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Abstract
In this paper we study the deterministic and stochastic homogenisation of free-
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on the integrands which, in particular, are not required to be periodic in the space
variable. Combining this result with the pointwise Subadditive Ergodic Theorem by
Akcoglu and Krengel, we prove a stochastic homogenisation result, in the case of sta-
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of asymptotic cell formulas, as in the classical case of periodic homogenisation.
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1 Introduction

In this paper we derive deterministic and stochastic homogenisation results for free-
discontinuity functionals in the space of functions of bounded variation.

We consider families of free-discontinuity functionals of the form

Eε(ω)(u, A) =
∫
A
f (ω, x

ε
,∇u) dx +

∫
Su∩A

g(ω, x
ε
, [u], νu) dHn−1, (1.1)

whereω belongs to the sample space of a given probability space (�, T , P) and labels
the realisations of the random integrands f and g, while ε > 0 is a parameter of either
geometrical or physical nature, and sets the scale of the problem. In (1.1) the set A
belongs to the class A of bounded open subsets of Rn and the function u belongs
to the space SBV (A,Rm) of special Rm-valued functions of bounded variation on A
(see [21] and [5, Section 4.5]). Moreover, ∇u denotes the approximate gradient of u,
[u] stands for the difference u+ − u− between the approximate limits of u on both
sides of the discontinuity set Su , νu denotes the (generalised) normal to Su , andHn−1

is the (n − 1)-dimensional Hausdorff measure in Rn .
Functionals as in (1.1) are commonly used in applications where the physical quan-

tity described by u can exhibit discontinuities, e.g. in variational models of fracture
mechanics, in the theory of computer vision and image segmentation, and in problems
involving phase transformations.

We are interested in determining the almost sure limit behaviour of Eε as ε →
0+, when f and g satisfy linear growth and coercivity conditions in the gradient
and in the jump, respectively. The linear growth of the volume energy sets the limit
problem naturally in the space BV of functions of bounded variation. Indeed, in this
setting, limits of sequences of displacements with bounded energy can develop a
Cantor component in the distributional gradient.

This is in contrast with our previous work [16] (in the deterministic case) and [17]
(in the stochastic case), where, under the assumption of superlinear growth for f , the
limit problem was naturally set in the space SBV of special functions with bounded
variation.

The two main results of this paper are a deterministic homogenisation result for
functionals of the type (1.1), when ω is fixed and f and g are not necessarily periodic,
and a stochastic homogenisation result, obtained for P-a.e.ω ∈ �, under the additional
assumption of stationarity of f and g.

1.1 The deterministic result

For the deterministic result we consider ω as fixed in (1.1) and write Eε(u, A) instead
of Eε(ω)(u, A).

We study the limit behaviour of the functionals Eε(·, A), for every A ∈ A , as
ε → 0+, under the assumption that the energy densities f and g belong to suitable
classes F and G of admissible volume and surface densities (see Definition 3.1). As
announced above, a key requirement for the class F is that f satisfies linear upper
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and lower bounds in the gradient variable. Additionally, we require that the recession
function f ∞ of f is defined at every point. For the classG, we require that g is bounded
from below and from above by the amplitude of the jump, and that its directional
derivative g0 in the jump variable at [u] = 0 exists and is finite. The functions f ∞
and g0 will play an important role in determining the limiting densities.

We stress here that we do not require any periodicity in the spatial variable x for
the volume and surface densities; moreover, we do not require any continuity in the
spatial variable either, since it would be unnatural for applications.

Under these general assumptions, using the so-called localisation method of �-
convergence [18], we can prove that there exists a subsequence (εk) such that, for
every A ∈ A , (Eεk (·, A)) �-converges to an abstract functional Ê(·, A), that Ê(·, A)

is finite only in BV , and that, for every u ∈ BVloc(Rn,Rm), the set function Ê(u, ·)
is the restriction to A of a Borel measure (see Theorem 5.1).

Note that, without any additional assumptions, one cannot expect that Ê(·, A) can
be written in an integral form. In particular, since there is no guarantee that z �→
Ê(u(·−z), A+z) is continuous (which is instead automatically satisfied in the periodic
case), we cannot directly apply the integral representation result in BV [10]. Our
integral representation result is hence obtained under some additional assumptions,
which are though more general than periodicity. We require that the limits of some
rescaled minimisation problems, defined in terms of f , g, f ∞, and g0, exist and are
independent of the spatial variable. These limits will then define the densities of Ê .

More precisely, for A ∈ A , w ∈ SBV (A,Rm), f ∈ F , and g ∈ G we set

m f ,g(w, A) := inf
{ ∫

A
f (x, ∇u) dx +

∫
Su∩A

g(x, [u], νu) dHn−1 :

u ∈ SBV (A,Rm), u = w near ∂A
}
, (1.2)

and we assume that for every ξ ∈ R
m×n the limit

lim
r→+∞

m f ,g0(	ξ , Qr (r x))

rn
=: fhom(ξ) (1.3)

exists and is independent of x ∈ R
n , and that for every ζ ∈ R

m and ν ∈ S
n−1 the

limit

lim
r→+∞

m f ∞,g(urx,ζ,ν, Qν
r (r x))

rn−1 =: ghom(ζ, ν) (1.4)

exists and is independent of x ∈ R
n . In (1.3), 	ξ denotes the linear function with

gradient ξ ; in (1.4), Qν
r (r x) := Rν

(
(− r

2 ,
r
2 )

n
) + r x , where Rν is an orthogonal n×n

matrix such that Rνen = ν, and

urx,ζ,ν(y) :=
{

ζ if (y − r x) · ν ≥ 0,

0 if (y − r x) · ν < 0.
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The limits (1.3) and (1.4) are the counterpart of the asymptotic cell-formulas in the
classical periodic homogenisation [10]. In that case, periodicity in the spatial variable
x ensures the existence of the limits and their homogeneity in x , that here we have
to postulate. Our assumptions are however weaker than periodicity: notably, they are
fulfilled in the case of stationary integrands, as we show in the present work.

