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Abstract

We consider solutions of p(x)-Laplacian systems with coefficients and we show that their gradient is con-
tinuous provided that the variable exponent has distributional gradient belonging to the Lorentz-Zygmund 
space Ln,1 logL and that the gradient of the coefficient belongs to the Lorentz space Ln,1. The result is new 
since the use of the sharp Sobolev embedding in rearrangement invariant spaces does not ensure the unique 
(up to now) known assumption for such result, namely the log-Dini continuity of p(·) and the plain Dini 
continuity of the coefficient. Our approach relies on perturbation arguments and allows to slightly improve 
results in dimension two even for the case where p(·) is constant.
© 2023 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

We consider weak solutions to the p(x)-Laplacian system with coefficients

div
[
a(x)|Du|p(x)−2Du

]
= 0, in � ⊂ Rn, n ≥ 2, (1.1)

� bounded domain, defined for functions in W 1,p(·)(�; RN), N ≥ 1 (see Section 2 for the nec-
essary definitions) and we start by supposing the variable exponent p : � → R measurable and 
satisfying the basic assumptions
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1 < γ1 ≤ p(·) ≤ γ2 < ∞, (1.2)

while we require the coefficient a : � → R to be measurable and bounded, above and away from 
zero:

a ∈ L∞(�), 0 < ν ≤ a(·) ≤ L < ∞. (1.3)

Problems with p(x)-growth are one of the main models embraced by the more general class of 
so-called problems with (p, q)-growth whose origin goes back to the work of Marcellini starting 
in the late eighties [30–33]; their peculiarity, namely the fact that the nonuniform ellipticity is 
mild (see the nice description via pointwise and nonlocal ellipticity ratios in [21]), has ensured 
then a prominent position as an active research argument almost constantly for the last twenty 
years. The literature on p(x)-problems is therefore too wide to even attempt to make a reasonable 
list of selected references; we only recommend [25] for a somehow already outdated survey and 
the seminal contributions [2,24,1,16] proving, respectively C0,α for some α ∈ (0, 1), C0,α for all 
α ∈ (0, 1) and C1,β for some β ∈ (0, 1) regularity for local solutions to (1.1); all these results 
have as common background (1.2)-(1.3), but different assumptions need to be further considered 
on both the regularity of the coefficient and the variable exponent, the latter in terms of the 
behavior for ρ ≈ 0 of the quantity

ωlog(ρ) = ωp(ρ) log
( 1

ρ

)
. (1.4)

Here ωp : [0, 1] → [0, γ2 − γ1] is a modulus of continuity for p(·), that is a concave function 
with ωp(0) = 0, continuous in zero and such that

|p(x) − p(y)| ≤ ωp(|x − y|) for all x, y ∈ � with |x − y| ≤ 1. (1.5)

More in detail, supposing (1.2)-(1.3), one has the following schematic description of the regular-
ity of (local) solutions to (1.1) in terms of the behavior of ωlog(·) and of ωa(·) as ρ ↘ 0 (being 
ωa : [0, 1] → [0, L − ν] a modulus of continuity for a(·), if any - simply adapt the definition in 
(1.5)):

• lim sup
ρ↘0

ωlog(ρ) < ∞ =⇒ u ∈ C
0,α
loc (�;RN), |Du|p(·) ∈ L

1+δ0
loc (�) for some constants α,

δ0 ∈ (0, 1) depending on the data;
• lim sup

ρ↘0

(
ωlog(ρ) + ωa(ρ)

) = 0 =⇒ u ∈ C
0,α
loc (�;RN) for every α ∈ (0, 1);

• ωlog(ρ) + ωa(ρ) ≤ c ργ for some γ ∈ (0,1) and c > 0 =⇒ u ∈ C
1,β

loc (�;RN) for some ex-
ponent β ∈ (0, 1) depending on the data.

A natural but interesting borderline result, of particular interest in our context and lying in be-
tween the second and the third result above, has been recently obtained by Ok in [34] (see also 
[35]): if the exponent p(·) is log-Dini continuous and the coefficient a(·) is Dini continuous, then 
u ∈ C1

loc(�; RN). Dini continuity is a classical and almost ubiquitous assumptions in borderline 
cases of the regularity theory and consists in the fact that the modulus of continuity of the func-
tion one considers is integrable in zero with respect to the measure dρ/ρ; in other words, a(·) is 
Dini continuous if
416
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1ˆ

0

ωa(ρ)
dρ

ρ
< ∞.

The variable exponent p(·) is said to be log-Dini continuous if ωlog(·) is Dini continuous, that is, 
if

1ˆ

0

ωp(ρ) log
( 1

ρ

) dρ

ρ
< ∞; (1.6)

it is evident a parallel between the regularity of the coefficient and that, corrected by a logarithmic 
factor, of the exponent. This fact is also described in [4]: notice that in [4] the differential operator 
is slightly different however a simple heuristic explanation based on Taylor expansions justifies 
the formal similitude of the two. This formal relation continues to hold true also in the case of 
the assumption of this paper, even if in a different setting: see (1.7) and (1.8)-(1.9). The Dini and 
log-Dini assumptions are extensively used in every other aspect related to gradient continuity, 
for instance gradient potential estimates, see [7,10,11]. An interesting variant, mixing the Dini 
condition with a modulus of continuity for the integral oscillation and strictly related to the 
approach developed in this paper, can be found in [22,23] related to solutions to linear equations.

We prove here gradient continuity for local solutions to (1.1) under a new integral assumption 
on the regularity of both the coefficient and the variable exponent. More precisely, we suppose 
(1.2)-(1.3) and moreover we assume that

a,p ∈ W 1,1(�) with Da ∈ Ln,1(�;Rn), Dp ∈ Ln,1 logL(�;Rn). (1.7)

We recall that Da belongs to the Lorentz space Ln,1(�; Rn) if

∞̂

0

∣∣{x ∈ � : |Da(x)| > λ}∣∣ 1
n dλ < ∞; (1.8)

such space, besides being fundamental as borderline rearrangement invariant space between the 
classic Sobolev and Morrey embeddings, has attracted lot of attention in the last years as signif-
icant, differential-operator invariant borderline space ensuring gradient continuity for solutions; 
see for instance [8,12,17,21,28,34,35] for details in several contexts, from non-uniformly general 
elliptic operators to parabolic and variational ones. In view of a characterization by O’Neil, Dp

belongs to the Lorentz-Zygmund space Ln,1 logL(�; Rn) if

∞̂

0

∣∣{x ∈ � : |Dp(x)| > λ}∣∣ 1
n log+ λdλ < ∞, (1.9)

where log+ λ = max{logλ, 0} is the positive part of logλ; very roughly, it can be seen as a space 
encoding a logarithmic correction in the decay of the measure of the super-levels sets defining 
Ln,1, and this is needed in order to locally rebalance the non-uniform ellipticity of the operator 
(compare with [8,17,19,21,26,34,35]).
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An important point we want to stress is that the sharp, generalized Sobolev’s embedding 
by Cianchi & Pick (see [13,14]) ensures that functions in W 1Ln,1 logL are continuous (see 
(1.10) below and notice that it therefore makes sense to mention the pointwise value of p(·)), 
but it does not guarantee that their modulus of continuity satisfies (1.6). Even more dramatically, 
functions in Ln,1, while being continuous, are not uniformly equicontinuous, in the sense that it 
is not possible to guarantee the embedding of W 1Ln,1 into any space of uniformly continuous 
functions sharing the same modulus of continuity; see [14, Remark 3.6]. Therefore, since these 
results are known to be optimal, Theorems 1.1-1.2 do not follow from continuity properties for 
a(·), p(·) inferred via Sobolev’s embedding and their proofs require an ad-hoc approach. For X
a rearrangement invariant space, we shall sometimes denote with W 1X the space of functions 
whose distributional gradients (better, their components) belong to X.

Anyway, not everything is lost: the aforementioned result shows (for details we refer [3]) that 
if the variable exponent p(·) has gradient belonging to Ln,1 logL ⊂ Ln,1, then it has a modulus 
of continuity ωp(·) satisfying

lim sup
ρ↘0

ωlog(ρ) ≤ c(n)‖p‖W 1Ln,1 logL(�) = c(n,p(·)) (1.10)

(we are not interested here in Sobolev-Lorentz-Zygmund norms, defined in terms of rearrange-
ments), at least if ∂� is Lipschitz; therefore, the sole use of (generalized) Sobolev’s embedding 
for p(·) ensures that solutions to (1.1) under the assumptions (1.2)-(1.3) and (1.7) have gradi-
ent that is higher integrable, that is, there exists a small positive constant δ0 > 0, depending on 
n, N, γ1, γ2, L/ν and L̃, such that

|Du|p(·) ∈ L
1+δ0
loc (�) (1.11)

(see Paragraph 2.5 for more details). In this paper we want to show that a more careful analysis1

leads to a much better regularity result for the gradient:

Theorem 1.1. Let u ∈ W 1,p(·)(�; RN) be a weak solution to the system (1.1); suppose that 
(1.2), (1.3) and (1.7) hold. Then Du is locally bounded: there exists a radius R0 depending 
on data, p(·), a(·) and ‖|Du|p(·)‖L1(�) such that if B2R(x0) ⊂ � is a ball with R ≤ R0, then

sup
BR(x0)

|Du| ≤ c −
ˆ

B2R(x0)

(
1 + |Du|)dx, (1.12)

for a constant c depending on the data.

(see (2.1) for the meaning of data) and

Theorem 1.2. Let u ∈ W 1,p(·)(�; RN) be as in Theorem 1.1. Then Du coincides almost every-
where in � with a continuous function.

1 The results and the techniques of this paper were first announced in the online seminar available at https://www2 .
karlin .mff .cuni .cz /~pick /2022 -01 -13 -baroni .mp4.
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Enlarging for a moment the perspective from which we describe our results, the study of 
problems with coefficients having assumption of Sobolev-Lorentz type is attracting more and 
more interest in the very last years, even for problems satisfying classic growth assumptions; in 
[21] it is shown that solutions to uniformly elliptic vectorial problems of the type

div
(
b(x)

ϕ′(|Du|)
|Du| Du

)
= f in � ⊂ Rn (1.13)

are Lipschitz (and therefore C1, after computation of standard flavor) regular if f ∈ Ln,1(�) and 
|Db| belongs to ⎧⎨

⎩
Ln,1(�) if n ≥ 3

L2(logL)γ (�) γ > 2, if n = 2
.

