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Abstract: Weight thresholding (WT) is a method intended to decrease the number of links within 

weighted networks that may otherwise be excessively dense for network science applications. WT 

aims to remove links to simplify the network by holding most of the features of the original network. 

Here, we test the robustness and the efficacy of the node attack strategies on real-world networks 

subjected to WT that remove links of higher weight (strong links). We measure the network robust-

ness along node removal with the largest connected component (LCC). We find that the real-world 

networks under study are generally robust when subjected to WT. Nonetheless, WT with strong link 

removal changes the efficacy of the attack strategies and the rank of node centralities. Also, WT with 

strong link removal may trigger a more significant change in the node centrality rank than WT by 

removing weak links. Network science research with the aim to find important/influential nodes in 

the network has to consider that simplifying the network with WT methodologies may change the 

node centrality. 
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1. Introduction 

Weight thresholding is a simple technique that aims to reduce the number of edges 

in weighted networks that are otherwise too dense for applying standard graph-theoreti-

cal methods [1]. WT is a methodology in sparsification approaches to reduce link density 

in different real-world networks [2]. WT has many real-world applications, such as spar-

sifying ecological, financial, brain, and biological networks [3–5]. The principal aim of WT 

is to remove links to simplify the networks and make them easier to analyze. Therefore, 

the WT policy should guarantee that the significant traits of the original network are re-

tained intact. In short, the objective of the WT procedure is to prune the highest number 

of links, avoiding drastic alterations in the critical structure of the original real-world net-

work. Unfortunately, many conventional network properties quickly change under the 

WT procedure [1,6]. 

WT finds applications in research focusing on neural networks (NNs) or other ma-

chine learning models. In essence, WT involves applying a threshold to the weights of 

links in a NN. Links with weights below the threshold are considered less significant and 

can be eliminated or considered inactive. This process reduces the overall number of con-

nections in the model, making it simpler and often more computationally efficient [7,8]. 

Network robustness is an essential field of research in network science [9]. Robust-

ness is the property of a system to maintain functioning when perturbed or attacked [10]. 
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The seminal research of Albert et al. [10] explores the error and attack resilience of complex 

networks of both real-world and model networks. The author investigates how networks 

react against random node removal (error and failures) and the targeted removal of the 

most connected nodes (attack). The findings provide valuable insights into understanding 

the robustness of real-world networks by opening a vast and important area of research. 

A recent study investigated how weight thresholding procedures, which remove 

weak links (links of lower weight), affect the robustness of real-world networks to node 

attacks, and the rank of node centrality [2]. The study found that real-world networks 

subjected to the WT procedure have a robust connectivity structure to node attacks. 

Here, we test whether WT with strong link removal changes the efficacy of the node 

attack strategies and how it affects the robustness of a set of real-world networks. To do 

this, we perform a sparsification procedure by removing a fixed fraction of higher-weight 

links. After sparsification, we execute a network attack by removing nodes using different 

node centrality indicators from the literature. 

Performing the removal of strong links followed by a node attack can clarify the role 

that links of higher weights play in maintaining network connectivity. Previous studies 

have analyzed how the removal of strong links affects network connectivity. These studies 

removed links in decreasing (or increasing) order of weight and measured the resulting 

network connectivity using network structural indicators [11–16]. Here, we adopt a dif-

ferent and novel approach by removing strong links and then testing the resulting net-

work structure with further node removals (attacks). 

Generally, the real-world networks under study show robust connectivity against the 

WT procedure. Differently, the WT procedure removing strong links induces a more sig-

nificant change in the ranking of nodes than the weak WT procedure. 

2. Methods 

2.1. Real-World Networks 

We implemented five different node attack strategies on nine real-world weighted 

networks from different domains. Table 1 summarizes the statistics of these real-world 

networks, with node, link, and link weight meaning. 

Table 1. Statistics of real-world networks. N number of nodes; L number of links; <k> average node 

degree; <w> average link weight; <CC> global clustering coefficient; LCC size of the largest connected 

component. 

Networks Key Ref. Type Node Link Weight N L <k> <w> <CC> LCC 

C. Elegans Eleg [17,18] Biological  Neurons 
Neurons 

connection 

Number of 

Connections 
297 2344 15.8 3.761 0.181 297 

Cargoship Cargo [19] Transport Ports Route 
Shipping 

journeys 
834 4348 10.4 97.709 0.222 821 

US airport Air [20] Transport Airports Route Passengers 500 2979 11.9 
152320.

2 
0.351 500 

E. Coli Coli [19,21] Biological Metabolites 
Common 

reaction 

Number of 

Common 

reactions 

1100 3636 6.61 1.364 0.139 1100 

Netscience Net [22] Social Authors 
Coauthors

hip 

Number of 

Common 

papers 

1461 2741  3.75 0.434 0.693 379 

Human 

12a 
Hum [23,24] Biological Brain regions 

Connectio

n between 

regions 

Connection 

density 
501 6038 24.1 0.01 0.457 501 

Caribbean Carib [25,26] 
Ecological 

Food web 
Species 

Trophic 

relation 

Amount of 

biomass 
249 3503 28.13 0.067 0.172 249 
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CypDry Cyp [16,27] 
Ecological 

Food web 
Species 

Trophic 

relation 

Amount of 

biomass 
66 503 15.24 0.358 0.421 65 

Budapest Buda [28] Biological Brain regions 
Neural 

connection 

Amount of 

track flow 
480 1000 4.167 5.024 0.120 467 

2.2. Attack Strategies 

We simulated the following centrality-based node attacks in the networks: nodes 

with the highest centrality were removed first. 