In line with the result in [10], the functional being minimised in (1.3) (respectively
in (1.4)) has densities f and g0 (respectively f ∞ and g) rather than f and g. We
note that, if the density f satisfied a superlinear growth, then f ∞(·, ξ) = +∞ for
ξ 	= 0. Since one always has f ∞(·, 0) = 0, in the superlinear case there would be
the following changes in (1.4): on the one hand the minimisation would be done over
functions with ∇u = 0; on the other hand the functional to be minimised would
reduce to just the surface term. This is indeed the situation in [16], where we assume a
superlinear growth for f .Moreover, in [16] wework under different growth conditions
for g as well, which in particular satisfies g ≥ c, for a given fixed positive constant. In
that case g0 ≡ +∞ (see (3.3)), and hence formally the minimisation in (1.3) would
be over Sobolev functions, and the functional to be minimised would reduce to just
the bulk term. Again, this is exactly what happens in [16] (see also [11, 28]).

In Lemmas 4.2 and 4.5 we show that fhom ∈ F and ghom ∈ G; the fact that
fhom ∈ F guarantees in particular the existence of its recession function f ∞

hom. In
Propositions 6.2, 7.2, and 8.3, we show that the functions fhom, ghom and f ∞

hom are
the densities of the volume, surface, and Cantor terms of Ê , respectively. To do so we
use the blow-up technique of Fonseca and Müller [27] (see also [12]), extended to the
BV -setting by Bouchitté, Fonseca, and Mascarenhas [10]. More precisely, thanks to
(1.3) and (1.4), we prove that the following identities hold true for every A ∈ A and
for every u ∈ L1

loc(R
n,Rm) with u|A ∈ BV (A,Rm):

d Ê(u, ·)
dLn

(x) = fhom(∇u(x)) for Ln-a.e. x ∈ A,

d Ê(u, ·)
dHn−1 Su

(x) = ghom([u](x), νu(x)) forHn−1-a.e. x ∈ Su ∩ A,

and

d Ê(u, ·)
d|C(u)| (x) = f ∞

hom

( dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A,

where Ln is the Lebesgue measure in R
n , Hn−1 Su is the measure defined by

(Hn−1 Su)(B) := Hn−1(Su ∩ B) for every Borel set B ⊂ R
n , and C(u) is the

Cantor part of the distributional derivative of u.
In particular, since the right-hand sides of the previous equalities do not depend

on (εk), the homogenisation result holds true for the whole sequence (Eε). Moreover,
the fact that fhom ∈ F and ghom ∈ G implies that the classes F and G are closed
under homogenisation, and that on SBV the functionals Eε and their �-limit Ê are
free-discontinuity functionals of the same type.

As observed before, fhom and ghom depend on both the volume and the surface
densities of the functional Eε. Indeed, the minimisation problems in (1.3) and (1.4)
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involve both f (or f ∞) and g (or g0). In other words, volume and surface term
do interact in the limit, which is a typical feature of the linear-growth setting. This
is in contrast with the case of superlinear growth considered in [16], in which the
limit volume density only depends on the volume density of Eε, and similarly the
limit surface density only depends on the surface density of Eε. The volume-surface
decoupling is typical of the SBV -setting in presence of superlinear growth conditions
on f [11, 16, 28].

Note however that, even in the superlinear case, if f and g satisfy “degenerate”
coercivity conditions, due for instance to the presence of perforations or “weak” inclu-
sions in the domain, the situation is more involved. Indeed, while in [7, 14, 15, 25, 33]
the volume and surface terms do not interact in the homogenised limit, in [6, 8, 20,
32, 34, 35] they do interact and produce rather complex limit effects.

1.2 The stochastic result

In Section 9 we prove the almost sure �-convergence of the sequence of random
functionals Eε(ω) in (1.1) to a random homogenised integral functional, under the
assumption that the volume and surface integrands f and g are stationary (see Defi-
nition 3.12 and Remark 3.16).

In the random setting stationarity is the natural counterpart of periodicity, since it
implies that f and g are “statistically” translation-invariant, or “periodic in law”.

The application of the deterministic result Theorem 4.1, at ω fixed, ensures that
Eε(ω) �-converges to the free-discontinuity functional

Ehom(ω)(u, A) :=
∫
A
fhom(ω,∇u) dx +

∫
Su∩A

ghom(ω, [u], νu) dHn−1

+
∫
A
f ∞
hom

(
ω,

dC(u)

d|C(u)|
)
d|C(u)|,

with

fhom(ω, ξ) := lim
r→+∞

m f (ω),g0(ω)(	ξ , Qr (r x))

rn
, (1.5)

for every ξ ∈ R
m×n , and

ghom(ω, ζ, ν) := lim
r→+∞

m f ∞(ω),g(ω)(urx,ζ,ν, Qν
r (r x))

rn−1 , (1.6)

for every ζ ∈ R
m and ν ∈ S

n−1, provided the limits in (1.5) and (1.6) (which are the
same as (1.3) and (1.4), modulo the additional dependence on the random parameter
ω) exist and are independent of x ∈ R

n . Therefore, to show that the �-convergence of
Eε(ω) towards Ehom(ω) actually holds true for P-a.e. ω ∈ � it is necessary to show
that the limits in (1.5) and (1.6) exist and are independent of x ∈ R

n for P-almost
every realisation ω ∈ �. To do so, we follow the general strategy firstly introduced

123



    8 Page 6 of 89 F. CAGNETTI et al.

in [19] in the Sobolev setting, and then extended to the SBV -setting in [17] (see also
[3]).

