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Abstract

We first prove an extension of the Bourgain–Sarnak–Ziegler theorem, relaxing some conditions
and giving quantitative estimates. Then we apply our extension to bound certain exponential
sums, where the coefficients come from modular forms and the exponential involves polynomial
sequences of any degree.

1. Introduction

A well-known theorem by Bourgain–Sarnak–Ziegler [1] (BSZ theorem for short), see also Kátai [11]
for an earlier version, asserts that given a small parameter τ > 0 and two arithmetical functions a(n)

and φ(n), with |a(n)| ≤ 1 multiplicative and |φ(n)| ≤ 1 satisfying∣∣∣ ∑
m≤M

φ(pm)φ(qm)

∣∣∣ ≤ τM

for all primes p, q ≤ e1/τ , p �= q and M sufficiently large, then for N large enough one has∣∣∣ ∑
n≤N

a(n)φ(n)

∣∣∣ ≤ 2
√

τ log(1/τ)N.

The BSZ theorem has many interesting applications, typically in the framework of Sarnak’s Möbius
randomness conjecture [20], where a(n) = μ(n) while φ(n) ranges from classical exponential cases
to several new examples coming from dynamical systems.

†E-mail: mattia.cafferata@unife.it
‡E-mail: perelli@dima.unige.it
§Corresponding author: alessandro.zaccagnini@unipr.it
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In this paper, we first establish an extension of the BSZ theorem, which, essentially, includes
multiplicative functions a(n) that are suitably bounded on average. Then we apply it to bound certain
polynomial exponential sums with modular coefficients. As it will be clear in a moment, such an
extended BSZ theorem may be applied to a variety of other cases.

Throughout the paper, p denotes a prime number, |A| denotes the cardinality of a set A ⊂ N,
f � g means f � g � f and an empty product equals 1. We prove an extension of the BSZ theorem
under the following conditions.

Assumption. Let x be sufficiently large and H = H(x) and K = K(x) be parameters satisfying

logδ x < H < K < xδ (1.1)

with some 0 < δ ≤ 1/10, say, and let

P = {z < p ≤ w} and P =
∏
p∈P

p.

Suppose that a(n) is a multiplicative arithmetical function satisfying a(p) � 1 and φ(n) is a bounded
arithmetical function. Moreover, suppose that the following assumptions are satisfied whenever

H2/2 ≤ z < w ≤ 2K2 :

(a) if P = 1 or P = P and y � x/w, then as x → ∞ we have∑
n≤y

(n,P)=1

|a(n)|2 � y
∏
p|P

(
1 − 1

p

)
,

(b) if w − z � √
z and y � x/z, then as x → ∞ we have∑

p,q∈P
p �=q

∣∣∣ ∑
m≤y

φ(pm)φ(qm)

∣∣∣ � τ
zy

log2 z
with some τ = τ (x) ≤ 1,

where the constants in the �-symbols may depend at most on a(n), φ(n) and δ.

Note that τ in (b) represents, essentially, the saving over the trivial bound. Finally, let

S(x) =
∑
n≤x

a(n)φ(n). (1.2)

The extension of the BSZ theorem is as follows.

Theorem 1. Under the above assumptions, as x → ∞ we have

S(x) � x
( 1√

H log H
+ √

τ + log H

log K

)
,

where the constant in the �-symbol depends at most on a(n), φ(n) and δ.
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We remark that the assumptions in Theorem 1 may be somewhat relaxed.
Turning to the applications to exponential sums, let e(θ) = e2π iθ and

Sa(x, ξ) =
∑
n≤x

a(n)e(ξ(n)).

We are interested in the case where a(n) is related to the normalized coefficients of a Hecke eigenform
f for the full modular group and ξ(n) is a polynomial with real coefficients, although it is clear that
other situations can be handled by the arguments in the paper. In particular, we consider the cases
a(n) = λf (n), the normalized Fourier coefficients of f , and a(n) = μf (n), the Dirichlet inverse of
λf (n). In both cases, a(n) is multiplicative and satisfies

|a(n)| ≤ d(n), (1.3)

d(n) being the divisor function.
There is a vast literature on estimates for Sa(x, ξ), starting with the classical bounds for the linear

case, where ξ(n) = αn with α ∈ R; see for example Perelli [15], Jutila [8] and Fouvry–Ganguly [3].
In this paper, we investigate some nonlinear cases. When