• Random (Ran): Nodes are removed randomly. Selecting nodes at random is analo-

gous to simulating errors or failures in the network [9,10]. 

• Degree (Deg): The degree of a node is the number of links connected to it [10,29–32]. 

The degree 𝑘𝑖 of node i is given by the following: 

𝑘𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 ,  (1) 

where 𝑎𝑖𝑗 = 1 indicates the presence of a link between nodes i and j and is 0 otherwise. 

𝑁 is the number of nodes in the network. 

• Strength (Str): A node’s strength is the total weight of the links connected to that node 

[33], also called a weighted degree. 

Mathematically, the strength 𝑠𝑖 of node i is as follows: 

 𝑠𝑖 =   ∑ 𝑎𝑖𝑗
𝑁
𝑗=1  . 𝑤𝑖𝑗 , (2) 

where 𝑎𝑖𝑗 = 1 indicates the presence of a link between nodes i and j and is 0 otherwise. 

𝑤𝑖𝑗 is the weight of the link between i and j. 

• Betweenness (Bet): Betweenness of a node is the number of shortest paths passing 

through it [29–31]. This binary metric defines the shortest path between two nodes as 

the minimum number of links needed to travel between them. 

Mathematically, the betweenness 𝑏𝑖 of node i is as follows: 

𝑏𝑖 = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡

𝑁
𝑠,𝑡=1 , (3) 

where 𝜎𝑠𝑡(𝑖) is the number of shortest paths between nodes s and t passing through the 

node i. 𝜎𝑠𝑡 is the total number of shortest paths between nodes s and t. 

• Weighted Betweenness (WBet): Weighted betweenness of a node is defined as the 

number of weighted shortest paths passing through that node [34]. 

Weighted betweenness 𝑏𝑖
𝑤 of node i is as follows: 

𝑏𝑖
𝑤 = ∑

𝜎𝑠𝑡 
𝑤 (𝑖)

𝜎𝑠𝑡 
𝑤

𝑁
𝑠,𝑡=1  , (4) 

where 𝜎𝑠𝑡 
𝑤 (𝑖)  is the number of weighted shortest paths between nodes s and t passing 

through the node i. 𝜎𝑠𝑡 
𝑤  is the total number of weighted shortest paths between nodes s 

and t. 

While computing shortest paths, it is fundamental to consider whether the link 

weight corresponds to “flows” or “costs” [35]. If link weight means flow, then the shortest 

path is computed by summing the inverse of link weights. If link weights are costs, short-

est paths are computed directly by summing the link weights. 

These attacks are performed by removing nodes and the links incident on them by 

targeting the nodes according to the decreasing order of their centrality values (Deg, Str, 

Bet, WBet). First, the node with the highest centrality is targeted, and the attack is contin-

ued on lesser centrality nodes until the network collapses. Attacking the nodes based on 

their pre-calculated rank is known as an initial (not recalculated) or simultaneous attack 

strategy [29]. However, the network structure may change after each attack, and the 

nodes’ importance may also change. In such a scenario, the pre-calculated ranking of 

nodes may no longer be valid. Here, we recalculated the node centrality values and up-

dated the node’s rank after each attack [29]. This attack strategy is known as a recalculated 
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(also named adaptive) attack strategy. In the case of ties (i.e., nodes with equal centrality 

value), we randomly selected the node to remove. These node ties were randomized by 

averaging the outcomes over 100 simulations. 

2.3. Weight Thresholding 

We investigated the effect of strong link removal on the robustness of real-world net-

works under various node attack strategies. This analysis was performed using the weight 

thresholding (WT) technique. The WT is performed by removing a fraction of the strong 

links. Given a weighted network G, the first step is to apply the weight thresholding on G. 

In our study, we took nineteen discrete threshold values WT = {0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9} (i.e., from 0% to 90% removal 

of strong links). In the case of ties (links having the same weight), the links were selected 

randomly. These ties were randomized by averaging the outcomes over 100 simulations. 

The thresholded network G’ was the subgraph of G with the same number of nodes. Then, 

node attack strategies on G’ were applied by identifying the nodes in the decreasing order 

of their centrality measures (Deg, Bet, Str, and WBet) computed from G’. This procedure 

was repeated for each WT. 

2.4. Network Robustness Indicator 

The largest connected component (LCC) is the simplest binary measure of the net-

work’s functioning along node removal. It is defined as the highest number of connected 

nodes in the network [9,10,32]. Here, normalized LCC against the fraction (q) of nodes 

removed was used to measure network damage. The normalization was performed in two 

ways. 

