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A B S T R A C T   

The introduction of Machine Learning (ML) in the geotechnical community has led to numerous applications for 
monitoring data elaboration. These techniques demonstrate promising performance in comparison to conven
tional methods aimed at determining the future behavior of a landslide. In this context, it is fundamental to have 
access to reliable methodologies and procedures to assess the quality of algorithms’ predictions. This article 
proposes an improved method for evaluating ML algorithms applied to landslide time series analysis. The method 
relies on modified metrics that are sensible to biased classification due to imbalanced datasets, also enabling the 
evaluation of both regression and classification models using the same criteria. The calculated metrics include 
Accuracy, Precision, Recall, and F1-Score, each one representing a different aspect of the forecasting model 
effectiveness. Results obtained from the application of the proposed method to datasets collected by automated 
monitoring systems proved to be informative of the performance of the model and provides the means for 
objective comparison with other forecasting algorithms, making it a valuable tool to improve the prediction 
process reliability. In particular, the custom metrics allowed for a better evaluation of algorithms skewed in favor 
of the dominant class/classes, which are common occurrence in landslide displacement datasets. In these cases, 
the proposed approach highlighted the inability of the forecasting model in predicting critical events, presenting 
a more accurate representation of its performances compared to results obtained with standard approaches.   

List of symbols and abbreviations.  

Symbol/ 
Abbreviation 

Meaning 

ML Machine Learning 
TP True Positives 
TN True Negatives 
FP False Positives 
FN False Negatives 
F1 F1 Score/F1 Metric 
MUMS Modular Underground Monitoring System 
MEMS Micro Electro-Mechanical Systems 
n Number of (displacement) classes 
R Set of all real numbers 
N Set of all natural numbers 
i, j Indices to identify one element inside matrices: i is the row 

number, j is the column number 
aij Element of the confusion matrix identified by the coordinates 

row i, column j 
T Ordered set of thresholds (strictly ascending order). Used for 

the discretization of continuous displacement values 

(continued on next column)  

(continued ) 

Symbol/ 
Abbreviation 

Meaning 

K Index for thresholds set T 
M Class index 
IP Imbalance Percentage of the predictions 
pm Proportion of correct predictions for class m 
cm Number of correct predictions for class m 
tm Cardinality of class m  

1. Introduction 

Machine Learning (ML) is a field of artificial intelligence that focuses 
on the development of algorithms and models that can learn from data 
(Alzubi et al., 2018). Its history dates back to the mid-20th century, 
when researchers began developing rule-based systems and decision 
trees (Denes and Mathews, 1960). In the 1970s, Artificial Neural Net
works (ANN) emerged as a powerful technique for solving complex 
problems such as image and speech recognition. The 2000s witnessed 
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significant advances in ML, driven by the rise of big data and the 
development of deep learning algorithms (Bengio et al., 2021; Parvat 
et al., 2017; Schmidhuber, 2015). 

At the time of writing, according to common search engines, the 
entirety of the articles available on this topic up to year 2012 is less than 
the papers published in the sole 2022. For example, papers available on 
Scopus up to 2012 are roughly 5,000, while over 40,000 studies were 
published in 2022 only. Fig. 1 shows a comparison according to different 
sources underlining the increasing number of scientific studies focused 
on Machine Learning. 

Today, Machine Learning is a rapidly growing field that has a sig
nificant impact on many aspects of our lives, and applications spanning 
many industry sectors, including healthcare (Abugabah et al., 2022; Liu 
et al., 2022; Qayyum et al., 2021), autonomous vehicles (Aradi, 2022; 
Juyal et al., 2021), natural language understanding and generation 
(Bubeck et al., 2023; Feder et al., 2022; Wolf et al., 2020), decision 
making support and recommender systems (Adlung et al., 2021; Bell and 
Koren, 2007; Khosravi et al., 2019). In recent years, ML has expanded to 
many different fields, including geotechnics, where one of its promising 
applications is modeling and forecasting complex environments (Ben
bouras et al., 2021; Chang et al., 2022; Koopialipoor et al., 2022; Nava 
et al., 2023; Soranzo et al., 2022; Tokgozoglu et al., 2023). 