ξ(n) =
N∑

ν=0

aνnκν , κ0 > . . . > κN > 0, aν ∈ R (1.4)

and κ0 ≤ 1/2, certain smoothed versions S̃λf
(x, ξ) of Sλf

(x, ξ) are well understood as special cases
in the framework of the theory of nonlinear twists of L-functions developed by Kaczorowski–Perelli
in a series of papers. Moreover, the same theory gives information on S̃λf

(x, ξ) for certain families of
functions ξ(n) of type [1.4] with leading exponent κ0 > 1/2. We refer to Kaczorowski–Perelli [9;10]
for these results; see also Jutila [7]. However, in the highly structured case where ξ(n) is a polynomial
of degree k, non-trivial bounds for Sλf

(x, ξ) or S̃λf
(x, ξ) are treated in the literature only when k = 2;

see Pitt [18] and few other papers stemming from it. Indeed, it is apparently difficult to proceed to
higher degrees by the kind of arguments used in [18], as these depend on delicate estimates involving
sums of twisted Kloosterman sums. Moreover, at present, general polynomials escape the analysis in
[7],[9] and [10].

Although the bounds for Sλf
(x, ξ) in the nonlinear cases reported above show a power saving, it

is nevertheless interesting to get weaker, but non-trivial, results for polynomials of arbitrary degree
ξ(n) and coefficients λf (n) and μf (n).

Theorem 2. Let P(n) be a polynomial with real coefficients and degree k. Then

Sλf
(x, P) � x

log log x

log x
and Sμf

(x, P) � x
log log x√

log x
,

where the constants in the �-symbols depend only on f and k.
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It will be clear from the proof that definitely better bounds can be obtained when the coefficients
of P(n) satisfy certain diophantine properties; see Section 3.2.

In order to have the correct meaning of non-trivial bounds in the present case, we recall that

x

logα x
�

∑
n≤x

|λf (n)| � x

logβ x
(1.5)

with α = 0.211... and β = 0.118..., see Wu [22], while Elliott–Moreno–Shahidi [2] have shown that

∑
n≤x

|λf (n)| ∼ c
x

logγ x
, (1.6)

with a certain constant c = c(f ) > 0 and γ = 1 − 8/(3π) = 0.151..., under the assumption of a
strong form of the Sato–Tate conjecture. The referee pointed out that the known form of the Sato–Tate
conjecture should imply at least that

∑
n≤x

|λf (n)| = x

(log x)γ+o(1)
,

since the distribution of |λf (p)| is understood very well. Similar estimates hold for |μf (n)| as well.
Since the bounds in Theorem 2 are smaller than the left-hand side of [1.5], and hence than the

right-hand side of [1.6] as well, we may regard Theorem 2 as a quantitative form of orthogonality
of λf (n) and μf (n) to the exponentials e(P(n)). Moreover, Theorems 1 and 2 suggest the possibility
of an extension of Sarnak’s Möbius randomness conjecture [20] to more general Möbius functions,
namely the Dirichlet coefficients of 1/L(s) for a suitable class of L-functions L(s). A candidate for
such a class is the primitive automorphic L-functions, of which the Hecke L-functions L(s, f ) are
simple examples. For example, thanks to Theorem 1, some of the randomness results, already known
for μ(n) via the BSZ theorem, should be transformable into randomness results for μf (n) in a rather
direct way.

A major support to the Möbius randomness conjecture is provided by the fact that it follows from
the, a priori unrelated, Chowla conjecture; see [20]. One could therefore set up suitable extensions of
these two conjectures and see if a similar implication holds between such extensions. However, this
is apparently more tricky. Indeed, choosing for example μf (n) as a replacement of μ(n), a non-trivial
bound for the extended Möbius randomness conjecture requires a saving of, roughly, logγ x as in
[1.6]. This adds some potential difficulties to be faced in such a procedure.

2. Proof of Theorem 1

We always assume that x is sufficiently large.
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2.1. Set up

For simplicity, we assume that H and K in [1.1] are integers. Let ν ∈ [H, K],

Iν = ((ν − 1)2, ν2], Pν =
∏

(H−1)2<p≤ν2

p,

Pν = {p ∈ Iν}, Mν = {
m ∈ [1,

x

ν2
] : (m, Pν) = 1

}
,

PνMν = {pm : p ∈ Pν , m ∈ Mν},

I =
⋃

H≤ν≤K

PνMν and J = [1, x] \ I;

intervals are always meant as subsets of N. Note that each n ∈ PνMν can be written in a unique
way as n = pm with p ∈ Pν and m ∈ Mν , hence |PνMν | = |Pν ||Mν |, and that PνMν ⊂ [1, x].
Moreover, the sets PνMν are pairwise disjoint for H ≤ ν ≤ K.

