.40).

As initial condition, it is required that, at t = 0, the front temperature T1(ζ1, 0)|ζ1=0 is
equal to the fictitious temperature T̃ext, accounting both for the convective and radiative
heat exchange with the external environment, while the back temperature TN (ζN , 0)|ζN=1

equals the inner temperature Tint. The temperature profile at t = 0 is assumed to be piece-
wise linear and respecting the continuity conditions (2.10). Furthermore, at t = 0, the part
of the heat displacement related to the temperature field is null at the back surface, and con-
tinuous at the interfaces5, i.e., HN (ζN , 0)|ζN=1 = 0 and Hi(ζi, 0)|ζi=1 = Hi+1(ζi, 0)|ζi+1=0.

4.1.1 Monolithic glass

Consider a 12 mm thick monolithic glass panel. The generalized coordinates f1,k(t) , k =
1, . . . , 5, evaluated by solving (3.40), are plotted in Figure 2 as a function of time. Observe
that f1,k(t) , k = 1, . . . , 4, tend to become constant after a certain time of the order of one
hour: in agreement with [30], no heat is stored and temperature becomes constant. Notice
as well that f1,1(t) and f1,2(t), respectively associated with the temperatures at the front
and back surfaces, exhibit a very similar trend. On the other hand, the coordinate f1,5(t)
which, as discussed in Sect. 3.3, does not influence the temperature field, tends to linearly
increase in time. This corresponds to a constant heat flux Ḣ.

Once the vector of the generalized coordinates F(t) is known, the temperature field
T1(ζ1, t) and the heat flux Ḣ1(ζ1, t) are evaluated according to (3.29d) and (3.29b), respec-
tively. Figure 3(a) shows the front and back temperatures TF (t) = T1(0, t) and TB(t) =
T1(1, t) and the corresponding steady-state values. These are evaluated either with the
BVM, by solving the algebraic system (3.43), or by numerically solving the heat equation
(2.8) with boundary conditions (2.9). To emphasize the spatial dependence of T1(ζi, t),
Figure 3(b) shows the temperature profile at different times. The numerical solution is
also plotted in the same graphs with blue lines, but it cannot be distinguished because it
perfectly overlaps with the BVM results.

It is confirmed that the front and back temperatures converge to the steady-state values

5It has been verified that very similar results may be obtained by considering, instead, null heat dis-
placement at the front surface. Indeed, the boundary condition prescribed on the heat displacement affects
neither the temperature field nor the heat flux.
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Figure 2: Monolithic glass under fixed environmental conditions. Generalized coordinates f1,k(t) , k =
1, . . . , 5 as a function of time.
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Figure 3: Monolithic glass under fixed environmental conditions. a) Comparison between front and back
temperatures TF (t) and TB(t) and the steady-state solution; b) temperature profile in the glass thickness at
different times t. Direct numerical results are also plotted for comparison.

in about 1 hour. There is perfect agreement between the BVM results and the direct
numerical solution, being the maximum error6 of the order of 0.07◦C for t > 10 s.

The total heat flux Ḣ1(ζ1, t) = Ḣ1(ζ1, t) + Ḣ∗
1(ζ1, t) may be evaluated according to

equation (3.11), where Ḣ1(ζ1, t) comes from (3.29b). Figure 4(a) shows the values in cor-

respondence of the front and back surfaces, i.e., ḢF (t) = Ḣ1(0, t) and ḢB(t) = Ḣ1(1, t):
these account for the heat from solar radiation absorbed in the glass thickness. The in-the-
thickness profile at different times is represented in Figure 4(b). No comparisons are made
with the solution found with the numerical procedure, because this directly determines only
the temperature field.

