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Abstract
Stability is a fundamental requirement of dynamical systems. Most of the works concentrate on verifying stability for a
given stability region. In this paper, we tackle the problem of synthesizing P-stable abstractions. Intuitively, the P-stable
abstraction of a dynamical system characterizes the transitions between stability regions in response to external inputs. The
stability regions are not given—rather, they are synthesized as their most precise representation with respect to a given set
of predicates P. A P-stable abstraction is enriched by timing information derived from the duration of stabilization. We
implement a synthesis algorithm in the framework of Abstract Interpretation that allows different degrees of approximation.
We show the representational power of P-stable abstractions that provide a high-level account of the behavior of the system
with respect to stability, andwe experimentally evaluate the effectiveness of the algorithm in synthesizingP-stable abstractions
for significant systems.

Keywords P-stable abstraction · Hybrid systems · Reverse engineering Abstract Interpretation · Predicate abstraction ·
Run-to-completion

1 Introduction

Context

Reactive systems are often designed to operate in some stable
condition (in absence of external stimuli) and to reach a pos-
sibly different stable condition (in response to some external
stimulus). A notable example are relay-based circuits, built
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out of electro-mechanical components, pervasively adopted
in the railway domain for the control of stations. When
analyzing these legacy systems, one is interested in char-
acterizing the specification of a set of controlling actions in
terms of their stable effects on the system state. These inputs
may trigger a run-to-completion process, i.e., a sequence
of internal changes, both discrete (like relay interactions)
and continuous (like the charging process of a capacitor),
toward the next stable state. The duration of these evolutions
is also important: after an action, it may be necessary to wait
some time before evaluating the state of the system or before
accepting a new input.

System stability is hard to assess. First, it is not to be con-
fused with a completely still situation (i.e., a zero-derivative
point), since partly oscillating or limit behaviors can also
be considered stable. Furthermore, a system may exhibit a
large number of stable conditions, difficult to characterize by
inspection. Finally, the discrete behavior depends crucially
on the physical status: an engine may be powered or not
depending on whether the magnetic field induced by a coil
is sufficient to close a switch.
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Fig. 1 A circuit controlling a lamp L , based on a switch S and a relay
RL

Fig. 2 An automaton describing the effects of the external actions on
the lamp state

Running example

An inductor, also called coil, is an electrical component that
intuitively stores energy in a magnetic field when electric
current flows through it. The magnetic field is used to open
or close a contact possibly belonging to another circuit. A
relay is an electro-mechanical component formed by a coil
and a set of associated switches.

In Fig. 1,we showa simple circuit whose behavior is based
on a relay RL. For the sake of readability, we adopt a logi-
cal description of a relay, where the coil and the associated
switches are drawn separately and their connection is identi-
fied by naming convention: relay RL controls switches RLS1,
RLS2.

A human operator controls the circuit performing actions
on the switch S, represented in blue. The external action of
closing S makes relay RL (in red) be connected to a source
of voltage. Current starts to flow through RL and when it
receives enough current, i.e., if the switch S stays closed
for a sufficient time for its charging process, it closes the
corresponding switches RLS1 and RLS2 (in red). The closing
of RLS2 turns on the lamp L . The closing of RLS1 is meant
to keep the relay coil powered even when S gets opened. As
a matter of fact, once the lamp is on, a following action on
switch S has no impact on its status.

We consider the problem of extracting the relation
between the state of lamp L and the sequence of performed
actions by building the automaton represented in Fig. 2. Its
states represent the truth value of the chosen predicates (the
state of the lamp) and are connected by transitions labeled
with the external events of the system. These transitions are
not instantaneous: as said before, the first closing of the
switch needs some time to charge the relay and turn on the
lamp. Hence, the abstraction is enriched with timing infor-

mation, defining how long the system takes to reach the new
stable configuration.

Contribution

In this paper, we investigate the problem of characterizing
the effects of events on a hybrid system by analyzing where
the triggered behaviors stabilize.We propose the notion ofP-
stable abstraction as the automaton that captures the essence
of stabilization following each external input.

The granularity of the abstraction is induced by a given
set of relevant predicates P. Intuitively, an (abstract) state is
associated with predicate valuations, and identifies the (con-
crete) states that are stable in the corresponding region. The
transitions between abstract states describe the stabilization
process of the concrete system when responding to an exter-
nal stimulus. The abstraction is made accurate by requiring
the stability regions to beminimal: the stability of a trajectory
is defined in terms of the smallest region representable with
P predicates in which the trajectory eventually converges.
The synthesis of P-stable abstractions directly results in a
set of temporal properties that are satisfied by the concrete
system, and can therefore be used in reverse-engineering and
migrating to new technology. In order to capture the dura-
tion of stabilizations, a P-stable abstraction is enriched with
timing information characterizing the time spent in unstable
states. This information can be used to synthesize the correct
value to impose a slow-switching hypothesis on the external
environment of the system [31].

Second, we prove that the problem can be recast in the
framework of Abstract Interpretation (AI) [23] and propose
a synthesis algorithm based on the exploration of the abstract
state space. At the core of the algorithm is the computation of
sufficient conditions for stability. TheAI framework is funda-
mental to seamlessly approximate P-stable abstractions and
increase efficiency of the algorithm by reducing the precision
of the abstract domain.

The proposed algorithm has been implemented in an anal-
ysis tool handling symbolic hybrid systems with piecewise-
constants dynamics. An experimental evaluation, focusing
on a set of parametric benchmarks representing circuits with
run-to-completion behaviors, shows that the proposed tech-
niques can obtain abstractions of rather complex hybrid
systems.

Structure of the paper

In Sect. 2, we discuss related works. After introducing some
background concepts in Sect. 3, in Sect. 4, we introduce the
notion of P-stability and we define P-stable abstractions.
In Sect. 5, we prove that the problem can be formulated in
the general framework of Abstract Interpretation, and define
how to approximate the construction. In Sect. 6, we present
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an effective algorithm to synthesize approximated P-stable
abstractions, based on the exploration of the abstract state
space. In Sect. 7, we comprehensively show the application
of the algorithm to obtain the P-stable abstraction of a water
tanks system. In Sect. 8, we discuss the implementation and
we experimentally evaluate the approach on relay-based cir-
cuits. Finally, in Sect. 9, we draw some conclusions and
outline directions for future work.

2 Related works

State of the art

Stability is an important property of dynamical and hybrid
systems which has been widely studied from different per-
spectives. Classic stability is defined by requiring that all
the trajectories are asymptotically attracted by an equilib-
rium point xe [18, 31]. Since classical asymptotic stability
excludes oscillating behaviors, region stability [34, 35]
requires that the trajectories eventually remain inside a given
invariant region, even if no single equilibrium point exists.
The alternative notion of strong attractor requires that all the
trajectories of the system never leave the region once entered.

The problem is typically to verify the global stability of
a given system, i.e., proving that every trajectory satisfies
the required stability criterion (be it asymptotic or region
stability). When global stability does not hold, an additional
task is to compute the region of attraction, i.e., the set of
states whose outgoing trajectories are stable.

Asymptotic stability can be proven by providing a Lya-
punov function as a certificate that the energy of the system
is decreasing until the equilibrium point is reached. Several
methods have been proposed to this aim, for both dynamical
and switched systems, with different levels of automation,
soundness and scalability (see e.g., [19, 27]). Region stabil-
ity verification cannot be directly tackled as a reachability
problem, since its counterexamples are the paths that visit
infinitely often the negation of the region. It is proved by
reduction to liveness checking with combinations of reach-
ability and SMT solving, or based on the use of (Cartesian)
predicate abstraction [35].

Interestingly, in the case of switching systems, stability
of the whole system is not implied by the stability of each
modality. Some works (e.g. [14]) aim at finding conditions
on switching sequences in order to ensure the stability of the
composed system. Another approach to achieve global sta-
bility is to impose a slow-switching condition, i.e., sufficient
time must elapse between subsequent inputs. [17, 33] prove
the adequacy of such a time interval by analyzing the average
dwell time of the system.

Finally, the work of [8] introduces a framework for
abstracting symbolic timed transition systems which is para-

metric on a definition of stability. The latter is used as a
criterion to prune the states that need to be visible for reverse
engineering purposes at different levels of granularity.

Novelty

This work differs from the works mentioned above in sev-
eral ways. First, in contrast to verifying stability with respect
to a given region, we synthesize a P-stable abstraction that
characterizes all the system behaviors with respect to stabi-
lization. Notice that we do not rely on a single convergence
region being given. We explore the space of possible con-
vergence regions induced by the set P of predicates and find
the tightest representations. Second, the synthesized region
is not a simple invariant of the system: rather, it is possibly,
eventually invariant only for the trajectories triggered by the
event under consideration. Hence, we simulate hybrid evolu-
tions with a relation of possible attraction between two stable
conditions: we want to express the existence of an eventu-
ally convergent trajectory rather than requiring stabilization
for all paths. Another key difference is that the aforemen-
tioned approaches are mainly related to purely dynamical or
closed hybrid systems. We adopt a more expressive frame-
work, considering switched systems, open to external events.
Specifically, our aim is to analyze the stabilization effects for
external inputs, by considering the “closed” dynamic of the
system. Finally, we take into account timing information.

This work is also quite distinct from predicate abstraction
for hybrid systems [2, 3]: the main difference is that pred-
icates are not evaluated in transient states, i.e., “abstract”
transitions will connect predicates evaluated only in stable
conditions.Consider, for example, that the lengthof the traces
is not retained.

With respect to [8], P-stable abstraction is defined on an
exponentially larger lattice: a stable region can be a generic
(possibly disjunctive) combination of the predicates, while in
[8] abstract predicates are limited to complete assignments to
P variables (a perspective more similar to predicate abstrac-
tion). Hence, differently from this work, the framework of [8]
cannot detect stability in runs that oscillate in different pred-
icates and does not deal with the minimality problem, i.e.,
finding themost precise characterization of a stable behavior.

This paper is an extended and revised version of [12] and
[13]. Additional contributions include Propositions 2 and 3
and respective proofs in Sect. 5; an extensive presentation
of the synthesis algorithm with pseudocodes and additional
details on the implementation; a number of new illustrative
examples and a fully worked out case study presented in
Sect. 7; an extended experimental evaluation (Sect. 8) with
new sets of benchmarks and improved results obtained with
an optimized implementation.
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3 Background

For a set S, wewrite℘(S) for the powerset of S and |S| for its
cardinality. The sets of natural, rational, real and nonnegative
real numbers are denoted by N, Q, R and R≥, respectively;
we write B = {⊥,�} for the set of Boolean values.

Given a sequence σ and an index i ∈ N, let σ [i] denote the
i-th element of σ . We adopt the standard notion of first-order
logic and Satisfiability Modulo Theory (SMT) [7], focusing
on the theory of Linear Real Arithmetic (LRA). Given a set
of Boolean variables L , let �(L) define the set of Boolean
combinations over L . Given a set of real-valued variables V ,
let LPredV define finite conjunctions of LRA predicates with
free variables in V . We write�(L, V ) to denote SMT(LRA)
formulae obtained byBoolean combinations ofBoolean vari-
ables in L and linear predicates over V .