1. One way was to normalize the LCC after node removal using the initial LCC value 

(before node attack) of the network after WT. In this case, we considered each 

thresholded network an independent network, and we did not account for the LCC 

decrease directly caused by the WT procedure. 

2. A second way was to normalize the LCC after node removal using the initial LCC at 

WT = 0, i.e., we normalized using the LCC of the original network. In this second case, 

we also considered the LCC decrease triggered by the link removal of the WT proce-

dure. This normalization was intended to analyze the joint effect of the weight thresh-

olding and node attack to decrease the LCC (total LCC decrease). 

For ease of comparison, the response of networks to each attack strategy was repre-

sented by a single number called robustness (R). It was defined as the area under the curve 

of network functioning measure (here, LCC) against the fraction (q) of nodes removed. 

From now on, we refer to ‘robustness’ as the R measure computed with the first LCC nor-

malization (R) and ‘total robustness’ (Rtot) as the measure computed with the second LCC 

normalization. Table 2 lists the abbreviations used in this manuscript. 

Table 2. List of the abbreviations used in this manuscript. 

Abbreviation Full Name 

WT Weight thresholding 

LCC Size of largest connected component 

N Number of nodes 

L Number of links 

<w> Average link weight 

<k> Average node degree 

<CC> Global clustering coefficient 

Ran Random node attack 

Deg Degree node attack 

Str Strength node attack 
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Bet Betweenness node attack 

WBet Weighted Betweenness node attack 

G Weighted network  

G’ Thresholded network  

L’ Number of links in G’ 

q Fraction of nodes removed 

R Robustness 

Rtot Total Robustness 

<s> Average node strength 

Initial_Weak WT WT by weak link removal with initial node attack strategy 

Initial_Strong WT WT by strong link removal with initial node attack strategy 

Recalculated_Weak WT WT by weak link removal with recalculated node attack strategy 

Recalculated_Strong WT WT by strong link removal with recalculated node attack strategy 

3. Results and Discussion 

3.1. Robustness against WT 

We investigate the role of strong links on the robustness of networks to node attack 

strategies. The WT removes a fixed fraction of strong links, and then, we perform the node 

attack strategies on each thresholded network. These strategies are performed using initial 

and recalculated node attack methods. 

Figures 1 and 2 show the LCC and the robustness R as a function of WT for different 

real-world networks. First, we analyze the LCC decrease induced by the WT procedure. 

The bar plots in the first column of Figures 1 and 2 depict this LCC decrease. The networks 

C. Elegans, Caribbean, Human12a, and US airports show the slowest LCC decrease when 

subjected to the WT procedure. The WT procedure corresponds to the classic strong link 

removal [36]. Specifically, C. Elegans and the Caribbean keeps 80% of the LCC even up to 

75% removal of strong links (WT = 0.75), and Human12a keeps 85% of the LCC for 80% 

removal of strong links (WT ≤ 0.85). The smallest network in our study, Cypdry (N = 66), 

and the air transportation network, US airports, also maintain a comparable LCC up to 

WT = 0.7. 
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Figure 1. The LCC after each weight thresholding (WT) value (left column), the robustness (R) of the 

network under the initial (middle column), and the recalculated attack strategies (right column) as 

a function of the weight thresholding (WT) value for the networks C. Elegans (Eleg), Caribbean 

(Carib), Human12a (Hum), Cypdry (Cyp), and E. Coli (Coli). 



Mathematics 2024, 12, 1568 7 of 17 
 

 

 

Figure 2. The LCC after each weight thresholding (WT) value (left column), the robustness (R) of the 

network under the initial (middle column), and the recalculated attack (right column) strategies as 

a function of the weight thresholding (WT) value for the networks Budapest (Buda), Cargoship 

(Cargo), US airports (Air), and Netscience (Net). 

The other networks, such as E. Coli, Budapest, Cargoship, and Netscience, present a 

lower robustness against the WT procedure, showing a faster LCC decrease than other 

networks. Budapest and Netscience networks show a faster LCC disruption under the WT 

procedure. Removing strong links accelerates the fragmentation of the science co-author-

ship networks (Netscience). In this network, dense local neighborhoods of scientists are 

primarily composed of weak links. In contrast, the strong links represent more significant 

and enduring connections among leading scholars, bridging distant research communi-

ties and thus playing a crucial role in overall network connectivity [14]. 



Mathematics 2024, 12, 1568 8 of 17 
 

 

In summary, the real-world networks under study are robust to the strong WT pro-

cedure regarding the LCC. For this reason, the real-world networks under study unveil 

general robustness to strong link removal [36]. 

3.2. Robustness to WT and Node Attack 

We investigate the network robustness against the coupled effect of the WT and node 

attack strategies in two ways. 

First, we normalize the LCC along node removal with the initial LCC of the network 

after the WT procedure. This normalization does not consider the LCC decrease triggered 

by the WT link removal. This normalization evaluates the network after WT as an inde-

pendent system and accounts only for the LCC decrease caused by the node attack. The 

trends of the robustness R with this normalization procedure for the node attack strate-

gies, Ran, Deg, Str, Bet, and WBet are represented in Figures 1 and 2. 