This strategy relies on the Subadditive Ergodic Theorem by Akcoglu and Krengel
[1] (see Theorem 3.15) and requires, among other things, to show that the minimi-
sation problems in (1.5) and (1.6) define two subadditive stochastic processes (see
Definition 3.13).

This task however poses a challenge even at the very first step: proving that ω �→
m f (ω),g0(ω) and ω �→ m f ∞(ω),g(ω) are measurable. Indeed, while both m f (ω),g0(ω)

and m f ∞(ω),g(ω), by (1.2), involve the minimisation of measurable functionals in
the random variable ω, such minimisation is performed over the space SBV , which
is not separable. Since the infimum in (1.2) cannot be reduced to a countable set,
the measurability of ω �→ m f (ω),g0(ω) and ω �→ m f ∞(ω),g(ω) cannot be inferred
directly from the measurability in ω of f , f ∞, g and g0 (see the Appendix). Let
us also observe that the situation here is substantially different from that treated in
[16, 17], for a number of reasons. Indeed in [16, 17], as observed before, due to the
different assumptions on f and g, the �-limit exhibits a “separation” of the volume
and surface term. In particular, the limit volume density is obtained as the limit of
some minimisation problems similar to (1.2), but where the minimisation is done
over the space of Sobolev functions. Hence in that case the limit volume density is
ω-measurable, due to the separability of the space (see also [19]). On the other hand,
the measurability of the minimisation problems defining the limit surface density
was delicate also in [17], since the minimum was taken over Caccioppoli partitions.
However, in [17] the minimisation involved only the surface term of the functional,
which makes the proof much simpler than the one required now.

Once the measurability in ω is established (see Proposition A.12), we have to
face yet another difficulty: determining the dimension of the stochastic processes.
Indeed, using the competitors 	ξ and urx,ζ,ν in the minimisation problemsm f (ω),g0(ω)

and m f ∞(ω),g(ω), respectively, suggests the rescalings in (1.5) and (1.6). Hence it
suggests that m f (ω),g0(ω) should define an n-dimensional process, while m f ∞(ω),g(ω)

should define an (n − 1)-dimensional process. On the other hand, in both cases the
functionals appearing in theminimisation problems, if seen as set functions, are defined
on n-dimensional sets.

To solve this problemwe proceed as in [3, 13] and [17], where similar issues arise in
the study of pure surface energies of spin systems, and in the case of free-discontinuity
problems with superlinear growth, respectively.

Finally, the last difficulty consists in showing that, as in [3, 17], the limits in (1.5)
and (1.6) do not depend on x . This is particularly delicate for (1.6), due to the presence
of an x-dependent boundary condition.

We conclude by observing that our analysis also shows that, if f and g are ergodic,
then the homogenised integrands fhom and ghom are ω-independent, and hence the
limit Ehom is deterministic.
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1.3 Outline of the paper.

This paper is organised as follows. In Section 2 we introduce some notation. Section 3
consists of two parts: in Section 3.1 we introduce the stochastic free-discontinuity
functionals and recall the Ergodic Subadditive Theorem; in Section 3.2 we state the
main results of the paper.

Sections 4–8 focus on the deterministic results. More in detail, in Section 4 we
state the deterministic �-convergence results and prove some properties of the limit
densities; Section 5 is devoted to the abstract�-convergence result; the volume, surface
and Cantor terms of the abstract �-limit are then identified in Sections 6, 7 and 8,
respectively.

Finally, Section 9 focuses on the stochastic homogenisation result, while the proof
of the measurability of ω �→ m f (ω),g0(ω) and ω �→ m f ∞(ω),g(ω) is postponed to the
Appendix.

2 Notation

We introduce now some notation that will be used throughout the paper.

(a) m and n are fixed positive integers, with n ≥ 2, R is the set of real numbers,
while Q is the set of rational numbers. The canonical basis of Rn is denoted by
e1, . . . , en . For a, b ∈ R

n , a · b denotes the Euclidean scalar product between a
and b, and | · | denotes the absolute value inR or the Euclidean norm inRn ,Rm , or
R
m×n (the space of m × n matrices with real entries), depending on the context.

If v ∈ R
m and w ∈ R

n , the symbol v ⊗ w stands for the matrix in R
m×n whose

entries are (v ⊗ w)i j = viw j , for i = 1, . . . ,m and j = 1, . . . , n.
(b) S

m−1 := {ζ = (ζ1, . . . , ζm) ∈ R
m : ζ 2

1 + · · · + ζ 2
m = 1}, Sn−1 := {x =

(x1, . . . , xn) ∈ R
n : x21 + · · · + x2n = 1}, and Ŝ

n−1± := {x ∈ S
n−1 : ±xi(x) > 0},

where i(x) is the largest i ∈ {1, . . . , n} such that xi 	= 0. Note that Sn−1 =
Ŝ
n−1+ ∪ Ŝ

n−1− .
(c) Ln denotes the Lebesgue measure onRn andHn−1 the (n−1)-dimensional Haus-

dorff measure on R
n .