Later on, we will need certain bounds related to the sets Pν , for H ≤ ν ≤ K. Clearly, in view of
the definition of Pν , the Brun–Titchmarsh theorem immediately implies that

|Pν | � ν

log ν
. (2.1)

Moreover, since by [1.1], we have K2 ≤ x2δ , a standard sieve estimate gives

∣∣{n ∈ [1, x] : n has no prime factors in
⋃

H≤ν≤K

Pν

}∣∣ � x
∏
p|PK

(
1 − 1

p

)
, (2.2)

see for example Halberstam-Richert [4, Theorem 3.5], and by Mertens’ theorem we have

∏
p|Pν

(
1 − 1

p

) � log H

log ν
. (2.3)

Finally, we split S(x) in [1.2] as

S(x) =
∑
n∈I

a(n)φ(n) +
∑
n∈J

a(n)φ(n) = SI(x) + SJ (x), (2.4)

say.
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2.2. Estimating SI(x)

We write

SI(x) =
∑

H≤ν≤K

( ∑
pm∈PνMν

a(pm)φ(pm)
)

=
∑

H≤ν≤K

SI,ν , (2.5)

say. If pm ∈ PνMν , then we have (p, m) = 1, hence by the multiplicativity of a(n), assumption (a)
with the choice y = x/ν2 and P = Pν , and [2.3] we get

|SI,ν | =
∣∣∣ ∑

m∈Mν

a(m)
∑

p∈Pν

a(p)φ(pm)

∣∣∣
≤

( ∑
m∈Mν

|a(m)|2
)1/2( ∑

m∈Mν

∣∣∣ ∑
p∈Pν

a(p)φ(pm)

∣∣∣2)1/2

�
( x log H

ν2 log ν

)1/2( ∑
m≤x/ν2

∣∣∣ ∑
p∈Pν

a(p)φ(pm)

∣∣∣2)1/2
.

(2.6)

However, thanks to assumption (b) with the choice y = x/ν2 and P = Pν , in view of [2.1], a(p) � 1
and φ(n) � 1 we have

∑
m≤x/ν2

∣∣∣ ∑
p∈Pν

a(p)φ(pm)

∣∣∣2 �
∑

p,q∈Pν

∣∣∣ ∑
m≤x/ν2

φ(pm)φ(qm)

∣∣∣
� |Pν |x

ν2
+

∑
p,q∈Pν

p �=q

∣∣∣ ∑
m≤x/ν2

φ(pm)φ(qm)

∣∣∣
� x

ν log ν

(
1 + τν

log ν

)
,

(2.7)

where τ = τ(x) ≤ 1.
From [2.5], [2.6] and [2.7], we finally get

SI(x) �
∑

H≤ν≤K

( x log H

ν2 log ν

)1/2( x

ν log ν

(
1 + τν

log ν

))1/2

� x
√

log H

⎧⎨⎩ ∑
H≤ν≤K

1

ν3/2 log ν
+ √

τ
∑

H≤ν≤K

1

ν log3/2 ν

⎫⎬⎭
� x

( 1√
H log H

+ √
τ
)

.

(2.8)
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2.3. Estimating SJ (x)

We first define the following subsets of [1, x]:

J (ν)
1 = {n ∈ [1, x] : n has exactly one prime divisor in Pν and none in

⋃
H≤h<ν

Ph},

J1 =
⋃

H≤ν≤K

J (ν)
1 ,

J2 = {
n ∈ [1, x] : n has at least one prime factor in

⋃
H≤ν≤K

Pν

}
,

J3 = {
n ∈ [1, x] : n has no prime factors in

⋃
H≤ν≤K

Pν

}
.

Clearly, J (ν)
1 ⊃ PνMν , hence J1 ⊃ I; moreover, J2 ∪ J3 = [1, x] and J2 ∩ J3 = ∅. Thus, for

future convenience, we write

J ⊂ (J1 \ I) ∪ (J2 \ J1) ∪ J3.

As a consequence, by assumption (a) with P = 1 and y = x we have that

|SJ (x)| �
∑

n∈J1\I
|a(n)| +

∑
n∈J2\J1

|a(n)| +
∑
n∈J3

|a(n)|

� x1/2(|J1 \ I|1/2 + |J2 \ J1|1/2) +
( ∑

n∈J3

|a(n)|2
)1/2|J3|1/2.