Another way is to compute the relative robustness normalizing the LCC over the orig-

inal LCC size, i.e., before WT and a node attack. In this manner, we can understand the 

decrease in network functioning by the joint effect of WT and a node attack (i.e., total ro-

bustness Rtot). The Rtot for the node attack strategies, Ran, Deg, Str, Bet, and WBet, is repre-

sented in Figures 1 and 2. 

We find a gradual change in R along the WT in both the initial and recalculated strat-

egies for most of the networks. The C. Elegans network almost maintains steady robust-

ness in all the attack strategies up to WT = 0.75. After removing 75% of the strong links, 

we can see a drop in the robustness of the network. The C. Elegans network, with the re-

maining 25% weak links, is highly vulnerable to all the attack strategies. The networks 

Caribbean, Human12a, E. Coli, Cargoship, and US airports show gradual changes in ro-

bustness after each thresholding even up to WT = 0.90. Instead of a smooth change in R, 

the network Cypdry shows some spikes in R, especially towards the Bet (red) and Str 

(purple) attack strategies. 

The total robustness Rtot (solid lines) follows a similar pattern of robustness decrease 

for all the attack strategies except Ran (see green dotted and solid lines). In networks such 

as C. Elegans, Human12a, and E. Coli, the joint effect of thresholding and node attacks (Rtot) 

returns roughly the same robustness computed with the first normalization procedure 

(R). In all other networks, we can observe only a small difference in the values of these 

two types of robustness when focusing on targeted attacks. Differently, the robustness of 

the networks against random removal is always lower when considering the joint effect 

of WT and random node attacks. The solid green lines describing the Rtot decrease with 

increasing WT in Figures 1 and 2 are significantly lower than the dotted green lines (R). 

The principal aim of WT is to remove links to simplify the networks, making them 

easier to analyze and reducing the simulation time. Previous analyses showed that many 

standard network features quickly change under the WT procedure [1,6]. Here, we test 

whether WT with strong link removal changes the robustness of real-world networks 

when subjected to a node attack. Combining these results leads to the point that the real-

world networks analyzed here hold comparable robust connectivity using both the two 

normalization procedures of the LCC. 

There are some exceptions in Budapest, Netscience, and CypDry networks when we 

consider the normalization with the initial LCC of the network after the WT procedure. 

The Budapest network shows a higher robustness structure towards the end of threshold-

ing (WT>0.7) (see Figure 2). Figure 3 shows the LCC as a function of the fraction of nodes 

removed q for Ran, Deg, Str, Bet, and WBet attacks in the Budapest network for WT values 

0.75, 0.8, 0.85, and 0.9. It clearly shows that a higher WT value returns a slower LCC de-

crease. 
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Figure 3. The LCC as a function of the fraction of nodes that removed q for Ran, Deg, Str, Bet, and 

WBet (both initial and recalculated) attacks in the Budapest network for WT values 0.75, 0.8, 0.85, 

and 0.9. 

In Figure 2, the Netscience also shows a higher robustness structure for some thresh-

olding (WT > 0.2). The effect is also visible in Figure 4. The Cyp network also exhibits an 

increase in robustness when nodes are removed randomly (Ran). This interesting and 

counterintuitive result reveals that the network structures after WT may show a more ro-

bust LCC connectivity structure to node removal. In other words, the strong link removal 

performed by applying WT can strengthen networks against node attacks. 

Scientific collaboration networks present links of higher weight connecting different 

communities of nodes [14]. Removing the strong links could fragment the scientific social 

network (Net) into smaller communities. Figure 5 shows that the Net network’s node clus-

tering coefficient (<CC>) increases as a function of WT; that is, <CC> decreases when strong 

links are removed. Figure 5 shows an analogous <CC> increase at the end of the WT pro-

cedure for the Buda (WT > 0.8) and Cyp networks (WT>0.75). The <CC> rise can explain 

why an increase in robustness is also observed for different node attacks (Ran, Str, WBet) 

in the Buda network (Figure 2) and for the Cyp network for random node removal (Ran) 

(Figure 2) at the end of the WT procedure. The Buda network is a complex brain network 

where nodes are brain regions and links indicate electrical activity between them [28]. The 

Cyp network is a food web ecological network in which nodes are species and links depict 

trophic interactions among them [16]. Global node clustering <CC> is a simple measure 

evaluating the presence of communities of nodes in networks [28], and it is a measure that 

counts node triplets in the network. A triplet is three nodes connected by either two (open 

triplet) or three (closed triplet) links. <CC> is the ratio between the number of closed tri-

plets and the total number of triplets (both open and closed) in the network [28]. The 

higher the <CC>, the higher the node’s tendency to cluster in communities. 