Being able to verify the effectiveness and practicality of a ML-based 
model for prediction purposes plays a central role in the assessment 
process of the algorithm performance (Tilahun and Korus, 2023). In this 
context, ML has suffered for many years for the lack of standardized 
evaluation methods and benchmarks (Kotthoff et al., 2011; Reich and 
Barai, 1999). It is often hard to objectively compare different algorithms 
because many studies use their own arbitrary testing criteria and 
replicating others’ experiments is not a trivial task (it may even be 
impossible if the relevant data is not public). This has been recognized as 
a real problem in ML research, which also includes ML applied to geo
technics (Olson et al., 2017). The two issues addressed in this study are 
the difficulty of correctly assessing the forecasting algorithms perfor
mances in the presence of imbalanced datasets and the problem of 
comparing different models, in particular regression and classification 
models. 

The solution to both problems is to define metrics that are:  

a) useful in evaluating landslide-forecasting algorithms (able to 
distinguish good and bad models in case of imbalanced predictions)  

b) able to be used on any landslide-forecasting algorithm without 
modifications (must work on both regression and classification 
models) 

This paper proposes the use of modified classification metrics for 
evaluating landslide forecasting algorithms (models). These metrics will 
provide evaluations that are both informative of the performance of the 

algorithm, and objectively comparable cross-work. There are many li
braries that provide implementations of classification metrics (Abadi 
et al., 2016; Detlefsen et al., 2022; Pedregosa et al., 2011), none of them, 
however, interpret the inputs in the way required by the examined 
problem. The more sophisticated versions of the metrics allow for the 
input of continuous values along with the specification of thresholds for 
the conversion, but they expect vectors with one cell for each class, and 
they interpret the values inside the cells as probabilities. 

Aside from the differences with existing metrics, the novelty comes 
from the specific domain of application, i.e., the evaluation of landslide 
forecasting algorithms. Such models can predict the raw displacement 
measurements (regression) or discretized class representations (classi
fication). In the first case they are judged on quantitative errors (e.g., 
Mean Absolute Error, Mean Squared Error) in the second case they are 
evaluated on classification errors (e.g., Precision, Recall). With the 
proposed evaluation method, all models can be assessed using the exact 
same criteria and the results can be compared directly, even between 
classifiers and regression models. This is possible because classifiers are 
evaluated normally, while regression models are judged with the same 
metrics by transforming their output into classes. 

2. Material and methods 

2.1. Evaluation algorithm 

In this research area, datasets are often very imbalanced (Li et al., 
2021; Zhang et al., 2022), i.e., there are prolonged low-activity periods 
(small displacements) and rare bursts of high activity (large displace
ments). This presents a challenge for the evaluation of the performance 
of models, highlighted by the following extreme example. Using a 
dataset with 99% small displacements and 1% large displacements, a 
model which always predicts “small displacement” will get the correct 
answer 99% of the time. That, however, is not a good model, because it 
does not produce an accurate forecasting, being unable to identify the 
rare large displacements. For this reason, it is important to have more 
sophisticated metrics that can capture this phenomenon, and correctly 
assess the efficiency and accuracy of prediction models. 

The structure of the proposed algorithm consists of a series of op
erations and controls, summarized in the flowchart reported in Fig. 2, 
while the following subsections present additional details regarding 
every step of the elaboration process. For each input data (the pair “true 
value-prediction”) deriving from a regression model, a conversion pro
cedure is applied in order to change the real values into class indices. 
Then, the confusion matrix is updated accordingly. Once all input pairs 
have been examined, all the implemented metrics can be computed. The 
custom metrics extracted from the confusion matrix are first calculated 
on a by-class basis, and subsequently averaged to get a single value. With 
this procedure, the performance in each class has the same weight on the 

Fig. 1. ML-related articles published.  
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final result, regardless of the number of elements in each class. 