(2.9)

Clearly,

J (ν)
1 \ PνMν ⊂ Pν

( x

ν2 ,
x

(ν − 1)2 ],

hence by [2.1]

|J1 \ I| �
∑

H≤ν≤K

ν

log ν

x

ν3 � x

H log H
. (2.10)

Moreover,

J2 \ J1 ⊂
⋃

H≤ν≤K

{n ∈ [1, x] : n has at least two prime factors in Pν},

thus, again by [2.1],

|J2 \ J1| �
∑

H≤ν≤K

∑
p,q∈Pν

x

pq
� x

∑
H≤ν≤K

( |Pν |
(ν − 1)2

)2 � x

H log2 H
. (2.11)
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Further, by assumption (a) with y = x and P = PK , [2.2] and [2.3] we have

∑
n∈J3

|a(n)|2 � x
log H

log K
and |J3| � x

log H

log K
. (2.12)

Collecting [2.9]–[2.12] we finally obtain that

SJ (x) � x
( 1√

H log H
+ log H

log K

)
; (2.13)

hence, Theorem 1 follows from [2.4],[2.8] and [2.13].

3. Proof of Theorem 2

We may clearly assume that the coefficients αj of the polynomial P(n) are reduced (mod 1). Hence,
given large integers Qj = Qj(x) > 1 for 1 ≤ j ≤ k, by Dirichlet’s theorem there exist 1 ≤ aj ≤ qj ≤
Qj with (aj, qj) = 1 such that ∣∣∣αj − aj

qj

∣∣∣ ≤ 1

qjQj
. (3.1)

Let 1 < Rj < Qj, Rj = Rj(x),be parameters to be chosen later on. With well-established notation,
we say that αj belongs to the major arcs Mj if αj satisfies [3.1] with some 1 ≤ qj ≤ Rj, otherwise
αj belongs to the minor arcs mj. Moreover, with slight abuse of notation, we say that the polynomial
P(n) belongs to the major arcs M if αj ∈ Mj for every j, while P(n) belongs to the minor arcs m if
αj ∈ mj for at least one j.

We treat these two cases for P(n) by different techniques, but first we gather the required properties
of the modular coefficients λf (n) and μf (n), since the choice of the above parameters, as well as the
quality of the final results, is heavily dependent on such properties.

3.1. Modular coefficients

We first list the results concerning λf (n), starting with the well-known bound given by the Ramanujan
conjecture already recalled in [1.3], namely

|λf (n)| ≤ d(n). (3.2)

The next results are Lü [12, Theorem 1.3], asserting that uniformly in q

q∑
a=1

∣∣∣ ∑
n≤x

n≡a (mod q)

λf (n)

∣∣∣ �f
√

qx, (3.3)
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and Jutila’s theorem in [8], according to which

∑
n≤x

λf (n)e(αn) �f

√
x (3.4)

uniformly in α. Moreover, it follows from the Rankin–Selberg convolution that

∑
n≤x

|λf (n)|2 �f x, (3.5)

see Iwaniec [6, Chapter 13]. Let now P = ∏
z<p≤w p.

Lemma 3.1. Let P be as above with z = z(x) → ∞ as x → ∞ and z < w < x. Then

∑
n≤x

(n,P)=1

|λf (n)|2 �f x
∏
p|P

(
1 − 1

p

)
.

Proof: Let x be sufficiently large. Since P depends on x, we consider the arithmetical function

gx(n) =
{

|λf (n)|2 if (n, P) = 1,

0 if (n, P) > 1.

Clearly, gx(n) is multiplicative and non-negative. Moreover, gx(n) belongs to the class M =
M(A0, A1), with certain A0, A1 independent of x, of multiplicative functions considered by Shiu [21]
and Nair [14]; see [14, p. 259]. Indeed, from [3.2] we have |gx(p

�)| ≤ d(p�)2 ≤ (� + 1)2 ≤ 4� for
every prime p and � ∈ N, and [3.2] implies that there exists a function c(ε) > 0, independent of x,
such that gx(n) ≤ c(ε)nε for every ε > 0 and n ∈ N. Hence, from the theorem on [14, p. 259], we
get that

∑
n≤x

(n,P)=1

|λf (n)|2 =
∑
n≤x

gx(n) � x
∏
p≤x

(
1 − 1

p

)
exp

( ∑
p≤x
p�P

|λf (p)|2
p

)
, (3.6)

the constant in the �-symbol being independent of x.
By [3.2], we have that

exp
( ∑

p≤x
p�P

|λf (p)|2
p

)
�

∏
p≤x

(
1 + |λf (p)|2

p

)∏
p|P

(
1 − |λf (p)|2

p

)
.