Finite and timed automata

A finite state automaton is a tuple 〈Q, Q0, A, R〉where Q is
a finite set of states, Q0 ⊆ Q is the set of initial states, A is
a finite set of labels (including the empty label ε) and R ⊆
(Q × A× Q) is a labeled transition relation between states.
A clock predicate is a linear predicate over a clock variable
c of the form c 	
 k, where k is constant in Q and 	
∈ {≤
,<,≥,>}. A clock constraint is a finite conjunction of clock
predicates. A timed automaton [1] 〈Q, Q0,C, A, inv, R〉 is
a finite-state automaton equipped with a finite set of clocks
C , with state invariants inv : Q → LPredC associating each
state q ∈ Q with its clock constraints inv(q) and with R ⊆
(Q×A×LPredC×℘(C)×Q), where edge (q, a, g, r , q ′) ∈
R represents the transition from state q to q ′, labeled with
a and guarded by clock constraints g; the set r ⊆ C gives
the set of clocks to be reset to zero with this transition. We
adopt notation q

a,g,r−−−→ q ′. In a timed automatonwith a single

clock variable c, we write qi
a,[m,M]−−−−−→→ q j , meaning that qi

reaches q j with a transition labeled with a in a time between
m and M . Formally, we are omitting an intermediate state

q with transitions qi
a,c:=0−−−−→ q

ε,c≥m−−−→ q j , where ε denotes
the absence of an action label, i.e., a silent transition, and
inv(q) = (c ≤ M). When clear from context we also omit
the ‘inv’ component from the tuple.

Hybrid systems

Let v̇ denote the time derivative dv/dt . A linear hybrid
system with piecewise affine dynamics is a tuple H =
〈Loc,Var,Lab, inv, init,flow, disc〉 where [36]

• Loc is a finite set of locations;
• Var = {v1, . . . , vn} is a finite set of continuous state
variables;

• Lab is a finite set of synchronization labels;
• init : Loc→ LPredVar defines initial conditions for each

location;
• inv : Loc → LPredVar defines invariant conditions for
each location;
• flow : Loc → LPredVar∪ ˙Var defines the continuous tran-
sition relation;
• disc ⊆ (Loc × Lab × Loc × LPredVar∪Var′) defines the

labeled discrete transition relation.

A state of a hybrid system H is a tuple 〈�, x〉 where � ∈
Loc and x ∈ R

n . Let � denote the state space of H and
init(H) denote the set of states s = 〈�, x〉 such that x |�
(inv(�) ∧ init(�)). A run (or a path) of hybrid system H is

a possibly infinite sequence ρ = (s0
δ0−→ s1

a1−→ s2
δ2−→

s3
a3−→ . . . ) where δi ∈ R≥, ai ∈ Lab, si = 〈�i , xi 〉 ∈ �,

s0 ∈ init(H) and each step corresponds to either a continuous
timed transition

δ ∈ R≥ f : [0, δ] → R
n ḟ : (0, δ)→ R

n

f (0) = x f (δ) = x′
∀ε ∈ [0, δ] : f (ε) |� inv(�)

∀ε ∈ (0, δ) : ( f (ε), ḟ (ε)) |� flow(�)

〈�, x〉 δ−→ 〈�, x′〉
or a discrete transition

(�, a, �′, μ) ∈ disc (x, x′) |� μ x′ |� inv(�′)

〈�, x〉 a−→ 〈�′, x′〉.

We write Run(H) for the set of all runs of H. In a run, we
consider δi = 0 whenever the i-th transition is a discrete
one. A run ρ diverges if ρ is infinite and the sum

∑
i≥0 δi

diverges. We consider systems without Zeno behaviors, i.e.,
we exclude paths that execute infinitely many discrete steps
in a finite time. IfRun(H) ⊆ Run(H′), thenH′ is a relaxation
of H and H is a refinement of H′ [17].

The length of a finite run ρ = (s0
δ0−→ s1

a1−→ s2 . . . sn−1)
is the number of states n. For each run ρ = (s0

δ0−→ s1
a1−→

s2 . . . ) and index m, the time spent to complete the prefix
up to state sm of ρ is τm(ρ)

.= ∑m−1
i=0 δi . For a finite run of

length n, τ(ρ) is a shortcut for τn−1(ρ).

Lattice theory

We briefly recall here introductory notions of lattice theory
[15]. A partial order� over a set S is a binary relation that is
reflexive, transitive and antisymmetric; the pair (S,�) is said
to be a poset (PO). In the following let (S,�) be a poset. A
chain is a subset of S where all the elements are comparable;
the poset satisfies the ascending chain condition (ACC) if all
its strictly increasing chains are finite. A subset X ⊆ S is
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upward closed if X = ↑ X .= {y ∈ S | ∃x ∈ X . x � y}.
Notation for downward closure is dual. An upper bound of
X ⊆ S is an element u ∈ S such that for all x ∈ X , x � u;
when it exists, the least upper bound (lub) of X is denoted
�X ; lower bounds andgreatest lower bounds (glb) are defined
dually anddenoted�X . Theposet (S,�) is a complete partial
order (CPO) if it has a minimum element (⊥) and all its
chains have a least upper bound. Given two CPOs (S,�S)

and (T ,�T ), their smash product is the CPO S ⊗ T :

{
(s, t) ∈ S × T

∣
∣ s �= ⊥S ∧ t �= ⊥T

} ∪ {⊥S⊗T },

where ⊥S⊗T is a new element; the ordering is coordinate-
wise and such that ⊥S⊗T precedes all elements. A function
f : S→ T ismonotonic if, for each x, y ∈ S, x �S y implies
f (x) �T f (t); for X ⊆ S, the image of f on X is the set
f (X)

.= { f (x) | x ∈ X} ⊆ T ; f is continuous if, for each
chain X of S, �T ( f (X)) exists and f (�S X) = �T ( f (X)). 1

A pre-fixpoint (resp., post-fixpoint) for function f : S → S
is an element x ∈ S such that x � f (x) (resp., f (x) � x); a
fixpoint is both a pre-fixpoint and a post-fixpoint, i.e., f (x) =
x . If (S,�) is a CPOwith a least element⊥ and f : S→ S is
continuous, then f has a least fixpoint lfp� f = �{ f n(⊥) |
n ∈ N}, where f 0(x)

.= x and f n+1(x) .= f ( f n(x)).
A poset (S,�) is a complete lattice if for all X ⊆ S there

exist both �X and �X : we write (S,�,�,�,⊥,�), where
⊥ = �S = �∅ and � = �S = �∅ are the bottom and top
elements, respectively. The lub and glb operators are also
called the join and meet of the lattice, respectively. An atom
of a lattice is a (non-bottom) element a ∈ S such that there is
no other (non-bottom) element x ∈ S satisfying⊥ � x � a.

Consider the set of formulae �(L, V ) quotiented by log-
ical equivalence (denoted with⇔’). �(L, V ) is a complete
lattice ordered by logical entailment ‘⇒’, where ‘∨’ and ‘∧’
are the join and meet operators, respectively, while� and ⊥
are the top and bottom elements, respectively. By identifying
a formula with the set of its models, �(L, V )|⇔ induces the
lattice (℘ (U ),⊆,∩,∪,∅,U ), whereU = B

|L| ×R
|V | is the

set of all the possible models of a formula in �(L, V ).

Abstract interpretation

We recall here some basic notions of Abstract Interpretation
[23], which is a theory to formalize (and actually compute)
sound over-approximations of the concrete semantics of a
system. Intuitively, a Galois connection links a concrete
semantic domain (C) with an abstract semantic domain (A)
by means of an abstraction function (α) and a concretization
function (γ ). Given two posets (C,�C ) and (A,�A) and

1 Note that, when clear from the context, in this paper we will also
use the adjective continuous with the standard notion for functions on
real-valued variables.

two functions α : C → A and γ : A → C , the pair (α, γ )

is a Galois connection [23], denoted C −−→←−−α
γ

A, if for all
c ∈ C , a ∈ A it holds that α(c) �A a ⇐⇒ c �C γ (a).

Equivalently, (α, γ ) is a Galois connection if the abstrac-
tion function and the concretization function are mutually
induced as the respective adjoints: for each c ∈ C and a ∈ A

α(c) = �A
{
a ∈ A

∣
∣ c �C γ (a)

}
,

γ (a) = �C
{
c ∈ C

∣
∣ α(c) �A a

}
.

Given two Galois connections C −−−→←−−−α1

γ1
A1 −−−→←−−−α2

γ2
A2, the

pair (α, γ ), with α
.= α2 ◦ α1 and γ

.= γ1 ◦ γ2, is a Galois
connection between C and A2. Let FC : C → C be a contin-
uous concrete function; an abstract function FA : A→ A is a
sound approximation of FC if, for alla ∈ A,α(FC (γ (a)) �A

FA(a); intuitively, a sound approximation does not lose in the
abstract computation any of the concrete behaviors. Themost
precise sound approximation of FC is F�

A = α ◦ FC ◦ γ .
The concrete least fixpoint computation for FC can thus be

over-approximated by a corresponding abstract fixpoint com-
putation for FA, building an increasing chain on the abstract
domain A. Notice that this process may fail to finitely con-
verge if the domain A has infinite ascending chains.Widening
operators are used to guarantee (or accelerate) convergence
of the abstract computation, possibly inducing further over-
approximations, so that in general we obtain a post-fixpoint
of FA.

A widening operator for (A,�A) is a function ∇ : A ×
A→ A such that [24, footnote 6]:

• ∀x, y ∈ A : x �A y ⇒ y �A x ∇ y;
• for each increasing chain y0 �A y1 �A . . . , the increas-
ing chain defined by x0

.= y0 and xi+1
.= xi ∇

(xi �A yi+1) for i ∈ N is not strictly increasing.

Hence, for a monotonic operator FA : A→ A, the sequence
with x0

.= ⊥A and

xi+1
.=

{
xi if FA(xi ) �A xi ;
xi ∇

(
xi �A FA(xi )

)
otherwise;

converges to a post-fixpoint of FA after a finite number of
iterations.

Temporal logic

In the rest of this paper, we adopt a notation inspired to
model checking for specific patterns of computation-tree
logic formulae. In particular, H, s |� AGφ means that for
all ρ ∈ Run(H) outgoing from s (i.e., such that ρ[0] = s),
for all i ∈ N,H, ρ[i] |� φ. SimilarlyH, s |� EFAGφ means
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that there exists a run ρ ∈ Run(H) outgoing from s, and a
j ∈ N such that H, ρ[ j] |� AGφ.
As examples, consider the concepts introduced in Sect. 2:

the property of region stability (requiring that all trajectories
will converge and never leave a region R) corresponds to the
specification AFAGR; the strong attractor variant (i.e., all
trajectories never leave region R once entered) corresponds
to the specification A¬RUAGR. The existence of an even-
tually convergent trajectory in region R is expressed by the
specification EFAGR.

In systems having a global clock variable clock, we adopt
a notation inspired to Metric Temporal Logic, in which tem-
poral operators are enriched with interval constraints, e.g.,
AF[l, u]φ means that all path will accomplish φ after l time
and before u time units.

4 P-stable abstraction

In this section, we characterize the stabilizing executions of
a closed hybrid system with respect to the truth values of
a given set of predicates. Given a set of events, we define
an abstract timed automaton whose transitions simulate the
stabilizing runs triggered by these events.

4.1 Evolutions in the closed system

We now define some additional concepts on hybrid systems
extending the classical definitions presented in Sect. 3.

Closed system

In hybrid automata, as well as in switched systems [31],
discrete behaviors can be distinguished between controlled
(internal) events, for logic-basedmechanism, and autonomous
(external) events, modeling unpredictable environmental
influences. In the following,we denote by I ⊆ Lab the subset
of labels of the hybrid system H corresponding to internal
events; the set of external events is (implicitly) defined as
E

.= Lab \ I (so that E ∩ I = ∅).

