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Miniaturised analytical systems are showing growing interest in aquatic ecology, although

this technology has not been exploited to study cognitive behaviours of organisms in

aquatic micro-environments. Herein, a miniaturised testing arena was developed to

investigate information processes and learning of Heterocypris incongruens, a freshwater

ostracod relevant as bioindicator of environmental conditions. After dedicated training

phases, a microchannel-based caging system enabled to tested if H. incongruens can asso-

ciate a light stimulus to a food/stress source. Furthermore, the miniaturised system was

used to test the ostracods ability in discriminating different coloured lights by choosing

that previously associated with food or by avoiding the one previously associated with a

stressor.

Trained ostracods significantly reacted to light stimuli compared to naı̈ve individuals.

When two different light colours were provided, trained ostracods selected the one asso-

ciated with food, and avoided that associated with a stress source. The experiment in

which ostracods were trained to associate light to food showed that H. incongruens not only

exploits visual stimuli for decision making, but also for modulating its behaviour, swim-

ming longer in presence of the right colour light than in presence of the different colour

light, or no light. This can be an adapting behaviour balancing the energy use during

foraging activities and limiting exposure to potential predators.

This study is the first to report such complex cognitive processes in ostracods, paving

the way to new research directions for Lab-on-a-Chip systems, focused on behavioural

ecology and cognition studies, as well as to the development of novel biohybrid sensors.

© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Miniaturised analytical systems are a recent technology

milestone which have established themselves as one of the

major instruments in many application fields, such as

genomic and proteomic studies, analytical chemistry, diag-

nostic tests, environmental monitoring (Lafleur et al., 2016;

Shanti et al., 2018; Temiz et al., 2015). With their relative cost

effectiveness and miniaturised features, these devices allow

the management of tests with little power and with portable

devices, enabling accurate control of flowing liquids, reducing

the amount of reagents/samples, decreasing reaction times,

as well as standardised multiple experiments in parallel

(Andar et al., 2019; Chiriac�o et al., 2018; Lafleur et al., 2016;

Manz et al., 1990; Sinha et al., 2019). The high design flexibility

and the reduced time between the fabrication of these devices

and the experiments have been also made possible by new

emergent rapid-prototyping techniques including laser cutter

machines, 3D printing, micromachining, laminated dry-film

resists (DFRs) (Shahid et al., 2019; Temiz et al., 2015; Vasile

et al., 1999).

Biomicrofluidics in aquatic ecology investigation repre-

sents a new and still little explored research field with a great

potential in advancing these studies in controlled conditions,

ensuring high repeatability and reproducibility (Campana &

Wlodkowic, 2018; Mills et al., 2006).

Most of these investigations focused on aquatic ecotoxi-

cology contexts, that benefited from a number of advantages

offered by microfluidics, including dilution of toxicants, ex-

posures based on micro-perfusion, and real-time analysis

(Campana & Wlodkowic, 2018).

The largest amount of ecotoxicology studies relying on

micro-engineered devices have been carried out on unicellu-

lar organisms (Brayner et al., 2011; Campana & Wlodkowic,

2018; Illing et al., 2016; Kim & Gu, 2003; Yoo et al., 2007).

Furthermore, species of the phylum Nematoda have been

widely exploited as model organisms in such studies

(Clausell-Tormos et al., 2008; Jung et al., 2013, 2014; Kim et al.,

2017; Zhang et al., 2014). Interestingly, a number of small

vertebrates (Choudhury et al., 2012; Davies & Freeman, 1995;

Lammer et al., 2009), and invertebrates (Zabihihesari et al.,

2019), have also been used at embryonal stage.

Aquatic microarthropods are particularly suited to address

ecological issues in freshwater and marine ecosystems (Pane

et al., 2012; Verslycke et al., 2007; Won et al., 2017). Although

their extensive use as animal models in ecotoxicology

(Campana & Wlodkowic, 2018), a very small number of studies

have focused on microfluidics to carry out experiments

(Cartlidge et al., 2016, 2017; Huang et al., 2015a, b, 2016a, b).

Surprisingly, the great potential of miniaturised analytical

platforms at micrometre/millimetre scale (Campana &

Wlodkowic, 2018; Crane et al., 2010; Lafleur et al., 2016; Lee

et al., 2012), has not yet been applied to study higher learning

behaviours and cognition of these small organisms, in order to

unveil overlooked features of their behavioural ecology.

Engineeredsystemscanbeuseful for testing andmodulating

behavioural models in embodiedmicroenvironments, allowing

to investigate hypotheses about ecological mechanisms and

interactions with environmental cues thanks to the replication

of a biological phenomenon in an engineered device (Manfredi

et al., 2013; Romano et al., 2019a; Romano & Stefanini, 2021).