2.2. Confusion matrix 

The proposed algorithm starts by constructing a confusion matrix for 
the metrics evaluation procedure. The confusion matrix is typically used 
to represent the results of classification algorithms; it is a two- 
dimensional square table with one row and one column for each class 
of the problem domain (Ting, 2017a). Table 1 and Table 2 present two 
basic examples of the structure of a confusion matrix for the metrics 
currently discussed, referring to 2-class and 3-class cases, respectively. 

The rows represent the actual classes, while the columns are the 
predicted classes. It should be noted that the proposed algorithm accepts 
any number of classes n ∈ N,n ≥ 2. To clarify, in the above 3-class case, 
the toy dataset is composed of 100 measurements, shown formally by 
equation (1): 

∑n

i=1

∑n

j=1
aij = 100 (1)  

with aij representing a generic element of the confusion matrix ∀i,j ∈ {1,
2,…n}, where n = number of classes. 

The measurements are divided in 75 small displacements, 20 me
dium displacements, 5 large displacements, as can be extracted with 
equation (2): 

∑n

j=1
a1j = 75

∑n

j=1
a2j = 20

∑n

j=1
a3j = 5 (2) 

The values on the main diagonal of the confusion matrix correspond 
to correct predictions, and rows contain the true displacements. For 
example, in the last row there are a total of five elements (this implies 
they are all large displacements) and all of them are placed inside the 
“large displacements” column, which means the model predicted them 
correctly. For a negative case, in the first row (small displacements) the 
model wrongly predicted one of them as “medium displacement”, that is 
why there is a single “1” in the “medium” column of the first (“small”) 
row. Additionally, the confusion matrix contains more than just infor
mation about correct and wrong predictions. In fact, it also allows to 
distinguish between type I (false positive) and type II (false negative) 
errors for each class (Banerjee et al., 2009). 

To assess the quality of a model, the metrics need the output of said 
model (prediction), along with the correct answer (“target” or “true 
value”), that must be known from the start. The algorithm can evaluate 
categorial models, which predict displacement class indices, and 
regression models, which predict numeric (real) displacements. In the 

previous examples the indices would correspond to.  

• 2-class case:  
o “1” for small displacements  
o “2” for large displacements  

• 3-class case:  
o “1” for small displacements  
o “2” for medium displacements  
o “3” for large displacements 

In order to be able to evaluate both types of models, the algorithm 
automatically converts each input (the pair “true value-prediction”) of 
regression models from continuous values to the corresponding class 
indices with a threshold-based procedure. This passage describes the 
generation of integer indices in both cases, which can be exploited to 
populate the confusion matrix. 

Equation (3) describes the discretization function, used to transform 
true values and outputs of regression models: 

Discretize(x,T)=

⎧
⎨

⎩

1,
k,
n,

x < T1
Tk− 1 ≤ x < Tk

x ≥ Tn− 1

(3)  

with x ∈ R real-valued displacement (both measured and predicted), 
T = {T1,T2,…Tn− 1} ∈ Rn− 1 s.t. ∀k ∈ {2,3,…n − 1}⇒Tk− 1 < Tk , n =

number of classes, k ∈ {1, 2, …n − 1} = threshold index. T is a set of 
thresholds that divide R into n intervals. This operation ensures that, 
from this point onward, true values and predictions will be in the form of 
class indices, the same type of output of a classifier. 

The input vector needed to fill the confusion matrix is composed of 
the sequence of all single inputs. After the conditional discretization 
phase, each input is defined as an array of two values (true-class index, 
predicted-class index). Both indices refer to the ranges of displacements 
identified by the thresholds.  