(d) A denotes the collection of all bounded open subsets of Rn ; if A, B ∈ A , by
A ⊂⊂ B we mean that A is relatively compact in B.

(e) For u ∈ BV (A,Rm), with A ∈ A , the jump of u across the jump set Su is defined
by [u] := u+ − u−, while νu denotes the (generalised) normal to Su (see [5,
Definition 3.67]).

(f) For every u ∈ BV (A,Rm), with A ∈ A , the distributional gradient, denoted by
Du, is an R

m×n-valued Radon measure on A, whose absolutely continuous part
with respect to Ln , denoted by Dau, has a density ∇u ∈ L1(A,Rm×n) (which
coincides with the approximate gradient of u), while the singular part Dsu can be
decomposed as Dsu = D ju + C(u), where the jump part D ju is given by

D ju(B) =
∫
B∩Su

[u] ⊗ νudHn−1 for every Borel set B ⊂ A,
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and the Cantor part C(u) is an Rm×n-valued Radon measure on A which vanishes
on all Borel sets B ⊂ A withHn−1(B) < +∞.

(g) For x ∈ R
n and ρ > 0 we define

Bρ(x) := {y ∈ R
n : |y − x | < ρ},

Qρ(x) := {y ∈ R
n : |(y − x) · ei | <

ρ
2 for i = 1, . . . , n}.

We omit the subscript ρ when ρ = 1.
(h) For every ν ∈ S

n−1 let Rν be an orthogonal n×n matrix such that Rνen = ν; we
assume that the restrictions of the function ν �→ Rν to the sets Ŝ

n−1± defined in (b)
are continuous and that R−νQ(0) = RνQ(0) for every ν ∈ S

n−1; moreover, we
assume that Rν ∈ O(n) ∩ Q

n×n for every ν ∈ Q
n ∩ S

n−1, where O(n) denotes
the set of orthogonal n × n matrices. A map ν �→ Rν satisfying these properties
is provided in [16, Example A.1 and Remark A.2].

(i) For x ∈ R
n , ρ > 0, and ν ∈ S

n−1 we set

Qν
ρ(x) := RνQρ(0) + x .

For k ∈ R, with k > 0, we also define the rectangle

Qν,k
ρ (x) := Qν,k

ρ (0) + x

where Qν,k
ρ (0) is obtained from Qν

ρ(0) by a dilation of amplitude k in the directions
orthogonal to ν; i.e.,

Qν,k
ρ (0) := Rν

(
(− kρ

2 ,
kρ
2 )n−1 × (−ρ

2 ,
ρ
2 )

)
.

We set

∂⊥
ν Qν,k

ρ (x) := ∂Qν,k
ρ (x) ∩ Rν

(
(− kρ

2 ,
kρ
2 )n−1 × R

)
,

∂‖
ν Q

ν,k
ρ (x) := ∂Qν,k

ρ (x) ∩ Rν

(
R
n−1 × (−ρ

2 ,
ρ
2 )

)
,

namely the union of the faces of Qν,k
ρ (x) that are orthogonal and parallel to ν,

respectively.
(j) Letμ and λ be two Radon measures on A ∈ A , with values in a finite dimensional

Hilbert space X and in [0,+∞], respectively; for every x ∈ A theRadon-Nikodym
derivative of μ with respect to λ is defined as

dμ

dλ
(x) := lim

r→0+
μ(x + rC)

λ(x + rC)

whenever the limit exists in X and is independent of the choice of the bounded,
closed setC containing the origin in its interior (see [26,Definition 1.156]); accord-
ing to the Besicovich differentiation theorem dμ

dλ
(x) exists for λ-a.e. x ∈ A and
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μ = dμ
dλ

λ + μs , where μs is the singular part of μ with respect to λ (see [26,
Theorem 1.155]).

(k) For ξ ∈ R
m×n , the linear function from R

n to R
m with gradient ξ is denoted by

	ξ ; i.e., 	ξ (x) := ξ x , where x is considered as an n×1 matrix.
(l) For x ∈ R

n , ζ ∈ R
m , and ν ∈ S

n−1 we define the function ux,ζ,ν as

ux,ζ,ν(y) :=
{

ζ if (y − x) · ν ≥ 0,

0 if (y − x) · ν < 0.

(m) For x ∈ R
n and ν ∈ S

n−1, we set


ν
0 := {y ∈ R

n : y · ν = 0} and 
ν
x := {y ∈ R

n : (y − x) · ν = 0}.
(n) For a given topological space X , B(X) denotes its Borel σ -algebra. For every

integer k ≥ 1, Bk is the Borel σ -algebra of Rk , while Bn
S stands for the Borel

σ -algebra of Sn−1.

3 Setting of the problem and statements of themain results

This section consists of two parts: in Section 3.1 we introduce the stochastic free-
discontinuity functionals and recall the Ergodic Subadditive Theorem; in Section 3.2
we state the main results of the paper.

3.1 Setting of the problem

Throughout the paper we fix the following constants: c1, c2, c3, c4, c5 ∈ [0,+∞),
with 0 < c2 ≤ c3, and α ∈ (0, 1). Moreover, we fix two nondecreasing continuous
functions σ1, σ2 : [0,+∞) → [0,+∞) such that σ1(0) = σ2(0) = 0.