Although the relatively small nervous systems of in-

vertebrates, these organisms have shown elegant and complex

mechanisms of learning, and a broad repertoire of behaviours

(Perry et al., 2013; Shigeno et al., 2018). Learning abilities re-

ported in invertebrates range from non-associative forms to

associative learning (Davis & Heslop, 2004; McGuire, 1984).

Other forms of learning includes higher order information

processes enabling counting abilities, social learning, andmore

(Avargu�es-Weber et al., 2018; Rapp et al., 2020). However, the

ethology and cognitive abilities of aquatic micro-invertebrates

still need to be clarified, also considering their importance in

ecosystem functioning and as bioindicators. Early demonstra-

tions of well-developed associative learning and persistence of

learned patterns without reinforcement in invertebrates come

from different crustacean lineages (Krasne, 1973; Reaka, 1980).

Cephalops are well known for having a complex brain and

storing of learned information (Mather & Kuba, 2013) and even

consciousness (Mather, 2008).

Despite the accumulation of evidence on various types of

learning across a large number of invertebrate phyla (Perry

et al., 2013), the neural mechanisms of learning and memory

are still poorly understood. For example, recent investigations

seem to indicate that long-term memory may be transferred

from trained to untrained animals by epigeneticmodifications

mediated by noncoding RNA, as in the case of marinemollusk

Aplysia (B�ed�ecarrats et al., 2018).

In this framework, a millimetre scale testing arena,

including microfluidic channels, has been developed to

investigate higher-order information processes and learning

in the class Ostracoda (Crustacea), an arthropod group con-

sisting of small to medium sized (0.3e7.0 mm) bivalved or-

ganisms. They are one of the most diverse and widespread of

aquatic taxa, abounding in both marine and freshwater en-

vironments (Sch€on et al., 2003), whose neuroethology and

behavioural ecology is rather undocumented (Mesquita-

Joanes et al., 2012). Ostracods are of relevant interest in

ecological and evolutionary studies, since their calcified car-

apaces in sea or lake sediments provide a real-time frame to

their evolution (Martens et al., 2008), with a fossil record

spanning at least 400e450million years (Williams et al., 2008).

Taxonomic identification of ostracods is notoriously rather

difficult, because differences between species and genera are

often based on small details of valve morphology and

appendage chaetotaxy. In addition, the existence of cryptic

species, i.e. individuals indistinguishable from each other

from a morphological point of view, but genetically too

different to be placed in the same species, have been

confirmed in both recent marine and non-marine ostracods

(Bode et al., 2010; Sch€on et al., 2012, 2017; Xu et al., 2019 Q1). There

are two subclasses with living representatives: Myodocopa

and Podocopa. The first subclass is exclusive to marine envi-

ronments, with planktonic and benthic species, while Podo-

copa occur in marine, brackish and freshwater environments

and are almost exclusively benthic.

Podocopa show a great variation in naupliar eye type, but

the relationship between functions and different morpho-

logical designs is still largely unknown (Smith et al., 2015;

Tanaka, 2005).
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Ostracods, thanks to their responses to particular param-

eters of the environment (Smith & Horne, 2002), also have an

enormous importance as bioindicators and biosensors of

environmental changes (Holmes & Chivas, 2002; Pieri et al.,

2012), increasingly affected by unprecedented levels of

anthropogenic impacts.

However, this class of aquatic arthropods are still unex-

ploited by miniaturised analytical system technology. Herein,

the ostracod Heterocypris incongruens (Ramdohr, 1808) (Podo-

copida: Cyprididae), a freshwater cosmopolitan organism

exhibiting a wide feeding behaviour (Mili�ci�c et al., 2015), has

been used as model organism. The aim of this study was to

prove and quantify associative learning abilities in H. incon-

gruens in rigorously controlled conditions enabled by inter-

facing our micro-engineered testing arena and this organism.

Information on ostracods learning ability can be exploited

to produce a new paradigm of complex integrated mini-

aturised biosensors with “collaborative” trained bioindicators.

Furthermore, their potential sensing ability and learning

skills, together with their well-documented large feeding

spectrum (e.g. herbivory, detritivory, predation. omnivory,

parasitism and even cannibalism) (Mili�ci�c et al., 2015; Rossi

et al., 2011; Vannier et al., 1998) can be used to train H. incon-

gruens individuals to prefer and process selected food sources.

Thus, trained strains of ostracods would play key roles in

detecting, as well as in decomposing particular organic ma-

terials in eutrophic areas.

2. Materials and methods

2.1. Ethics statement

This research compliedwith the guidelines provided by ASAB/

ABS (2015) concerning the treatment of animals in behav-

ioural research and teaching, the Italian law (D.M. 116192),

and the European Union regulations (European Commission,

2007). No authorisations are required in Italy to conduct

behavioural observations on H. incongruens.