However, the prime number theorem for |λf (p)|2, see Rankin [19] or Perelli [16] with a = q = 1,

implies that |λf (p)|2 is asymptotically 1 on average, hence applying such a PNT three times, with
p ≤ x, p ≤ z and p ≤ w, we finally obtain that
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exp
( ∑

p≤x
p�P

|λf (p)|2
p

)
�

∏
p≤x

(
1 − 1

p

)−1 ∏
p|P

(
1 − 1

p

)
. (3.7)

The lemma follows now from [3.6] and [3.7]. �

Now we turn to μf (n). We first note that from the Euler product for L(s, f )−1 we have

μf (n) =

⎧⎪⎨⎪⎩
1 if n = 1

(−1)hλf (p1 · · · ph) if n = p1 · · · ph(ph+1 · · · pr)
2, pi �= pj

0 otherwise;

(3.8)

hence in particular from [3.2] we get

|μf (p)| ≤ 2. (3.9)

Next, the analogues of the bounds in [3.3] and [3.4] are given by the following lemmas.

Lemma 3.2. There exists an absolute constant δ1 > 0 such that, uniformly in q and 1 ≤ a ≤ q, as
x → ∞ we have

∑
n≤x

n≡a (mod q)

μf (n) �f
√

qxe−δ1
√

log x.

Proof: The proof of this result is nowadays rather standard thanks to the non-existence of the
Siegel zeros for the twisted Hecke L-functions associated with the cusp form f , proved by Hoffstein–
Ramakrishnan [5] in 1995. Indeed, one may follow the arguments in Perelli [15], plugging in this
extra information, or use those in Fouvry–Ganguly [3, Sections 4 and 7], already incorporating the
Hoffstein–Ramakrishnan theorem. �

Lemma 3.3. There exists an absolute constant δ2 > 0 such that, uniformly in α, as x → ∞ we have

∑
n≤x

μf (n)e(αn) �f xe−δ2
√

log x.

Proof: Similarly as for the proof of Lemma 3.2. �

Finally, the analogues of [3.5] and Lemma 3.1 can be obtained as direct consequences by means
of [3.8]. Indeed, for P = 1 or P = P as in Lemma 3.1 with w ≤ 2x2δ , δ being as in [1.1], from [3.5]
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and Lemma 3.1 we have

∑
n≤x

(n,P)=1

|μf (n)|2 =
∑

p1···ph(ph+1···pr)
2≤x

pj�P

|μf

(
p1 · · · ph(ph+1 · · · pr)

2)|2

≤
∑

d≤√
x

∑
p1···ph≤x/d2

pj�P

|λf (p1 · · · ph)|2

≤
∑

d≤√
x

∑
m≤x/d2

(m,P)=1

|λf (m)|2

�f

∑
d≤ 1√

2
x(1−2δ)/2

∑
m≤x/d2

(m,P)=1

|λf (m)|2 + x(1+2δ)/2

�f x
∏
p|P

(
1 − 1

p

)
.

(3.10)

3.2. Major arcs estimates

Recalling the notation after [3.1], we start with the case where P(n) belongs to M. Clearly, the size
of the Rj will depend on the level of distribution of the coefficients λf (n) and μf (n) in arithmetic
progressions. We indeed have that

P(n) =
k∑

j=1

aj

qj
nj +

k∑
j=1

(
αj − aj

qj

)
nj = P(n) + R(n),

say, and hence, denoting by a(n) either λf (n) or μf (n), by partial summation we get

Sa(x, P) :=
∑
n≤x

a(n)e(P(n)) =
∑
n≤x

a(n)e(P(n) + R(n))

�|Sa(x, P)| + x max
1≤j≤k

max
1≤t≤x

tj−1

qjQj
|Sa(t, P)|.

(3.11)

Moreover, writing

q = lcm (q1, . . . , qk) and P(n) = 1

q

k∑
j=1

bjn
j := 1

q
P̃(n), bj ∈ N,
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with obvious notation we obtain that

|Sa(t, P)| =
∣∣∣ q∑

b=1

e(̃P(b)/q)
( ∑

n≤t
n≡b (mod q)

a(n)
)∣∣∣ ≤

q∑
b=1

|Sa(t; q, b)|. (3.12)

Case 1: a(n) = λf (n). By [3.11], [3.12] and [3.3] we have

Sλf
(x, P) � (qx)1/2(1 + max

1≤j≤k
xjQ−1

j ). (3.13)