Definition 3.1 (Volume and surface integrands) Let F = F(c1, c2, c3, c4, c5, α, σ1)

be the collection of all functions f : Rn×R
m×n → [0,+∞) satisfying the following

conditions:

( f 1) (measurability) f is Borel measurable on R
n×R

m×n ;
( f 2) (continuity in ξ ) for every x ∈ R

n we have

| f (x, ξ1) − f (x, ξ2)| ≤ σ1(|ξ1 − ξ2|)
(
f (x, ξ1) + f (x, ξ2)

) + c1|ξ1 − ξ2|
for every ξ1, ξ2 ∈ R

m×n ;
( f 3) (lower bound) for every x ∈ R

n and every ξ ∈ R
m×n

c2|ξ | ≤ f (x, ξ);
( f 4) (upper bound) for every x ∈ R

n and every ξ ∈ R
m×n

f (x, ξ) ≤ c3|ξ | + c4;
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( f 5) (recession function) for every x ∈ R
n and every ξ ∈ R

m×n the limit

f ∞(x, ξ) := lim
t→+∞

1
t f (x, tξ), (3.1)

which defines the recession function of f , exists and is finite; moreover, f ∞
satisfies the inequality

| f ∞(x, ξ) − 1
t f (x, tξ)| ≤ c5

t + c5
t f (x, tξ)1−α (3.2)

for every x ∈ R
n , every ξ ∈ R

m×n , and every t > 0.

Let G = G(c2, c3, σ2) be the collection of all functions g : Rn×R
m×S

n−1 →
[0,+∞) satisfying the following conditions:

(g1) (measurability) g is Borel measurable on R
n×R

m×S
n−1;

(g2) (continuity in ζ ) for every x ∈ R
n and every ν ∈ S

n−1 we have

|g(x, ζ2, ν) − g(x, ζ1, ν)| ≤ σ2(|ζ1 − ζ2|)
(
g(x, ζ1, ν) + g(x, ζ2, ν)

)

for every ζ1, ζ2 ∈ R
m ;

(g3) (lower bound) for every x ∈ R
n , ζ ∈ R

m , and ν ∈ S
n−1

c2|ζ | ≤ g(x, ζ, ν);

(g4) (upper bound) for every x ∈ R
n , ζ ∈ R

m , and ν ∈ S
n−1

g(x, ζ, ν) ≤ c3|ζ |;

(g5) (directional derivative at 0) for every x ∈ R
n , ζ ∈ R

m , and ν ∈ S
n−1 the limit

g0(x, ζ, ν) := lim
t→0+

1
t g(x, t ζ, ν) (3.3)

exists, is finite, and is uniformwith respect to x ∈ R
n , ζ ∈ S

m−1, and ν ∈ S
n−1.

(g6) (symmetry) for every x ∈ R
n , ζ ∈ R

m , and ν ∈ S
n−1

g(x, ζ, ν) = g(x,−ζ,−ν).

For every f ∈ F , g ∈ G, A ∈ A , and u ∈ SBV (A,Rm) we set

E f ,g(u, A) :=
∫
A
f (x,∇u) dx +

∫
Su∩A

g(x, [u], νu) dHn−1,

and for every w ∈ SBV (A,Rm) we set

m f ,g(w, A) := inf{E f ,g(u, A) : u ∈ SBV (A,Rm), u = w near ∂A}. (3.4)
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The expression “u = w near ∂A” means that there exists a neighbourhood U of ∂A
such that u = w Ln-a.e. in U ∩ A. More in general, if � ⊂ ∂A is a relatively open
subset of ∂A, the expression “u = w near �” means that there exists a neighbourhood
U of � in Rn such that u = w Ln-a.e. in U ∩ A.

For technical reasons, related to the details of the statement of the Subadditive
Ergodic Theorem, it is convenient to extend this definition to an arbitrary bounded
subset A of Rn , by setting m f ,g(w, A) := m f ,g(w, intA), where intA denotes the
interior of A.

Remark 3.2 If f ∈ F and g ∈ G, then f ∞ ∈ F and g0 ∈ G. Moreover, the lower
bounds ( f 3) and (g3) imply that

c2|Du|(A) ≤ min{E f ,g(u, A), E f ,g0(u, A), E f ∞,g(u, A), E f ∞,g0(u, A)}

for every A ∈ A and u ∈ L1
loc(R

n,Rm), with u|A ∈ SBV (A,Rm).

Remark 3.3 From ( f 4) and ( f 5) it follows that for every L > 0 there exists M > 0,
depending on c3, c4, c5, and L , such that

| f ∞(x, ξ) − 1
t f (x, tξ)| ≤ M

tα for every x ∈ R
n, ξ ∈ R

m×n with |ξ | = 1, and t ≥ L.

(3.5)

Conversely, if the limit in (3.1) exists and f satisfies ( f 3), ( f 4), and (3.5) for some
L > 0 and M > 0, then for every x ∈ R

n , ξ ∈ R
m×n , and t > 0 we have

{| f ∞(x, ξ) − 1
t f (x, tξ)| ≤ M

tα |ξ |1−α = M
t |tξ |1−α ≤ M

tc1−α
2

f (x, tξ)1−α if t |ξ | ≥ L,

| f ∞(x, ξ) − 1
t f (x, tξ)| ≤ 2c3L

t + c4
t if t |ξ | < L,

where in the last inequality we used the fact that that f ∞(x, ξ) ≤ c3|ξ | for every
x ∈ R

n and ξ ∈ R
m×n . This implies that f satisfies (3.2) for a suitable constant c5,

depending only on c2, c3, c4, L , and M .