Definition 1 (Closed system Hc) Let I ⊆ Lab be the set of
internal events of a hybrid system

H = 〈Loc,Var,Lab, inv, init,flow, disc〉;

the corresponding closed system is

Hc .= 〈Loc,Var, I , inv,�,flow, discc〉,

where discc
.= {(�, i, �′, μ) ∈ disc | i ∈ I }. The runs of Hc

are called closed evolutions of H.

Intuitively, the closed system Hc models the behaviors
of H when all external events are blocked. It has no initial
conditions because it is meant to show what are the runs
originating from any state if no external event is received.

We denote with ‘
c�’ the reflexive and transitive closure of

the transition relation of Hc. Namely, if s
c� s′ then there

exists a sequence of transitions involving only continuous
transitions and internal discrete transitions starting from s
and reaching s′.When clear from context, we also use s

c� s′
to denote the corresponding set of runs from s to s′ in the
closed system.

Given a temporal formula ϕ and a state s, let s |�c ϕ

be a shortcut for Hc, s |� ϕ, meaning that s makes ϕ true
limitedly to the closed system runs.

Slow switching

Let ε(ρ) be the ordered sequence of indices for the external

events of a run ρ: namely, letting ρ = (s0
δ0−→ s1

a1−→
s2

δ2−→ . . . ), ε(ρ) is the ordered sequence of positions k

such that ak ∈ E for sk
ak−→ sk+1.

The sequence of external switching time points of a run
ρ records the time at which the external events occur. More
formally: it is defined as the sequence t of elements in R≥
such that for all i , t[i] = τε[i](ρ).

For a hybrid automaton H, a time d ∈ R≥ induces a
refinement Hd of H such that every run of Hd is associated
with a sequence t of external switching time points satisfying
(t[i + 1] − t[i]) > d for all i . Intuitively, the runs ofHd are
the runs ofH satisfying a slow-switching constraint on exter-
nal events, i.e., at least d units of time must elapse between
two subsequent events in E . Hd can be obtained from H as
follows: first, by adding a clock variable (i.e., a state variable
with flow ċ = 1 in every location); second, by adding in all
transitions labeled with external events the guard c > d and
the reset condition c′ = 0.

4.2 From region stability to P-stability

Given a region R ⊆ � of the state space, we say that a state
s ∈ � is internally stable in R (for short, stable in R) if and
only if R is invariant for all closed evolutions of s. State s is
said to be possibly attracted by R (for short, attracted by R) if
there exists a closed evolution of s reaching a state internally
stable in R; dually, R is a possible eventually stable condition
for s. More formally:

Definition 2 (Region stability) For each s ∈ � and R ⊆ �,

stable(s, R) ⇐⇒ (s |�c AGR);
attr(s, R) ⇐⇒ (s |�c EFAGR).
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Fig. 3 A relay coil with delay and the corresponding hybrid system run

The “run-to-completion” closed evolutions of a state s ∈
� are described by the regions that possibly attract it: due to
the non-determinism of the closed system, taken into account
by the existential path quantification, this can be a set of
different regions, each of them representing a possible future
stable condition. Given a state s, the set of regions R such that
stable(s, R) holds is upward closed (i.e., for all R, R′ ⊆ �

such that R ⊆ R′, if stable(s, R) then stable(s, R′)). The
minimal regions for which attr(s, R) holds identify the set
of most precise possible eventually stable conditions for s:
minimal stability is assessed only if there is no other smaller
region in which the system can converge in the future. In the
infinite state setting, the quest for minimality is problematic.
Take for example an asymptotic behavior to an equilibrium
condition, like the discharging process of a capacitor. Its flow
follows an exponential dynamic that, ideally, never reaches
a null charge, so that a minimal region of convergence does
not exist. Nonetheless, under a certain threshold the capacitor
can be assumed to be discharged and the following decay
of voltage has no impact on its behavior in the circuit. In
other words, there are certain regions of interest, in which
the exact trajectories are not relevant for the analysis of the
system. This suggests to fix a priori a finite set of predicates
P representing the properties we want to observe in order
to discretize the state space: the run-to-completion behaviors
will be described as theminimal attracting areas chosen from
the (finite) set of regions induced by P.

Example 1 In the left-hand side of Fig. 3, it is shown how
a delay is added to the activation of a relay, whose use has
already been introduced in Fig. 1. Focusing inside the relay
component, we see that its inductor RL is connected in paral-
lel with a capacitor C . When attached to a source of current,
current flows and due to the Kirchhoff conservation laws we
have that i = iC + iRL , where iC and iRL are the current
flowing in the capacitor and in the inductor, while i is the
value of the incoming current as shown in the figure. In the
right-hand side of the figure, we show a run of the system
projected on the value of iRL and the (implicit) time vari-

able t . Initially, the capacitor is fully discharged and acts as a
short-circuit, attracting all the incoming current: therefore in
state s0, we have that iC = i and iRL = 0. The capacitor volt-
age vC follows the differential equation c · v̇C = iC (where
c is the constant value of its capacitance) that corresponds
to an exponential primitive function w.r.t. to a time variable.
This implies that the flow of current iC charges the capacitor
and its increasing voltage rejects current iC ; this results in a
decrease of iC and a corresponding increase of iRL.

Since there is no external interaction, the run starting from
s0 and reaching s1 is a closed evolution of the system. It
asymptotically stabilizes to a condition in which iRL = i and
iC = 0 so that there is no minimal region that can express
this run-to-completion process as a state invariant.

For the purposes of the component, the precise cur-
rent value iRL is relevant only when it induces a sufficient
magnetic field to act on the associated contacts. From the
internal characteristics of the components, we can compute
the threshold ‘a’ above which the value of the magnetic field
induced by RL is sufficient to open (or close) the switch.
Hence, we can focus the stabilization analysis to the predi-
cate ϕ

.= iRL ≥ a. We have that attr(s0, ϕ) holds, because
there exists an evolution of s0 reaching s1 which is stable in
ϕ, i.e., stable(s1, ϕ).

P-grid on 6 andminimally stable states

Let BLoc be a set of Boolean variables that symbolically
encodes the set of locations Loc. Namely, a location � ∈ Loc
is a truth assignment of the BLoc variables. Given a finite
set of predicates P ⊆ �(BLoc,Var), we denote with �P

the set of their (finite) Boolean combinations, omitting the
subscript when clear from context. We say that P induces a
grid in the state space, since every formula φ ∈ � defines a
P-expressible region as the set of its models in �. � induces
a finite sublattice of �(BLoc,Var)|⇔, ordered by logical
entailment⇒; the top element is� = ∨�, corresponding to
�, and the bottom is⊥, corresponding to the empty set. Both
relations ‘stable’ and ‘attr’ formalized in Definition 2 can
be evaluated on the regions of the P-grid, where it is possible
to define minimality.

Definition 3 (Minimal P-stability) For each s ∈ � and φ ∈
�, let

no_str_attr(s, φ)
.= �φ′ ∈ � .

(
φ′ �= φ ∧ (φ′ ⇒ φ)

∧ attr(s, φ′)

)

;

stablemin(s, φ)
.= stable(s, φ) ∧ no_str_attr(s, φ);

attrmin(s, φ)
.= attr(s, φ) ∧ no_str_attr(s, φ).

Relation ‘stablemin’ links a state s ∈ � with a for-
mula φ ∈ � if φ is invariant for the evolutions of s in the
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closed system and if there are no smaller (i.e., stronger) P-
representable regions in which s can converge. If such a φ

exists, it is unique (modulo logical equivalence) and state s
is said to be minimally P-stable (or simply stable). If a state
has no formula in � such that ‘stablemin’ holds, then it is
said to be transient, since there exists an evolution attracted
by a smaller P-region that does not contain it:

transient(s)
.= (

�φ ∈ � . stablemin(s, φ)
)
.

Observe that ‘stablemin’ is a partial function on � to
�|⇔. On the contrary, by definition, the relation ‘attrmin’
is a subset of relation ‘attr’ and, like the latter, it is
non-deterministic: ‘attrmin’ links a state with the minimal
regions in which one of its evolution stabilizes. By defini-
tion, if attrmin(s, φ) then there exists a path s

c� s′ with
stablemin(s′, φ).

Example 2 Reconsider the run shown in the right-hand side
of Fig. 3. With ϕ = (RLi ≥ a) and P = {ϕ}, the lattice of
formulae in � is given by {⊥, ϕ,¬ϕ,�}, with the obvious
ordering: for all φ ∈ �, ⊥ ⇒ φ and φ ⇒ �, while ϕ and
¬ϕ are uncomparable.

For s0 we have that stable(s0,�). However, s0 is not
minimally stable in any region, since it also holds that
attr(s0, ϕ), and it is hence transient. On the other hand,
since there is no smaller region that attracts it,attrmin(s0, ϕ)

holds. State s1 instead is invariant and attracted by both� and
ϕ: we conclude that stablemin(s1, ϕ) and attrmin(s1, ϕ)

hold.

Well defined run-to-completion

Control logics in safety critical contexts is required to have
a well defined semantics: the system must have a reliable
response. Hence, it is natural to expect that a state cannot
stay indefinitely in a transient condition. We formalize this
requirement saying that a system H has a well-defined run-
to-completion semantics for the set of predicates P, written
wd- rtc(H, P) for short, if a state ofH cannot delay indefi-
nitely its reaching a P-stable condition, i.e., the time needed
to reach a stable setting in all possible evolutions must be
bounded.

If wd- rtc(H, P), then there exists a k ∈ R≥ such that,
for every state s ∈ � it holds that AF[0, k]¬transient(s)
in the closed system.

In general, a fine P-grid is more likely to violate wd- rtc
(H, P). Choosing coarser predicates means that we are inter-
ested in less restrictive properties. In fact, once a condition
is permanently reached, it is not possible to observe what the
system does inside it.

�0

0 ≤ x ≤ 10
ẋ = 2

�1

ẋ = 1
�2

ẋ = 0
i1 i2

ψ ϕ

Fig. 4 Hybrid automaton whose run-to-completions are not well
defined w.r.t. ϕ

Example 3 Consider the hybrid automaton H shown in
Fig. 4, with Var = {x} and Loc = {�0, �1, �2} with
init(�0) = � (and init(�1) = init(�2) = ⊥).

Location �0 has invariant (0 ≤ x ≤ 10) and flow ẋ = 2:
these imply that the permanence in �0 is constrained between
time 0 and 5, after which the system is forced to take the
(internal) discrete transition labeled with i1 and reach �1.

Since �1 has no invariant constraint, the system can stay in
it indefinitely, letting x grow according to ẋ = 1. Nonethe-
less, at any moment, the system can choose to take the
(internal) discrete transition labeled with i2 and reach loca-
tion �2 in which x has a constant evolution.

Let ϕ = (�2) be a predicate of interest: although all the
states in � have an outgoing run stabilizing in ϕ, there exist
runs that postpone indefinitely this event.

2

Therefore, we say that H has not a well-defined run-to-
completion semantics with respect to the grid induced by
ϕ.

On the other hand, for a different predicateψ = (�1∨�2),
wd- rtc(H, {ψ}) holds, as the stabilization in ψ is guaran-
teed after 5 time units. Choosing this bigger predicate means
that we are not interested in knowing what the system does
inside ψ , i.e., if it is in �1 or �2.

4.3 P-stable abstraction

P-stability defines a simulation of stabilizing runs responding
to external events.