• The predicted-class index is the output of the model to be evaluated, 
given its expected input (distinct from the metrics’ input discussed 
up to now), which typically is the combination of various informa
tion about the state of a landslide.  

• The true-class index is the class index of the actual displacement 
occurred after the landslide state fed to the model. This means that, 
to test the model, it is necessary to use past measurements, for which 
the following evolution is already known. 

Fig. 2. Structure of the algorithm.  

Table 1 
Confusion matrix with a 2-class configuration.   

Displacements 

Small Large 

Displacements Small 92 3 
Large 0 5  

Table 2 
Confusion matrix with a 3-class configuration.   

Displacements 

Small Medium Large 

Displacements Small 68 1 6 
Medium 2 15 3 
Large 0 0 5  
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The confusion matrix is populated using the vector of inputs and 
applying the following algorithm. 

With i = true class index, j = predicted class index. This means that 
the value inside row i and column j of the confusion matrix is increased 
by the number of inputs that have true class index = i and predicted class 
index = j. As an example, in the previous 3-class case, among the 100 
inputs exactly 3 were medium displacements (true class index = row =
2) that were also predicted as large displacements (predicted class index 
= column = 3). That is why in position (2, 3), the confusion matrix has 
value 3. 

2.3. Metrics 

From the completed confusion matrix, it is then possible to calculate 
a wide range of classification metrics; the present version of the algo
rithm integrates four metrics: Accuracy, Precision, Recall, and F1 Score 
(Powers, 2008; Sasaki, 2007; Ting, 2017b). 

Accuracy=
1
n

∑n

m=1

TPm + TNm

TPm + TNm + FNm + FPm
(4)  

Precision=
1
n

∑n

m=1

TPm

TPm + FPm
(5)  

Recall=
1
n
∑n

m=1

TPm

TPm + FNm
(6)  

F1 =
1
n

∑n

m=1

2 ∗ TPm

2 ∗ TPm + FPm + FNm
(7)  

with n = number of classes, m ∈ {1, 2, …n} = class index. They are 
calculated with the set of equations (4)–(7), once for each class, and then 
the results are averaged. 

The abbreviations used previously are.  

• TPm = true positives, elements of class m that are rightfully classified 
by the model.  

• FNm = false negatives, elements of class m that are not recognized by 
the model (they are predicted as a different class).  

• TNm = true negatives, elements not of class m, correctly not predicted 
as class m data.  

• FPm = false positives, elements not of class m, incorrectly predicted 
as belonging to class m. 

These variables are used extensively in statistics, and are at the base 
of many classification metrics, because they carry much of the relevant 
information in a very compact format. Since all the metrics here dis
cussed (and many others) are proportions with values bound in the in
terval [0,1], they are often expressed as percentage values. 

Accuracy is the percentage of right answers, and it gives a general 
sense of the quality of the model, potentially overlooking many nuances 
of the situation. Precision is the percentage of non-false alarms: a low 
value means that the model is giving many false alarms. Recall is the 
percentage of alarms missed by the model. Precision and Recall are 

competing metrics, difficult to optimize simultaneously. In fact, to in
crease the latter, the model should be made more sensitive. This change, 

however, would cause the model to also generate more false alarms, 
which would, by definition, reduce the Precision and vice versa. This 
motivates the introduction of the last metric, F1 Score (or simply F1). As 
can be seen from its first formulation, F1 is a combination (namely, the 
harmonic mean) of Precision and Recall, which makes it an informative 
summary of the quality of the model. 

There are, however, many more metrics – for example, the well- 
known TorchMetrics library contains about a hundred different imple
mentations, with their own advantages and drawbacks (Detlefsen et al., 
2022). Each one of them measures different aspects of the inputs, has 
different properties, and is more suitable for certain types of problems 
(Lui et al., 2022; Tharwat, 2020). 

The algorithm developed differs only in the creation of the confusion 
matrix from other standard versions and the resulting confusion matrix, 
format-wise, is perfectly standard. This allows the implementation of 
any existing standard metric (or even new custom metrics) based on 
confusion matrix or the set of variables TP, FP, TN, FN. 