Here the scalar positive function ϕ′ has growth of Orlicz type and the coefficient b is elliptic, that 
is, it satisfies the assumptions in (1.3); for p ≥ 1, γ ∈ R, Lp logγ L(�) is the space of measurable 
functions f : � → R such that |f |p logγ (e + |f |) belongs to L1(�). Note that L2(logL)γ �

L2,1 (see [36, Theorem 9.5.14]); therefore our result slightly improves [21, Theorem 1.8] in 
dimension 2 when ϕ(t) = tp, p > 1; a perturbation approach similar to ours would lead to the 
result also for the more general growth conditions considered in [21].

We complete this introductory chapter stressing that an approach similar to that of this paper 
has been applied by the author to a borderline case of so-called double phase problems, see [3,6]. 
Double phase problems are problems of the Calculus of the Variations of the form

u ∈ W 1,1(�) →
ˆ

�

[
F(Du) + s(x)G(Du)

]
dx, s(x) ≥ 0,

with the peculiarity that G grows faster than F at infinity; they are the object of a substantial 
amount of research nowadays and for particular choices of F, G, they share many aspects of 
regularity with p(x) problems, see [3,6,4,11,20,37]. Also in this setting borderline cases are 
often difficult and require subtle arguments, see for instance [18,19] and compare with [5,15]
and [26,27]. We are convinced that the perturbative approach developed in this paper could find 
some applications leading to a deeper understanding of borderline cases in this research area 
and, as consequence, a deeper insight for the general theory; for more detail we again refer to 
[3,6,11,26,27,37].

Technical novelty of the paper

The approach we follow in this paper is of perturbative type: using appropriate liftings, 
we classically relate the regularity of solutions of (1.1) to the good, known C1,β -regularity of 
solutions to systems with p-Laplacian growth, see (2.13)-(3.6). The novelty is twofold: the local-
ization around the average of the variable functions p(·), a(·) and the use of the Sobolev-Poincaré 
inequality. The former replaces the classic freezing of the variable functions a(·) and p(·) in the 
center of the ball considered (see essentially all the references in the bibliography regarding 
p(x) problems); the use of the latter is allowed by the use of Hölder inequality with conjugate 
exponents (1 + 1/δ0, 1 + δ0), where δ0 ≈ 0 is the higher integrability exponent from (1.11), and 
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this replaces the classic use of Hölder’s inequality in the form L∞ − L1. Needless to say, we 
need to heavily use the fact that the gradient is higher integrable: this follows from (1.10), see 
(1.11). These two facts allow to make use of Lemma 2.1, enconding an independently interesting 
discretization of Lorentz-Zygmund spaces. Our approach also requires some localization effort 
(averages change at different steps of usual iteration procedures along sequences of shrinking 
balls) and we decided to solve the problem by performing the iteration at L1 level: the linearized 
estimate we are able to get (see for instance (4.6)) could be useful in future advances in the the-
ory and we think this could justify our effort. See [3] for a different solution to this localization 
problem.

To the best of our knowledge, this is the first time such a perturbative argument is carried on, 
despite being inspired by the techniques in [28].

Extension to local solutions and more general structures

In order to avoid unessential complication we suppose that the solution u is globally inte-
grable, that is, |Du|p(·) ∈ L1(�); accordingly, we set

M =
ˆ

�

(
1 + |Du|p(x)

)
dx. (1.14)

Clearly all the forthcoming results are local in nature and therefore it is possible to suppose u
local solution (that is, |Du|p(·) ∈ L1

loc(�)) and relax in an appropriate local way the assumptions 
in (1.7). Easy, minor modifications of the current proof would lead to the same results in this 
case.

Possible extensions of our results involve more general differential, or variational, structures 
of p(x)-type. We prefer to focus here on the simple model case (1.1) and leave such extensions 
to future contributions.

Acknowledgments

We thank the reviewer for the careful reading of the manuscript and for the suggestions that 
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2. Preliminaries

2.1. Notation

In this paper we are going to denote by c a positive constant possibly varying from line to 
line; special occurrences will be denoted by c1, c∗, c̄ or the like. All such constants will always 
be larger or equal than one; moreover relevant dependencies on parameters will be emphasized
in parentheses, i.e., c1 ≡ c1(n, p) means that c1 depends on n and p. By data we denote the set 
of parameters

{n,N,γ1, γ2,L/ν, L̃} (2.1)
420
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(with L̃ that is going to be defined in (2.2)) so that by writing c(data) we shall mean that the 
constant depends on n, N, γ1, γ2, L/ν and L̃. The dependencies of the radii on p(·) and a(·) will 
all derive only from the use of (1.10) and Corollary 2.2. We denote by

BR(x0) := {x ∈Rn : |x − x0| < R}
the open ball with center x0 and radius R > 0; when not important, or clear from the context, we 
shall omit denoting the center just denoting BR ≡ BR(x0). With B ⊂ Rn being a measurable set 
with positive, finite measure |B| > 0, and with g : B → R,  ≥ 1, being a measurable map, we 
shall denote by

(g)B ≡ −
ˆ

B

g(x)dx := 1

|B|
ˆ

B

g(x)dx

its integral average. Moreover, oscillation of g on B is defined as

osc
B

g = sup
x,y∈B

|g(x) − g(y)|.

A great importance will have the (L1) excess: for g, B as above, it is defined by

−
ˆ

B

∣∣g − (g)B
∣∣dx;

note that by triangle’s inequality we have

−
ˆ

B

∣∣g − (g)B
∣∣dx ≤ 2 −

ˆ

B

|g − ξ |dx for all ξ ∈ R,

a property we are going to use very often.
For x ≥ 0, γ ∈R, we denote by logγ (e+x) the quantity [log(e+x)]γ and logγ (t) = | log(t)|γ

for t > 0. We use the agreement that N is the set {1, 2, 3, . . . } and N0 := N ∪ {0}; by an interval 
in N0 we mean the intersection of an interval in R with N0. We use the notation χ(−∞,2)(p) for 
the characteristic function of the set (−∞, 2), that is

χ(−∞,2)(p) =
{

0 if p ≥ 2

1 if p < 2
;

similarly for χ[t,+∞) with t ∈ R. For 1 < p < ∞ we denote with p′ the Hölder conjugate of p; 
for 1 < p < n with p∗ its Sobolev conjugate and for p > 1 with p∗ the quantity you can see 
below:

p′ = p

p − 1
, p∗ = np

n − p
, p∗ = np

n + p
;

notice that p∗ = q if and only if p = q∗ (if p < n).
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2.2. Function spaces, variable exponents and weak solutions

The variable exponent Lebesgue space Lp(·)(�; R),  ≥ 1, for a variable exponent as in (1.2), 
is defined as the space of measurable functions f : � → R such that |Du|p(·) ∈ L1(�); it is 
endowed with the Luxemburg norm

‖u‖Lp(·) = inf
{
λ > 0 :

ˆ

�

∣∣∣u(x)

λ

∣∣∣p(x)

dx ≤ 1
}
.

We define W 1,p(·)(�; RN) as the space of weakly differentiable functions whose distributional 
derivatives belong to Lp(·)(�) and W 1,p(·)

0 (�; RN) as the closure of C∞
c (�; RN) with respect 

to the norm ‖u‖W 1,p(·) = ‖u‖Lp(·) + ‖Du‖Lp(·) ; local variants of such spaces are defined in the 
usual way. Note that the extension to zero outside � of a function in W 1,p(·)

0 (�; RN) belongs to 
W 1,p(·) of any superset of �.

By a weak solution to (1.1) we mean a function u ∈ W 1,p(·)(�; RN) such that

ˆ

�

〈a(x)|Du|p(x)−2Du,Dϕ〉dx = 0 for all ϕ ∈ C∞
c (�;RnN)

and, by density, for every ϕ ∈ W
1,p(·)
0 (�; RnN). 〈·, ·〉 denotes the scalar product in RnN (or better 

the Frobenius product).

We shall denote for a ball BR ≡ BR(x0) ⊂ � (its center will always be clear from the context) 
and for radii r ≤ R

p+
r = sup

Br (x0)

p(·), p−
r = inf

Br(x0)
p(·).

As a consequence of (1.10) we can assume that there exists L̃ > 0 such that

sup
ρ∈(0,1]

ωp(ρ) log
( 1

ρ

)
≤ L̃, (2.2)

a fact that we are going to use often. We also remark that, using (2.2), we have that if ρ ≤ 1 then

ρ−ωp(ρ) = e
ωp(ρ) log( 1

ρ
) ≤ c(L̃). (2.3)

2.3. Discretization of Lorentz-Zygmund spaces

For a function f : BR(x0) ⊂ Rn →R,  ∈ N , the sum

Sq,β(f )(x0,R) :=
∞∑

j=0

Rj logβ
( 1

Rj

)(
−
ˆ

Bj (x0)

|f |q dx
) 1

q
, q ∈ (1, n),β ∈R, (2.4)

where
422
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R ∈ (0,1), σ ∈ (0,1), Rj = σ jR, Bj (x0) = BRj
(x0), j ∈N0,

will take on great importance in view of the following lemma; see [3] and compare with [28, 
Lemma 1].

Lemma 2.1. Let f ∈ Ln,1 logβ L(BR(x0)) for β ∈ {0, 1} being R ≤ 1 and let q ∈ (1, n) and 
σ ∈ (0, 1); then

Sq,β(f )(x0,R) ≤ c(n, q,σ )‖f ‖Ln,1 logβ(BR(x0))
.

As a consequence, since the Lorentz norm Ln,1 logβ L is defined in terms of an integral, by 
absolute continuity (cf. [36, Paragraph 9.9]) it follows that we can make, taking the initial radius 
R sufficiently small, the sum Sq,β(f )(x0) small (locally) uniformly in x0.

Corollary 2.2. Let � ⊂ Rn and f ∈ Ln,1 logβ L(�) for β ∈ {0, 1}; let moreover σ ∈ (0, 1) and 
q ∈ (1, n) be fixed. For every K � � and ε > 0, there exists a radius Rε > 0 depending on 
n, q, σ, f and ε such that if R ∈ (0, Rε] and R < dist(∂�, K), then

sup
x0∈K

Sq,β(f )(x0,R) ≤ ε.

2.4. Auxiliary vector fields

We will work often with a classic nonlinear expression of the gradient encoding in a precise 
way the monotonicity properties of the differential operator considered. In detail, for p ∈ [γ1, γ2], 
we set

Vp(ξ) = |ξ | p−2
2 ξ, ξ ∈ R.