Definition 4 (P-stable abstraction) Let E
.= Lab \ I

be the set of external events of a hybrid system H =
〈Loc,Var,Lab, inv, init,flow, disc〉. Let BLoc be a set of
Booleanvariables encoding the setLoc andP ⊆ �(BLoc,Var)
be a set of predicates, and � the set of their Boolean combi-
nations. The (untimed) P-stable abstraction ofH is the finite
state automaton A .= 〈�,�0, E, ↪−→〉, where

�0
.=

{

φ ∈ �

∣
∣
∣
∣
∣

∃s0 ∈ init(H), s ∈ � .

s0
c� s ∧ stablemin(s, φ)

}

2 Notice that even by imposing a fairness condition that excludes the
runs staying forever in �1, the delay would not be bounded.
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and φ ↪
e−→ φ′ if and only if there exist s, s1, s′ ∈ � such that

stablemin(s, φ), s
e−→ s1

c� s′, stablemin(s
′, φ′).

Namely, a transition φ ↪
e−→ φ′ exists if it is possible that a

state stable in φ, after receiving the external event e, stabi-
lizes in the minimal invariant region φ′. Equivalently, there
exist s, s′ ∈ � such that stablemin(s, φ), s

e−→ s′ and
attrmin(s′, φ′).

Intuitively, the runs of A represent the evolution of the
truth values of the predicates in P in response to external
events once stabilization is reached, upon “absorption” of
the transient states. Initial states�0 are defined similarly and
represent the possible initial P-stable regions, since H may
start in a transient condition.

Stable-switching semantics

Thedefinition ofP-stable abstraction captures the fact thatwe
are studying the effects of the external inputs whenH is in a
stable condition: we disregard runs where external inputs are
received in transient states. This “stable-switching” restric-
tion canbe intuitively thought of as thequalitative counterpart
of the slow-switching hypothesis used as sufficient condi-
tion for reasoning about global stability in switched systems
[31]. We informally define the restriction of H under stable
switching as the hybrid automatonHss obtained by applying
the guard ¬transient to every external transition of H. If
wd- rtc(H, P) holds, then every state is guaranteed to even-
tually reach a non-transient state and possibly accept a new
event.

We compare the definition of P-stable abstraction with
“classic” predicate abstraction [2, 3, 28, 30]. In our setting,
the concretization of an abstract state φ is the set of states
in � that are stable in φ, which is stricter than the set of
models of φ. Most importantly, abstract transitions in P-
stable abstraction arewitnessed by concrete paths of the form
s

e−→ s1
c� s′, i.e., a single external event possibly followed

bymultiple internal transitions. Thus, differently from predi-
cate abstraction, a path in the abstractionmay be significantly
shorter than the corresponding concrete ones.

Let�(φ ↪
e−→ φ′) be the set of hybrid runs that are simulated

by an abstract transition of A; formally, for each φ0 ∈ �0

and for each φ ↪
e−→ φ′

�(↪→ φ0)
.=
{

s
c� s′

∣
∣
∣
∣
∣

s ∈ init(H)

stablemin(s′, φ0)

}

,

�(φ ↪
e−→ φ′) .=

{

s
e−→ s1

c� s′
∣
∣
∣
∣
∣

stablemin(s, φ),

stablemin(s′, φ′)

}

.

Fig. 5 Trace s0
close−−→ s1

δ1−→ s2
rl−→ s3

δ3−→ s4
open−−→ s5 projected on

iRL , the state of the switch S and of lamp L with respect to time t

Operator � is naturally extended to runs ofA by concate-
nation of its applications to single transitions, and to set of
runs. The P-stable abstraction of H can be seen as a weak
simulation [32] of Hss which hides internal transient pro-
cesses. Spurious behaviors may be introduced. In fact, two
states that are stable in the same region φ are not necessarily
connected by a concrete run and distinct areas of attraction
can be represented with the same formula.

Proposition 1 If wd- rtc(H, P) holds, then the stable-
switching runs of H are simulated by the runs of A, i.e.,
Run(Hss) ⊆ �(Run(A)).

Proof Each run ρ ∈ Run(Hss) is of the form s′0
c� s0

e0−→
s′1

c� s1
e1−→ s′2

c� s2 . . . , where state s′0 ∈ init(H)

and states s0, s1, s2, . . . satisfy ¬transient. By defini-
tion of transient, for each i , there exists a φi such that
stablemin(si , φi ); by Definition 4, φ0 is an initial abstract

state in �0 and, for all i , φi ↪
ei−→ φi+1 are abstract transi-

tions in A. It follows that the abstract run ρA = (φ0 ↪
e1−→

φ1 ↪
e2−→ φ2 . . . ) belongs to Run(A) and, by definition of �,

ρ ∈ �(ρA). ��

Example 4 Reconsider the circuit shown in Fig. 1 that can
be modeled as a hybrid automaton with 4 locations and 16
state variables. External events include the opening/closing
of switch S, while the internal discrete interactions are the
automatic actions of the relay on the corresponding switches.
The property of interest is the condition of lamp L . Letting
iL denote the intensity of the current passing through the
lamp and ‘l’ be the required current to fire it, we choose
P = {iL > l)}, so that the lattice induced by � includes
{⊥, Lon, Loff ,�} where Lon

.= (iL > l) and Loff
.= ¬Lon.

Figure 5 shows in three plots the same evolution of
the system with respect to time, respectively, projected
on the continuous variable iRL (bottom-left plot), and the
Boolean variable S (top-right plot) and the Boolean variable
L (bottom-right plot).

Initially, all the switches are open and neither the relay
coil RL nor the lamp L receive current. Hence, the system is
(internally) stable in Loff (state s0).
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Starting from a stable state in Loff , when the external event
‘close’ is received, the switch S is closed (state s1), and iRL
starts to increase with a continuous dynamics implementing
the delay of its activation. After δ1 time, iRL reaches the acti-
vation threshold ‘a’ (state s2) and it closes the corresponding
switches with an internal discrete transition labeled ‘rl’. The
closing of RLS2 turns on the lamp L (state s3). The system
is now stable in Lon.

Along the hybrid run s0
close−−→ s1

δ1−→ s2
rl−→ s3 it holds

that:

s0 |� (Loff , Sopen, iRL = 0, diRL/dt = 0, iL = 0),

stablemin(s0, Loff ),

s1 |� (Loff , Sclosed, iRL = 0, diRL/dt = f (iRL), iL = 0),

attrmin(s1, Lon),

s2 |� (Loff , Sclosed, iRL = a, diRL/dt = f (iRL), iL = 0),

attrmin(s2, Lon),

s3 |� (Lon, Sclosed, iRL = a, diRL/dt = f (iRL), iL > l),

stablemin(s3, Lon)

This run corresponds to a single transition Loff ↪
close−−→ Lon

in the P-stable abstraction, shown in the top-left of Fig. 5.
SinceRLS1 has been closed,RL receives current even if the

switch S gets opened. It follows that when later receiving the
external event ‘open’ in state s4 (with stablemin(s4, Lon)),
the system switches to state s5 and the lamp stays on (namely,
stablemin(s5, Lon)). In the P-stable abstraction, we will

have the transition Lon ↪
open−−→ Lon.

4.4 Timed P-stable abstraction

We now characterize the time needed to reach a stable con-
dition after receiving an external input.

Definition 5 (Convergence time of φ ↪
e−→ φ′) For each

abstract transition φ ↪
e−→ φ′ its convergence time is the inter-

val in R≥ ct(φ ↪
e−→ φ′) .= [lb, ub], where

lb = inf
{

τ(ρ)

∣
∣
∣ ρ ∈ �(φ ↪

e−→ φ′)
}
,

ub = sup

{

τm(ρ)

∣
∣
∣
∣
∣

ρ ∈ �(φ ↪
e−→ φ′),

¬stablemin(ρ[m], φ′)

}

.

The convergence time represents the time spent in the
transient states. If the system is stable in φ and an external
event e is received, before min ct(φ ↪

e−→ φ′) time, the system
is certainly in a transient state; aftermax ct(φ ↪

e−→ φ′) time the
system will certainly be stable in φ′. Similar considerations
apply to initial conditions: each φ ∈ �0 is associated with a
convergence time ct(↪→ φ) that represents the time needed
to stabilize at start up.

Since we assume wd- rtc(H, P), the convergence time
of Definition 5 is always bounded from above (i.e., ub <

+∞). In fact, an unbounded convergence time witnesses that
the system can indefinitely postpone its stabilization in φ′,
which is likely an undesirable behavior. Hence, the conver-
gence time is an effective way to detect the violation of the
wd- rtc(H, P) hypothesis and yields diagnostic information
to either debug the model or change the set of predicates P.

Definition 6 (Timed P-stable abstraction)
Given a hybrid system H and its (untimed) P-stable

abstraction A = 〈�,�0, E, ↪−→〉 the corresponding timed
P-stable abstraction is

a timed automaton having as initial state a new state � and
having

• transition � ↪
ε,[m,M]−−−−−→→ φ, for each φ ∈ �0, with [m, M] =

ct(↪→ φ);

• transition φ ↪
e,[m,M]−−−−−→→ φ′, for each φ ↪

e−→ φ′, with
[m, M] = ct(φ ↪

e−→ φ′).

Starting from the initial state �, each path reaches the
first stable condition φ in the corresponding initialization
time ct(↪→ φ). Then, after an external event e, it non-
deterministically jumps to the next stable condition within
the interval imposed by the associated convergence time.

We remark that the convergence time constantsmay not be
rational due to the dynamics of the hybrid automaton being
abstracted. We believe that this is not a problem because the
timed abstraction is used for representational purposes only.3

The convergence time information defines the runs we
are abstracting with a slow-switching characterization, rather
than a stable-switching one. Considering the greatest of the
delays

ct = max{M | φ ↪
e,[m,M]−−−−−→→ φ′ in A },

the refinement Hct (see Sect. 4.1), which allows external
inputs with a delay of (at least) ct, ensures that the system has
always sufficient time to reach stability. Note that ct exists
in R because neither of the convergence times is unbounded:
ct characterizes how much to wait in order to safely assess
stability and be ready for the next input. We obtain that
Run(Hct) ⊆ Run(Hss), because the slow-switching hypoth-
esis excludes the runs with a high external events frequency;
since A abstracts the runs ofHss, as stated in Proposition 1,
then the restricted concrete semantics of Hct is compliant
withA. In other words, by imposing the slow-switching con-
straint on H, we obtain Run(Hct) ⊆ �(Run(A)).

3 In practice, the computation of the timed abstraction is approximated
and guarantees that the constants are indeed rational.
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Example 5 Reconsider the circuit of Fig. 1, whose P-stable
abstraction has been analyzed in Example 4. We can com-
pute the timing information of the stabilization processes,

obtaining ct(Loff ↪
close−−→ Lon) = [δ1, δ1]; the other abstract

transitions are instantaneous (i.e., their convergence time
is 0, as they have no transient states). By waiting δ1 after
each external event, the system Hδ1 follows the behaviors
described by the P-stable abstraction: namely, we know how
long the switch S must stay closed in order to turn on (and
keep on) the lamp.

4.5 Computation of P-stable abstraction

In general, the synthesis of P-stable abstraction of Defini-
tion 4 and 6 faces two main problems: attractor analysis in
H, and minimality. As for the first problem, reachability is
undecidable for infinite state systems: checking the validity
of the formula EFAGφ, needed for the run-to-completion
processes, is not computable in general.

Evenwhen adding hypotheses ensuring finite computabil-
ity, e.g., in thefinite state setting, the approach couldbehighly
inefficient. As a matter of fact, since we require the minimal-
ity of the predicates that express the next stable state, a naive
algorithm would explore the abstract domain lattice, which
has a doubly exponential size in the number of predicates,
and search for the minimal ones that verify EFAGφ.