In this case, we choose

Qj = xj−cj and Rj = xc′
j (3.14)

with c1, . . . , ck, c′
1, . . . , c′

k > 0, cj < 1 and c′
j < j − cj to be determined later on. Therefore, from the

definition of q, [3.13] and [3.14], if P(n) belongs to M we obtain

Sλf
(x, P) � xγ1 with γ1 = 1

2
+ max

1≤j≤k
cj + 1

2

k∑
j=1

c′
j. (3.15)

Case 2: a(n) = μf (n). In this case, we choose

Qj = xje−βj
√

log x and Rj = eβ ′
j
√

log x, (3.16)

with β1, . . . , βk, β ′
1, . . . , β ′

k > 0 to be determined later on. Thus, from [3.11], [3.12], Lemma 3.2,
[3.16] and the definition of q, if P(n) belongs to M we obtain

Sμf
(x, P) � xe−γ ′

1
√

log x with γ ′
1 = δ1 − max

1≤j≤k
βj − 3

2

k∑
j=1

β ′
j . (3.17)

3.3. A Weyl-type lemma

In order to verify assumption (b) in Theorem 1 with our choice φ(n) = e(P(n)), when a(n) = μf (n)

we need a sharper version of the classical Weyl lemma on the bound for exponential sums with
polynomial values; see Theorem 2 in Montgomery [13, Chapter 3]. Essentially, we need to replace
the term xε in the classical bound by a power of log x, plus other minor variants. Actually, the result
we need is in the spirit of the lemma on Perelli-Zaccagnini [17, p. 199]; since we could not trace the
required result in the literature, we provide a proof here.

We first state a slight variant of a classical auxiliary lemma, whose proof follows closely that of
(9) in [13, Chapter 3].
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Lemma 3.4. Let |α − a/q| ≤ C/q2 with some 1 ≤ a < q, (a, q) = 1 and C ≥ 1, and let M, N ≥ 1.
Then, writing ‖ξ‖ for the distance of ξ from the nearest integer, we have

N∑
n=1

min
(

M,
1

‖αn‖
)

� C
(MN

q
+ N log q + M + q log q

)
.

The next result gives the required form of Weyl’s lemma.

Lemma 3.5. Let d ≥ 2, U(n) = αnd + αd−1nd−1 + · · · + α1n with αj ∈ R and α as in Lemma 3.4.

Then, writing κ = 21−d, for any Z > 1 we have

W(y, U) :=
∑
n≤y

e(U(n)) � y
(CZ

q
+ CZ

y
log q + CZ

q log q

yd
+ logA y

Z

)κ

,

where A = A(d) is a certain constant and the constant in the �-symbol depends only on d.

Proof: We may suppose that y ∈ N; moreover, here we denote by τ�(n) the �th divisor function.
Following the proof of the above mentioned Theorem 2 in [13], by Weyl’s differencing method
applied d − 1 times we get

|W(y, U)|2d−1 � y2d−1−1 + y2d−1−d
∑

h1,...,hd−1

min
(

y,
1

‖d! h1 · · · hd−1α‖
)

, (3.18)

where hj ∈ [1, y − 1 − hj−1] (here h0 = 0) and hence d! h1 · · · hd−1 ≤ d! yd−1. Therefore, we have
that

∑
h1,...,hd−1

min
(

y,
1

‖d! h1 · · · hd−1α‖
)

≤
∑

h≤d!yd−1

τd−1(h) min
(

y,
1

‖hα‖
)

. (3.19)

Let now Z > 1 and H−
Z be the set of the h ≤ d! yd−1 with τd−1(h) ≤ Z, and H+

Z = [1, d! yd−1] \
H−

Z . Thus, from Lemma 3.4, we get

∑
h∈H−

Z

τd−1(h) min
(

y,
1

‖hα‖
)

� CZ
(yd

q
+ yd−1 log q + y + q log q

)
, (3.20)

while recalling the standard bounds for the mean-square of the (d − 1)th divisor function we obtain
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∑
h∈H+

Z

τd−1(h) min
(

y,
1

‖hα‖
)

� 1

Z

∑
h≤d!yd−1

τd−1(h)2 min
(

y,
1

‖hα‖
)

� y

Z

∑
h≤d!yd−1

τd−1(h)2 � yd

Z
logc y

(3.21)

with a certain c = c(d). The result follows now from [3.18]–[3.21], since d ≥ 2. �

We finally recall that, under the same hypotheses of Lemma 3.5, the standard Weyl bound becomes

W(y, U) � y1+εCκ
(1

q
+ 1

y
+ q

yd

)κ

for every ε > 0. (3.22)

3.4. Minor arcs estimates

Finally, again recalling the notation after [3.1], we deal with the case where P(n) belongs to M. In
this case, our basic tool will be Theorem 1, with the choice of a(n) as in Section 3.2, that is, either
λf (n) or μf (n), and φ(n) = e(P(n)). Thus, we have to show that the assumptions in Theorem 1 are
satisfied with such choices. Again we consider separately the two cases of a(n), but first we proceed
to some preliminary reductions common to both cases. Let

d = max {1 ≤ j ≤ k : qj > Rj}.