For ξ1, ξ2 ∈ R and p(x) > 1 we have the estimate

1

c

∣∣Vp(x)(ξ1) − Vp(x)(ξ2)
∣∣2 ≤ 〈|ξ1|p(x)−2ξ1 − |ξ2|p(x)−2ξ2, ξ1 − ξ2

〉
, (2.5)

for a constant c ≡ c(γ1, γ2) ≥ 1. A basic property of the map Vp(·) is the following local bi-
Lipschitz character: indeed, for ξ1, ξ2 ∈R and p > 1 it holds

1

c

(|ξ1| + |ξ2|
)p−2|ξ2 − ξ1|2 ≤ ∣∣Vp(ξ2) − Vp(ξ1)

∣∣2 ≤ c
(|ξ1| + |ξ2|

)p−2|ξ2 − ξ1|2. (2.6)

The constant c here depends only on p and we stress that for p ∈ [γ1, γ2] it can be replaced 
by one depending only on γ1 and γ2; in other words, in case of a function p : � → [γ1, γ2], 
estimate (2.6) can be written with p = p(x) and the constant c will depend only on γ1 and γ2. 
As a consequence, if 2 ≤ p ≤ γ2 < ∞ then

|ξ1 − ξ2|p ≤ c(γ2)|Vp(ξ2) − Vp(ξ1)|2 (2.7)

while if 1 < γ1 ≤ p < 2 then
423



P. Baroni Journal of Differential Equations 367 (2023) 415–450
|ξ1 − ξ2| ≤ c |Vp(ξ1) − Vp(ξ2)|
2
p + c |ξ1| 2−p

2 |Vp(ξ1) − Vp(ξ2)|, (2.8)

for a constant depending only on γ1. For these properties, see for instance [7,28,34].

2.4.1. Logs
We have the following useful properties of the logarithm we are often going to use without 

explicit reference:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

log
(x



)
≤ (1 − log) logx for every x ≥ e and for all  ∈ (0,1];

log(e + xσ ) ≤ 1 + max{1, σ } log(e + x) for all x ≥ 0 and σ > 0;
log(e + xy) ≤ log(e + x) + log(e + y) for all x, y ≥ 0

log(e + Ax) ≤ A log(e + x) for all x ≥ 0 and A ≥ 1.

(2.9)

The proofs are very simple, see for instance [6].

The following lemma is an appropriate version of a well-known estimate for the treatment of 
such operators; for the simple proof in this general form see [6, Lemma 2.1].

Lemma 2.3. Let ς̃ > 1, σ, β, θ ≥ 0 and let f be a positive function in Lς̃(Br) for some ball 
Br ≡ Br(x0) with radius r ≤ e−1. Then there exists a constant c depending on n, β, σ, θ and ς̃
such that

−
ˆ

Br

f logβ
(
e + f σ

)
dx ≤ c

(
1 + rθ ‖f ‖L1(Br )

)β logβ
(1

r

)(
−
ˆ

Br

f ς̃ dx

)1/ς̃

.

2.5. Reference estimates for solutions to (1.1)

We consider here solutions to (1.1) under the assumptions (1.2)-(1.3) and (2.2) that, we recall, 
holds by embedding as a consequence of our main assumption (1.7).

The basic assumptions deduced by Sobolev’s embedding, despite not allowing to get the re-
sults stated in our main Theorems 1.1-1.2, still allow to catch some gradient regularity in terms 
of its higher integrability. As a reference for the following result we suggest [7,9,34,38] even if 
we are going to sketch a proof, since we need the local estimate (2.10) in a particular form not 
present in the literature.

Theorem 2.4. Let E ⊂ Rn and u ∈ W 1,p(·)(E; RN) be a solution to (1.1) under the assumptions 
(1.2)-(1.3) and (2.2). Then there exists an exponent δ0 ∈ (0, 1), depending on the data such that 
|Du|p(·) ∈ L

1+δ0
loc (E); moreover, for

M =
ˆ

E

(
1 + |Du|p(x)

)
dx,

there exists a threshold R̄ ≡ R̄(n, p(·), M) ≤ 1 such that the local estimate
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(
−
ˆ

BR(x0)

|Du|p(x)(1+δ0) dx

) 1
1+δ0 ≤ c

(
−
ˆ

B2R(x0)

(
1 + |Du|)dx

)p(x̄)

(2.10)

holds if R ≤ R̄ and B2R(x0) ⊂ E, for a constant c depending on data and for every x̄ ∈
B2R(x0). In particular we also have

R̄ = 1

4
min

{ 1

M ,R1,1
}

with sup
ρ∈(0,2R1]

ωp(ρ) ≤ 1

c(n)
. (2.11)

Proof. The local estimate

(
−
ˆ

BR(x0)

|Du|p(x)(1+δ0) dx

) 1
1+δ0 ≤ c −

ˆ

B2R(x0)

(
1 + |Du|)p(x)

dx (2.12)

and, as customary consequence of the self-improving character of the reverse Hölder inequalities,

(
−
ˆ

BR(x0)

|Du|p(x)(1+δ0) dx

) 1
1+δ0 ≤ c

(
−
ˆ

B2R(x0)

(
1 + |Du|)dx

)p+
2R

are well-founded for every ball B2R(x0) ⊂ E with radius R ≤ R̄ (R̄, δ0 > 0 and the constant c
as in the statement) and their proof is quite standard, see for instance [34, Theorem 3.1] for a 
transparent form. To prove (2.10) we need to show that we can bound

(
−
ˆ

B2R(x0)

(
1 + |Du|)dx

)p+
2R−p(x̄)

by a constant independent of R; we have, with c ≡ c(n, γ1, γ2) and if p+
2R − p(x̄) > 0

(
−
ˆ

B2R(x0)

(
1 + |Du|)dx

)p+
2R−p(x̄) ≤ c

( M

(2R)n

)p+
2R−p(x̄)

≤ c (2R)−(n+1)ωp(2R) ≤ c(n, γ1, γ2, L̃)

thanks to (2.11) and (2.3). �
2.6. Excess decay estimates for reference problems

We consider the classic p-Laplacian system

div
[
|Dw|p−2Dw

]
= 0 in E ⊂ Rn, (2.13)

for p > 1. It is well known that solutions to (2.13) are locally C1,α regular: see [29, Theorem 
3.1] for the following precise form of the excess decay.
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Theorem 2.5. Let w ∈ W 1,p(E; RN) be a weak solution to (2.13). There exist constants cph ≥
1, α0 ∈ (0, 1), σ0 ∈ (0, 1], depending on n, N and p, such that for every ball BR(x0) ⊂ E and for 
all σ ∈ (0, σ0]

osc
BσR(x0)

Dw ≤ cph σα0 −
ˆ

BR(x0)

∣∣Dw − (Dw)BR(x0)

∣∣dx.

3. Comparison results

We start this section by fixing a solution u ∈ W 1,p(·)(�; RN) to (1.1) and a ball BR ≡
BR(x0) ⊂ � with radius R smaller than a threshold R0 whose value will be reduced several 
times in the course of the proof; all the balls we are going to work with in this section will have 
the same center x0. We start setting R0 = min{R̄, e−1}, where R̄ ≡ R̄(n, p(·), M) is the radius 
appearing in Theorem 2.4 for M = M as defined in (1.14); in particular we have R0 ≤ 1 so (2.2)
is at our disposal. Moreover, we denote for radii r ≤ R

ār := (a)Br
= −
ˆ

Br

a(x) dx, p̄r := (p)Br
= −
ˆ

Br

p(x) dx. (3.1)

We also set, for q ∈ (1, n)

Ar,q = r
(

−
ˆ

Br

|Da|q dx
) 1

q
, Pr,q = r log

(1

r

)(
−
ˆ

Br

|Dp|q dx
) 1

q
. (3.2)

We immediately stress that we are going to work with the following additional assumption (later 
we will show how to guarantee this by appropriately reducing the value of R0):

Ar,q ≤ 1, Pr,q ≤ 1 if r ≤ R0. (3.3)

Next we further reduce the value of the R0 so that

ωp(R0) ≤ γ1

2 max{2, γ ′
1}

· δ0

2 + δ0
≤ min

{γ1δ0

4
,

γ1

2 max{2, γ ′
1}

· δ0

2 + δ0

}
, (3.4)

where δ0 is the positive constant appearing in the higher-integrability result of Theorem 2.4; this 
makes R0 ultimately depend only on data, p(·) and M .

First we are going to consider the solution to the comparison problem

⎧⎨
⎩

div
[
āR/2|Dv|p(x)−2Dv

]
= 0 in BR/2

v = u on ∂BR/2

; (3.5)

later we are going to consider the solution to the problem with standard p-Laplacian growth
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⎧⎨
⎩

div
[
|Dw|p̄R/4−2Dw

]
= 0 in BR/4

w = v on ∂BR/4

. (3.6)

Notice that both problems are well posed and have a unique solution: the boundary datum of (3.5)
is a function in W 1,p(·)(BR/2; RN) that is exactly the energy space of the differential operator in 
(3.5)1, while for the second we observe that the local higher integrability result in Theorem 2.4
implies that v ∈ W 1,p(·)(1+δ0)(BR/4; RN) and the smallness assumption of the radius (3.4) en-
sures that for all x ∈ BR/4

p̄R/4 − inf
BR/4

p(·) ≤ ωp(R0) ≤ γ1δ0 =⇒ p̄R/4 ≤ p(x)(1 + δ0)

and therefore

W 1,p(·)(1+δ0)(BR/4;RN) ⊂ W 1,p̄R/4(BR/4;RN); (3.7)

again monotonicity methods apply. In particular, by density, the weak formulation of the system 
(3.5) can be tested with the function ϕ = u − v ∈ W

1,p(·)
0 (BR/2; RN) and that of (3.6) with the 

function ϕ = v − w ∈ W
1,p̄R/4
0 (BR/4; RN).

3.1. Basic results

Note the solving (3.5) is equivalent to finding the minimizer of the energy v → ´
BR/2

|Dv|p(x)/

p(x) dx in the Dirichlet class u + W
1,p(·)
0 (BR/2; RN); thus

−
ˆ

BR/2

|Dv|p(x) dx ≤ c(γ1, γ2) −
ˆ

BR/2

|Du|p(x) dx. (3.8)

Moreover, since the differential operator in (3.5) satisfies (1.2), (1.3) and (2.2), the higher inte-
grability result of Theorem 2.4 applies to Dv too with the same constant and exponent. However, 
the critical radius for which the local estimate (2.10) holds depends on M = ´

BR/2
(1 +|Dv|) dx. 