From Figure 4(a), it is evident that, after approximatively 1 hour, the front and back

6For t <10 s, a maximum error of about 0.8◦C is found for very low values of t.
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Figure 4: Monolithic glass under fixed environmental conditions. a) Comparison between front and back
heat fluxes ḢF (t) and ḢB(t) and the steady-state solution; b) in-the-thickness heat flux profiles at various
times.

heat fluxes tend to the steady state condition. The difference between the two values
obviously corresponds to the heat absorbed in the glass thickness7. Notice than both the
heat fluxes are negative: in the winter scenario, heat flows from the internal environment
to glass, and then to the external environment.

4.1.2 Laminated glass

Consider a laminated pane with two glass plies of thickness s1 = 8 mm and s3 = 6 mm,
bonded by a PVB interlayer of thickness s2 = 1.52 mm. In the system (3.40) now N = 3.

Figure 5(a) reports the variation in time of the front and back temperatures and of the
interface temperatures Tint1,2(t) := T1(1, t) = T2(0, t) and Tint2,3(t) := T2(1, t) = T3(0, t),
with evidence of the asymptotic steady state obtained by solving (3.43). The results nu-
merically obtained, also shown, cannot be distinguished because they perfectly overlap with
the BVM solution. Observe that now the time required for the steady-state is of the order
of 1.5 hours, being slightly higher for the back temperatures due to the heat storage in the
laminated pane.

Figure 5(b) shows the temperature profile at various times. Again the curves obtained
by numerically solving the equation are not plotted because they perfectly overlap, being
the maximum difference8 of the order of 0.02◦C for t >10 s. As expected, at the interfaces

7Notice that, since the solar radiation is considered to be absorbed along the glass thickness, no energy is

absorbed at ζ1 = 0, and hence ḢF (t) does not account for this contribution. At the steady state condition,
the energy balance requires that the sum of energies incoming in the panel (convective/radiant fluxes from
the external environment and solar radiation) is equal to the energy releases by the panel to the internal

environment. Hence, the back flux ḢB(t) is affected by the solar radiation.
8For t <10 s, the maximum difference is 0.36◦C, occurring at the very beginning.
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Figure 5: Laminated glass under fixed environmental conditions. a) Histories of front, back and interface
temperatures and steady-state; b) temperature profile in the pane thickness at different times. Direct
numerical results are also shown for comparison.

the slope of the temperature curves respect (2.10)2. For high values of t, the temperature
profile tends to be piecewise parabolic.

Figure 6(a) shows the front and back heat fluxes, as well as the heat fluxes at the glass-

polymer interfaces Ḣint1,2(t) = Ḣ1(1, t) = Ḣ2(0, t) and Ḣint2,3(t) := Ḣ2(1, t) = Ḣ3(0, t).
As for monolithic glass, the heat fluxes are lower than zero, corresponding to heat flowing
from the internal environment, to the pane, and then to the external environment. Observe
that, in the steady state, the heat flux is monotonically increasing along the laminated glass
element.
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Figure 6: Laminated glass under fixed environmental conditions. a) Front, back and interface heat fluxes as
a function of time and steady-state solution; b) in-the-thickness heat flux profile at various times.
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4.2 Transient state under variable environmental conditions

The solar radiation G(t) and the external temperature Text(t) are now made to vary accord-
ing to daily variations. Following [30], the time dependence of G(t) is approximated with
a parabolic law, while Text(t) is assumed sinusoidal in time. Approximately, Tsky(t) is set
equal to Text(t), and we use the same values of heR and hiR considered in Section 4.1. The
time dependent temperature field is evaluated by solving (3.40). Since the solution shall
be periodic in time (temperature and heat flux at t = 0 shall equal those at t = 24 h), an
iterative procedure has been used9 until FT (0) = FT (24 h) and ḞH(0) = ḞH(24 h).

Again, the results from the BVM are compared with the direct numerical solution of
the equations via the “pdepe” Matlab tool [45]. An iterative procedure has been used to
achieve that the front, back and interface temperatures at t = 0 are equal to those at t = 24
h. It has to be mentioned that, when time-dependent boundary conditions are used, the
direct numerical solution is strongly sensitive to the time and spatial mesh10.