Remark 3.4 If ( f 4) holds, then ( f 5) is equivalent to the fact that

| 1s f (x, sξ) − 1
t f (x, tξ)| ≤ c5

s + c5
s f (x, sξ)1−α + c5

t + c5
t f (x, tξ)1−α (3.6)

for every x ∈ R
n , every ξ ∈ R

m×n , and every s, t > 0. Indeed, using the triangle
inequality we obtain (3.6) from (3.2) for s and t . Conversely, if ( f 4) holds, then
c5
t + c5

t f (x, tξ)1−α → 0 as t → +∞. Therefore (3.6) implies that t �→ 1
t f (x, tξ)

satisfies the Cauchy condition as t → +∞, hence the limit in (3.1) exists, while (3.2)
follows from (3.6) by taking the limit as s → +∞.

Remark 3.5 Assume that g : Rn×R
m×S

n−1 → [0,+∞) satisfies (g5) and let
λ : [0,+∞) → [0,+∞) be defined by
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λ(t) := sup{|g0(x, ζ, ν) − 1
τ
g(x, τ ζ, ν)| : x ∈ R

n, ζ ∈ S
m−1, ν ∈ S

n−1, τ ∈ (0, t]}.
(3.7)

Then λ is nondecreasing and

lim
t→0+ λ(t) = 0, (3.8)

|g0(x, ζ, ν) − 1
t g(x, t ζ, ν)| ≤ |ζ |λ(t |ζ |), (3.9)

for every x ∈ R
n , ζ ∈ R

m , and ν ∈ S
n−1. If g satisfies also (g3), then (3.9) gives

|g0(x, ζ, ν) − 1
t g(x, t ζ, ν)| ≤ 1

c2
λ(t |ζ |) 1t g(x, t ζ, ν). (3.10)

Conversely, if the limit in (3.3) exists (even with no uniformity assumptions) and g
satisfies (g4) and (3.10), then it satisfies (3.9) with λ replaced by c3

c2
λ, which implies

that g satisfies (g5).

Remark 3.6 If g : Rn×R
m×S

n−1 → [0,+∞) satisfies (g3), (g4), and (g5), then by
(3.10) and by the triangle inequality we get

| 1s g(x, s ζ, ν) − 1
t g(x, t ζ, ν)| ≤ 1

c2
λ(s|ζ |) 1s g(x, s ζ, ν) + 1

c2
λ(t |ζ |) 1t g(x, t ζ, ν)

(3.11)

for every s, t > 0, x ∈ R
n , ζ ∈ R

m , and ν ∈ S
n−1. Conversely, if (g4) and (3.11)

hold, with some function λ satisfying (3.8), then λ(t |ζ |) 1t g(x, t ζ, ν) → 0 as t → 0+
and hence, using (3.11), we deduce that the function t �→ 1

t g(x, t ζ, ν) satisfies the
Cauchy condition as t → 0+. This implies that the limit in (3.3) exists and is finite.
Moreover, passing to the limit as s → 0+ from (3.11) we obtain (3.10), which, in
turn, yields (g5).

We are now ready to introduce the probabilistic setting of our problem. In what
follows (�, T , P) denotes a fixed probability space.

Definition 3.7 (Random integrands) A function f : � × R
n × R

m×n → [0,+∞) is
called a random volume integrand if

(a1) f is T ⊗ Bn ⊗ Bm×n-measurable;
(b1) f (ω, ·, ·) ∈ F for every ω ∈ �.

A function g : �×R
n ×R

m ×S
n−1 → [0,+∞) is called a random surface integrand

if

(a2) g is T ⊗ Bn ⊗ Bm ⊗ Bn
S-measurable;

(b2) g(ω, ·, ·, ·) ∈ G for every ω ∈ �.

Let f be a random volume integrand and let g be a random surface integrand.
For every ω ∈ � and every ε > 0 we consider the free-discontinuity functional
Eε(ω) : L1

loc(R
n,Rm) × A −→ [0,+∞] defined by
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Eε(ω)(u, A)

:=
⎧⎨
⎩

∫
A
f (ω, x

ε
,∇u) dx +

∫
Su∩A

g(ω, x
ε
, [u], νu) dHn−1 if u|A∈ SBV (A,Rm),

+∞ otherwise in L1
loc(R

n,Rm).

(3.12)

Definition 3.8 Il f is a random volume integrand, we define f ∞ : �×R
n ×R

m×n →
[0,+∞) by

f ∞(ω, x, ξ) := lim
t→+∞

1
t f (ω, x, tξ). (3.13)

If g is a random surface integrand, we define g0 : � × R
n × R

m × S
n−1 → [0,+∞)

by

g0(ω, x, ζ, ν) := lim
t→0+

1
t g(ω, x, t ζ, ν). (3.14)

Remark 3.9 The existence of the limit in (3.13) follows from (b1) in Definition 3.7
and from ( f 5). Since for every t > 0 the functions (ω, x, ξ) �→ 1

t f (ω, x, tξ) are
T ⊗ Bn ⊗ Bm×n-measurable by (a1), the same property holds for f ∞. Moreover,
from Remark 3.2 and from (b1) we deduce that f ∞(ω, ·, ·) ∈ F for every ω ∈ �. We
conclude that f ∞ is a random volume integrand.

The existence of the limit in (3.14) follows from (b2) in Definition 3.7 and from
(g5). Since for every t > 0 the functions (ω, x, ζ, ν) �→ 1

t g(ω, x, t ζ, ν) are T ⊗
Bn ⊗Bm ⊗Bn

S-measurable by (a2), the same property holds for g0. Moreover, from
Remark 3.2 and from (b2) we deduce that g0(ω, ·, ·, ·) ∈ G for every ω ∈ �. We
conclude that g0 is a random surface integrand.

In the study of stochastic homogenisation an important role is played by the notions
introduced by the following definitions.