Taking together the results would suggest that the removal of strong links can lead, 

in some cases, to the fragmentation of the network into communities (clusters of nodes) 

that are more resistant to node removal than the original network. This last pattern may 

explain the counterintuitive finding of increased network robustness in these real-world 

networks after applying strong WT. At the same time, this result would indicate that in 

highly clustered networks, removing bridge links (here, the strong links) connecting dif-

ferent communities of nodes may lead to a sparser network that is more resistant to node 

removal than the original one. Nonetheless, for the Air network, that is, the network of US 

airports [20], we observe a <CC> increase with WT but not a corresponding increase in 

robustness to node removal. For this reason, further mechanisms must be elucidated to 

understand why, in some real-world networks, the removal of strong links is associated 

with an increased robustness of the remaining network. 
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Figure 4. The LCC as a function of the fraction of nodes removed q for Ran, Deg, Str, Bet, and WBet 

(both initial and recalculated) attacks in the Netscience network for WT values 0.25, 0.45, 0.55, and 

0.65. 

 

Figure 5. Real-world network features as a function of WT for each network. < 𝑘 >: average node 

degree; < 𝑠 >: average node strength; < 𝑤 >: average link weight; <CC>: global clustering coeffi-

cient. For the ease of analysis, the network features are normalized by their maximum value. 

3.3. The Efficacy of the Node Attack Strategies 

Figures 6 and 7 list the best attack strategy, returning the lowest R value for each real-

world network and each WT value. We find that with increasing WT, the efficacy of the 

attack strategy changes as well, and this is for both the normalization procedures of the 

LCC. For example, for initial node attack strategies, the best attack strategy for the C. Ele-

gans network is the degree-based strategy (Deg) for WT≤0.1, whereas for WT > 0.1, the 

betweenness attack strategy (Bet) becomes the best method to dismantle the LCC (Figure 

7). For the Cargo network, the best attack strategy is Str for 0.25 ≤ WT ≤ 0.4; in the remain-

ing WT parameter space, the best attack strategy is Deg. 
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Figure 6. Best attack strategy returning the lowest R value for each real-world network and each WT 

value. In each cell, we indicate the best attack strategy and its Rtot value. The Rtot value is computed 

by normalizing the LCC with the initial LCC for WT = 0. Colors indicate the different attack strate-

gies. 

 

Figure 7. Best attack strategy returning the lowest R value for each real-world network and each WT 

value. In each cell, we indicate the best attack strategy and its R value. The R value is computed by 

normalizing the LCC with the initial LCC at each WT value. Colors indicate the different attack strat-

egies. 

WT Eleg Carib Hum Cyp Coli Buda Cargo Air Net Eleg Carib Hum Cyp Coli Buda Cargo Air Net

Deg     Bet Bet Bet Deg Deg Deg Deg Bet Bet Bet Bet Bet Bet Bet Bet Bet Deg 

0.330 0.265 0.441 0.284 0.108 0.051 0.175 0.080 0.039 0.212 0.209 0.219 0.254 0.060 0.028 0.095 0.051 0.031

Deg Bet Bet Bet Deg Deg Deg Bet Str Bet Bet Bet Bet Bet Bet Bet Bet Bet 

0.319 0.265 0.445 0.287 0.105 0.051 0.169 0.079 0.042 0.209 0.202 0.222 0.253 0.060 0.027 0.093 0.051 0.031

Deg Bet Bet Bet Deg Deg Deg Bet Str Bet Bet Bet Bet Bet Bet Bet Bet Str 

0.308 0.258 0.438 0.283 0.101 0.049 0.166 0.077 0.035 0.207 0.192 0.223 0.249 0.059 0.025 0.088 0.051 0.029

Bet Bet Bet Bet Deg Deg Deg Bet Str Bet Bet Bet Bet WBet Bet Bet Bet Str 

0.324 0.243 0.435 0.280 0.097 0.046 0.156 0.075 0.030 0.209 0.184 0.224 0.240 0.057 0.026 0.086 0.051 0.025

Bet Bet Bet Bet Str Deg Deg Bet Str WBet Deg Bet Bet WBet Bet Bet Bet Str 

0.307 0.235 0.431 0.268 0.058 0.045 0.158 0.075 0.027 0.204 0.178 0.223 0.238 0.052 0.024 0.086 0.050 0.024

Bet Bet Bet Bet Deg Deg Str Bet Str Bet/WBet Bet Bet Bet WBet Bet Bet Bet Str 

0.294 0.223 0.423 0.277 0.082 0.043 0.155 0.074 0.024 0.202 0.167 0.222 0.230 0.048 0.023 0.085 0.050 0.022

Bet Bet Bet Bet Deg Deg Str Deg Str WBet Bet Bet Bet WBet Bet Bet Bet Str 

0.287 0.219 0.416 0.266 0.074 0.038 0.150 0.076 0.020 0.196 0.160 0.222 0.231 0.044 0.021 0.082 0.050 0.019

Bet Bet Bet Bet Deg Deg Str Deg Str WBet Deg Bet Bet Bet WBet Bet Bet Str 

0.283 0.208 0.401 0.275 0.065 0.033 0.140 0.076 0.018 0.190 0.153 0.217 0.224 0.040 0.019 0.079 0.050 0.015