2.2. Heterocypris incongruens rearing and general
information

Wild individuals of H. incongruens were collected in late sum-

mer in a permanent pond in Pontedera (Pisa, Tuscany, Italy).

Adult individuals were used to determine the specific alloca-

tion of the collected material. The species identification was

evaluated by checking both soft parts and valves, based on

Meisch (2000).H. incongruenswere reared for severalmonths in

different tanks (300 � 300 � 200 mm) containing aged tap

water, in laboratory conditions (20e22 �C, 16 : 8 L: D photo-

period, with light intensity in close proximity of the tank of

approximately 1000 lux, estimated over the 300e1100 nm

waveband). Ostracods were fed with a diet composed of dried

“Spirulina”, a filamentous cyanobacterium commercialised as

food for fish, which also provides a convenient substrate for

valve moulting and egg-laying.

The miniaturised testing arena and its parts were carefully

washed after each replicate, for about 30 s, with warm water

(e.g. 35e40 �C), cleansed with water plus mild soap for

approximately 5 min, rinsed with hot water for about 60 s,

then rinsed with tap water at room temperature, and finally

refilled with dechlorinated tap water at 20 ± 2 �C (Benelli et al.,

2015; Romano et al. 2019b).

2.3. Miniaturised testing arena

The miniaturised testing arena was designed in SolidWorks

(Dassault Systemes, V�elizy Villacoublay, France) and then

fabricated by rapid prototyping in a bio-compatible resin

(VisiJet® M3 Crystal, 3D Systems), to carry out behavioural

experiments based on a Lab-on-Chip (LOC) approach.

It consists of a lower component and an upper component

(Fig. 1a). The lower component has a diameter of 70 mm,

height 15 mm, and presents 3 through holes (diameter 6 mm),

each of which can house a Light Emitting Diode (LED). Previ-

ous studies revealed thatmarine podocopid ostracods possess

eyes that are adapted to different light conditions, and light-

gathering ability is considerably different between species

and is related tomorphological features of the optical systems

(Tanaka, 2006). Since no specific information was available

regarding the light-gathering ability of H. incongruens, for the

experiments we chose two wavelengths in the visible spec-

trum that can be linked to the visual ecology of this species,

and that are perceived by many arthropod colour vision sys-

tems (Briscoe & Chittka, 2001; Oakley & Huber, 2004; Osorio &

Bacon, 1994). A yellow LED (wavelength 587e595 nm) and a

green LED (wavelength 520e525 nm) were used. Light in-

tensity of both LEDswas 1mcd. The position of the LEDs could

be shifted among different exploration chambers. The upper

component represents the real testing arena. It has a diameter

of 70 mm, height 10 mm, and include a releasing chamber

(diameter 20 mm; height 10 mm) and three exploration

chambers (diameter 10 mm; height 10 mm). These chambers

created small environments to analyse H. incongruens behav-

iour but did not restrict the swimming activity of ostracods

avoiding potential bias due to spatial constraints. Each

exploration chamber is connected to the releasing chamber

through an aisle (5 � 5 mm; height 10 mm). The floor of the

testing arena is represented by a transparent plexiglass disk

firmly connected to the base of the upper component. During

the experiments, the upper component was placed on the

lower component in order to have the three exploration

chambers perfectly centred with the three through holes of

the lower component.

H. incongruens individuals, thanks to their long natatory

setae on the antenna allowing short swims away from the

sediment, spend most of time in exploring rapidly the envi-

ronment (Mili�ci�c et al., 2015), as also confirmed by our per-

sonal observations.

To effectively cage free swimming ostracods that moved

from the releasing chamber to an exploration chamber, a

removable membranous partition was located in each aisle.

The membranous partition consists in a membrane holder

(VisiJet M3 Crystal), and a transparent membrane (thickness

1000 mm) in polydimethylsiloxane (PDMS) presenting 3

microchannels. The PDMS used (Sylgard 184, Dow Corning), is

commonly employed as substrate for cell cultures, thus it is

highly bio-compatible (Cafarelli et al., 2017), and reasonably

non-toxic toward Ostracoda and other organisms. The
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transparent PDMS membranous partition do not affect the

light intensity. The conical frustum microgeometry of such

microchannels (r1 ¼ 500 mm; r2 ¼ 250 mm), allows a one-way

passage of ostracods from the releasing chamber to an

exploration chamber, enabling H. incongruens choice identifi-

cation. The fabrication process of the membranous partition

is depicted in Fig. 2. LEDs activation in the lower component

was enabled by an off-arena microcontroller (Arduino, Mega

2560).