3. Landslide monitoring data 

In subsections 3.1 and 3.2, the two test sites used for data collection 
are described. The two datasets are the results of years of continuous 
monitoring activity performed with automatic devices. 

The measurement instrumentation installed in both sites is named 
Vertical Array (Fig. 3a), an automatic inclinometer developed and 
patented by ASE S.r.l. (IT) and based on MUMS (Modular Underground 
Monitoring System) technologies. Each Vertical Array is composed of a 
series of epoxy resin nodes, known as Links (Fig. 3b), which are con
nected by an aramid fiber cable and a single quadrupole electrical cable 
to create an array of sensors (Segalini et al., 2014). The MUMS tools can 
be customized in terms of the number, distance, and type of sensors 
used, and their length can be decided according to the monitoring needs. 
Available sensors include 3D MEMS (Micro Electro-Mechanical Sys
tems), electrolytic tilt cells, piezometers, barometers, and 
high-resolution thermometers. As a result, the MUMS is a 
multi-parametric device that can measure displacements, pore pressure, 
and temperatures at various depths depending on the situation. Finally, 
a local data logger with SD card and Internet connection allows for 
customizable (and potentially high) sample frequency. 

Since each Vertical Array is customized to specific needs, they have 
different sensor composition between the two sites, and even among 
Arrays installed in the same site. For this reason, in each case, the 
complete list of equipped sensors is given. 

Moreover, it is worth noting that the metrics require true values 
paired with the values predicted by a forecasting model as their input. In 
the experiments the predictions needed are not the output of an actual 
model. They are generated by adding random gaussian noise to the true 
values, with zero mean and standard deviation calculated from the data. 
This is useful because it allows us to control the output and set criteria 
for the predictions, necessary conditions to conduct the tests described 
in Section 4. 
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3.1. Test site 1 

Dataset 1 derives from the monitoring activity performed on a geo
grids reinforced earth retaining wall, with a height of 12 m. The struc
ture was located on the French Alps more than 1200 m above sea level, 
protecting a road that gave access to a tunnel nearby (Segalini et al., 
2019). Topographic surveys were conducted after the detection of signs 
of instability and unexpected deformations. Results confirmed that the 
retaining wall was subject to relevant instabilities. 

This prompted the installation of two MUMS Vertical Arrays 

(Table 3) on the retaining wall, 3 m apart along the maximum slope 
direction. Each Array was equipped with 15 Tilt Link HR 3D V nodes 
with 1 m spacing between one another. They also included a piezometer 
(Piezo Link) located at a depth of 13 m. The first Array (DT0080) 
featured a barometer while the second one (DT0081) integrated a high- 
resolution thermometer (Therm Link) 1 m below the top margin of the 
wall. Vertical Arrays were installed on August 29, 2017, and the sensors 
sampled a new value every 12 h. Monitoring activities lasted until the 
retaining wall was demolished for safety reasons in January 2019. 

Fig. 3. (a) Vertical Array structure and working principle; (b) Epoxy resin node (Link) (modified after Valletta et al., 2023).  

Table 3 
Sensor composition of Test Site 1.  

Array ID Array typology Sensors number and typology Array length [m] Installation date [dd/mm/yyyy] 

DT0080 Vertical Array 15x Tilt Link HR 3D V 15.00 August 29, 2017 
1x Piezo Link 
1x Baro Link 

DT0081 Vertical Array 15x Tilt Link HR 3D V 15.00 August 29, 2017 
1x Piezo Link 
1x Therm Link  

Table 4 
Sensor composition of Test Site 2.  