4.2.1 Monolithic glass

Consider, first, the monolithic glass pane already analyzed in Section 4.1.1, for which the
relevant equations are (3.40), with N = 1. The nodal values f1,k(t) , k = 1, . . . , 4 are plotted
in Figure 7, for the considered winter scenario. Obviously, the values do not tend to zero
as t → ∞: since the external conditions change in time, a steady state cannot be reached.
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Figure 7: Monolithic glass under variable environmental conditions. Nodal values f1,k(t) , k = 1, . . . , 4 as a
function of time.

The graphs in Figure 8(a) show the time-dependent front and back temperatures evalu-
ated with the proposed approach and their comparison with the direct numerical solution.

9In the worked examples, the rate of convergence is very high, since the solution is obtained with two
iterations.

10Results shown in Figures 8(a) and 8(b) have been obtained by dividing the glass thickness in 100
elements.
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Figure 8(b) indicates the in-the-thickness temperature profiles at various times of the day.
The temperatures obviously follow the variation of environmental condition, with a small
delay due to heat storage11. There is a very good agreement between the proposed method
and numerical solution (maximum error of the order of 0.4◦C). The proposed method is
computationally much more efficient than the direct numerical solution, which requires a
fine discretization in both space and time.
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Figure 8: Monolithic glass under environmental conditions. a) Time history of front and back temperatures
TF (t) and TB(t) and b) temperature distribution along the glass thickness at various hours of the day.

Figure 9(a) reports, as a function of time, the values of the total heat flux at the front
and back surfaces, accounting for the heat absorbed along the glass thickness. Figure 9(b)
shows the in-the-thickness heat flux profiles at various hours of the day. Observe that the
heat fluxes are now strongly dependent upon the environmental conditions. In particular,

during the night hours, when the solar radiation is null12, ḢB(t) presents a small delay (of

less than 1 hour) with respect to the front heat flux ḢF (t), due to the heat storage in the
element thickness. During the central hours of the day, there is instead a strong difference
between the two values, due to the solar radiation absorbed by the glass that is now variable
along the day.

4.2.2 Laminated glass

For the laminated glass pane already considered in Section 4.1.2, but now under variable
environmental conditions, Figure 10(a) shows the time variation of the front and back
temperatures TF (t) and TB(t), as well as of interface temperatures Tint1,2(t) and Tint2,3(t).
Again, the results from the direct numerical solution are plotted for the sake of comparison.
The trend is similar to that of Figure 8(a) for monolithic glass, but it is evident that there
is a temperature decrease when passing from the external surface to the glass-polymer

11According to [31], this delay is expected to be higher for insulated glass units.
12In the winter scenario the solar radiation is nil [30] from 4.30 P.M. to 7.30 A.M.
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Figure 9: Monolithic glass under variable environmental conditions. a) Time evolution of the front and back
heat fluxes ḢF (t) and ḢB(t), and b) in-the-thickness heat flux profile at various hours of the day.

interfaces, and to the back surface. This is more evident during the night hours, when the
difference between external and internal temperature is higher. The differences between
the results from the proposed method and the direct numerical integrations are lower than
0.02 ◦C. Figure 10(b) shows the in-the-thickness temperature profiles, at different hours
of the day. In this case, one can drive similar conclusions to those indicated under fixed
environmental conditions.
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Figure 10: Laminated glass under variable environmental conditions. a) Front, interface and back temper-
atures (comparisons between the proposed method and direct numerical results), and b) in-the-thickness
temperature profile at various hours of the day.

The heat fluxes evaluated with the BVM are plotted, as a function of time, in Figure
11(a). Here we report the front and back heat fluxes ḢF (t) and ḢB(t), as well as the
interface fluxes Ḣint1,2(t) and Ḣint2,3(t), defined as in Section 4.1.2. Figure 11(b) shows the
in-the-thickness profile at various hours of the day.