Bet Bet Bet Bet Str Deg Str Deg Str WBet Bet Bet Bet Bet Bet Bet Bet Str 

0.280 0.185 0.390 0.254 0.058 0.028 0.134 0.074 0.015 0.186 0.141 0.205 0.229 0.036 0.017 0.074 0.049 0.013

Bet Bet Bet Bet Deg Deg Deg Deg Str Bet Bet Bet Bet WBet Bet Bet Bet Str 

0.272 0.179 0.383 0.257 0.051 0.025 0.130 0.071 0.013 0.179 0.135 0.201 0.224 0.033 0.015 0.070 0.049 0.011

Bet Bet Bet Bet Deg Deg Deg Deg Str Bet Bet Bet Bet WBet WBet Bet Bet Deg 

0.262 0.168 0.364 0.244 0.044 0.021 0.117 0.070 0.010 0.171 0.125 0.189 0.204 0.029 0.013 0.065 0.048 0.008

Bet Deg Bet Bet Deg Deg Deg Deg Str WBet Bet Bet Bet Bet WBet Bet Bet Deg 

0.252 0.154 0.336 0.235 0.037 0.017 0.103 0.067 0.008 0.164 0.114 0.179 0.192 0.025 0.011 0.061 0.047 0.005

Bet Deg Deg Bet Deg Deg Deg Deg Str WBet Bet Bet Bet WBet WBet Bet Bet Deg 

0.237 0.129 0.313 0.210 0.031 0.013 0.100 0.064 0.007 0.158 0.103 0.168 0.157 0.022 0.010 0.056 0.044 0.005

Bet/WBet Deg Bet Bet Str Deg Deg Deg Str WBet Bet Bet Bet WBet Deg Bet Bet Deg 

0.229 0.108 0.294 0.193 0.025 0.011 0.091 0.058 0.005 0.160 0.089 0.157 0.135 0.018 0.008 0.048 0.040 0.004

Bet/WBet Deg Bet Bet Deg Deg Deg Deg Str WBet Bet Bet Bet Bet Deg Bet Bet Deg 

0.229 0.102 0.247 0.160 0.019 0.008 0.076 0.050 0.004 0.160 0.082 0.135 0.120 0.014 0.006 0.044 0.039 0.003

Bet/WBet Deg Str Bet Str Deg Deg Deg Deg WBet Bet WBet Deg WBet Deg Bet Bet Deg 

0.229 0.085 0.218 0.114 0.014 0.006 0.060 0.043 0.003 0.160 0.069 0.115 0.097 0.011 0.004 0.035 0.032 0.002

Deg Bet Bet Bet Str Str Deg Deg Str Bet Bet WBet Deg WBet Deg Bet Bet Deg 

0.113 0.069 0.161 0.088 0.009 0.004 0.042 0.035 0.002 0.080 0.057 0.085 0.073 0.007 0.003 0.025 0.026 0.002

Deg Deg Deg Deg Str Str Deg Deg Str WBet Deg Bet Deg Deg Deg Bet Bet Deg 

0.070 0.050 0.096 0.063 0.005 0.003 0.026 0.022 0.001 0.050 0.043 0.053 0.052 0.004 0.002 0.017 0.015 0.001

Deg Deg Deg Bet Str Str Deg Deg Str WBet Deg WBet WBet Str Str Bet WBet Deg 

0.029 0.034 0.048 0.034 0.002 0.002 0.012 0.011 0.001 0.020 0.028 0.029 0.028 0.001 0.001 0.009 0.008 0.001
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0.330 0.265 0.441 0.284 0.108 0.051 0.175 0.080 0.039 0.212 0.209 0.219 0.254 0.060 0.028 0.095 0.051 0.031

Deg Bet Bet Bet Deg Deg Deg Bet Bet Bet Bet Bet Bet Bet Bet Bet Bet Bet 

0.320 0.265 0.445 0.287 0.105 0.051 0.172 0.079 0.042 0.209 0.202 0.222 0.253 0.061 0.027 0.095 0.051 0.031

Deg Bet Bet Bet Deg Deg Deg Bet Bet Bet Bet Bet Bet Bet Bet Bet Bet Str 

0.309 0.258 0.438 0.288 0.102 0.050 0.172 0.077 0.039 0.208 0.192 0.223 0.253 0.060 0.026 0.092 0.051 0.032

Bet Bet Bet Bet Deg Deg Deg Bet Bet Bet Bet Bet Bet WBet Bet Bet Bet Str 

0.325 0.243 0.435 0.294 0.099 0.048 0.164 0.075 0.036 0.210 0.184 0.224 0.252 0.058 0.027 0.090 0.051 0.031

Bet Bet Bet Bet Str Deg Deg Bet Bet WBet Deg Bet Bet WBet Bet Bet Bet Str 

0.310 0.235 0.431 0.286 0.095 0.047 0.167 0.075 0.034 0.205 0.178 0.223 0.254 0.054 0.026 0.091 0.050 0.031

Bet                           Bet Bet Bet Deg Deg Str Bet Bet Bet/WBet Bet Bet Bet WBet Bet Bet Bet Str 