Suppose first that d = 1; in this case, we argue directly, without appealing to Theorem 1 nor to
Lemma 3.5. Recalling [3.1], [3.11] and that an empty sum equals 0, we write

P(n) = α1n +
k∑

j=2

aj

qj
nj +

k∑
j=2

(
αj − aj

qj

)
nj = L(n) + R1(n) + R2(n),

say, hence arguing as in Section 3.2, by partial summation we get

Sa(x, P) � |Sa(x, L + R1)| + x max
2≤j≤k

max
1≤t≤x

tj−1

qjQj
|Sa(t, L + R1)|. (3.23)

Moreover, writing

q = lcm (q2, . . . , qk) and R1(n) = 1

q

k∑
j=2

Ajn
j := 1

q
R̃1(n), Aj ∈ N,
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thanks to the orthogonality of additive characters we have

Sa(t, L + R1) =
q∑

b=1

e(̃R1(b)/q)
( ∑

n≤t
n≡b (modq)

a(n)e(L(n))
)

=
q∑

b=1

e(̃R1(b)/q)
1

q

q∑
c=1

e(−bc/q)
∑
n≤t

a(n)e
(
(α1 + c/q)n

)
� q max

α∈[0,1]

∣∣∣∑
n≤t

a(n)e(αn)

∣∣∣.
(3.24)

Suppose now that 2 ≤ d ≤ k; in this case, we use both Theorem 1 and Lemma 3.5. Given P as in
assumption (b) of Theorem 1 and p, q ∈ P with p �= q, writing Cj = pj − qj � zj and recalling that
φ(n) = e(P(n)) we have that

φ(pm)φ(qm) = e
( k∑

j=1

Cjαjm
j
)

.

Arguing similarly as before, we split the above polynomial as

k∑
j=1

Cjαjm
j =

d∑
j=1

Cjαjm
j +

k∑
j=d+1

Cj

aj

qj
mj +

k∑
j=d+1

Cj

(
αj − aj

qj

)
mj

= U(m) + V(m) + R̃(m),

say. Thus, writing

W(y, U + V) =
∑
m≤y

e(U(m) + V(m)),

by partial summation we get

∑
m≤y

φ(pm)φ(qm) � |W(y, U + V)| + y max
d+1≤j≤k

max
1≤t≤y

tj−1

qjQj
|W(t, U + V)|. (3.25)

Moreover, letting this time q̃ = lcm (qd+1, . . . , qk), arguing as for [3.24] we obtain

W(t, U + V) � q̃ max
b=1,...,̃q

∣∣∣ ∑
n≤t

e(U(n) + (b/̃q)n)

∣∣∣. (3.26)

However, since U(n) + (b/̃q)n has degree d ≥ 2, we may apply Lemma 3.5 or [3.22] to the right-
hand side of [3.25]. Hence in view of [3.22] with y = t, α = αd, C = Cd � zd and q = qd with
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Rd < qd ≤ Qd, from the definition of d and q̃, [3.25] and [3.26] we get, after taking the maximum
over 1 ≤ t ≤ y, that

∑
m≤y

φ(pm)φ(qm) � y1+εzκdRd+1 · · · Rk

(
1 + max

d+1≤j≤k

yj

Qj

)( 1

Rd
+ 1

y
+ Qd

yd

)κ

(3.27)

with κ = 21−d. Alternatively, appealing instead to Lemma 3.5 with the same choices as above, again
from the definition of d and q̃, [3.25] and [3.26], arguing as before we have

∑
m≤y

φ(pm)φ(qm) � yRd+1 · · · Rk

(
1 + max

d+1≤j≤k

yj

Qj

)

×
( zdZ

Rd
+ zdZ

y
log Qd + zdZ

Qd log Qd

yd
+ logA y

Z

)κ

,

(3.28)

with any Z > 1 and still κ = 21−d.
Case 1: a(n) = λf (n). We first deal with the case d = 1. From [3.4], the definition of q, [3.14],