Anyway, due to the previous inequality (3.8) and the explicit monotonicity of R̄ with respect to 
the energy (2.11), we can possibly reduce the value of R̄ (and therefore of R0) so that Theo-
rem 2.4 is at our disposal for both Du and Dv with a constant depending on data and for radii 
smaller than the threshold R0 ≡ R0(n, p(·), M). In particular

−
ˆ

BR/4

|Dv|p(x)(1+δ0) dx ≤ c
(

−
ˆ

BR/2

(
1 + |Dv|)p(x)

dx
)1+δ0

≤ c
(

−
ˆ

BR/2

(
1 + |Du|)p(x)

dx
)1+δ0

≤ c
(

−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)(1+δ0)

(3.9)
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holds true for every x̄ ∈ BR ; c here depends only on the data. We used (2.12) for Dv, (3.8) and 
(2.10) for Du.

We can finally start by deriving a first comparison estimate.

Lemma 3.1 (Comparison I). Let v ∈ u + W
1,p(·)
0 (BR/2; RN) be the solution to (3.5); there exists 

an exponent

q = q(data) < n (3.10)

such that

−
ˆ

BR/2

∣∣Vp(x)(Du) − Vp(x)(Dv)
∣∣2

dx ≤ cA2
R/2,q

(
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

(3.11)

holds true for a constant c depending only on the data and for every x̄ ∈ BR .

Proof. We subtract the weak formulations of the systems solved by u and v and we test such 
difference with ϕ = u − v. We have, after some simple computations

I = −
ˆ

BR/2

〈
āR/2|Du|p(x)−2Du − āR/2|Dv|p(x)−2Dv,Du − Dv

〉
dx

= −
ˆ

BR/2

〈
āR/2|Du|p(x)−2Du − a(x)|Du|p(x)−2Du,Du − Dv

〉
dx

≤ −
ˆ

BR/2

|āR/2 − a(x)||Du|p(x)−1|Du − Dv|dx = II. (3.12)

We use the monotonicity in (2.5) and (1.3) to estimate from below

I ≥ āR/2

c
−
ˆ

BR/2

∣∣Vp(x)(Du) − Vp(x)(Dv)
∣∣2

dx ≥ 1

c
−
ˆ

BR/2

∣∣Vp(·)(Du) − Vp(·)(Dv)
∣∣2

dx.

To estimate II we need to distinguish two cases:
In the case p(x) ≥ 2 we can estimate pointwise, using Young’s inequality for ε ∈ (0, 1) to be 

chosen later and (2.6)

ii : = |āR/2 − a(x)||Du|p(x)−1|Du − Dv|
= |āR/2 − a(x)||Du| p(x)

2
[|Du| + |Dv|] p(x)−2

2 |Du − Dv|
≤ ε

∣∣Vp(x)(Du) − Vp(x)(Dv)
∣∣2 + c(ε, γ2)|a(x) − āR/2|2|Du|p(x).

If on the other hand p(x) < 2 using (2.8), twice Young’s inequality and (1.3)
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ii ≤ c|āR/2 − a(x)||Du|p(x)−1
∣∣Vp(x)(Du) − Vp(x)(Dv)

∣∣ 2
p(x)

+ c|āR/2 − a(x)||Du| p(x)
2

∣∣Vp(x)(Du) − Vp(x)(Dv)
∣∣

≤ ε
∣∣Vp(x)(Du) − Vp(x)(Dv)

∣∣2 + cε|a(x) − āR/2|2|Du|p(x)

with c depending on γ1, L and ε; notice that [p(x)]′ > 2 in this case and therefore

|a(x) − āR/2|[p(x)]′ ≤ L
2−γ1
γ1−1 |a(x) − āR/2|2.

Combining the two cases we get

II ≤ ε −
ˆ

BR/2

∣∣Vp(x)(Du) − Vp(x)(Dv)
∣∣2

dx + cε −
ˆ

BR/2

|a(x) − āR/2|2|Du|p(x) dx.

At this point we estimate the last integral: for δ0 ∈ (0, 1) the higher integrability exponent of 
Theorem 2.4,

−
ˆ

BR/2

|a(x) − āR/2|2|Du|p(x) dx

≤
(

−
ˆ

BR/2

|a(x) − āR/2|2(1+δ0)
′
dx

) 1
(1+δ0)′

(
−
ˆ

BR/2

|Du|p(x)(1+δ0) dx
) 1

1+δ0 ;

we use now Sobolev-Poincaré’s inequality recalling that āR/2 is the average of a(·) on BR/2 and 
that, belonging a(·) in particular to W 1,n(BR/2), it is possible to choose an arbitrarily large value 
for the exponent of a(·) − āR/2. This is to say, we can select q = q(n, δ0) < n such that

2(1 + δ0)
′ = q∗ = nq

n − q
⇐⇒ q =

[
2

1 + δ0

δ0

]
∗ = 2n(1 + δ0)

δ0(n + 2) + 2
(3.13)

so that

(
−
ˆ

BR/2

|a(x) − āR/2|2(1+δ0)
′
dx

) 1
(1+δ0)′ ≤ c(n, δ0)

(
Rq −

ˆ

BR/2

|Da|q dx
) 2

q = cA2
R/2,q .

We complete the estimate for II using the local estimate from Theorem 2.4

II ≤ ε −
ˆ

BR/2

∣∣Vp(x)(Du) − Vp(x)(Dv)
∣∣2

dx + cεA
2
R/2,q

(
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

cε depends on the data and ε. Inserting this estimate into (3.12) together with the estimate for 
I , choosing ε sufficiently small and reabsorbing gives (3.11). �
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Lemma 3.2 (Comparison I localized). Let v ∈ u + W
1,p(·)
0 (BR/2; RN) be as in Lemma 3.1 and 

let x̄ ∈ BR and ρ ≤ R/4; then

−
ˆ

BR/4

∣∣Vp̄ρ (Du) − Vp̄ρ (Dv)
∣∣2

dx ≤ c
[
A2

R,q +
(R

ρ

) n
q
−1

P2
R,q

](
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

(3.14)

holds true for a constant c depending only on the data and for (a possibly different than that in 
(3.10)) constant q ∈ (1, n), still depending on the data.

Proof. Let us denote F = |Du(x)| + |Dv(x)|, p̄ = p̄ρ and ω = ωp(R) in short; suppose F �= 0. 
The trivial estimate (we use triangle’s inequality here)

F p̄−2|Du(x) − Dv(x)|2 ≤ Fp(x)−2|Du(x) − Dv(x)|2
+ F

p(x)
2

∣∣F p̄−p(x) − 1
∣∣F p(x)−2

2 |Du(x) − Dv(x)|

together with (2.6) and Young’s inequality implies that

∣∣Vp̄(Du(x)) − Vp̄(Dv(x))
∣∣2 ≤ c

∣∣Vp(x)(Du(x)) − Vp(x)(Dv(x))
∣∣2 + cFp(x)

∣∣F p̄−p(x) − 1
∣∣2

with c ≡ c(γ1, γ2). Now we notice that the mean value theorem yields

∣∣F p̄−p(x) − 1
∣∣ = |p(x) − p̄|Fλx(p̄−p(x))| logF | (3.15)

with λx ∈ (0, 1). Now we estimate the quantity Fp(x)+2λx(p̄−p(x)) log2 F distinguishing the two 
cases F = F(x) ∈ (0, e) and F ≥ e: in the first one

Fp(x)+2λx(p̄−p(x)) log2 F ≤ c(γ1, γ2)

thanks to the estimate

sup
t∈(0,e)

tσ | log t | ≤ 1

ae
+ eb for all σ ∈ [a, b], (3.16)

with 0 < a < b (simply consider the cases t ∈ (0, 1] an t ∈ [1, e)) and the fact

∣∣λx

(
p̄ − p(x)

)∣∣ ≤ ωp(R0) ≤ γ1

4

- we are using (3.4) here. If F ≥ e, using the bound above,

Fp(x)+2λx(p̄−p(x)) logF ≤ Fp(x)+2ω log2 (
e + Fp(x)+2ω

)
.

Merging these two cases gives

Fp(x)
∣∣F p̄−p(x) − 1

∣∣2 ≤ c(γ1, γ2)|p(x) − p̄|2(1 + Fp(x)+2ω
)

log2 (
e + 1 + Fp(x)+2ω

);
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averaging the previous inequality over BR/4 and using Hölder’s inequality with conjugate expo-
nents (1 + δ, 1 + 1/δ) for δ ∈ (0, 1) to be chosen gives

−
ˆ

BR4

Fp(x)
∣∣F p̄−p(x) − 1

∣∣2
dx ≤ c(γ1, γ2)

(
−
ˆ

BR/4

|p(x) − p̄|2(1+ 1
δ
) dx

) δ
1+δ ×

×
(

−
ˆ

BR/4

(
1 + Fp(x)+2ω

)1+δ log2(1+δ)
(
e + 1 + Fp(x)+2ω

)
dx

) 1
1+δ

. (3.17)

Now, for δ0 the higher integrability exponent appearing in Theorem 2.4, we notice that choosing 
δ, depending only on δ0 and sufficiently small, we have (after setting ω̃ = 2ω/γ1):

(1 + ω̃)(1 + δ) ≤ (1 + ω̃)(1 + δ)2 ≤
(

1 + δ0

2

)
(1 + δ)2 ≤ 1 + δ0 (3.18)

taking also into account (3.4). In order to estimate the last integral in (3.17) with the correct 
dependence of the exponent we estimate, we use (3.9)-(2.12), to infer

−
ˆ

BR/4

(
1 + Fp(x)+2ω

)1+δ
dx ≤ −

ˆ

BR/4

(
1 + Fp(x)(1+ω̃)

)1+δ
dx (3.19)

≤ (γ2, δ0) −
ˆ

BR/4

(
1 + Fp(x)(1+δ0)

)
dx

≤ c −
ˆ

BR/4

(
1 + |Du|p(x)(1+δ0) + |Dv|p(x)(1+δ0)

)
dx

≤ c(data)
(

−
ˆ

BR/2

(
1 + |Du|)p(x)

dx
)1+δ0

≤ cR−n(1+δ0)M1+δ0 ≤ cR−(n+1)(1+δ0).