Again, the discrepancy between the front and the back flux is related to the solar radia-
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Figure 11: Laminated glass under variable environmental conditions. a) Front, interface and back heat
fluxes, and b) in-the-thickness heat flux profile at various hours of the day.

tion absorbed across the laminated glass thickness and, consequently, it is more evident in
the central hours of the day. Since the polymeric interlayer presents a very low absorptivity
as per Table 1, the interface heat fluxes Ḣint1,2(t) and Ḣint2,3(t) are almost unaffected by
G(t), whereas they are significantly influenced by the time variation of the environmental
temperature. Observe, again, that the interface heat fluxes and, even more so, the back
flux, present a time delay with respect to the front flux, due to the heat storage in the
different glass plies of the laminate.

5 Conclusions

The ingenious variational approach proposed by Biot in the fifties has been here used
to evaluate the temperature and heat flux distribution in a layered glazing, with specific
reference to laminated glass panes composed of an arbitrary number of plies with different
physical and thermal properties. This weak formulation of the heat-conduction problem
permits a FEM formulation to be developed, where the relevant fields are approximated
with Hermite shape functions of high order, in order to allows a precise assessment the
consequent thermal stress. The proposed approach allows for a direct evaluation not only
of the temperature distribution, but also of the heat flux. The worked examples illustrate the
temperature distribution in case of either fixed or variable environmental conditions. The
results are in perfect agreement with those obtained by a direct numerical solution of the
governing partial differential equation, which however is much more time-consuming because
it requires a fine discretization in both space and time. In case of fixed external conditions,
the time required to reach the steady state in monolithic glass is of the order of one hour,
but it increases for laminated glass. Since in such a period of time the environmental
conditions can substantially vary, it is in general necessary to consider the transient state in
a changing environment. Consideration of heat storage in the glass, which is often neglected
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in the practice, implies that the in-the-thickness temperature profile is not piecewise liner:
this is very important for the determination of the thermal stress. The evaluation in time
of the heat fluxes highlights that the heat storage in the different layers leads to a delay in
the response, when passing from the front to the back surface.

The use of Biot’s Variational Method (BVM) presents advantages with respect to other,
more traditional, numerical formulations, usually based on Galerkin weighted residual FEM
method for space and on finite difference discretization in time. In particular, the BVM
exactly considers energy conservation in the form of a holonomic constraint (not involving
time). Furthermore, since it does not involve the temperature gradient, it appears to be
more efficient for thermal problems with steep temperature variations, since there is no
need of a refined mesh. Finally, the BVM is very appropriate when one is particularly
interested in determining the thermally-induced stress, as in the structural design of glass.
In fact, the traditional FEM methods usually implement a piecewise-linear temperature
profile, which provides a spurious evaluation of the thermal stress in a neighborhood of
those points where the profile is not smooth. The higher-order shape functions used in
the BVM approach bypass this problems and render the evaluated thermal stresses more
realistic.

The implemented problem is 1-D at this stage, but the same procedures here illustrated
could be extended to cover the 3-D case. This development is necessary because in archi-
tectural glazing the solar radiation is typically uneven due to the presence of shadows (from
sunshades, fins, parts of adjacent buildings, contouring frame), and the heating in the inter-
nal environment can be irregular, especially when HVAC systems are present. Therefore,
any accurate evaluation of the time-dependent temperature field in the glass panes requires
three-dimensional modeling, which considers the different heat exchange phenomena in the
in-plane direction, where the thermal problem is governed by the heat conduction between
differently irradiated regions, and in through-the-thickness direction, where the effects of
penetrating solar radiation and heat exchange with the surrounding environment are dom-
inant. Although the 1D implementation only considers the effects in the thickness, it has
been useful in demonstrating the advantages of an approach based on Biot’s variational
principle.
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A Explicit matrix expressions

A.1 Connectivity matrices

Explicit expressions for the connectivity matrices Li appearing in eq. (3.26) are