For these reasons, approximations are necessary.

5 P-stable abstraction via abstract
interpretation

In this section, we rephrase the concept of P-stable abstrac-
tion in the framework of Abstract Interpretation. This frame-
work provides us with a formal setting to reason about
(finitely computable) correct approximations and also search
for a good balance between precision and efficiency.

5.1 P-stable abstraction as Galois connection

Concrete semantics

As shown in Sect. 4, P-stable abstraction studies how some
discrete events connect regions of convergence, taken from
the grid induced by P. The concrete domain is the powerset
of states (℘ (�),⊆) and the concrete function we want to
approximate models the effects of external events in E . Con-
sider a state-transformer computing the post-image (i.e., the
set of successors) of a set of source states S ⊆ �, following
transition ‘

e−→’:

post(S, e) =
{
s′ ∈ �

∣
∣
∣ ∃s ∈ S, s

e−→ s′
}
.

While being computable, this function is not adequate in
our context, since it is not enforcing the stable-switching
constraint. Hence, we replace H with its refinement Hss by
adding a temporal guard to each event in E :

postss(S, e)
.=

{

s′ ∈ �

∣
∣
∣
∣
∣

∃s ∈ S . s
e−→ s′,

¬ transient(s)

}

.

In general, postss operator is not computable in finite time,
as it may require a fixpoint computation to check the guard
transient(s).

Abstraction

In order to abstract a state into the tightest formulae in �

that attract it, we choose as abstract domain the powerset
of �. This domain can take into account multiple target
regions given by the non-determinism of the attraction rela-
tion. We define a Galois connection between (℘ (�),⊆) and
(℘ (�),⊆) using the monotone functions defined, for each
S ⊆ � and F ⊆ �, as follows:

α1(S)
.=

{
φ ∈ �

∣
∣
∣ ∃s ∈ S . attrmin(s, φ)

}
,

γ1(F)
.=

{

s ∈ �

∣
∣
∣
∣
∣

∀φ ∈ � .

attrmin(s, φ) �⇒ φ ∈ F

}

.

This construction is inspired to a similar one proposed in
[25] for transition systems. Note that the partial order of the
abstract domain is totally unrelatedwith the implication order
defined on � (i.e., each single formula φ ∈ � becomes an
atom {φ} in the powerset and atoms are pairwise uncompara-
ble). Hence, the non monotonicity on (�,⇒) of the function
λφ.{s | attrmin(s, φ)} does not compromise themonotonic-
ity on (℘ (�),⊆) of the function γ1.

Proposition 2 (α1, γ1) is a Galois connection: (℘ (�),⊆
) −−−→←−−−α1

γ1
(℘ (�),⊆).

Proof Functions α1 and γ1 are monotone. In order to prove
that (α1, γ1) is a Galois Connection between (℘ (�),⊆) and
(℘ (�),⊆), we show that γ1 is the adjoint of α1. Let at(s)

.=
{φ ∈ � | attrmin(s, φ)}. It is easy to see that

α1(S) =
⋃

s∈Sat(s), γ1(F) = {s ∈ � | at(s) ⊆ F}.

For each F ⊆ �, the adjoint of α1 is
⋃{

S ⊆ �
∣
∣ α1(S) ⊆

F
} =⋃{

s ∈ �
∣
∣ at(s) ⊆ F

} = γ1(F). ��
Using (α1, γ1), the best correct approximation for function

postss is

post�1({φ}, e) .= α1(postss(γ1({φ}), e)),
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which is indeed equivalent to the relation introduced in Def-
inition 4.

Proposition 3 Let A be the P-stable abstraction of H. For

φ, φ′ ∈ � and e ∈ E, φ ↪
e−→ φ′ in A if and only if φ′ ∈

post�1({φ}, e); also, �0 = α1(init(H)).

Proof We first prove that, for each s ∈ � and φ ∈ �,

¬(transient(s)) ∧ s ∈ γ1({φ})⇐⇒ stablemin(s, φ). (1)

Namely, if s is minimally stable in some formula ψ ∈ � and
it is minimally attracted only by φ ∈ �, then ψ = φ:

¬transient(s) ∧ s ∈ γ1({φ})
[by def of transient]
⇐⇒ ∃ψ ∈ � . stablemin(s, ψ) ∧ s ∈ γ1({φ})
[by def of γ1]
⇐⇒ ∃ψ ∈ � . stablemin(s, ψ) ∧ at(s) = {φ}
[by def of stablemin and attrmin]
⇐⇒ stablemin(s, φ)

We now prove the first part of the statement:

φ′ ∈ post�1({φ}, e)
[by def of post�1]
⇐⇒ φ′ ∈ α1(postss(γ1({φ}), e))
[by def of α1]
⇐⇒ ∃s1 .

(
s1 ∈ postss(γ1({φ}), e) ∧ attr(s1, φ

′)
)

[by def of postss]

⇐⇒ ∃s, s1 .

(¬transient(s) ∧ s ∈ γ1({φ})∧
s

e−→ s1 ∧ attr(s1, φ
′)

)

[by (1)]

⇐⇒ ∃s, s1 .

(
stablemin(s, φ)∧

s
e−→ s1 ∧ attr(s1, φ

′)

)

[by def of attr]

⇐⇒ ∃s, s1, s′ .
(

stablemin(s, φ)∧
s

e−→ s1
c� s′ ∧ stablemin(s

′, φ′)

)

[by def of ↪
e−→]

⇐⇒ φ ↪
e−→ φ′.

Finally,

α1(init(H)) =
{

φ ∈ �

∣
∣
∣
∣
∣

∃s0 ∈ init(H) .

attrmin(s0, φ)

}

= �0

directly follows from the definitions of α1 and �0. ��

5.2 Approximating the P-stable abstraction

We now consider lighter (but coarser) abstract domains, trad-
ing precision for efficiency. A first simplification is obtained
by overapproximating disjunctive stable regions with their
join, yielding a deterministic abstract system based on a
conservative abstraction of all the possible behaviors of the
concrete system. To this end, we consider (�,⇒) as abstract
domain, rather than its powerset, and we compose the pre-

vious Galois connection with (℘ (�),⊆) −−−→←−−−α2

γ2
(�,⇒),

where, for each F ⊆ ℘(�) and φ ∈ �:

α2(F)
.=

∨
F,

γ2(φ)
.= ↓{φ} = {φ′ ∈ � | φ′ ⇒ φ}.

Since the number of formulae on P is doubly exponential in
the number n = |P| of predicates, we further approximate
this domain by using its Cartesian relaxation.

Cartesian abstraction

TheCartesian abstraction [6] of (�,⇒) is the set of formulae
that can be obtained as conjunctions of (possibly negated)
predicates in P. It can be formally defined by consider-
ing, for each predicate Pi ∈ P, the corresponding lattice
of knowledge values PPi

.= ({⊥i , pi , pi ,�i },�i ), where
⊥i �i pi �i �i and ⊥i �i pi �i �i . Then, the lattice
(K,�) = (⊗Pi∈PPPi

)
is obtained by combining all these

lattices using the smash product operator ‘⊗’, which avoids
redundant representations of the bottom element.

Hence, every k ∈ K is either⊥K or a vector (k1, . . . , kn),
where each ki ∈ {pi , pi ,�i }.

We will write k ∈ K to denote the corresponding formula
in �: while ⊥K is the bottom element of � (i.e., ⊥ itself),
the vector (k1, . . . , kn) represents the formula

⎛

⎝
∧

ki=pi
Pi ∧

∧

ki=pi
¬Pi

⎞

⎠ .

Note that (K,�) is a meet sublattice of (�,⇒); in particular,
we will abuse notation by writing⇒ (resp., ∧) to denote the
partial order (resp., the greatest lower bound operator) on K.
Joins are not preserved because the Cartesian domain over-
approximates disjunctions between predicates. We define a

Galois connection (�,⇒) −−−→←−−−α3

γ3
(K,⇒) with

α3(φ)
.=

∧
{k ∈ K | φ ⇒ k},

γ3(k)
.= k.
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Fig. 6 Non-deterministic transitions on a P grid

Composition of Galois connections

We approximate the system built in Definition 4, which is
yield by (α1, γ1), with the compositions:

(℘ (�),⊆) −−−→←−−−α1

γ1
(℘ (�),⊆) −−−→←−−−α2

γ2
(�,⇒) −−−→←−−−α3

γ3
(K,⇒).

Definition 7 (Approximated systemA�) Letα
.= α3◦α2◦α1

and γ
.= γ1 ◦ γ2 ◦ γ3. The finite state automaton A� .=

〈K, K0, E, ↪−→〉 has initial states K0
.= α(init(H)) and k ↪

e−→
k′ if and only if k′ = post�(k, e), where post� is the best
correct approximation of function postss:

post�(k, e) = α(postss(γ (k), e)).

By definition, γ ◦α is an approximation of γ1◦α1: since all
the concrete functions we are dealing with are monotone, the
analysis done with the pair (α, γ ) is a sound abstraction of
the one done with (α1, γ1). It follows that the automatonA�

of Definition 7 is a sound overapproximation of the automa-
ton A of Definition 4. Spurious behaviors can be introduced
mainly because non-deterministic trajectories are conserva-
tively abstracted with a single transition. With α2 we lose
the ability to distinguish between states that are stable in a
region with the ones that are stable in a greater one: we lose
the minimality of the stable predicates, in exchange for the
monotonicity of the concretization function γ2 on �. Also,
α3 overapproximates the disjunctions on K.

The following example highlights the effects of α2 and α3

on the P-stable abstract automaton.

Example 6 Consider the automaton in the state space �

shown in Fig. 6, and the grid induced by P = {ϕ,ψ}. �

is formed by all the possible Boolean combinations of predi-
catesϕ andψ . Letφ0

.= ¬ϕ∧¬ψ and let state s0 be internally
stable in region φ0; note that φ0 ∈ K ⊆ � and {φ0} ∈ ℘(�).
We have that stablemin(s0, φ0) and

{s0} = γ1({φ0}) = (γ1 ◦ γ2)(φ0) = (γ1 ◦ γ2 ◦ γ3)(φ0)

When s0 receives an external event e, it non-deterministically
jumps to states s1, s2 or s3 which, by evolving according to
internal transitions, all stabilize in different regions: states s1
and s2 have an (internal) self-loop in region φ1

.= (ϕ ∧¬ψ)

(in blue) and region φ2
.= (¬ϕ ∧ ψ) (in red), respectively;

the runs reaching s3 instead oscillates between states s3 and
s4, which are inside φ1 and φ2, respectively. The minimality
imposed by predicate stablemin distinguishes these three
combinations with different stabilizing results (i.e., abstract
states):

postss({s0}, e) = {s1, s2, s3},
stablemin(s1, φ1)

stablemin(s2, φ2)

stablemin(s3, φ1∨φ2).

It follows that

α1(postss(γ1({φ0}))) = α1({s1, s2, s3})
= {φ1, φ2, φ1 ∨ φ2},

and the automaton A of Definition 4 has three transitions
φ0 ↪

e−→ φ1,φ0 ↪
e−→ φ2 andφ0 ↪

e−→ (φ1∨φ2).When considering
a next external event, we consider the abstract states individ-
ually, distinguishing the source states between γ1({φ1}) =
{s1}, γ1({φ2}) = {s2} and γ1({φ1 ∨ φ2}) = {s3, s4}. When
using a precise abstraction (α1, γ1), the states that are min-
imally stable in (φ1 ∨ φ2) are different from the states that
are minimally stable in either only φ1 or only φ2.