In light of Lemma 2.3 with the choices f = (1 + Fp(x)+ω)1+δ, β = 1 + δ, σ = 1/(1 + δ), θ =
(n + 1)δ0 + 1, ς̃ = 1 + δ and the previous estimate (3.19) we have now

−
ˆ

BR/4

(
1 + Fp(x)+2ω

)1+δ log1+δ
(
e + 1 + Fp(x)+2ω

)
dx

≤ c
(

1 + R(n+1)(1+δ0) −
ˆ

BR/4

(
Fp(x)+ω

)1+δ
dx

)1+δ×

× log1+δ
( 4

R

)(
−
ˆ

B

(
1 + Fp(x)+2ω

)(1+δ)2
dx

) 1
1+δ
R/4
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≤ c log1+δ
( 1

R

)(
−
ˆ

BR/4

(
1 + Fp(x)(1+ω̃)

)(1+δ)2
dx

) 1
1+δ

and the constant depends on data, δ and δ0 - that is, on data only. Now we can continue to 
estimate the integral on the right-hand side using (3.18) similarly as what done in (3.19):

−
ˆ

BR/4

(
1 + Fp(x)(1+ω̃)

)(1+δ)2
dx ≤ c

(
−
ˆ

BR/4

(
1 + Fp(x)(1+δ0)

)
dx

) (1+ω̃)(1+δ)2
1+δ0 (3.20)

≤ c
(

−
ˆ

BR/2

(
1 + |Du|p(x)

)
dx

)(1+ω̃)(1+δ)

≤ c
(

−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)(1+δ)

.

We justify now the last inequality: we have

(
−
ˆ

BR/2

(
1 + |Du|p(x)

)
dx

)ω̃(1+δ) ≤
( M

Rn

)ωp(R)2
1+δ0
γ1 ≤ c(γ1, δ0) (3.21)

using (2.3) as in the proof of Theorem 2.4; we also used (2.10). The constant in (3.20), finally 
and in view of this, depends on data and M . Plugging (3.20) into (3.17) gives

−
ˆ

BR/4

Fp(x)
∣∣F p̄−p(x) − 1

∣∣2
dx

≤ c log2
( 1

R

)(
−
ˆ

BR/4

|p(x) − p̄|2(1+ 1
δ0

)
dx

) δ0
1+δ0

(
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

with c depending on data and M . Now, as in (3.13), for q = q(n, δ0) < n such that

2
(

1 + 1

δ0

)
= q∗ ⇐⇒ q =

[
2
(

1 + 1

δ0

)]
∗ = 2n(1 + δ0)

δ0(n + 2) + 2

we have, enlarging the integral over Bρ :

(
−
ˆ

BR/4

|p(x) − p̄|2(1+ 1
δ0

)
dx

) δ0
1+δ0 =

(
−
ˆ

BR/4

|p(x) − (p)Bρ |q
∗
dx

) 2
q∗

≤ 2
(

−
ˆ

B

|p(x) − (p)BR/4 |q
∗
dx

) 2
q∗ + 2

(
−
ˆ

B

|p(x) − (p)BR/4 |q
∗
dx

) 2
q∗
R/4 ρ
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≤ c(n, δ0)
(

1 + R

ρ

) 2n
q∗ (

Rq −
ˆ

BR/4

|Dp|q dx
) 1

q
.

Therefore

−
ˆ

BR/4

Fp(x)
∣∣F p̄−p(x) − 1

∣∣2
dx ≤ c

(R

ρ

)2( n
q
−1)

P2
q,R/4

(
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

We conclude the proof noticing that (see (2.9))

AR/2,q ≤ c(n, q)AR,q, PR/4,q ≤ c(n, q)PR,q . �
Now we derive a second comparison estimate for the solution of (3.6).

Lemma 3.3 (Comparison II). Let w ∈ W 1,p̄R/4(BR/4; RN) be the solution to (3.6); there exists 
an exponent

q = q(data) < n

such that

−
ˆ

BR/4

∣∣Vp̄R/4(Dv) − Vp̄R/4(Dw)
∣∣2

dx ≤ cP2
R,q

(
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

(3.22)

holds true for a constant c depending only on the data and for every x̄ ∈ BR(x0).

Proof. We use in the proof the short notation p̄ := p̄R/4. Similarly as before we subtract the 
weak formulations of the systems solved by v and w and we use as a test function ϕ = v − w; 
this function is allowed thanks to the discussion after (3.6), see in particular (3.7).

I = −
ˆ

BR/4

〈|Dv|p̄−2Dv − |Dw|p̄−2Dw,Dv − Dw
〉
dx

= −
ˆ

BR/4

〈|Dv|p̄−2Dv − |Dv|p(x)−2Dv,Dv − Dw
〉
dx

≤ −
ˆ

BR/4

∣∣|Dv|p(x)−p̄ − 1
∣∣|Dv|p̄−1|Dv − Dv|dx = II.

Using again (2.5) we get

I ≥ 1

c̄(γ1, γ2)
−
ˆ

B

∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣2

dx. (3.23)
R/4
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In order to get an estimate for II we estimate similarly to what done for (3.15): for almost every 
x ∈ BR/4 with |Dv(x)| �= 0 it holds

∣∣|Dv(x)|p(x)−p̄ − 1
∣∣ = |p(x) − p̄||Dv|λx(p(x)−p̄)

∣∣ log |Dv|∣∣
for λx ∈ (0, 1). Now we distinguish two cases: if p̄ ≥ 2 then

|Dv − Dv| ≤ c(γ2)|Dv| 2−p̄
2

∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣

by (2.6) and using Young’s inequality we have

II ≤ −
ˆ

BR/4

|p(x) − p̄||Dv| p̄
2 +λx(p(x)−p̄)

∣∣ log |Dv|∣∣ ∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣dx

≤ c −
ˆ

BR/4

|p(x) − p̄|2|Dv|p̄+2λx(p(x)−p̄) log2 |Dv|dx

+ 1

2c̄
−
ˆ

BR/4

∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣2

dx.

If p̄ < 2 on the other hand we use (2.8) and Young’s inequality twice so that

II ≤ c(γ1) −
ˆ

BR/4

|p(x) − p̄||Dv|p̄−1+λx(p(x)−p̄)
∣∣ log |Dv|∣∣ ∣∣Vp̄(Dv) − Vp̄(Dw)

∣∣ 2
p̄ dx

+ c(γ1) −
ˆ

BR/4

|p(x) − p̄||Dv| p̄
2 +λx(p(x)−p̄)

∣∣ log |Dv|∣∣ ∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣dx

≤ c −
ˆ

BR/4

|p(x) − p̄|p̄′ |Dv|p̄+λx p̄′(p(x)−p̄) logp̄′ |Dv|dx

+ c −
ˆ

BR/4

|p(x) − p̄|2|Dv|p̄+λx2(p(x)−p̄) log2 |Dv|dx

+ 1

2c̄
−
ˆ

BR/4

∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣2

dx = III + IV + V

using again, twice, Young’s inequality.
Now we pointwise estimate in both cases, distinguishing the two cases |Dv(x)| ∈ (0, e) and 

|Dv(x)| ≥ e: in the first one, for t = 2, p̄′

|Dv(x)|p̄+tλx(p(x)−p̄) logt |Dv(x)| ≤ c(γ1, γ2)

thanks to the estimate (3.16), since using (3.4) we infer
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∣∣tλx(p(x) − p̄)
∣∣ ≤ t ωp(·)(R/4) ≤ max{2, γ ′

1}ωp(·)(R0) ≤ γ1

2
.

In the second one, when |Dv(x)| ≥ e, using the previous bound and denoting in short ω =
ωp(R/4)

|Dv(x)|p̄+tλx(p(x)−p̄) logt |Dv(x)| ≤ (
1 + |Dv(x)|)p̄+tω logt

(
e + (1 + |Dv(x)|)p̄+tω

)
.

Thus III + IV is bounded by

c
∑

t∈{2,p̄′}
χ[2,+∞)(t) −

ˆ

BR/4

|p(x) − p̄|t(1 + |Dv|)p̄+tω logt
(
e + (1 + |Dv|)p̄+tω

)
dx.

We estimate in the same way the two averaged integrals: being δ0 the positive constant from 
Theorem 2.4, we use Hölder’s inequality with conjugate exponents (1 + δ0/4, 1 + 4/δ0) and 
then Lemma 2.3 with the choices f = (1 + |Dv|)(p̄+tω)(1+δ0/4), β = t (1 + δ0/4), σ = (1 +
δ0/4)−1, θ = (n + 1)δ0/2 + 1 and ς̃ = 1+δ0/2

1+δ0/4 so that

−
ˆ

BR/4

|p(x) − p̄|t(1 + |Dv|)p̄+tω logt
(
e + (1 + |Dv|)p̄+tω

)
dx

≤ Rt
(

−
ˆ

BR/4

∣∣∣p(x) − p̄

R/4

∣∣∣t (1+ 4
δ0

)

dx
) δ0

4+δ0 ×

×
(

−
ˆ

BR/4

(
1 + |Dv|)(p̄+tω)(1+ δ0

4 ) logt (1+ δ0
4 )

(
e + (1 + |Dv|)p̄+tω

)
dx

) 4
4+δ0

≤ cRt logt
( 1

R

)(
−
ˆ

BR/4

∣∣∣p(x) − p̄

R

∣∣∣t (1+ 4
δ0

)

dx
) δ0

4+δ0 ×

×
(

1 + R(n+1)(1+ δ0
2 ) −

ˆ

BR/4

(
1 + |Dv|)(p̄+tω)(1+ δ0

4 )
dx

)t×

×
(

−
ˆ

BR/4

(
1 + |Dv|)(p̄+tω)(1+ δ0

2 )
dx

) 2
2+δ0 (3.24)

for t ∈ {2, p̄′}; similarly as described in the proof of Lemma 3.2, we can take the constant de-
pending only on the data (up to possibly further reduce the value of the radius R0(n, p(·), M)).