L1 :=



1 0 0 0 0 . . . 0 . . . 0

0 1 0 0 0 . . . 0 . . . 0

0 0 1 0 0 . . . 0 . . . 0

0 0 0 1 0 . . . 0 . . . 0

0 0 0 0 0 . . . 1 . . . 0


, (A.1)

(2N + 3)th column

L2 :=



0 β1;2 0 0 0 0 . . . 0 . . . 0

0 0 0 0 1 0 . . . 0 . . . 0

0 0 0 β1;2γ1;2 0 0 . . . 0 . . . 0

0 0 0 0 0 1 . . . 0 . . . 0

0 0 0 0 0 0 . . . 1 . . . 0


, (A.2)

(2N + 4)th column

Li :=

0 . . . 0 βi;i+1 0 0 0 . . . 0 . . . 0

0 . . . 0 0 0 1 0 . . . 0 . . . 0
0 . . . 0 0 βi;i+1γi;i+1 0 0 . . . 0 . . . 0

0 . . . 0 0 0 0 1 . . . 0 . . . 0
0 . . . 0 0 0 0 0 . . . 1 . . . 0






2(i− 1) (2N + 2 + i)th column

(A.3)

where βi;i+1 and γi;i+1 are defined by (3.24).
Notice that, when N = 1, matrix L1 reduces to a 5 × 5 identity matrix.
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A.2 “Stiffness” and “damping” matrices

Explicit matrix expressions for K and C′ appearing in eq.s (3.30) and (3.31), respectively,
are

K :=

∫ 1

0
[p(ζ) p(ζ)] dζ =



13
35

9
70

11
210 − 13

420 0

9
70

13
35

13
420 − 11

210 0

11
210

13
420

1
105 − 1

140 0

− 13
420 − 11

210 − 1
140

1
105 0

0 0 0 0 0


, (A.4)

C′ :=

∫ 1

0
[n(ζ) n(ζ)] dζ =



23
504 − 1

252
19

2016
11

10080 − 3
20

− 1
252

23
504 − 11

10080 − 19
2016

3
20

19
2016 − 11

10080
1

504
1

3360 − 1
30

11
10080 − 19

2016
1

3360
1

504
1
30

− 3
20

3
20 − 1

30
1
30 1


. (A.5)

Explicit matrix expressions for C′′
int and C′′

ext appearing in eq. (3.34) are

C′′
int := n(1)nT (1) =



0 0 0 0 0

0 1
4 0 − 1

24
1
2

0 0 0 0 0

0 − 1
24 0 1

144 − 1
12

0 1
2 0 − 1

12 1


, (A.6)

C′′
ext := n(0)nT (0) =



1
4 0 1

24 0 −1
2

0 0 0 0 0

1
24 0 1

144 0 − 1
12

0 0 0 0 0

−1
2 0 − 1

12 0 1


. (A.7)
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Explicit expressions for matrices M1 = and M0 appearing in eq. (3.35) are

M1 := n(1)pT (1) =



0 0 0 0 0

0 1
2 0 0 0

0 0 0 0 0

0 − 1
12 0 0 0

0 1 0 0 0


, (A.8)

M0 := n(0)pT (0) =



0 −1
2 0 0 0

0 0 0 0 0

0 − 1
12 0 0 0

0 0 0 0 0

0 1 0 0 0


. (A.9)

Vectors n(0) and n(1), allowing to evaluate terms b̃(t) and b+(t) appearing in eq. (3.37),
are

n(0) =



−1
2

0

− 1
12

0

1


, n(1) =



0

1
2

0

− 1
12

1


. (A.10)

The explicit expression for vector a :=
∫ 1
0 ζn(ζ) dζ appearing in eq. (3.39) is

a :=

∫ 1

0
ζn(ζ) dζ =



− 1
30

7
60

− 1
120

− 1
40

1
2


. (A.11)