The behaviour of H. incongruens in the miniaturised testing

arena was observed under a 3D visual inspection microscope

(magnification 10x) (Mantis Elite, Vision Engineering, England).

2.4. Training phase for the LOC-based behavioural
experiments 1

Adult H. incongruens were kept individually in a Petri dish

(diameter 40mm) filledwithwater from their aquarium, in the

same laboratory conditions described above. At each feeding

event (e.g. delivering of Spirulina-based food three time a day),

a light stimulus was also presented (e.g. yellow or green LEDs

positioned below the Petri dish floor). Each individual was

trained with just one colour. The training phase, for the in

LOC-based behavioural experiments 1, lasted three days,

where the light stimulus stayed on for one hour from the

introduction of food and thenwas turned off together with the

removal of leftover food. A portion of H. incongruens were feed

without coloured light stimuli (naı̈ve) as control.

2.5. LOC-based behavioural experiment 1

Here, if H. incongruens can associate a light stimulus to a food

source was investigated. Furthermore, the ability of these ani-

mals to discriminate between two lights of different colours by

choosing the one previously associated with a food source.

Adult ostracods were transferred in the releasing chamber

of the miniaturised testing arena by using a micropipette.

Each animal was tested individually and only once to avoid

effects due to other conspecifics presence that would affect H.

incongruens choices, and masking learning processes. After 60

minutes of acclimation (Mili�ci�c et al., 2015), light cues were

activated and the test started (Fig. 1b, c, d).

Trained and naı̈ve H. incongruens subjects were exposed to

the following treatments: i) light stimulus previously associ-

ated with food (e.g. correct colour light), ii) light stimulus

different from the one previously associated with food (e.g.

different colour light), iii) both right and different colour lights

exposed at the same time (e.g. both colour lights).

The treatments i) and ii) consisted in a two-choice test (e.g.

access to the median exploration chamber was avoided by

placing a partition in its aisle). The treatment iii) consisted in a

three-choice test.

The position of light stimuli was shifted among different

exploration chambers after each replicate, to avoid directional

bias.

The choice of individuals was evaluated and recorded by

observing in which exploration chamber ostracods were

Fig. 1 e Cross-section architecture of the miniaturised testing arena (a). Setup of the LOC-based behavioural experiments (b).

Lateral view (left) and dorsal view (right) of Heterocypris incongruens (c). Miniaturised testing arena (d).
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caged. The time needed to make a choice (duration from the

starting of the experiment and the entry in an exploration

chamber) was also measured.

Once an ostracod entered an exploration chamber it was

observed for 10 minutes and the duration of the swimming

activity, as well as of the resting behaviour were recorded.

Before each test, individuals were starved for 3 h (Mili�ci�c

et al., 2015).

For each treatment, 100 trained ostracods and 100 naı̈ve os-

tracods were tested. Overall, 600 H. incongruens were analysed.

2.6. Training phase for the LOC-based behavioural
experiment 2

H. incongruens specimens, individually kept in a Petri dish

(diameter 40 mm) filled with water from their aquarium

(conductivity c. 490 mS cm�1 at 20 �C), were transferred for

one hour, three times a day, to another identical Petri dish

containing water with NaCl to have a salinity level of 9‰

(conductivity c. 13,900 mS cm�1 at 20 �C), and that also pre-

sented different light stimuli (e.g. yellow or green LEDs

positioned below the Petri dish floor). This salinity level can

potentially elicit a repulsive associative response with light

stimuli. The selected salinity can be considered an unfav-

ourable but not harmful abiotic condition for H. incongruens,

whose natural populations can be occasionally found at

comparable or even higher salinity levels, although it largely

prefers low salinity waters (Meisch, 2000; Pieri et al., 2020;

Ruiz et al., 2013). Each individual was trained with just one

colour. As control, a portion of H. incongruens were exposed

to high salinity level without coloured light stimuli (naı̈ve).

The training phase, for the in LOC-based behavioural ex-

periments 2, lasted three days.

2.7. LOC-based behavioural experiment 2

In this experiment, we investigated if H. incongruens can

associate a light stimulus to a stress source. The ability of H.

incongruens individuals in discriminating two lights different

in colour, by avoiding the one previously associated with a

stress source, was also evaluated.

The procedure of the behavioural experiment 2 was

similar to that of the behavioural experiment 1. Here, treat-

ments that were presented to trained and naı̈ve H. incon-

gruens subjects included: iv) light stimulus previously

associated with salt water (e.g. right colour light), v) light

stimulus different from the one previously associated with

high salinity water (e.g. different colour light), vi) both right

and different colour lights exposed at the same time (e.g.

both colour lights). The position of light stimuli was shifted

among different exploration chambers after each replicate,

to avoid directional bias. The choice of individuals was

evaluated and recorded by observing in which exploration

chamber ostracods were caged. Overall, 600 individuals were

analysed.