Whenapproximating the systemusing (α2, γ2)weweaken
the minimality constraint: by merging the three different
regions in their join in �, we have that the states that are
stable in φ1 ∨ φ2 include the ones that are stable in φ1 or φ2

alone. Namely:

(α2 ◦ α1)(postss((γ1 ◦ γ2)(φ0)))

= α2({φ1, φ2, φ1 ∨ φ2}) = φ1 ∨ φ2.

When also applying the Cartesian relaxation (α3, γ3) the
disjunction is overapproximated: the smallest region in K

containing φ1 ∨ φ2 = (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ) is the top
element:

α(postss(γ (φ0)))

= (α3 ◦ α2 ◦ α1)(postss((γ1 ◦ γ2 ◦ γ3)(φ0)))

= (α3 ◦ α2 ◦ α1)({s1, s2, s3})
= (α3 ◦ α2)({φ1, φ2, φ1 ∨ φ2})
= α3(φ1 ∨ φ2)

= (�ϕ,�ψ) = �.

It follows that in the approximated abstract automatonA� of
Definition 7, there is a unique abstract transition φ0 ↪

e−→ �.
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Observe that γ (�) = {s0, s1, s2, s3, s4, s5} includes all the
states, even s0 and s5. When considering the next external
event, we are allowed to start from any state, therefore intro-
ducing spurious runs.

Extending the reasoning done in Sect. 4.2, for each k, k′ ∈
K and transition k ↪

e−→ k′ inA�, let ��(k
e−→ k′) be the set of

runs abstracted by it. Since the stabilization criterion is more
slack, we obtain that �(Run(A)) ⊆ ��(Run(A�)).

The computation of convergence time information can be
extended as well: the time needed by the approximated sys-
tem to stabilize after an external input will be lower than the
one computed for A. Letting

ct� = max{M | k ↪
e,[m,M]−−−−−→→ k′ in A�},

we have that Hct� is a relaxation of Hct and Run(Hct� ) ⊆
��(Run(A�)). Namely, Hct� defines a new (refined) con-
crete semantics that is compliant withA�.Moreover, for each
t ≥ ct�, we know that the abstraction soundly analyzes the
evolution of predicates along the runs of Ht .

6 Algorithm for P-stable abstraction

In this section, we outline the algorithm for the computa-
tion of the approximated P-stable abstract automaton A� of
Definition 7, as an extension of the reachability analysis for
hybrid systems.

6.1 Main procedure

Pseudocode 1 shows the main procedure for the computation
ofA�. It receives as input the hybrid automaton (whose events
are already divided into I and E) and the set of predicates
P. In a nutshell, the abstract automaton is the result of a
reachability driven fixpoint computation performed in the
abstract space K: abstract states are incrementally found and
added to automatonA�, together with the abstract transitions
connecting them.

In the procedure, an abstract state is represented by a pair
〈k, S〉 ∈ K×℘(�), where S tracks the (currently reachable)
set of states that are stable in k. The initial abstract state
〈k0, S0〉 is built at line 4 by the helper function abstractH
(explained in detail in Sect. 6.2): intuitively, this function
takes as inputs a set of states (in this case init(H)) and the
predicates P, and returns the region (S0 ∈ ℘(�)) where the
input states will stabilize, the abstract element (k0 ∈ K) rep-
resenting such a region, and the convergence time (ct0 ∈ R).
The abstract state 〈k0, S0〉 is added as initial state to the
automatonA� and it is used to initialize awaiting list (line 5),
holding the abstract states to be visited (as newly discovered
or updated).

The main loop (lines 6–14) of the procedure analyzes the
elements in the waiting list. At each iteration of the loop, an
abstract state is extracted from the waiting list and the effects
of all the enabled external events in E are considered. The
post image Se of the (single) discrete transition labeled with
e starting from S is computed (line 9) and passed as input
to the function abstractH (line 10), which computes the
target stable state 〈k′, S′〉 reachable from Se and convergence

time ct. The new state and transition k ↪
e,ct−−→ k′ are added to

A� (in lines 11–12); if 〈k′, S′〉 involves newly discovered
information, i.e., if it is the first time that k′ is found, or if it
is already in A� but with a different convergence region S′,
the waiting list is updated accordingly by adding k′ in it. In
Sect. 6.3 we explain in detail how the procedure ‘add_state’
updates the elements in the abstract automaton.

6.2 Computation of˛(S)

Procedure abstractH, shown in Pseudocode 2, is meant
to implement the abstraction function α: it takes a set of
source states S and computes the element k′ (in the Cartesian
abstraction built on P) that characterizes their final stabiliza-
tion. As hinted before, while doing this it also computes the
set S′ of reachable states that are stable in k′ and the conver-
gence time ct.

First, the call to closed_evolveH computes the evolu-
tion of the input set of states in the closed system. Such
reachability analysis can be performed in various ways. We
use the finite powerset of convex polyhedra with a tailored
version of the fixpoint computation from [10, 29], where dis-
crete steps (for the internal transitions only) are interleaved
with calls to the time elapse operator, modeling the continu-
ous evolution steps. All the contributions are conservatively
stored in evolS until a fixpoint is reached. As in other reach-
ability tools using polyhedra [10, 26], a delayed widening
technique [16] can be adopted to guarantee termination: the
user can choose to apply a convergence accelerator after a
parametric number of iterations.

Once the fixpoint of the internal evolution of S has been
computed in evolS , function abstractH proceeds by calling
build_abstract_state, which detects where these states
are stabilizing, i.e., in which predicates of P they can stay
indefinitely. In order to detect stability, we modify the input
hybrid automaton by adding a new variable clock, keeping
track of the time spent during the evolution. This preprocess-
ing step is performed, once for all, at the beginning of the
main procedure (line 2 of Pseudocode 1): for every location
� ∈ Loc, we update inv(�) := inv(�) ∧ (clock ≥ 0) and
flow(�) := flow(�) ∧ ( ˙clock = 1), while for all the discrete

transitions �
a,μ−→ �′ in disc we update
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Pseudocode 1 Build the approximated P-stable abstraction of H.
1: function build_abstraction(H, P)
2: H := add_clock_variable(H);
3: 〈A�,waiting〉 :=〈∅,∅〉;
4: 〈k0, S0, ct0〉 := abstractH(init(H), P);
5: 〈A�,waiting〉 := add_init_state(A�, 〈k0, S0〉, ct0,waiting);
6: while waiting �= ∅ do
7: 〈k, S〉 := pop(waiting);
8: for all e ∈ E such that e enabled in S do
9: Se := postH(S, e);
10: 〈k′, S′, ct〉 := abstractH(Se, P);
11: 〈A�,waiting〉 := add_state(A�, 〈k′, S′〉,waiting);
12: 〈A�,waiting〉 := add_trans(A�, 〈k, e, ct, k′〉,waiting);
13: end for
14: end while
15: return A�;
16: end function

Pseudocode 2 Build the cartesian formula describing the stabilization of S w.r.t. predicates P.
1: function abstractH(S, P)
2: evolS := closed_evolveH(S);
3: 〈k′, S′, ct〉 := build_abstract_state(evolS , P);
4: return 〈k′, S′, ct〉;
5: end function
1: function closed_evolveH(S, P)
2: evolS := S; 	 currently reached states
3: X := S; 	 single iteration
4: while true do
5: X := dpost(X , disccH, invH); 	 internal discrete step
6: X := X↗flowH; 	 add time elapse
7: if X ⊆ evolS then 	 fixpoint check
8: return evolS ;
9: end if
10: if X ⊆|clock evolS then 	 untimed fixpoint test
11: 	 here X has been visited twice, with different clock values
12: X := X .remove_upper_bounds(clock); 	 let clock diverge
13: end if
14: evolS := evolS ∪ X ; 	 add the contribution of the new iteration
15: end while
16: return evolS ;
17: end function
1: function build_abstract_state(evolS , P)
2: let n = |P|; let k′ = (k′1, . . . , k′n); let ct = [m, M];
3: (k′1, . . . , k′n) :=(�1, . . . ,�n); S′ := evolS ; [m, M] = [0, 0];
4: for all i ∈ {1 . . . n} do
5: t+ :=maxclock(evolS ∩ Pi );
6: t− :=maxclock(evolS ∩ ¬Pi );
7: if t+ = +∞ and t− �= +∞ then
8: k′i := pi ;
9: S′ := S′ ∩ Pi ;
10: M :=max{M, t−};
11: else if t+ �= +∞ and t− = +∞ then
12: k′i := pi ;
13: S′ := S′ ∩ ¬Pi ;
14: M :=max{M, t+};
15: end if
16: end for
17: m :=minclock(S′);
18: return 〈k′, S′, ct〉;
19: end function
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μ :=
{

μ ∧ (clock′ = 0), if a ∈ E;
μ ∧ (clock′ = clock), if a ∈ I .

Having computed the closed evolutions of S in this extended
system, we identify stability in all the predicates in which
evolS has an unbounded clock.

This is where the benefits of the Cartesian approximation
are evident. As a matter of fact, this step can be implemented
with a linear number of checks, testing one predicate Pi ∈ P

at a time and building the abstract element (k′1, . . . , k′n) ∈ K,
where n = |P|: if the clock variable is unbounded in Pi ∩
evolS and bounded in ¬Pi ∩ evolS then we assign k′i = pi
and update S′ and M accordingly (lines 8–10 of function
build_abstract_state); similarly, if the clock is bounded
in Pi ∩ evolS and unbounded in¬Pi ∩ evolS , thenwe assign
k′i = pi (lines 12–14). If the clock variable is unbounded in
both Pi ∩ evolS and ¬Pi ∩ evolS , then there are stable
states in both Pi and ¬Pi , so that k′i = �i . In this way, even
ifwd- rtc(H, P) does not hold, the algorithm automatically
enlarges the formula and ensures that the abstract state k is
reached in a bounded time.

The introduction of variable clock requires some addi-
tional cares in the fixpoint computation of evolS (function
closed- evolveH). When checking if the states reached
at the new iteration are included in the already computed
ones, we need to discard the diverging clock variable.4 Given
two polyhedra, the untimed inclusion test P1 ⊆ |clockP2

can be checked by comparing polyhedra P1 and P2 pro-
jected on variables in Var, i.e., removing the variable clock.
If X ⊆ |clock evolS (knowing that X �⊆ evolS) then X holds
states that have been revisited after some time, i.e., along a
lasso-shaped trace with a positive duration. We need to make
the time diverge along it, intuitively storing the fact that its
states can be visited infinitely often. Therefore, we drop the
superior constraints for clock in X (this can be simply done
by adding a ray generator [11]) and continue with the iter-
ation. When X will be visited again, the (timed) fixpoint of
line 7 will succeed.

6.3 Computation of �(k)

When it comes to compute postss(γ (k), e), the stable-
switching constraint forces to identify the states in γ (k) that
are not transient, i.e., that are actually stable in k. We exploit
the fact thatA� is built on the fly, following the contributions
of each abstract transition until fixpoint: in this process, every
new location is introduced (or visited again) by finding states
that are stable in it as the result of a closed evolution. This is
why, in procedure build_abstraction, we keep track of the
states S associated with every currently discovered state k in

4 This reasoning is similar to the one applied in [22] for the detection
of lasso-shaped trace with diverging clock variables.