[3.23] and [3.24], for d = 1 and P ∈ M we get

Sλf
(x, P) � qx1/2(1 + max

2≤j≤k
xjQ−1

j ) � xγ2 with γ2 = 1

2
+ max

2≤j≤k
cj +

k∑
j=2

c′
j. (3.29)

For d ≥ 2 we use Theorem 1, thus we have to verify its assumptions. Clearly λf (p) � 1 follows
from [3.2], while assumption (a) follows from [3.5] and Lemma 3.1, without imposing any condition
on H and K in addition to [1.1]. Concerning assumption (b), from [3.27] and [3.14] we have that

∑
m≤y

φ(pm)φ(qm) � τy with y � x/z (3.30)

is satisfied uniformly for p, q as in (b), p �= q, with the choice

τ = xεzκdxc′
d+1+···+c′

k

( 1

xκc′
d

+ ( z

x
)κ + (

zd

xcd

)κ
)(

1 + max
d+1≤j≤k

z−jxcj
)
. (3.31)

Hence, choosing δ in [1.1] sufficiently small, since z � x2δ we have that [3.30] holds with

τ = x−c0 (3.32)

with a small constant c0 > 0, depending on ε, δ and the various constants involved in [3.31], provided

c′
d+1 + · · · + c′

k + max
d+1≤j≤k

cj < min(κ , κcd, κc′
d). (3.33)
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In order to avoid a simple but tedious optimization, we now observe that clearly [3.33] holds if all
constants cj and c′

j are chosen sufficiently small and satisfying, for example,

cj+1 ≤ 2−10jcj and c′
j+1 ≤ 2−10jc′

j for 1 ≤ j ≤ k − 1.

Therefore, after a trivial summation over p �= q, we have that assumption (b) is satisfied with the
choice of τ in [3.32], again without imposing any condition on H and K in addition to [1.1]. Thus,
from Theorem 1, we obtain that

Sλf
(x, P) � x

( 1√
H log H

+ x−c0 + log H

log K

)
;

hence, choosing for example H = log2 x and K = xδ , for d ≥ 2 we get

Sλf
(x, P) � x

log log x

log x
. (3.34)

Finally, since with the above choice of the constants cj and c′
j we also have that the constants γ1 and

γ2 in [3.15] and [3.29] are both < 1, the first assertion of Theorem 2 follows from [3.15], [3.29] and
[3.34].

Case 2: a(n) = μf (n). The deduction of the second assertion of Theorem 2 is similar, so we give
only a brief account of the needed changes. From Lemma 3.3, the definition of q, [3.16], [3.23] and
[3.24], for d = 1 and P belongs to M we get

Sμf
(x, P) � xe−γ ′

2
√

log x with γ ′
2 = δ2 − max

2≤j≤k
βj −

k∑
j=2

β ′
j . (3.35)

For d ≥ 2, we use again Theorem 1. Also in this case, thanks to [3.9] and [3.10], μf (p) � 1 and
assumption (a) are satisfied without imposing any condition on H and K in addition to [1.1]. In order
to verify assumption (b), this time we use [3.28] and [3.16] to obtain that [3.30] is satisfied uniformly
for p, q as in (b), p �= q, with the choice (here we write L = √

log x)

τ = (zdZ)κe(β ′
d+1+···+β ′

k)L
(

e−κβ ′
dL + ( z log x

x

)κ + (
zde−βdL log x

)κ
)(

1 + max
d+1≤j≤k

z−jeβjL
)

+ e(β ′
d+1+···+β ′

k)L
( logA x

Z

)κ(
1 + max

d+1≤j≤k
z−jeβjL

)
.

(3.36)

Assuming that

K = eδ
√

log x and Z = eμ
√

log x, (3.37)

and hence z ≤ 2e2δ
√

log x, we see that the dependence on the constants βj, β ′
j , δ and μ in [3.36] is

structurally very similar to that in [3.31]. Hence, similar arguments as before show that there exists
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a choice of the involved constants such that [3.30] holds with the choice

τ = e−c′
0
√

log x, (3.38)

where c′
0 > 0 is a small constant. Therefore, in view of [3.37] and [3.38], choosing for example

H = log x and K = eδ
√

log x in Theorem 1, for d ≥ 2 we get

Sμf
(x, P) � x

log log x√
log x

. (3.39)

Moreover, with such choices of the constants, we also have that the values of γ ′
1 and γ ′

2 in [3.17] and
[3.35] are both > 0, and the second assertion of Theorem 2 follows from [3.17], [3.35] and [3.39].
The proof is now complete.
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