2.8. Statistical analysis

For treatments i), ii), iv), and v) the difference in the number of

ostracods caged in different exploration chambers was ana-

lysed with a c2 test with Yates’ correction (P < 0.05).

The impact of the treatments iii) and vi) on the choice of

trained and naı̈ve H. incongruens caged in different exploration

chambers was analysed using the generalised linear model

(glm) with a binomial error structure described in Romano

et al. (2018). Significant differences among values were eval-

uated by using a probability level of P < 0.05.

Fig. 2 e Fabrication process of the membranous partition. Degassed PDMS is poured into a mould presenting conical

frustums and including themembrane holder. Themembrane holder is removed from themould once the PDMSmembrane

is cured anchoring to it. The conical frustums of the mould enable the formation of microchannels in the membrane with a

check valve-effect microgeometry to cage ostracods in the selected exploration chamber (97% effective on 100 individuals

tested in preliminary tests).
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Data concerning the impact of treatments i), ii), and iii) on

the time needed tomake a choice, the swimming activity, and

the resting behaviour were analysed with non-parametric

statistics based on the Wilcoxon test (P ¼ 0.05), as these data

were not normally distributed (Shapiro-Wilk test, goodness of

fit P< 0.05). R software v3.6.1 (R Development Core Team, 2019)

was used to analyse all data.

3. Results

3.1. LOC-based behavioural - experiments 1

Herein, H. incongruens successfully proved to be able to asso-

ciate a light stimulus to a food source, as well as in discrimi-

nating two lights different in colour by choosing the one

associated with a food source, as learned in previous training

phases.

The number of trained ostracods selecting the exploration

chamber with the light colour previously associated to a food

source (correct colour), was significantly higher than the

number of trained ostracods that selected the exploration

chamber with no light (correct colour versus no light: 87

versus 13; c2
1 ¼ 54.77; P < 0.00001) (Fig. 3a).

The number of naı̈ve ostracods selecting the exploration

chamber with the right light colour was not significantly

different than the number of naı̈ve ostracods that selected the

exploration chamber with no light (right colour versus no

light: 59 versus 41; c2
1 ¼ 3.25; P < 0.071423) (Fig. 3a).

The number of trained ostracods selecting the exploration

chamber with a light colour differently from the one previ-

ously associated to a food source (i.e. different colour), was

significantly higher than the number of trained ostracods that

selected the exploration chamber with no light (different

colour versus no light: 76 versus 24; c2
1 ¼ 27.05; P < 0.00001)

(Fig. 3a).

The number of naı̈ve ostracods selecting the exploration

chamber with the different light colour was not significantly

diverse than the number of naı̈ve ostracods that selected the

exploration chamber with no light (different colour versus no

light: 56 versus 44; c2
1 ¼ 1.45; P < 0.228528) (Fig. 3a).

In the treatment iii), trained individuals’ choice was

significantly affected by different stimuli presented in the

miniaturised testing arena (c2 ¼ 123.90, d.f . ¼ 2, P < 0.0001)

(Fig. 3b).

Trained ostracods were significantly more attracted by the

correct colour light than the different colour light (c2
1 ¼ 46.02,

P ¼ 1.169831e�11) and preferentially attracted by the correct

colour light than no light (c2
1 ¼ 119.08, P ¼ 1.002759e�27); in

addition, they were significantly more attracted by the

different colour light than the no light (c2
1 ¼ 22.56,

P ¼ 2.026313e�6) (Fig. 3b).

In the treatment iii) naı̈ve individuals’ choice was not

affected by stimuli to which they were exposed in the mini-

aturised testing arena (c2 ¼ 1.82, d.f. ¼ 2, P ¼ 0.4006) (Fig. 3b).

The time needed to make a choice was significantly

affected by previous experience and by stimuli provided by

different treatments (c2 ¼ 388.29, d.f. ¼ 5, P < 0.0001). The

duration from the starting of the experiment and the entry in

an exploration chamber was significantly shorter in trained

ostracods than naı̈ve ostracods for treatment i (Z ¼ �11.14;

P < 0.0001), treatment ii (Z¼ �10.07; P < 0.0001), and treatment

iii (Z ¼ �11.94; P < 0.0001). Trained ostracods exposed to

treatment i exhibited a faster choice than trained ostracods in

treatment ii (Z¼�7.12; P < 0.0001), and treatment iii (Z¼�3.48;

P ¼ 0.0005). Trained ostracods exposed to treatment ii

exhibited a slower choice than trained ostracods in treatment

iii (Z ¼ �5.98; P < 0.0001) (Fig. 4a).