Fig. 7 Abstraction of the stable-switching runs on a P grid, with k0 =
(ϕ ∧ ¬ψ) and k1 = (φ ∧ ψ)

the automatonA�. Namely, each abstract state k is associated
with an increasing chain of set of states {Sik}i≥0, where Sik is
the set of states associated with k up to iteration i of the main
loop. The fixpoint of this chain represents all the states that
are stable in k: we obtain that post�(k, e) = α(postss(R, e)),
where R = lfp⊆{Sik}i≥0.

Since the sequence {Sik}i≥0 is not guaranteed to converge,
in order to effectively compute its least fix point we use
widenings when introducing a new element. Namely, let
〈k, S′〉 be the new pair obtained at line 10 of Pseudocode 1
at iteration i + 1. Procedure ‘add_state’ will compute

Si+1k
.=

{
Sik if S′ ⊆ Sik

Sik∇
(
Sik ∪ S′

)
otherwise.

Widenings can be applied at each iteration or delayed after a
parametric number of iterations in which Si+1k

.= Sik ∪ S′.
This technique has a double benefit: for the sake of effi-

ciency, it allows us to exploit previous computations to obtain
the stable states in k; for the sake of precision, it restricts the
search to states that are reachable in Hss.

The following example shows how this procedure can
improve the result by removing unreachable behaviors.

Example 7 Consider the automaton H in the state space �

shown in Fig. 7, and the grid induced by P = {ϕ,ψ}.
The system is initialized in state s0 and its evolution in the

closed system (i.e., only considering internal events) reaches
a self-loop in state s1: since s1 |� ϕ and s1 �|� ψ , the abstrac-
tion algorithm assigns k0 := (ϕ ∧ ¬ψ) and Sk0 := {s1},
which are used to initialize the waiting list.

After extracting 〈k0, Sk0〉 from thewaiting list, the external
event e1 is considered, leading to the computation of Se1 =
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Fig. 8 Two tanks hybrid system

{s2}; the following evolution in the closed system reaches
stability in s3 and the new abstract state is built as k1 =
(ϕ ∧ ψ) with Sk1 = {s3} (which are in turn added to the
waiting list).

When processing 〈k1, Sk1〉 from the waiting list, state s3
is considered as a source state for e2, leading to Se2 = {s0},
whose internal evolution converges once again in s1; since s1
already belongs to Sk0 , there is no need to update it (namely,
Sk0 ∇ {s1} = Sk0 ); hence, the waiting list is kept empty
and the algorithm terminates after detecting a fixpoint. The
resulting automatonA� is shown in the bottom of the figure.

This example shows the precision improvement of com-
puting the stable states in γ (k) by keeping track of the
currently reached states in the closed evolutions.When deter-
mining post�(k1, e2) one can start from Sk1 = {s3} only. In
this way, s4 is not considered, even if it is stable in k1, because
it is not reachable inHss.

This would result in an overapproximation of the automa-
ton: the evolutions starting from {s3, s4} would stabilize in
{s1, s5}, and � would be the target state.

7 Two tanks example

In this section, we show an application of our abstraction
on a system composed by two tanks, shown in Fig. 8.

The external events of the system act on the incoming
flows flow1 and flow2: when open, they inject in the cor-
responding tank a constant flow of water. Both tanks start
empty. If flow1 is opened, the level of Tank1 increases accord-
ing to dynamics L̇1 = 1.When L1 reaches level 10, it triggers
an internal discrete interaction between the two tanks, open-
ing a connection: the flow is redirected to Tank2, which starts
receiving the same amount of water incoming in Tank1. If
flow2 is opened, the derivative L̇2 for the level of Tank2

Fig. 9 Reachable states space projected on variables L1 (left-hand side)
or L2 (right-hand side) and clock with time horizon constraint 0 ≤
clock ≤ 30

Fig. 10 Closed evolution of the system of Fig. 8 to a new P-stable state
after processing an external event, projected on clock and L1 (green
line) or L2 (blue line)

increases of 2 units. Tank2 internally regulates its level by
enabling/disabling its three possible exits exit1, exit2 and
exit3: these are automatically opened when L2 reaches lev-
els 5, 15 and 25 and automatically closed when L2 decreases
under levels 4, 10 and 20, respectively. When open, exit1 and
exit2 cause a decrease of 1 unit in the derivative L̇2, whereas
exit3 causes a decrease of 2 units.

In Fig. 9, we show the result of a classical reachability
analysis, relating the level L2 of Tank2 with the time vari-
able clock, bounded within 0 ≤ clock ≤ 30. Even though it
correctly represents the reachable set (represented in the fig-
ure as the union of several, possibly overlapping polyhedra),
the plots do not convey any information on the dynamic of
the system. We can infer that Tank2 cannot be filled before
clock = 20, but it is impossible to obtain information on the
effects of single events, the corresponding stabilization and
the associated convergence time. Moreover, in order to take
into account timing information, which requires the addition
of the clock variable, the analysis must be limited to a fixed
time horizon, since otherwise the reachability analysis will
never find a fixpoint due to the clock variable diverging.

To better understand the system,we analyze the evolutions
triggered by each event. From the initial condition in which
both tanks are empty, if only flow1 is opened, Tank1 stabilizes
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Fig. 11 Timed P-stable abstraction for the two tanks system

with L1 = 10 and Tank2 stabilizes with L2 = 5, due to the
opening of exit1 (see Fig. 10).

If instead, only flow2 is open, Tank2 increaseswith L̇2 = 2
until reaching L2 = 5; then, due to the opening of exit1, the
level still increases in Tank2 with L̇2 = 1, so that it stabilizes
its level at L2 = 15, due to the opening of exit2.

Finally, if flow2 is open after flow1, i.e., after Tank1 is
already filled, the level of water in Tank2 oscillates between
level 25 and 20 due to the opening and closing of exit3.

In Fig. 11, we show the abstract automaton obtained by
the abstraction, with P = {(L2 ≥ 10), (L2 = 0), (L2 ≤
5), (L2 ≤ 15), (20 ≤ L2 ≤ 25)} as the set of predicates and
E = {o1, o2, c2} of external events, corresponding to the
opening of flow1 and the opening/closing of flow2. Observe
that these are the input of the analysis that the user must
provide, depending on what features they want to analyze or
what events must be considered: as an example, one could
also add the simultaneous opening of the two flows in E .

The abstract automaton makes evident what are the con-
sequences of each chosen event. Every abstract transition is
associated with a precise evolution process and with timing
information: the tables of Fig. 12 show the P-stable region
computed for each of the reachable abstract states and the
convergence time intervals derived for each transition (i.e.,
the values 〈k, Sk, ct〉 resulting from the fixpoint computation
of Pseudocode 1).

The evolutions presented in Figs. 10 and 13 are the states
computed by Algorithm closed_evolveH of Pseudocode
2 when computing the respective transitions. The procedure
performs a reachability analysis, starting from the stable
states in the source abstract location. The computation is done
in a space with the clock variable, without time horizon. The
clock variable is used to compute the next stable state: the

Fig. 12 Stable states and convergence times of the two tanks system

algorithm detects stable loops by searching for states that are
revisited with different clock values.

For example, Fig. 13a shows the evolution of the stable
states in k3 (i.e., 20 ≤ L2 ≤ 25) after the closing of flow2.
In the states L2 = 10, the clock variable is unbounded and a
fixpoint is obtained. Hence, the next P-stable states are com-
puted by checking at the grid of predicates, shown as dashed
gray lines in the figure. The most precise region in the grid
including the stable states is (10 ≤ L2 ≤ 15) = k5. Finally,
the convergence time [5, 10] is computed by taking the lower
and upper clock values for the entering in the detected stable
region, as shown with red lines in the figure.

The stable states stored for the newly discovered abstract
location k5 are the state of the evolution after the convergence
time: 10 ≤ L2 ≤ 15. This set is used to repeat the procedure
to compute the effect of event o2 on k5. The evolution shown
in Fig. 13b deserves some additional considerations. Stabil-
ity is given by an oscillating behavior due to the opening and
closing (i.e., discrete transitions) of exit3. The classic reach-
able states computation would fail in detecting the fixpoint,
since the clock variable changes every time a state is revis-
ited. For this reason we perform an untimed check in line
10 of Algorithm closed_evolveH. In this case, it detects
that the states discovered when clock ∈ [15, 20] are exactly
the same states reached previously, when clock ∈ [5, 10].
Hence, the algorithm removes the upper bounds for clock,
and “lets it diverge” in an infinite strip.

8 Experimental evaluation

8.1 Implementation

A prototype implementation for the algorithm of Sect. 6 has
been developed on top of a new stand-alone analyzer. The
analyzer accepts an automaton described in a syntax similar
to Timed nuXmv [22], extendedwith features from theHyDI
language [21]. The hybrid automaton is defined with a set
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Fig. 13 Closed evolution of the system of Fig. 8 to a new P-stable state
after processing an external event, projected on clock and L2. Red lines
show the min and max convergence time

of Boolean variables B (including the Boolean encoding of
enumerative variables) and continuous variables X . Initial
condition, invariant, flow and transition relation are provided
asLRA formulae on these variables: initH, invH ∈ �(B, X)

and discH ∈ �(B ∪ B ′, X ∪ X ′). The accepted dynamic
is piecewise-constant, i.e., flowH ∈ �(B, Ẋ). A continuous
variable x can be also declared of type real, resp. clock, to
express that flowH entails ẋ = 0, resp. ẋ = 1.

LRA formulae are represented as Multi-Terminal Binary
Decision Diagrams (MTBDDs) having as leaves (finite sets
of) convex polyhedra. These are implemented by combining
the CUDD library [37] and the PPLite library [9, 11] for the
handling of the Boolean and continuous part, respectively.

The analyzer is able to perform a sound fixpoint reach-
ability analysis of the hybrid automaton given in input.
Additionally, given a set of predicates, it is able to build the
P-stable abstraction.

Since the input language is quite low level, the analyzer
accepts models compiled by other tools. For example, the
two tanks system described in Sect. 7 was initially modeled
by exploiting the full expressivity of Timed nuXmv, which
then provided the flat model to analyze.

We also experimented the interaction with Norma [5], a
tool for the analysis of relay-based circuits.Norma provides
a graphical interface to model electro-mechanical circuits
and translate them in SMVmodels. It is currently used by the
Italian Railway Network to digitalize and analyze Railway
Interlocking Systems. With the Norma front-end we can
model various circuits and validate the P-stable abstraction
results. For example, we used Norma to model the circuit of
Fig. 1 and experimentwith it by changing electro-mechanical
features (like the delay of the relay component) or by adding
new components.

8.2 Scalability evaluation

To experimentally evaluate the scalability of our analyzer,
we programmatically generated several models representing

Fig. 14 Example of the R configuration, with n = 2, � = 1 and c = 1.
Internal discrete interactions between a relay RLi and its switch RLSi
are denoted in red, externally controlled switches Si in blue. The S
configuration corresponds to consider all Si with i < n always closed

relay-based circuits with run-to-completion behaviors. Let a
circuit be a set of components connected by wires, and let
a network be a set of circuits, possibly connected by logi-
cal bindings between relays and contacts (recall the naming
convention for which a relay named RL controls a switch
named RLS). The generated models are obtained from the
general pattern mode_n_�_c, where mode is a label identi-
fying a specific subclass of models and n ≥ 0, � ≥ 0 and
c ≥ 1 are natural parameters controlling the complexity of
the model. Intuitively, mode_n_�_c describes a collection of
c identical and independent replicas of the same network,
composed by a linear sequence of n + 1 circuits, called the
“stem portion”, possibly connected to a sequence of other �

circuits, called the “lasso portion”.
The i-th circuit in the stem portion (where n > i > 0)

is composed by a voltage generator, two switches (Si and
RLSi+1), a delayed relay (RLi ) and a ground, connected in
series. The relay RLi of the i-th circuit controls the switch
RLSi of the (i − 1)-th circuit (on its right): RLi is active if
and only if RLSi is closed.