For the first integrals appearing in the addendi of the display above, we can choose q ≡
q(data) large enough so that

t
(

1 + 4 )
= q∗ ⇐⇒ q =

[ t (4 + δ0)
]

= nt (4 + δ0)
< n
δ0 δ0 ∗ (t + n)δ0 + 4t
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(remember that t can only take the values 2 and p̄′ and therefore t > 1); hence

(
−
ˆ

BR/4

∣∣∣p(x) − p̄

R/4

∣∣∣ t (4+δ0)

δ0 dx
) δ0

4+δ0 ≤ c(data)
(

−
ˆ

BR

|Dp|q dx
) t

q
(3.25)

for the choice of q = q(t) made above. Clearly we can take an exponent q valid for the two cases 
simply choosing the largest of the ones corresponding to the choices t = 2 and t = p̄′. For the 
second integrals we can estimate (with the compact notation p− = p−

R/4)

−
ˆ

BR/4

(
1 + |Dv|)(p̄+tω)(1+ δ0

2 )
dx ≤ −

ˆ

BR/4

(
1 + |Dv|)p(x)

p̄+tω

p− (1+ δ0
2 )

dx

and we notice that thanks to (3.4) it holds

p̄ + tω

p−
(

1 + δ0

2

)
≤

(
1 + max{2, γ ′

1}
γ1

ωp(R/4)
)(

1 + δ0

2

)
≤

(
1 + δ0

2 + δ0

)(
1 + δ0

2

)
≤ 1 + δ0;

therefore for x̄ ∈ BR

(
−
ˆ

BR/4

(
1 + |Dv|)(p̄+tω)(1+ δ0

2 )
dx

) 2
2+δ0 ≤ c

(
−
ˆ

BR/4

(
1 + |Dv|)p(x)(1+δ0) dx

) p̄+tω

p− 1
1+δ0

≤ c
(

−
ˆ

BR/2

(
1 + |Dv|)p(x)

dx
) p̄+tω

p−

≤ c min
{(

−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

,R−(n+1)
}

(3.26)

for c ≡ c(data) since we can use (3.8)-(2.10) and estimate (see the similar (3.21))

(
−
ˆ

BR/2

(1 + |Du|)p(x) dx
) p̄+tω

p− −1 ≤
(

−
ˆ

BR/2

(1 + |Du|)p(x) dx
) t+1

γ1
ω ≤ c.

Merging the estimates from (3.23) to (3.26) and recalling the notation in (3.2) we come up with

1

c̄
−
ˆ

BR/4

|Vp̄(Dv) − Vp̄(Dw)|2 dx ≤ I ≤ II ≤ 1

2c̄
−
ˆ

BR/4

|Vp̄(Dv) − Vp̄(Dw)|2 dx

+ c
[
P2

R,q + χ(−∞,2)(p̄)P
p̄′
R,q

](
−
ˆ

BR

(
1 + |Du|)dx

)p(x̄)

and this, after reabsorbing and taking into account (3.3), concludes the proof. �
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Remark 3.1. We can suppose, possibly enlarging the smaller of the two, that the two exponents 
defined in Lemmas 3.2 and 3.3 do coincide.

We make explicit a consequence of a simple estimate in the previous proof; notice that the 
assumption (3.30) here is not needed (and this is the reason why (3.28) will be used before
(3.31), in order to ensure that (3.30) holds).

Lemma 3.4 (Rough comparison). Let w be the solution to (3.6) as in Lemma 3.3. For every 
ε1 ∈ (0, 1) there exists a constant M1 ≡ M1(data, ε1) ≥ 1 such that if

−
ˆ

BR

|Du|dx ≤ λ, AR,q +PR,q ≤ 1

M1
(3.27)

for some λ ≥ 1, then

−
ˆ

BR/4

|Du − Dw|dx ≤ ε1λ. (3.28)

Proof. We denote p̄ = p̄R/4; merging (3.14) and (3.22) for appropriate choices of ρ, x̄, then 
using (3.27) yields

−
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dw)
∣∣2

dx ≤ c
[
AR,q +PR,q

]2( −
ˆ

BR

(
1 + |Du|)dx

)p̄

≤ c̃(data)

M2
1

λp̄ (3.29)

and this, in view of (2.7), gives (3.28) with M2
1 = c(γ2)c̃/ε

γ2
1 if p̄ ≥ 2 (c(γ2) is the constant 

appearing in (2.7)). If p̄ < 2 we use (2.8), Hölder’s inequality and the reverse Hölder’s inequality 
(2.10):

−
ˆ

BR/4

|Du − Dw|p̄ dx ≤ c −
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dw)
∣∣2

dx

+ c
(

−
ˆ

BR/4

|Du|p̄ dx
) 2−p̄

2
(

−
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dw)
∣∣2

dx
) p̄

2

≤
˜̃c(data)

M2
1

λp̄ +
˜̃c(data)

M
p̄
1

(
−
ˆ

BR

(
1 + |Du|)dx

)p̄
2−p̄

2
λp̄

p̄
2

again using (3.29), and this gives (3.28) for Mγ1 = 2 ˜̃c/εγ1 . We choose the value
1 1
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M1 = max
{(c(γ2)c̃

ε
γ2
1

) 1
2
,
( 2 ˜̃c

ε
γ1
1

) 1
γ1

}

to conclude the proof. �
In this paper we want to follow a similar, but different, route with respect to that taken in 

[3]. We have different comparison estimates involving two different V -functions and we do not 
want here to localize such estimates at every step of the iteration; we better linearize those es-
timates in order to be able to perform the iteration at L1-level. Therefore the following refined 
comparison lemma will be necessary: for a constant σ ∈ (0, 1/4) to be chosen, suppose that 
Bσ−1R ≡ Bσ−1R(x0) ⊂ � and let

ṽ ∈ u + W 1,p(·)(Bσ−1R/2), w̃ ∈ v + W
1,p̄

σ−1R/2(Bσ−1R/4)

be the solutions to (3.5)-(3.6) with Bσ−1R replacing BR . Suppose moreover σ−1R ≤ R0 for 
R0 ≡ R0(data, p(·), M) the constant defined at the beginning of Section 3 and subsequently 
reduced. Lemma 3.5 can be seen as a quantitative version of Lemma 3.4.

Lemma 3.5 (Linearized comparison). Suppose that there exist constants A, λ ≥ 1 such that

λ

A
≤ inf

BR/4
|Dw̃| and −

ˆ

B
σ−1R

|Du|dx ≤ λ; (3.30)

then

−
ˆ

BR/4

|Du − Dw|dx ≤ c
[
Aσ−1R,q +Pσ−1R,q

]
λ (3.31)

holds true for a constant c depending only on data, A and σ ; q < n is the exponent mentioned 
in Remark 3.1.

Proof. We again denote p̄ = p̄R/4 and we start noticing that Lemma 3.2 for appropriate choices 
of ρ and x̄ yields

−
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dv)
∣∣2

dx ≤ c
[
A2

R,q +P2
R,q

]
λp̄ (3.32)

and

−
ˆ

B
σ−1R/4

∣∣Vp̄(Du) − Vp̄(Dṽ)
∣∣2

dx ≤ c
[
A2

σ−1R,q
+P2

σ−1R,q

]
λp̄;

moreover merging the previous estimate and (3.22) we have (3.29) and
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−
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dw̃)
∣∣2

dx ≤ c(n,σ ) −
ˆ

B
σ−1R/4

∣∣Vp̄(Du) − Vp̄(Dw̃)
∣∣2

dx

≤ c
[
A2

σ−1R,q
+P2

σ−1R,q

]
λp̄. (3.33)

The four constants depend on data and σ ; we also used (3.30). In order to prove (3.31), we 
separately consider the cases where p̄ > 2 and p̄ < 2 (being the case p̄ = 2 a trivial consequence 
of (3.29), since V2(ξ) = ξ ). In the first one, using our assumption (3.30)

−
ˆ

BR/4

|Du − Dw|p̄′
dx ≤ c(γ2,A)λ(2−p̄)p̄′ −

ˆ

BR/4

|Dw̃|(p̄−2)p̄′ |Du − Dw|p̄′
dx;

then we use triangle’s inequality several times to estimate

−
ˆ

BR/4

|Dw̃|(p̄−2)p̄′ |Du − Dw|p̄′
dx ≤ c(γ2) −

ˆ

BR/4

|Dv|(p̄−2)p̄′ |Du − Dv|p̄′
dx

+ c(γ2) −
ˆ

BR/4

|Dv|(p̄−2)p̄′ |Dv − Dw|p̄′
dx + c(γ2) −

ˆ

BR/4

|Du − Dv|(p̄−2)p̄′ |Du − Dw|p̄′
dx

+ c(γ2) −
ˆ

BR/4

|Du − Dw̃|(p̄−2)p̄′ |Du − Dw|p̄′
dx = c

[
I + II + III + IV

]
.

Since p̄ > 2, due to (2.6), as after (3.23)

|Dv|(p̄−2)p̄′ |Du − Dv|p̄′ ≤ c
∣∣Vp̄(Du) − Vp̄(Dv)

∣∣p̄′ |Dv| p̄−2
2 p̄′ ;

therefore, using Holder’s inequality with conjugate exponents (2(p̄ − 1)/p̄, 2(p̄ − 1)/(p̄ − 2)), 
(3.32), (3.26) and (3.30)

I ≤
(

−
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dv)
∣∣2

dx
) p̄′

2
(

−
ˆ

BR/4

|Dv|p̄ dx
) p̄−2

2(p̄−1)

≤ c
[
A

p̄′
R,q +P

p̄′
R,q

]
λp̄

p̄′
2

(
−
ˆ

BR

(
1 + |Du|)dx

)p̄
p̄−2

2(p̄−1) ≤ c
[
A

p̄′
R,q +P

p̄′
R,q

]
λp̄

with c depending on data and σ , since λ ≥ 1. Similarly, using this time (3.22) and again 
(3.26)-(3.30)

II ≤
(

−
ˆ

B

∣∣Vp̄(Dv) − Vp̄(Dw)
∣∣2

dx
) p̄′

2
(

−
ˆ

B

|Dv|p̄ dx
) p̄−2

2(p̄−1) ≤ c
[
A

p̄′
R,q +P

p̄′
R,q

]
λp̄.
R/4 R/4
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Finally, we use Hölder’s inequality, (2.7), (3.32) to estimate the first integral and (3.29) for the 
second in III :

III ≤
(

−
ˆ

BR/4

|Du − Dv|p̄ dx
) p̄−2

p̄−1 (
−
ˆ

BR/4

|Du − Dw|p̄ dx
) 1

p̄−1 ≤ c
[
A2

σ−1R,q
+P2

σ−1R,q

]
λp̄.

Similarly, using (3.29)-(3.33)

IV ≤
(

−
ˆ

BR/4

|Du − Dw̃|p̄ dx
) p̄−2

p̄−1 (
−
ˆ

BR/4

|Du − Dw|p̄ dx
) 1

p̄−1 ≤ c
[
A2

σ−1R,q
+P2

σ−1R,q

]
λp̄.