Previous experience and different treatments significantly

affected the swimming activity duration of H. incongruens

(c2 ¼ 237.11, d.f. ¼ 5, P < 0.0001). Swimming duration lasted

longer in trained ostracods than naı̈ve ostracods in response

to treatment i (Z ¼ 10.47; P < 0.0001), treatment ii (Z ¼ 6.44;

P < 0.0001), and treatment iii (Z ¼ 8.07; P < 0.0001). Trained

ostracods exposed to treatment i exhibited a longer duration

of swimming activity compared to trained ostracods in

treatment ii (Z ¼ �6; P < 0.0001), and treatment iii (Z ¼ 2.81;

P ¼ 0.0049). Trained ostracods exposed to treatment ii showed

a shorter duration of swimming activity than trained ostra-

cods in treatment iii (Z ¼ �3.7; P ¼ 0.0002) (Fig. 4b).

The resting behaviour of H. incongruens was significantly

affected by previous experience and different treatments

(c2 ¼ 237.12, d.f. ¼ 5, P < 0.0001). Resting behaviour lasted

longer in naı̈ve H. incongruens than in trained H. incongruens

exposed to stimuli of treatment i (Z ¼ �10.47; P < 0.0001),

treatment ii (Z¼�6.44; P < 0.0001), and treatment iii (Z¼�8.07;

P < 0.0001). Trained ostracods exposed to treatment i showed a

shorter resting behaviour than trained ostracods exposed to

treatment ii (Z ¼ 6; P < 0.0001), and treatment iii (Z ¼ �2.81;

P < 0.0050). Trained ostracods exposed to treatment ii exhibi-

ted a longer resting time than trained ostracods in treatment

iii (Z ¼ 3.7; P ¼ 0.0002) (Fig. 4c).

3.2. LOC-based behavioural - experiments 2

The LOC-based behavioural experiments 2 showed that H.

incongruens are also able to associate a light stimulus to a

stress source. Furthermore, H. incongruens discriminated two

lights different in colour by avoiding the one that during the

training phase was associated with a stress source.

The number of trained ostracods accessing the exploration

chamberwith the light colour previously associated to a stress

source (correct colour), was significantly lower than the

number of trained ostracods that selected the exploration

chamber with no light (correct colour versus no light: 8 versus

92; c2
1 ¼ 70.57; P < 0.00001) (Fig. 5a).

The number of naı̈ve ostracods selecting the exploration

chamber with the correct light colour did not vary signifi-

cantly from the number of naı̈ve ostracods that selected the

exploration chamber with no light (correct colour versus no

light: 57 versus 43; c2
1 ¼ 1.97; P < 0.160448) (Fig. 5a).

The number of trained ostracods accessing to the explo-

ration chamber with a light colour different from the one

previously associated to a stress source (different colour) was

significantly lower than the number of trained ostracods

accessing to the exploration chamber with no light (different

colour versus no light: 22 versus 78; c2
1 ¼ 31.37; P < 0.00001)

(Fig. 5a).

The number of naı̈ve ostracods selecting the exploration

chamber with the different light colour, was not significantly
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different than the number of naı̈ve ostracods that selected the

exploration chamber with no light (different colour versus no

light: 52 versus 48; c2
1 ¼ 0.17; P < 0.680112) (Fig. 5a).

During the treatment vi) the choice of trained H. incon-

gruens was importantly influenced by different stimuli pre-

sented in the miniaturised testing arena (c2 ¼ 166.85, d.f . ¼ 2,

P < 0.0001) (Fig. 5b). Trained ostracods avoided more the cor-

rect colour light than no light (c2
1 ¼ 125.22, P ¼ 4.548599e�29),

as well as they avoidedmore the different colour light than no

light (c2
1 ¼ 116.68, P¼ 3.369551e�27). There were no significant

differences between the number of H. incongruens attracted by

the correct colour light and the different colour light

(c2
1 ¼ 0.24, P ¼ 0.620860) (Fig. 5b).

In the treatment vi the choice of naı̈ve individuals was not

affected by the stimuli to which they were exposed in the

miniaturised testing arena (c2 ¼ 1.1, d.f.¼ 2, P¼ 0.5744) (Fig. 5b).

4. Discussion

The idea that invertebrates are "mindless machines” has long

since rejected (Zylinski, 2015). Nevertheless, observatory

learning in invertebrates is difficult to assess under natural

conditions (Menzel et al., 2007). Using engineered testing

arenas can help in overcoming these problems. In particular,

miniaturised analytical platforms are gaining amomentum in

ecological studies focused on aquatic micro-environments

(Campana & Wlodkowic, 2018; Cartlidge et al., 2017; Illing

et al., 2016). The great potential of these devices can enable

investigations on the behavioural ecology and learning

mechanisms of microarthropods of relevant importance as

bioindicators and biosensors. However, this aspect has been

overlooked so far.