Array ID Array typology Sensors number and typology Array length [m] Installation date [dd/mm/yyyy] 

DT0099 Vertical Array 20x Tilt Link HR 3D V 20.00 March 06, 2019 
2x Piezo Link 

DT0100 Vertical Array 20x Tilt Link HR 3D V 20.00 December 05, 2018 
2x Piezo Link 
1x Baro Link 

DT0101 Vertical Array 20x Tilt Link HR 3D V 20.00 March 06, 2019 
1x Piezo Link 
1x Baro Link 

DT0102 Vertical Array 20x Tilt Link HR 3D V 20.00 March 06, 2019 
1x Piezo Link  
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3.2. Test site 2 

Dataset 2 originates from the monitoring of the construction site of a 
transport infrastructure crossing a mountainous and hilly area in 
Northern Italy (Valletta, 2022). The system consists of 4 MUMS Vertical 
Arrays. 

They are equipped with 20 Tilt Link HR 3D V, and 1 piezometer. 
Arrays DT0099 and DT0100 have an additional piezometer at a different 
height. Finally, Arrays DT0100 and DT0101 are both equipped with a 
barometer. Table 4 reports the features of each device installed on site. 
The monitoring activity is still ongoing, with a sampling frequency of 6 
readings every day. 

4. Results and discussion 

Data configurations discussed in this study are divided into four 
separate subsections, based on their purpose. In this phase, it is espe
cially important to analyze scenarios that could be directly related to 
monitoring activities, in order to have a positive indication of the 

methodology effectiveness for the assigned objective. Table 5 summa
rizes the features of each analysis performed, in particular underlining 
the significance of the chosen configuration in the context of landslide 
monitoring. 

4.1. The optimal case 

Figs. 4–6 illustrate the relevance of the metrics calculated with the 
process described in subsection 2.1. It compares the variation of stan
dard and custom Recall of a fictitious model, depending on the imbal
ance of the predictions. The dataset is from Test Site 1, and it is 
composed of 95% small displacements and 5% large displacements, and 
the model always predicts correctly 95% and misses 5% of the total 
predictions. The imbalance in calculated as a percentage with equations 
(8) and (9): 

IP= |p0 − p1|∗100 (8)  

pm =
cm

tm
(9)  

with IP = Imbalance Percentage of the predictions, pm = proportion of 
correct predictions for class m, cm = number of correct predictions for 
class m, tm = cardinality of class m, m = class index. Thus, there is 0% 
imbalance when the model has the same percentage of exact guesses for 

Table 5 
Description of each data configuration analyzed in this paper, with the corre
sponding relevance in the framework of landslide monitoring activities.  

Subsection 
name 

Subsection objective Relevance in landslide 
monitoring activities 

Optimal case To evidence the advantage 
brought by the custom 
metrics in a specific scenario, 
characterized by imbalanced 
datasets 

Similar configurations are 
observed in landslides 
featuring sudden increases in 
displacement rates, typically 
associated to critical events 

General case To compare custom and 
standard metrics in general 
cases, showing that the 
domain of application is not 
limited to the specific 
scenario previously discussed 

This subsection takes into 
consideration a more general 
case, which could be associated 
with a generic dataset collected 
by monitoring instrumentation 

Deterministic 
behavior 

To validate the claim that 
multiple evaluations of the 
same inputs will lead to 
identical results 

The positive outcome of this 
analysis confirms that the 
custom metrics are 
deterministic, therefore only 
one elaboration is required for 
each configuration 

Data invariance To highlight that the 
particular choice of a dataset 
does not influence the results 
in significant ways 

The custom metrics are not site- 
specific and are independent of 
the dataset dimension if the 
imbalance percentage is the 
same  

Fig. 4. Standard and custom Recall values for varying degrees of imbalance.  

Fig. 5. Standard and custom Precision values for varying degrees of imbalance.  

Fig. 6. Standard and custom F1 values for varying degrees of imbalance.  
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each class, while the 100% value corresponds to a situation where the 
model predicts a class completely correctly while getting each predic
tion of the other class wrong. 