Definition 3.10 (P-preserving transformation) A P-preserving transformation on
(�, T , P) is a map T : � → � satisfying the following properties:

(a) (measurability) T is T -measurable;
(b) (bijectivity) T is bijective;
(c) (invariance) P(T (E)) = P(E), for every E ∈ T .

If, in addition, every set E ∈ T which satisfies T (E) = E (called T -invariant set) has
probability 0 or 1, then T is called ergodic.

Definition 3.11 (Group of P-preserving transformations) Let d be a positive integer. A
group of P-preserving transformations on (�, T , P) is a family (τz)z∈Zd of mappings
τz : � → � satisfying the following properties:

(a) (measurability) τz is T -measurable for every z ∈ Z
d ;

(b) (bijectivity) τz is bijective for every z ∈ Z
d ;

(c) (invariance) P(τz(E)) = P(E), for every E ∈ T and every z ∈ Z
d ;
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(d) (group property) τ0 = id� (the identity map on �) and τz+z′ = τz ◦ τz′ for every
z, z′ ∈ Z

d .

If, in addition, every set E ∈ T which satisfies τz(E) = E for every z ∈ Z
d has

probability 0 or 1, then (τz)z∈Zd is called ergodic.

We are now in a position to define the notion of stationary random integrand.

Definition 3.12 (Stationary random integrand) A random volume integrand f is sta-
tionarywith respect to a group (τz)z∈Zn of P-preserving transformations on (�, T , P)

if

f (ω, x + z, ξ) = f (τz(ω), x, ξ)

for every ω ∈ �, x ∈ R
n , z ∈ Z

n , and ξ ∈ R
m×n .

Similarly, a random surface integrand g is stationary with respect to (τz)z∈Zn if

g(ω, x + z, ζ, ν) = g(τz(ω), x, ζ, ν)

for every ω ∈ �, x ∈ R
n , z ∈ Z

n , ζ ∈ R
m , and ν ∈ S

n−1.

Wenow recall the notion of subadditive stochastic process aswell as the Subadditive
Ergodic Theorem by Akcoglu and Krengel [1, Theorem 2.7].

Let d be a positive integer. For every a, b ∈ R
d , with ai < bi for i = 1, . . . , d, we

define

[a, b) := {x ∈ R
d : ai ≤ xi < bi for i = 1, . . . , d},

and we set

Id := {[a, b) : a, b ∈ R
d , ai < bi for i = 1, . . . , d}. (3.15)

Definition 3.13 (Subadditive process) A d-dimensional subadditive process with
respect to a group (τz)z∈Zd , d ≥ 1, of P-preserving transformations on (�, T , P)

is a function μ : � × Id → R satisfying the following properties:

(a) (measurability) for every A ∈ Id the function ω �→ μ(ω, A) is T -measurable;
(b) (covariance) for every ω ∈ �, A ∈ Id , and z ∈ Z

d we have μ(ω, A + z) =
μ(τz(ω), A);

(c) (subadditivity) for every A ∈ Id and for every finite family (Ai )i∈I ⊂ Id of
pairwise disjoint sets such that A = ∪i∈I Ai , we have

μ(ω, A) ≤
∑
i∈I

μ(ω, Ai ) for every ω ∈ �;

(d) (boundedness) there exists c > 0 such that 0 ≤ μ(ω, A) ≤ cLd(A) for every
ω ∈ � and every A ∈ Id .

Definition 3.14 (Regular family of sets) A family of sets (At )t>0 inId is called regular
(with constant C > 0) if there exists another family of sets (A′

t )t>0 ⊂ Id such that:
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(a) At ⊂ A′
t for every t > 0;

(b) A′
s ⊂ A′

t whenever 0 < s < t ;
(c) 0 < Ld(A′

t ) ≤ CLd(At ) for every t > 0.

If the family (A′
t )t>0 can be chosen in a way such that Rd = ⋃

t>0 A
′
t , then we write

lim
t→+∞ At = R

d .

We now state a variant of the pointwise ergodic Theorem [1, Theorem 2.7 and
Remark p. 59] which is suitable for our purposes. This variant can be found in [30,
Theorem 4.1].

Theorem 3.15 (Subadditive Ergodic Theorem) Let d ∈ {n − 1, n} and let (τz)z∈Zd be
a group of P-preserving transformations on (�, T , P). Let μ : � × Id → R be a
subadditive process with respect to (τz)z∈Zd . Then there exist a T -measurable function
ϕ : � → [0,+∞) and a set �′ ∈ T with P(�′)=1 such that

lim
t→+∞

μ(ω, At )

Ld(At )
= ϕ(ω),

for every regular family of sets (At )t>0 ⊂ Id with lim
t→+∞ At = R

d and for every

ω ∈ �′. If in addition (τz)z∈Zd is ergodic, then ϕ is constant P-a.e.

Remark 3.16 (Covariance with respect to a continuous group (τz)z∈Rd ) Defini-
tions 3.11, 3.12, 3.13 and Theorem 3.15 can be adapted also to the case of a continuous
group (τz)z∈Rd , see for instance [17, Section 3.1].

3.2 Statement of themain results

In this section we state the main result of the paper, Theorem 3.18, which provides
a �-convergence result for the random functionals (Eε(ω))ε>0 introduced in (3.12),
under the assumption that the volume and surface integrands f and g are stationary.

The next theorem proves the existence of the limits in the asymptotic cell formulas
that will be used in the statement of the main result.