0.298 0.226 0.423 0.295 0.086 0.046 0.164 0.074 0.036 0.199 0.169 0.222 0.246 0.051 0.025 0.090 0.050 0.035

Bet Bet Bet Bet Deg Deg Str Deg Bet WBet Bet Bet Bet WBet Bet Bet Bet Str 

0.292 0.222 0.416 0.284 0.079 0.042 0.161 0.076 0.049 0.194 0.162 0.222 0.246 0.047 0.023 0.089 0.050 0.042

Bet Bet Bet Bet Deg Deg Str Deg Bet Wbet Deg Bet Bet Bet WBet Bet Bet Str 

0.288 0.214 0.402 0.293 0.071 0.037 0.153 0.077 0.066 0.191 0.157 0.218 0.239 0.044 0.022 0.086 0.050 0.060

Bet Bet Bet Bet Str Deg Str Deg Bet WBet Bet Bet Bet Bet Bet Bet Bet Str 

0.286 0.193 0.393 0.275 0.064 0.033 0.149 0.074 0.068 0.191 0.147 0.207 0.248 0.041 0.020 0.083 0.050 0.059

Bet Bet Bet Bet Deg Deg Str Deg Bet Bet Bet Bet Bet WBet Bet Bet Bet Str 

0.280 0.189 0.386 0.279 0.058 0.031 0.146 0.072 0.066 0.184 0.142 0.202 0.243 0.038 0.019 0.079 0.050 0.056

Bet Bet Bet Bet Deg Deg Deg Deg Bet Bet Bet Bet Bet WBet WBet Bet Bet Deg 

0.261 0.177 0.369 0.264 0.052 0.028 0.135 0.073 0.074 0.177 0.132 0.191 0.221 0.034 0.018 0.075 0.050 0.057

Bet Deg Bet Bet Deg Deg Deg Deg Bet WBet Bet Bet Bet Bet WBet Bet Bet Deg 
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These findings show that the strong link removal performed using the WT procedure 

changes the efficacy of the node attack strategies. This last result has two important con-

sequences. (I) Finding the best node attack strategies in real-world networks is a funda-

mental problem in network science with many real applications [31,35,37,38]. The WT pro-

cedure aiming to simplify the network by reducing the number of links induces structural 

changes that affect the efficacy of the node attack strategies. For this, network science re-

search focusing on node attack strategies must consider that applying WT may signifi-

cantly change the node attack efficacy. (II) Finding the best attack strategies is a heuristic 

way to select important nodes in the network [35]. Here, we show that WT performed with 

strong link removal changes the efficacy of the attack strategies. Therefore, strong WT is 

likely affecting the node rank in the network [2]. To test how WT affects the rank of the 

different node centralities, we use Kendall’s tau coefficient (τ) to evaluate the change in 

node rank after weight thresholding [39]. The τ coefficient is a measure of the magnitude 

of correspondence between two ranked pieces of data, i.e., the higher the Kendall’s τ co-

efficient, the more similar the two ranking sequences. The range of Kendall’s τ coefficient 

is from −1 to 1. We depict the results of this analysis in Figure 8. The τ coefficient decreases 

by increasing WT, indicating changes in the node rank after the WT procedure. Compar-

ing the τ coefficient for strong WT (Figure 8, solid lines) with the τ coefficient discovered 

in a previous work by applying weak WT [2] (Figure 8, dashed lines), we find that strong 

WT produces a faster decrease in the τ coefficient. John et al. [2] found that applying the 

WT weak link removal decreases the τ coefficient to around 0.3 for most networks. By 

applying strong WT, we can lower the τ coefficient to 0 or even negative values (Figure 8, 

solid lines). This indicates that sparsification procedures based on strong link removal 

may trigger a greater change in the node centrality rank concerning the sparsification pro-

cedures removing weak links. Network science research focusing on developing algo-

rithms to find important influential nodes [40] has to consider that simplifying the net-

work with WT methodologies may also change the node importance evaluated by differ-

ent node centrality indicators in the network. 

 

Figure 8. Kendall’s tau coefficient (𝜏) for centrality measures Deg, Str, Bet, and WBet. Correlation is 

measured between the initial network’s node rank and the network’s node rank after WT. We com-

pute 𝜏 using the top 30% of nodes of the network. Solid lines indicate 𝜏 for WT with strong link 

removal; dashed lines indicate 𝜏 for WT with weak link removal as in [2]. 
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3.4. Comparing Strong and Weak WT Procedures 

John et al. [2] investigated the effect of weight thresholding (WT) on the robustness 

of real-world complex networks against various node attack strategies by removing a 

fixed fraction of weak links. In this study, we investigate the opposite perspective and 

perform WT by removing strong links. Figure 9 compares the Rtot against the initial node 

attack when weak and strong WT procedures simplify networks. We do not find a clear 

trend; in some cases, weak WT triggers a faster robustness decrease, and in others, it is to 

the contrary. For example, the weak WT induces a higher decrease in robustness concern-

ing the strong WT for the Eleg, Cyp (except under WBet initial attack), Air, and Cargo 

networks for both the initial (Figure 7, red lines) and recalculated attacks (Figure 9, green 

lines). These results agree with the study by Onnela et al. [13] on mobile communication 

networks [13]. Onnela et al. [13] show the counterintuitive consequence that real-world 

social networks are robust to removing the strong links but fall apart quickly if the weak 

links are removed. Onnela et al. [13] analyzed the network’s robustness to removing links 

only. Our study, on the other hand, analyzes the combined effect of removing links and 

then attacking the network by removing nodes. Despite the differences between Onnela 

et al. [13] and our approaches, similar systems’ responses are observed: for certain types 

of real-world networks, removing weak links can induce greater fragility. Our results 

show that this may happen not only in social networks [13] but also in transportation and 

biological networks. 