The i-th circuit in the lasso portion is composed by a volt-
age generator, a switch RLlSi−1, a relay RLli and a ground,
connected in series; when charged, relay RLli controls the
closing of the corresponding switch RLlSi in the (i + 1)-th
component, if i < �.

Circuit 0 has a lamp L , which fires only if it is traversed by
enough current, and, when � > 0, is provided with another
switch RLlS�. The latter is initially closed and is controlled
by the last circuit of the lasso portion: RLl� is active if and
only if RLlS� is open. Hence, the relay charging process in
the lasso portion produces an oscillating behavior, making
the lamp flash with a frequency that depends on the relays’
delays.

In Fig. 14, we show the instance R_2_1_1: since c = 1,
we have a single network; since n = 2, the first n + 1 = 3
circuits (from left to right) form the stem portion; and, since
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Table 1 P-stable abstraction of models with run-to-completion behaviors

H A� H A�

Test B X E P Loc Trans Time(s) Test B X E P Loc Trans Time(s)

S_1_0_1 5 7 2 2 2 4 <1 S_1_1_3 18 54 6 3 22 132 4476

S_1_1_1 7 18 2 1 2 4 <1 S_1_2_3 24 75 6 3 – – TO

S_1_2_1 9 25 2 1 2 4 <1 S_2_0_3 18 42 6 12 8 48 8

S_1_3_1 11 32 2 1 2 4 1 S_2_1_3 24 75 6 9 – – MO

S_1_4_1 13 39 2 1 2 4 2 S_3_0_3 24 63 6 18 8 48 218

S_1_5_1 15 46 2 1 2 4 10 S_3_1_3 30 96 6 15 – – TO

S_2_0_1 7 14 2 4 2 4 <1 S_1_0_4 16 28 8 8 16 128 2

S_2_1_1 9 25 2 3 2 4 <1 S_1_1_4 24 72 8 4 – – TO

S_2_2_1 11 32 2 3 2 4 1 S_2_0_4 24 56 8 16 16 128 185

S_2_3_1 13 39 2 3 2 4 2 S_2_1_4 32 100 8 12 – – TO

S_2_4_1 15 46 2 3 2 4 11 S_1_0_5 19 35 10 10 32 320 19

S_2_5_1 17 53 2 3 2 4 36 S_1_1_5 29 90 10 5 – – MO

S_3_0_1 9 21 2 6 2 4 <1 R_2_0_1 9 18 4 4 4 16 <1

S_3_1_1 11 32 2 5 2 4 <1 R_2_1_1 11 29 4 3 4 16 <1

S_3_2_1 13 39 2 5 2 4 2 R_2_2_1 13 36 4 3 4 16 2

S_3_3_1 15 46 2 5 2 4 7 R_2_3_1 15 43 4 3 4 16 10

S_3_4_1 17 53 2 5 2 4 32 R_2_4_1 17 50 4 3 4 16 44

S_3_5_1 19 60 2 5 2 4 122 R_2_5_1 19 57 4 3 4 16 181

S_4_0_1 11 28 2 8 2 4 <1 R_3_0_1 12 29 6 6 7 42 <1

S_4_1_1 13 39 2 7 2 4 1 R_3_1_1 14 40 6 5 7 42 5

S_4_2_1 15 46 2 7 2 4 8 R_3_2_1 16 47 6 5 7 42 28

S_4_3_1 17 53 2 7 2 4 33 R_3_3_1 18 54 6 5 7 42 121

S_4_4_1 19 60 2 7 2 4 113 R_3_4_1 20 61 6 5 7 42 405

S_4_5_1 21 67 2 7 2 4 375 R_3_5_1 22 68 6 5 7 42 1303

S_5_0_1 13 35 2 10 2 4 <1 R_4_0_1 16 40 8 8 11 88 10

S_5_1_1 15 46 2 9 2 4 6 R_4_1_1 18 51 8 7 19 152 1692

S_5_2_1 17 53 2 9 2 4 28 R_4_2_1 20 58 8 7 14 112 6590

S_5_3_1 19 60 2 9 2 4 102 R_4_3_1 22 65 8 7 – – TO

S_5_4_1 21 67 2 9 2 4 301 R_5_0_1 19 51 10 10 16 160 102

S_5_5_1 23 74 2 9 2 4 1237 R_5_1_1 21 62 10 9 – – TO

S_1_0_2 9 14 4 4 4 16 <1 R_2_0_2 16 36 8 8 19 152 17

S_1_1_2 13 36 4 2 8 32 22 R_2_1_2 20 58 8 6 22 176 4162

S_1_2_2 17 50 4 2 7 28 983 R_2_2_2 24 72 8 6 – – TO

S_1_3_2 21 64 4 2 4 16 2321 R_3_0_2 22 58 12 12 65 780 1649

S_1_4_2 25 78 4 2 – – MO R_3_1_2 26 80 12 10 – – MO

S_2_0_2 13 28 4 8 4 16 <1 R_2_0_3 22 54 12 12 98 1176 1328

S_2_1_2 17 50 4 6 6 24 160 R_2_1_3 28 87 12 9 – – MO

S_2_2_2 21 64 4 6 4 16 918 P_1_0_1 3 8 2 1 2 4 <1

S_2_3_2 25 78 4 6 – – TO P_2_0_1 8 16 2 1 2 4 <1

S_3_0_2 17 42 4 12 4 16 2 P_1_0_2 5 16 4 2 4 16 <1

S_3_1_2 21 64 4 10 4 16 527 P_2_0_2 15 32 4 2 – – TO

S_3_2_2 25 78 4 10 – – MO P_1_0_3 6 24 6 3 8 48 <1

S_4_0_2 21 56 4 16 4 16 38 P_2_0_3 21 48 6 3 – – TO

S_4_1_2 25 78 4 14 – – TO N_1_0_1 13 42 4 2 4 10 <1

S_5_0_2 25 70 4 20 4 16 437 N_1_1_1 14 61 2 2 – – TO
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Table 1 continued

H A� H A�

Test B X E P Loc Trans Time(s) Test B X E P Loc Trans Time(s)

S_5_1_2 29 92 4 18 – – TO N_2_0_1 18 65 6 3 7 29 3

S_1_0_3 12 21 6 6 8 48 <1 N_3_0_1 24 88 8 4 6 30 1558

� = 1, we also have the lasso portion, which is formed by
the two rightmost circuits.

The described setting is easily adjustable to increase the
size of the model, change the stable behaviors or the conver-
gence times. The mode label can take four possible values,
with the following meaning:

• S (sequence): the only external event is the open-
ing/closing of the leftmost switch Sn , which is initially
open; the other switches Sn−1, …, S1 in the stem por-
tion are initially closed and cannot change their status.
The lamp is supposed to be fired (for the first time) after
n · [m, M] units of time from the closing of the switch
Sn , where [m, M] is the delay of the relays.
• R (receptive): the external environment controls all the
switches Sn , Sn−1, …, S1 in the stem portion. Here, the
lamp is supposed to be fired only if all the switches are
closed, with a delay that depends on the distance of the
switch that was closed last.
• N (Norma): these models (which were not considered
in [12]) are equivalent to those having the R label, but
they have been obtained via manual modeling using the
Norma front-end.
• P (pwc dynamic): these models are similar to those
labeled by S, but they differ in the implementation of the
delayed relays. In all the previous cases, a delayed relay is
implemented with a local clock variable and additional
locations, corresponding to transient states “charging”
and “discharging”, as in [20]. In the P models, instead,
the capacitor inside each RL is explicitly modeled and its
flow is approximated with a piecewise-constant dynamic
with a (static) location splitting.5

TheP-stable abstraction for eachmodel considers as pred-
icates of interest the status of the lamp and all relays.

Table 1 shows the results of the performed tests. Column
“test” represents the configuration of themodelmode_n_�_c.
Column “B” and “X” hold, respectively, the number of
Boolean and continuous variables (including a variable for

5 A similar technique to handle piecewise-affine flows is adopted also
in tools PHAVer [26] and PHAVerLite [10]: in these analyzers, an on-
the-fly location splitting approximates a piecewise-linear dynamic (like
c · v̇C = iC ) with a piecewise-constant one, up to a desired level of
precision.Here insteadwe have explicitly split the location in themodel,
and manually computed the piecewise-constant overapproximation on
the lower and upper bounds.

the global time) in the concretemodelH. Column “E” reports
the number of external events,while “P” is the number of con-
sidered predicates. Columns “A�loc” and “A�trans” describe
the result of the P-stable abstraction procedure, showing the
number of abstract locations and transitions, respectively.
Finally, column “time” reports the time spent in the ana-
lyzer: this value includes the compiling phase, in which the
MTBDDs for the automaton’s INIT, INVAR, TRANS,
FLOW and predicates P are built, before being analyzed by
the P-stable abstraction algorithm. All benchmarks ran on a
2.40GHz processor, with a time limit set to 5h and a memory
limit set to 64GB (labels TO and MO are shown when these
limits are reached).

The reported results were obtained performing reacha-
bility analysis in the domain of convex polyhedra, with
widening applied at each add_state call (see Sect. 6.3). This
domainmay cause overapproximations in the computation of
closed evolutions. As an example, the abstraction of R with
n = 2, � = 0, c = 2 has more states than the expected com-
position of abstractions of the same test with c = 1 (recall
that the replicas are fully independent from each other). New
abstract locations are obtained when enlarging the stable
states and introducing spurious behaviors. By running the
same test in the domain of finite powerset of polyhedra and
with a delayed widening technique, we obtain exactly the
composition of the abstractions of the single replica of the
network in 980 seconds.

The benchmark suite contains almost one hundred bench-
marks including the 34 tests that were presented in [12] and
new ones, generated in the same way but with higher param-
eters. Also the N category is new. While the algorithm for
P-stable abstraction is in practice unchanged with respect to
the implementation of [12], the analyzer was considerably
improved, especially in the interaction between CUDD and
PPLite libraries. On the common 34 benchmarks, the new
implementation achieves an average speedup factor of 40.

9 Conclusions

In this paper, we tackled the problem of synthesizing an
abstract representation of the stabilizing behavior of hybrid
automata.We definedP-stable abstractions that have two key
distinguishing features: first, they provide the most precise
account—with respect to the given set of predicates—of the
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evolution between stable conditions in response to external
events; second, they include timing information derived from
the duration of the stabilization process, which provides suit-
able values for slow-switching control. We proved that the
problem of synthesizing P-stable abstractions can be cast in
the framework of Abstract Interpretation, and presented a
general synthesis algorithm which allows approximating P-
stable abstractions with precision depending on the abstract
domain being adopted. We showed that P-stable abstractions
are very informative from a representational standpoint. The
experimental evaluation demonstrates the applicability of the
procedure to models representing relay-base circuits, with
substantial improvements with a previous implementation.

In the future, we will investigate the use of symbolic
techniques such as SMT to complement Abstract Interpre-
tation and further improve the scalability and the precision
of the engine. On the application side, the synthesis of P-
stable abstraction is currently being integrated within an
industrial tool chain of the Italian Railway Network [4, 20].
Specifically, the aim is to reverse-engineer legacy relay-based
railways interlocking systems, using the P-stable abstraction
as reference specification for a computer-based equivalent
solution.
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