Since the total percentage of correct predictions is 95% in all the 
cases, the standard Recall remains fixed exactly at that value. The 
custom Recall is instead sensible to the imbalance in the predictions and 
is able to determine the relevance of the forecasting error in the context 
of its application, i.e., identifying potentially critical behaviors. Conse
quently, the outcome allows us to distinguish between the better models 
with low imbalance, and the worse models with high imbalance. 

The custom Precision is more punishing than the standard Precision 
and that is reflected, in part, on the F1 metric, which is a combination of 
Precision and Recall. F1 can be viewed as a single comprehensive 
summarization of the performance of the model, and in this case, it 
exhibits the intended properties, highlighting the poor performances of 
the algorithm as the imbalance of predictions increases in percentage. 

4.2. The general case 

Subsection 4.1 highlighted the usefulness of the proposed metrics in 
the case that they are specifically designed for, i.e., forecasting opera
tions involving heavily unbalanced datasets. To acquire additional in
formation regarding their reliability and applicability to different cases, 
we compare their behavior with their standard counterparts in more 
general scenarios. Figs. 7–9 show the results obtained for the same 
dataset (Test Site 1), while correct predictions are kept perfectly 
balanced among the two classes (IP = 0). The variable quantity this time 
is the total percentage of correct predictions (represented on the x-axis 
in place of the imbalance in the corresponding graphs). 

The standard and custom Recall functions are identical, both 
following a pattern where the percentage of correct precision is always 
equal to the goodness of the predictions. Meanwhile, for the two 
remaining parameters, it is possible to evidence how the custom metrics 
apply a more conservative evaluation of the algorithm performance 
compared to the standard ones. Specifically, the Precision has lower 
results than its counterpart for intermediate values of x, but they are 
coherent on the boundaries. The F1 metric displays a behavior similar to 
the Precision, but it follows more closely the standard F1. 

All the examples refer to a two-class configuration for its relative 
simplicity, so that relevant properties and results can be clearly pre
sented. The proposed metrics, however, are applicable to any fore
casting algorithm that has the appropriate input and output values, and 
for any number of classes involved in the process. 

Fig. 7. Standard and custom Recall values for varying degrees of correct 
predictions. 

Fig. 8. Standard and custom Precision values for varying degrees of correct 
predictions. 

Fig. 9. Standard and custom F1 values for varying degrees of cor
rect prediction. 

Fig. 10. Three sets of standard and custom F1 values for varying degrees of 
imbalance. Each set uses different predictions. 
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4.3. Deterministic behavior 

Even though the predictions are generated randomly each time, the 
results of the evaluations will be the same as long as the same criteria are 
applied. It is possible to show this behavior by conducting the same 
evaluation multiple times with the same dataset and different sets of 
predictions produced with fixed conditions. In this example, the F1 
metric is used to evaluate the quality of three sets of predictions 
generated with the same characteristics used in subsection 4.1 over the 
data from Test Site 1 (see Fig. 10). The internal operations performed by 
standard and custom metrics alike are completely deterministic, that is 
why the examples and calculations are performed one time only, and not 
averaged form multiple experiments. 

4.4. Data invariance 

Data invariance is the property that allowed all the experiments to be 
conducted with a single dataset (from Test Site 1), except for the one 
performed to verify this hypothesis. The metrics do not depend directly 
on the chosen dataset, they only measure the characteristics of models’ 
predictions with respect to the dataset. To demonstrate the invariance 
with respect to data quantity, four different subsets are extracted from 

Test Site 1 data. Each subset has a different number of observations, 
respectively 3,000, 6,000, 9,000, and 12,000. 

With the same objective, for the next experiment, data from the two 
different sites (Test Sites 1 and 2) is used. They are both partitioned as 
95% small displacements and 5% large displacements. In both cases the 
fictitious model generates predictions with the same relevant properties: 
95% correct and 5% wrong (the same characteristics used in subsection 
4.1). The slight differences that can be observed in Figs. 11 and 12 are 
mainly due to the fact that many groups of measurements have the same 
values. This causes a small and unpredictable deviation from the ex
pected split of targets 95% and 5% (respectively small and large 
displacements). 