As in vertebrates, invertebrates can modify their behaviour

by learning processes (Avargu�es-Weber et al., 2018; Nargeot &

B�ed�ecarrats, 2017). Learning abilities reported in invertebrates

include both non-associative and associative forms (Davis &

Heslop, 2004; McGuire, 1984). Animals use associative

learning to establish predictive relationships between events

including sensory stimuli and motor actions (Bower &

Winzenz, 1970), and can be distinguished in classical or

respondent conditioning, and operant or instrumental condi-

tioning (Nargeot & B�ed�ecarrats, 2017). Invertebrates have been

found to be elective model organisms to analyse neuro-

ethological basis of learning, as they have relatively simple

behaviours that can be modulated by different associative

learning procedures, similar to those employed by vertebrates

(Hawkins & Byrne, 2015; Perry et al., 2013). Furthermore, the

neuronal architecture producing these behaviours include a

relatively small numbers of neurons that are easier to identify

and to analyse at cellular level (Moroz, 2011).

Herein, we presented a LOC-based testing arena with

microfluidic channels, to investigate higher-order informa-

tion processes and learning in the ostracod H. incongruens.

Previous studies investigated phototaxis display in other

freshwater crustacean by usingmicrofluidic devices (Cartlidge

et al., 2016). In this study a miniaturised testing platform was

first used to shade light on unexplored learning processes of

aquatic micro-arthropods.

The results of this research unveiled the ability of H.

incongruens in associating a light stimulus with a food source.

Freshwater ostracods are active foragers (Roca et al., 1993), but

Fig. 3 e Number of naı̈ve and trained H. incongruens individuals, exposed to treatment i) and ii), that were caged in the

exploration chamber of the miniaturised testing arena with the light stimulus, and with no light stimulus (a). Number of

naı̈ve and trained H. incongruens individuals, exposed to treatment iii), that were caged in the exploration chamber of the

miniaturised testing arena with the right colour light stimulus, the different colour light stimulus, and with no light

stimulus (b). Asterisks (*) indicate statistically significant preferences.
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this high degree of locomotion activity is energy costly

(Ydenberg & Dill, 1986), as well as can overexpose them to

potential predators (Uiblein et al. 1992, 1996). H. incongruens

individuals demonstrated how they can quickly learn from a

previous training phase and adapt their decision-making

behaviour to select microhabitats allowing them to balance

food searching effort and predation risk (Kohler & McPeek,

1989; Roca et al., 1993).

H. incongruens was also able to avoid a light stimulus

associated with a stress source, represented by an increased

salinity level. Salinity is a major factor affecting the structure

of aquatic communities in freshwater ecosystems. Variations

of abiotic factors, including salinity, has been reported to

significantly regulate the fitness of H. incongruens, and of os-

tracods in general (Bieszke et al., 2020; De Deckker, 1981; Laut

et al., 2016). The behavioural responses observed with the

proposed biohybrid paradigm remarkably provide the evi-

dence that H. incongruens learning ability is an elective aspect

bio-indicating the water quality (Kim et al., 2015; Lawrence

et al., 2002; Ruiz et al., 2013).

Notably, the caging system provided by the miniaturised

testing arena revealed how this ostracod species can also

discriminate lights different in colour by identifying those

previously associated with a food source, as well as those

associated with a stress source.

Some ostracod species in the subclass Myodocopa evolved

functional iridescence and bioluminescence (Oakley, 2005;

Parker, 1995), as well as lateral compound eyes to better detect

conspecifics in deep water (Parker, 1995). On the contrary,

visual signalling through bioluminescence as mate recogni-

tion system has never been documented in non-marine os-

tracods. A probable use of vision for mate recognition is

present in species of Notodromas, a genus of hyponeustonic

non-marine ostracods, therefore dwelling in an illuminated

environment, while the vast majority of non-marine ostra-

cods are benthic. Other important features in Notodromas

Fig. 4 e Time needed to make a choice (a), duration of the swimming activity (b), and duration of the resting behaviour (c) in

H. incongruens post-exposure to different treatments. B-Naı̈ve: naı̈ve individuals exposed to both colour lights; B-Trained:

trained individuals exposed to both colour lights; R-Naı̈ve: naı̈ve individuals exposed to the correct colour light; R-Trained:

trained individuals exposed to the correct colour light; D-Naı̈ve: naı̈ve individuals exposed to the different colour light; D-

Trained: trained individuals exposed to the different colour light. The median (red line) and their lower and upper quartiles

and outliers, as well as green lines (mean value) and blue T-bars (standard error value) are reported in the box plots. Data

distributions are shown by histograms on the right of each box plot. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)
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species are the presence of a naupliar eye ramified in three

ocelli, and of biconvex lenses, more developed in males,

located on the valves in positions corresponding to the lateral

ocelli. Also, females are strongly pigmented (Home et al.,

1998). In addition, our results indicate the ability of the

podocopid H. incongruens in exploiting light sources through

its translucent valves to increase its fitness.