However, the strong WT returns lower robustness in the Carib and Hum networks, 

especially for initial node attacks. The Car network is a food web ecological network de-

picting who eats whom in the ecosystem. Hum is the human brain network modeling the 

electrical communication activities sharing information among brain regions [23]. Hence, 

from very different domains of science, these real-world networks show a higher fragility 

when combining strong WT and node attacks (Figure 9). From these results, it is possible 

to infer possible dynamics of these real-world networks. In food webs, removing (or dis-

rupting) the higher magnitude trophic connections between species may trigger the re-

maining ecological network to be more sensitive to species removal. The removal of spe-

cies in food webs models the case of species extinction [16]. Our results would suggest 

that removing strong trophic interactions would make the ecosystem more prone to bio-

diversity loss. The higher vulnerability to strong WT in the brain network would indicate 

that once the connections with the highest electrical activity between different brain re-

gions are removed, the remaining brain network is more prone to brain region malfunc-

tioning (node removal) and becoming more easily disconnected. This may help in under-

standing the mechanisms by which brain networks and which brain regions play the main 

routing information. 

Our latest results show the difficulty in predicting how different sparsification pro-

cedures may affect the robustness of node attacks on real-world networks. Different real-

world networks may exhibit opposite behaviors regarding sparsification through remov-

ing the heaviest-weight links (strong WT) compared to removing the links of lower 

weights (weak WT). 
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Figure 9. Comparison between the total robustness (Rtot) against weak and strong WT procedures. 

Network robustness under the initial attack (dotted lines) and recalculated attack (solid lines) strat-

egies as a function of the weight thresholding (WT) value for the networks C. Elegans (Eleg), 
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Caribbean (Carib), Human12a (Hum), Cypdry (Cyp), E. Coli (Coli), Budapest (Buda), Cargoship 

(Cargo), US airports (Air), and Netscience (Net). 

4. Conclusions 

We analyzed the impact of weight thresholding on the robustness of real-world net-

works to different node attack strategies. Here, weight thresholding is performed by re-

moving a fixed fraction of strong links. Generally, the real-world networks under study 

show robust connectivity against the WT procedure. In other words, real-world networks 

maintain a robust structure regarding the LCC to strong link removal. These results sug-

gest that strong link removal can be used as a method for the sparsification of networks 

for applications in which the robustness to node attacks is important. 

Then, we find that applying WT may significantly change the node attack efficacy 

and the rank of different node centrality measurements. The strong WT procedure induces 

a greater change in the ranking of nodes than the weak WT procedure. For this reason, 

network research focusing on finding the efficacy of node attack strategies or finding im-

portant nodes in the network has to consider the network structural changes caused by 

the weight thresholding (sparsification) procedures. 

Studying the robustness against node attacks after strong WT may have different 

real-world applications. Removing links with higher weights and then performing node 

attacks could help identify the parts of the network that are more robust (or less affected) 

when removing key connections. In the real world, this can be useful for designing net-

work protection or reinforcement strategies in critical infrastructure networks, such as 

those for energy, transportation, or communications. These vital systems can benefit from 

identifying the robustness of network components resulting from attacks on strong links, 

planning their protection, and developing risk mitigation strategies. 

Our research also has significant implications for understanding ecological networks. 

By identifying keystone species in food web ecological networks, we can gain insights into 

the mechanisms of biodiversity loss in ecosystems. Food webs are networks of species and 

their trophic interactions [16,41]. Strong WT can simulate the deletion of strong trophic 

interactions that occur with the extinction or decreasing abundance of the most general 

species/resources in ecosystems. The subsequent node removal can then model the occur-

rence of species extinction in the remaining parts of the food web ecological network, 

providing a deeper understanding of biodiversity loss mechanisms. 

Moreover, the emergence of the role of strong and weak links is associated with the 

local structure of the social networks [42], and understanding the specific embedding of 

strong links is important to comprehend complex social systems. 

For example, scientific collaboration networks present links of higher weight con-

necting different communities of nodes [14]. Removing the strong links could fragment 

the scientific social network into smaller communities. Subsequently, removing nodes 

from these communities can help us better understand the robustness and relationships 

within specific groups of scientists. 

Last, the results presented in this study can be useful in network science research that 

needs to simplify complex networked systems and in machine learning and neural net-

work research that needs to reduce model complexity or eliminate less important network 

connections. 
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