5. Conclusions 

The recent introduction, in the geotechnical field, of algorithms and 
elaboration processes based on Machine Learning principles has pre
sented several challenges related to the evaluation of the performances 
on these models (Dahal and Lombardo, 2023). Specifically, the assess
ment of the quality of forecasting techniques applied to landslide 
monitoring data plays an essential part in the creation of reliable early 
warning procedures (Xing et al., 2020). 

The custom metrics discussed and applied in this study are signifi
cantly better than their standard counterparts in a specific but common 
scenario, i.e., a dataset with an imbalanced class distribution. In 
particular, the outcomes obtained from each configuration allow to 
draw the following conclusions.  

• The custom metrics are able to distinguish between models with the 
same error rate by weighing some errors differently: the estimate of 
the relevance of the errors, based on their class, allows for a more 
pertinent and nuanced evaluation of the models.  

• The assessment given by the custom metrics decreases for increasing 
imbalance in the predictions, linearly for Recall and non-linearly for 
Precision and F1. Standard metrics in the same scenario shows no – 
or very low – correlation to the imbalance. This behavior makes the 
proposed metrics particularly appropriate for models applied to 
slope movements presenting sudden displacement increments.  

• For fixed imbalance, custom metrics tend to be more conservative 
than their standard counterparts, giving lower evaluations especially 
for models with high error rate. It can be seen clearly in the com
parison between custom and standard Precision, and custom and 
standard F1. 

• Even though data quantity and quality are extremely important el
ements in the development of a ML forecasting algorithm, this is not 
the case for the proposed evaluation procedures. As a consequence, 
the metrics can be applied to models trained on very different 
datasets and are not dependent on the monitoring activity duration.  

• The custom metrics are modified so that they can seamlessly work on 
predictions produced by both classifiers and regression models, by 
treating both types as classifiers. They are useful because they pro
vide a meaningful standalone evaluation of a model, while also 
giving the means for direct comparison with other forecasting 
algorithms. 

This study implements a small subset of metrics (Accuracy, Precision, 
Recall, and F1-Score) and analyzes the efficacy of the method for them. 
Since there is no single metric that can capture all the information 
regarding the performance of a model, having many different evaluation 
options is important. The change proposed in this work only concerns 
the calculation of the confusion matrix. The consequence is that any 
metric derivable from the confusion matrix can be computed very easily 
using their standard equation. The value of our modification applied to 
each new metric, however, should be studied individually before 
employing it. 

The modifications of the standard metrics are designed specifically 

Fig. 11. Four sets of standard and custom F1 values for varying degrees of 
imbalance. Each set uses different groups of data from Test Site 1. 

Fig. 12. Two sets of standard and custom F1 values for varying degrees of 
imbalance. Each set uses data from one of the two sites. 
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for predictive models that work on the displacement time series, the 
pertinence of the custom metrics for other algorithms in the same field 
(es landslide identification from satellite images) has not been tested. 

Computer code availability 

Name of the code/library: ML algorithms evaluation. 
Contact: Marco Conciatori, email: marco.conciatori@unipr.it. 
Hardware requirements: the code was tested on ASUS Zenbook 

UX535LH with Intel Core i7 CPU, 16 GB RAM, NVIDIA GeForce GTX 
1650 Max-Q. The code should be able to run on different and slower 
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Program language: Python. 
Software required: the algorithm was executed on Windows 11 but 

should run on any OS. The requirements are Python, Numpy, Pytorch, 
Torchmetrics. For a full list of libraries and dependencies, including 
their versions, please refer to the environment files automatically 
generated with Conda. 
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The source code is available for downloading at the link: https:// 
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available under the GNU General Public License v3.0). 
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