This essentially concludes the proof in the super-quadratic case, up to some algebraic manipula-

tions, after noticing that A2
σ−1R,q

≤ A
p̄′
σ−1R,q

thanks to (3.3), and similarly for Pσ−1R,q .
If, on the other hand, p̄ < 2, we use (2.8) and Hölder’s inequality:

−
ˆ

BR/4

|Du − Dw|p̄ dx ≤ c −
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dw)
∣∣2

dx

+ c
(

−
ˆ

BR/4

|Du|p̄ dx
) 2−p̄

2
(

−
ˆ

BR/4

∣∣Vp̄(Du) − Vp̄(Dw)
∣∣2

dx
) p̄

2
.

Next we plug in the estimate (3.29) obtaining

−
ˆ

BR/4

|Du − Dw|p̄ dx ≤ c
[
A2

R,q +P2
R,q

]
λp̄ + c

[
A

p̄
R,q +P

p̄
R,q

]
λ

p̄2

2

(
−
ˆ

BR/2

|Du|p̄ dx
) 2−p̄

2

≤ c
[
AR,q +PR,q

]p̄

λp̄,

were we again used the higher integrability (2.10) and (3.3) thanks to p̄ < 2. �
4. Excess decay and conclusion

Once having at hand the comparison estimates of the previous section, the proof follows the 
lines of the similar ones in [28,3]; we however re-propose it to highlight several different points.

As a first result of this section, we show how the previous comparison estimates translate into 
a precise decay inequality for the L1-excess. We start from a ball BR(x0) ⊂ � with R ≤ R0, with 
R0 defined in the previous section as a function of data, p(·) and M and we immediately stress 
we are going to further decrease the value of R0 in a way depending only on data, p(·), a(·)
and M .

For σ ∈ (0, 1/4) (that we are going to choose explicitly soon, see (4.9)), we define

Rj = σ jR, θBj = BθR (x0), j ∈N0, θ > 0; (4.1)

j
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accordingly we call vj the comparison function defined for BR/2 = Bj/2 in (3.5) and wj the 
solution to (3.6) over Bj/4. We also define, q as in Remark 3.1,

aj =
∣∣∣ −
ˆ

Bj

Dudx

∣∣∣, Ej = −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx,

Aj = ARj ,q = Rj

(
−
ˆ

Bj

|Da|q dx
) 1

q
, Pj = PRj ,q = Rj log

( 1

Rj

)(
−
ˆ

Bj

|Dp|q dx
) 1

q
. (4.2)

Notice that with this notation, for j ∈ N we have σ−1Rj ≤ R ≤ R0; therefore the pre-requisite 
for Lemma 3.5 is satisfied and we can prove the following lemma (see [34, Lemma 4.2], [10, 
After (4.14)], [29, Lemma 8.5] for related results).

Lemma 4.1. Let j ∈N , ε2, ε3 ∈ (0, 1) and A ≥ 1.

• (Qualitative excess smallness) There exists a threshold σ1 ∈ (0, 1/4), depending on data
and ε2, such that for any σ ∈ (0, σ1] there exists a large constant M2 ≡ M2(data, ε2, σ) ≥ 1
such that if

−
ˆ

Bj

|Du|dx ≤ λ, Aj−1 +Pj−1 ≤ 1

M2
(4.3)

for some λ ≥ 1, then

−
ˆ

Bj+1

∣∣Du − (Du)Bj+1

∣∣dx ≤ ε2λ. (4.4)

• (Quantitative excess smallness) There exists a threshold σ2 ≡ σ2(data, ε3, A) ∈ (0, 1/4)

such that for σ ∈ (0, σ2] there exists M3 ≡ M3(data, σ, A) ≥ 1 such that if

λ

A
≤ −

ˆ

Bj+1

|Du|dx, −
ˆ

Bj−1

|Du|dx ≤ λ, Aj−1 +Pj−1 ≤ 1

M3
(4.5)

for some λ ≥ 1, then

−
ˆ

Bj+1

∣∣Du − (Du)Bj+1

∣∣dx ≤ ε3 −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx + cld

[
Aj−1 +Pj−1

]
λ (4.6)

with cld depending on data, A and σ .

Proof. Using several times a standard property of the excess and being σ ≤ σ0 (the constant 
appearing in Theorem 2.5)
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−
ˆ

Bj+1

∣∣Du − (Du)Bj+1

∣∣dx

≤ 2 −
ˆ

Bj+1

∣∣Du − (Dwj )Bj+1

∣∣dx

≤ 2 −
ˆ

Bj+1

∣∣Dwj − (Dwj )Bj+1

∣∣dx + 2 −
ˆ

Bj+1

|Du − Dwj |dx

≤ 4cph (4σ)α0 −
ˆ

Bj /4

∣∣Dwj − (Du)Bj

∣∣dx + 2(4σ)−n −
ˆ

Bj /4

|Du − Dwj |dx

≤ 4n+1cph (4σ)α0 −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx + 2σ−n −
ˆ

Bj /4

|Du − Dwj |dx. (4.7)

To prove (4.4) we observe that if σ1 ≤ σ0 is such that 4n+2cph (4σ1)
α0 ≤ ε2 then, using (4.3)

4n+1cph (4σ)α0 −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ 2 · 4n+1cph (4σ1)
α0 −
ˆ

Bj

|Du|dx ≤ ε2

2
λ

for every σ ≤ σ1; now we take M2 as the constant given by Lemma 3.4 for the choice ε1 =
ε2/[4σ−n] and we have (4.4).

To prove (4.6) we take

σ2 ≤ min
{
σ0,

( 1

4n+6cphA

) 1
α0

,
1

4

( ε3

4n+1cph

) 1
α0 ,

1

8

}

(cph and α0 are from Theorem 2.5) and for σ ≤ σ2 let M3 be the constant M1 from Lemma 3.4
corresponding to the choice ε1 = (4σ 2)n/[2A]: using our assumption, (3.28) and triangle’s in-
equality we have

λ

A
≤ −

ˆ

Bj+1

|Du|dx ≤ 1

(4σ 2)n
−
ˆ

Bj−1/4

|Du − Dwj−1|dx + −
ˆ

Bj+1

|Dwj−1|dx

≤ λ

2A
+ −

ˆ

Bj+1

|Dwj−1|dx

and therefore

−
ˆ

Bj+1

|Dwj−1|dx ≥ λ

2A
.

Thus there exists a point x̄ ∈ Bj+1 such that (remember that |Dwj−1| is continuous) |Dwj−1(x̄)|
≥ λ/[3A] and
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−
ˆ

Bj−1/4

|Dwj−1|dx ≤ 4n −
ˆ

Bj−1

|Du|dx + −
ˆ

Bj−1/4

|Du − Dwj−1|dx ≤ 4n+1λ.

Collecting this information and using Theorem 2.5 yields

inf
Bj /4

|Dwj−1| ≥ |Dwj−1(x̄)| − osc
Bj /4

Dwj−1

≥ λ

3A
− 2cph σα0 −

ˆ

Bj−1/4

|Dwj−1|dx ≥ λ

3A
− 4n+2cph σ

α0
2 λ ≥ λ

4A

and we can use Lemma 3.5 (with BR = Bj and 4A replacing A) to bound the second term 
appearing in the right-hand side of (4.7); for the first term is simply note that the coefficient of 
the excess is smaller than ε3 due to our choice of σ2. �

We also recall the notation introduced in (2.4): in this setting we have, for q the constant of 
Remak 3.1

Sq,0(Da,R)(x0) :=
∞∑

j=0

Aj , Sq,1(Dp,R)(x0) :=
∞∑

j=0

Pj .

4.1. Gradient boundedness

We here suppose that x0 ∈ � is such that the limit

lim
ρ↘0

−
ˆ

Bρ(x0)

Dudx

exists; notice that this holds for a.e. x0 ∈ � by Lebesgue’s differentiation theorem. We want to 
prove that

lim
j→+∞

∣∣∣ −
ˆ

Bj

Dudx

∣∣∣ ≤ λ := c̄ −
ˆ

BR

(
1 + |Du|)dx (4.8)

with c̄ ≥ 1 depending on data to be chosen (see (4.9)); this would ensure the local boundedness 
of the gradient thanks to Lebesgue’s differentiation theorem and the local estimate (1.12) would 
follow by a standard covering argument.

In order to prove (4.8) we choose ε3 = 1/4, A = 80 in (4.5), take the corresponding constant 
σ2 depending on data and choose

σα0 = min
{ 1

240 · 4n+2cph

, σ
α0
2

}
, c̄ = 200σ−3n (4.9)

with cph, α0 the constants appearing in Theorem 2.5; note that also c̄, σ both depend only on 
data. Next we fix the value of M3 in (4.5) corresponding to this choice of σ ; then we take 
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ε1 = (4σ)2/160 and the corresponding constant M1 from Lemma 3.4. We also take M2 cor-
responding to ε2 = σ 2n/80 in (4.4). Thanks to Lemma 2.1 and the absolute continuity of the 
Lorentz-Zygmund norm, we then reduce the radius R0, depending on data, p(·) and a(·) so 
that

Sq,0(Da)(x0,R) + Sq,1(Dp)(x0,R) =
∞∑

j=0

Aj +
∞∑

j=0

Pj ≤ min
{ 1

M1
,

1

M2
,

1

M3
,

σ n

16cld

}

=⇒ Aj +Pj ≤ min
{ 1

M1
,

1

M2
,

1

M3
,

1

4cld

}
for all j ∈N0. (4.10)

We then set for j ∈ N0

Cj := −
ˆ

Bj

|Du|dx + σ−2n −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx, J :=
{
j ∈ N0 : Cj <

λ

40

}
;

note that J �= ∅ (since 0 ∈ J due to the choice of c̄) and that if J is infinite we are done, since 
along some subsequence −́

Bjm
|Du| dx < λ and therefore the (existing) limit of the averages 

would be less or equal than λ. Therefore to complete the boundedness proof we can suppose J
to be non-empty and finite and accordingly set je = maxJ ; in particular we have

Cje = −
ˆ

Bje

|Du|dx + σ−2n −
ˆ

Bje

∣∣Du − (Du)Bje

∣∣dx ≤ λ

40
,

−
ˆ

Bj

|Du|dx + σ−2n −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≥ λ

40
for j ≥ je + 1. (4.11)

To prove (4.8) we want to show by induction that

aj + Ej ≤ λ for all j ≥ je.