The higher phylogeny of ostracods is still unconfirmed.

Several authors have suggested that ostracods are a mono-

phyletic group (McKenzie, 1972; Oakley et al., 2013; Parker,

1995) and that the myodocopids branched off the podocopid

tree in the Ordovician (McKenzie, 1972; Parker, 1995; Siveter &

Vannier, 1990), whereas others consider Myodocopa and

Podocopoda not closely related and consequently ostracods as

a polyphyletic group (Wakayama, 2007; Horne et al., 2005Q2 ).

Regardless of these alternative views, this study demonstrates

the ability to process and exploit light stimuli also in podo-

copids inhabiting shallow waters. Phototactic responses,

positive or negative, were already reported in marine podo-

copid ostracods (Tanaka, 2006). Furthermore, the influence of

illumination on the spatial orientation in H. incongruens and

Notodromas monacha (O.F.Müller 1776) was evaluated under

microgravity conditions (Fischer & Laforsch, 2018). Laboratory

experiments showed the effect of photoperiod on life-history

traits of H. incongruens (Rossi & Menozzi, 1993). Findings re-

ported here further confirm how Ostracoda are an important

model for studying the evolution of vision and light-related

features (Oakley, 2005).

In addition, H. incongruens not only can exploit visual

stimuli to make a decision but can also use them to modulate

its behaviours, as observed in the experiment 1. Feeding

behaviour crucially affects processes related to development,

morphology, physiology, and ecological features of a species

(Mili�ci�c et al., 2015). TrainedH. incongruensweremore active in

presence of the right colour light than in presence of the

different colour light, or no light, showing a probable attempt

in dosing energy for foraging activity and limiting exposure to

potential predators when swimming in search of suitable food

(Kohler & McPeek, 1989; Roca et al., 1993; Uiblein et al., 1992,

1996; Ydenberg & Dill, 1986).

Ostracods show clear microhabitat preferences which are

influenced by habitat structure and food supply (Mbahinzireki

et al., 1991; Wilkinson et al., 2007). Freshwater ostracods are

usually thought to explore the surrounding habitat by re-

ceptors (e.g., modified setae) sensitive to mechanical and

chemical stimuli (Smith & Matzke-Karasz, 2008). Even vision

may have a role that has been underestimated so far.

Our findings represent the first evidence of such complex

cognitive processes in H. incongruens, and in ostracods in gen-

eral. Our results can pave the way to a new research direction

for miniaturised analytical systems focused on behavioural

ecology and cognition of aquatic micro-invertebrates.

Furthermore, our results show how learning processes

exhibited by ostracods, along with their important role as

bioindicators, can enable the use of these animals, interfaced

with miniaturised devices, as trainable organism-based

Fig. 5 e Number of naı̈ve and trained H. incongruens individuals, exposed to treatment iv) and v), that were caged in the

exploration chamber of the miniaturised testing arena with the light stimulus, and with no light stimulus (a). Number of

naı̈ve and trained H. incongruens individuals, exposed to treatment vi), that were caged in the exploration chamber of the

miniaturised testing arena with the right colour light stimulus, the different colour light stimulus, and with no light

stimulus (b). Asterisks (*) indicate statistically significant preferences.
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sensors for in vitro biomonitoring tasks. Namely, several

studies confirm the potential of H. incongruens as test-

organism in ecotoxicological essays (Belgis et al., 2003; Chial

& Persoone, 2002; Gosset et al., 2016; Muna et al., 2019).

5. Conclusions

This study demonstrates the novel and key role of mini-

aturised engineered devices to investigate learning processes

of organisms in aquatic micro-habitats.

Herein we unveiled the ability of H. incongruens in associ-

ating light stimuli with food and stress sources. H. incongruens

individualswere also able to discriminate two lights different in

colour. This research shows how these microarthropods can

learn from previous experience and adapt their decision-

making behaviour to identify selected microhabitats. These

findings represent the first evidence of such complex cognitive

processes in Ostracoda. Furthermore, freshwater ostracods are

usually thought to explore the surrounding environment by

using mechanical and chemical receptors. Further research is

needed to understand the visual ecology of these species.

Overall, our results show how aquatic microarthropods’

learning processes, along with their important role as bio-

indicators, can lay the foundations for new research di-

rections towards the development of trainable organism-

based sensors for biohybrid biomonitoring tasks.
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