Note that the base of induction is true (notice that aje +Eje ≤ Cje ≤ λ by the definition of Cj and 
(4.11)) and we are thus left to prove that if for some k ≥ je aj + Ej ≤ λ for all j ∈ {je, . . . , k}, 
then ak+1 + Ek+1 ≤ λ.

For the inductive step, we notice that for j ∈ {je, . . . , k}

−
ˆ

Bj

|Du|dx ≤
∣∣∣ −
ˆ

Bj

Dudx

∣∣∣ + −
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx = aj + Ej ≤ λ;

on the other hand by (4.11) and (4.4) for j ∈ {je, . . . , k} we also have

λ

40
≤ −

ˆ

B

|Du|dx + σ−2n −
ˆ

B

∣∣Du − (Du)Bj+1

∣∣dx ≤ −
ˆ

B

|Du|dx + λ

80
;

j+1 j+1 j+1
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therefore

−
ˆ

Bj+1

|Du|dx ≥ λ

80
for the same indexes.

We are thus in position to use (4.6) with A = 80 uniformly for j ∈ {je + 1, . . . , k}; in particular

Ek+1 = −
ˆ

Bk+1

∣∣Du − (Du)Bk+1

∣∣dx

≤ 1

4
−
ˆ

Bk

∣∣Du − (Du)Bk

∣∣dx + cld

[
Ak−1 +Pk−1

]
λ ≤ λ

4
+ λ

4
= λ

2

thanks to our inductive assumption and (4.10). On the other hand summing up for j ∈ {je +
1, . . . , k} (and performing some simple algebraic manipulations) gives

k+1∑
j=je+1

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ 1

4

k+1∑
j=je+1

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx

+ −
ˆ

Bje+1

∣∣Du − (Du)Bje+1

∣∣dx + cld λ

k−1∑
j=je

[
Aj +Pj

]

from which

k+1∑
j=je+1

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ 2 −
ˆ

Bje+1

∣∣Du − (Du)Bje+1

∣∣dx + 2cld λ

k−1∑
j=je

[
Aj +Pj

]

and manipulating the integrals defining the excesses over Bje and Bje+1

k+1∑
j=je

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ 5σ−n −
ˆ

Bje

∣∣Du − (Du)Bje

∣∣dx + 2cldλ

∞∑
j=0

[
Aj +Pj

]
.

Now we see that (4.11) together with (4.10) guarantees

k+1∑
j=je

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤
[λ

8
+ λ

8

]
σn.

Finally we can estimate by telescopic summation and triangle’s inequality
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ak+1 ≤ aje + σ−n

k∑
j=je

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ λ

4
+ λ

4
= λ

2
(4.12)

and the boundedness proof is concluded.

4.2. Gradient continuity

Now that we have proved that the gradient is locally bounded, we proceed with its continuity, 
with a proof similar to that of the previous section; in particular, we are going to prove that 
the gradient is continuous being the local uniform limit of continuous functions - namely, its 
averages on small balls. Therefore, for a compactly supported subset K � �, we here take an 
intermediate subset K � K̃ � � such that d = dist(K, ∂K̃) = dist(K̃, ∂�); we then set

λ = ‖Du‖
L∞(K̃)

+ 1

and we take balls with center in K and radius smaller than d .
We start fixing ε > 0 and a radius R1 = min{d/2, R0}, being R0 the threshold from Section 3; 

we are going to further reduce its value. Then we choose ε3 = 1/2, A = 48/ε in (4.6), we define 
the corresponding small constant σ2(data, ε), set σ = σ2 and finally take the corresponding 
M3 = M3(data, ε).

We begin the proof noticing that for every ε4 > 0, it is possible to find a threshold R2, de-
pending on data, a(·), p(·), M, d and ε4 such that

sup
R≤R2

sup
x0∈K

−
ˆ

BR(x0)

∣∣Du − (Du)BR(x0)

∣∣dx ≤ ε4λ : (4.13)

we simply take R2 = σ 2 min{R1, R̃} where R̃ ≡ R̃(data, p(·), a(·), ε4) is such that

Sq,0(Da)(x0,R) + Sq,1(Dp)(x0,R) =
∞∑

j=0

Aj +
∞∑

j=0

Pj ≤ 1

M2
if R ≤ R̃,

being M2 the constant provided by Lemma 4.1 for the value ε2 = ε4 (Aj , Pj built starting from a 
generic radius R ≤ R̃ as in (4.2)). We have BR(x0) = Bj+1 with j ≥ 1 for an appropriate choice 
of the starting radius r ∈ (0, min{R1, R̃}] and this proves (4.13); note that the first condition in 
(4.3) is satisfied by our choice of λ.

Now we take a generic but fixed radius R ≤ σR1 and a point x0 ∈ K and we build the sequence 
of balls Bj as the quantities Aj , Pj as in (4.1)-(4.2). For ε > 0, we reduce R1, again thanks to 
Corollary 2.2 and the previous result, so that

∞∑
j=0

[
Aj +Pj

] ≤ σn ε

48cld

for every starting radius R ≤ R1

and (4.13) holds with ε4 = σ 2nε/48 for R ≤ R1; in particular
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−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ σ 2n ε

48
λ for all j ∈N0. (4.14)

This makes R1 depend on data, p(·), a(·), M, d and ε. We also define

Jε :=
{
j ∈N0 : −

ˆ

Bj

|Du|dx ≤ ε

48
λ
}
, je =

⎧⎨
⎩

minJε if Jε �= ∅
+∞ if Jε = ∅

and we write N�Jε as disjoint union of nonempty (possibly infinite) maximal intervals Ci (i ∈ I
for some set of indexes I ⊂ N0) so that Ci ⊂ N �Jε , i = minCi and Ci is maximal with respect 
to the inclusion. In particular, for i ∈ I � {0}, i − 1 ∈ Jε . What we want to prove here is that

∣∣(Du)B
− (Du)Bk

∣∣ ≤ ελ for 1 ≤ k < ; (4.15)

later we will show how does this lead to the conclusion of the proof.
We prove the estimate in the display above distinguishing three cases. The first one is when 

k <  < je: in this case we aim at linearizing the system due to the fact that, by definition,

−
ˆ

Bj+1

|Du|dx >
ε

48
λ for all j ∈ {k − 1, . . . ,  − 1}

and, obviously

−
ˆ

Bj−1

|Du|dx ≤ λ for j ∈N .

Summing (4.6) for j ∈ {k, . . . ,  − 1} and reabsorbing yields

∑
j=k

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ 2 −
ˆ

Bk

∣∣Du − (Du)Bk

∣∣dx + 2cld

∞∑
j=0

[
Aj +Pj

]
λ

≤ σn ε

24
λ + σn ε

24
λ ≤ σn ε

12
λ

using also the smallness information given by our choice of R0; hence, by telescopic summation, 
as in (4.12)

∣∣(Du)B
− (Du)Bk

∣∣ ≤ σ−n
−1∑
j=k

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx ≤ ε

12
λ ≤ ελ.

The second case we consider is when je ≤ k <  (if je < +∞); in this case we prove

∣∣(Du)B

∣∣ ≤ ε
λ,

∣∣(Du)Bk

∣∣ ≤ ε
λ (4.16)
2 2
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and (4.15) will follow by triangle’s inequality. The proof of the first of the previous inequality 
(being the second one the same) is anyway simple: if  ∈Jε , then simply

∣∣(Du)B

∣∣ ≤ −
ˆ

B

|Du|dx ≤ ε

48
λ;

if  /∈ Jε , on the other hand, we can consider the maximal interval Cı̄ containing  and we redo 
the argument of the previous case, replacing k with ı̄ − 1 (notice that ı̄ > je ≥ 0 since  ≥ ı̄ and 
 > je), to get

∣∣(Du)B
− (Du)Bı̄−1

∣∣ ≤ σ−n
∑

j=ı̄−1

−
ˆ

Bj

∣∣Du − (Du)Bj

∣∣dx

≤ 2σ−n −
ˆ

Bı̄−1

∣∣Du − (Du)Bı̄−1

∣∣dx + 2σ−ncld

∞∑
j=0

[
Aj +Pj

]
λ

≤ ε

8
λ + ε

24
λ

and therefore, since ı̄ − 1 ∈ Jε by definition of Cı̄ ,

∣∣(Du)B

∣∣ ≤ ∣∣(Du)B
− (Du)Bı̄−1

∣∣ + ∣∣(Du)Bı̄−1

∣∣ ≤ ε

4
λ + ε

48
λ ≤ ε

2
λ.

We complete the proof of (4.15) by showing that also in the case k < je ≤  (4.16) holds. Indeed 
we can proceed as in the first case replacing  with je − 1 ≥ 1 getting

∣∣(Du)Bje−1 − (Du)Bk

∣∣ ≤ ε

12
λ =⇒

∣∣(Du)Bje
− (Du)Bk

∣∣ ≤ σ−n −
ˆ

Bje

∣∣Du − (Du)Bje

∣∣dx + ε

12
λ =⇒

∣∣(Du)Bk

∣∣ ≤ ∣∣(Du)Bje
− (Du)Bk

∣∣ + ∣∣(Du)Bje

∣∣ ≤ ε

48
λ + ε

12
λ + ε

48
λ ≤ ε

2
λ

using (4.14) too and recalling that je ∈ Jε; on the other hand, if we proceed as in the second one 
we directly have

∣∣(Du)B

∣∣ ≤ ε

2

and also in this last case we have (4.15).
To conclude, we notice that the previous result implies that for every ε > 0 there exists a 

constant Rε > 0 depending on data, p(·), a(·), M, d and ε but uniform with respect to x0 ∈ K

such that

∣∣(Du)B (x ) − (Du)B (x )

∣∣ ≤ ελ (4.17)

r1 0 r2 0
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for all 0 < r1 < r2 ≤ Rε; as a direct consequence Du is continuous for every x0 ∈ K and thus in 
�. Let indeed be Rε = σR1: there exist two indexes 1 ≤ k ≤  such that

σ+1R2 < r1 ≤ σR2, σ k+1R2 < r2 ≤ σkR2;

we have by (4.13)

∣∣(Du)Br1 (x0) − (Du)B+1

∣∣ ≤ σ−n −
ˆ

Br1 (x0)

∣∣Du − (Du)Br1 (x0)

∣∣dx ≤ ε

48
,

∣∣(Du)Br2 (x0) − (Du)Bk+1

∣∣ ≤ ε

48

and these two estimates, together with (4.15), give (4.17).
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