When f and g are random integrands it is convenient to introduce the following
shorthand notation

m f ,g0
ω := m f (ω,·,·),g0(ω,·,·,·) , m f ∞,g

ω := m f ∞(ω,·,·),g(ω,·,·,·) ,

m f ∞,g0
ω := m f ∞(ω,·,·),g0(ω,·,·,·), (3.16)

where m f ,g0 , m f ∞,g , and m f ∞,g0 are defined as in (3.4), with ( f , g) replaced by
( f , g0), ( f ∞, g), and ( f ∞, g0), respectively.

Theorem 3.17 (Homogenisation formulas) Let f be a stationary random volume inte-
grand and let g be a stationary random surface integrand with respect to a group
(τz)z∈Zn of P-preserving transformations on (�, T , P). Then there exists �′ ∈ T ,
with P(�′) = 1, such that

123



    8 Page 16 of 89 F. CAGNETTI et al.

(a) for every ω ∈ �′, x ∈ R
n, ξ ∈ R

m×n, ν ∈ S
n−1, and k ∈ N the limit

lim
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
r (r x))

kn−1rn

exists and is independent of x, ν, and k;
(b) for every ω ∈ �′, x ∈ R

n, ζ ∈ R
m, ν ∈ S

n−1 the limit

lim
r→+∞

m f ∞,g
ω (urx,ζ,ν , Qν

r (r x))

rn−1

exists and is independent of x.

More precisely, there exist a random volume integrand fhom : �×R
m×n → [0,+∞),

and a random surface integrand ghom : � × R
m × S

n−1 → [0,+∞) such that for
every ω ∈ �′, x ∈ R

n, ξ ∈ R
m×n, ζ ∈ R

m, and ν ∈ S
n−1

fhom(ω, ξ) = lim
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
r (r x))

kn−1rn
= lim

r→+∞
m f ,g0

ω (	ξ , Qr )

rn
, (3.17)

ghom(ω, ζ, ν) = lim
r→+∞

m f ∞,g
ω (urx,ζ,ν , Qν

r (r x))

rn−1 = lim
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 ,

(3.18)

where Qr := Qr (0) and Qν
r = Qν

r (0).
For every ω ∈ �′ and ξ ∈ R

m×n let

f ∞
hom(ω, ξ) := lim

t→+∞
fhom(ω, tξ)

t

(since fhom(ω, ·) ∈ F , the existence of the limit is guaranteed by ( f 5)). Then for
every ω ∈ �′, x ∈ R

n, ξ ∈ R
m×n, ν ∈ S

n−1, and k ∈ N we have

f ∞
hom(ω, ξ) = lim

r→+∞
m f ∞,g0

ω (	ξ , Q
ν,k
r (r x))

kn−1rn
= lim

r→+∞
m f ∞,g0

ω (	ξ , Qr )

rn
. (3.19)

If, in addition, (τz)z∈Zn is ergodic, then fhom and ghom are independent of ω and

fhom(ξ) = lim
r→+∞

1

rn

∫
�

m f ,g0
ω (	ξ , Qr ) dP(ω), (3.20)

ghom(ζ, ν) = lim
r→+∞

1

rn−1

∫
�

m f ∞,g
ω (u0,ζ,ν, Q

ν
r ) dP(ω), (3.21)

f ∞
hom(ξ) = lim

r→+∞
1

rn

∫
�

m f ∞,g0
ω (	ξ , Qr ) dP(ω). (3.22)

We are now ready to state the main result of this paper, namely the almost sure �-
convergence of the sequence of random functionals (Eε(ω))ε>0 introduced in (3.12).
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Theorem 3.18 (Almost sure�-convergence)Let f and g be stationary randomvolume
and surface integrands with respect to a group (τz)z∈Zn of P-preserving transforma-
tions on (�, T , P), and for every ε > 0 and ω ∈ � let Eε(ω) be as in (3.12). Let
�′ ∈ T (with P(�′) = 1), fhom, f ∞

hom, and ghom be as in Theorem 3.17, and for every
ω ∈ � let Ehom(ω) : L1

loc(R
n,Rm) × A −→ [0,+∞] be the functional defined by

Ehom(ω)(u, A) :=
∫
A
fhom(ω,∇u) dx +

∫
Su∩A

ghom(ω, [u], νu) dHn−1

+
∫
A
f ∞
hom

(
ω,

dC(u)

d|C(u)|
)
d|C(u)|,

if u|A ∈ BV (A,Rm), and by Ehom(ω)(u, A) := +∞, if u|A /∈ BV (A,Rm). Then
for every ω ∈ �′ and every A ∈ A the functionals Eε(ω)(·, A) �-converge to
Ehom(ω)(·, A) in L1

loc(R
n,Rm), as ε → 0+.

If, in addition, (τz)z∈Zn is ergodic, then Ehom is a deterministic functional; i.e., it
does not depend on ω.

Thanks to Theorem 3.18 we can also characterise the asymptotic behaviour of some
minimisation problems involving Eε(ω). An example is shown in the corollary below.
Since for every A ∈ A the values of Eε(ω)(u, A) and Ehom(ω)(u, A) depend only
on the restriction of u to A, in the corollary we regard Eε(ω)(u, ·) and Ehom(ω)(u, ·)
as functionals defined on L1(A,Rm).

Corollary 3.19 (Convergence ofminima andmininisers)Let f and g be stationary ran-
dom volume and surface integrands with respect to a group (τz)z∈Zn of P-preserving
transformations on (�, T , P), and for every ε > 0 and ω ∈ � let Eε(ω) be as in
(3.12). Let �′ ∈ T (with P(�′) = 1) be as in Theorem 3.17, and let Ehom(ω) be as
in Theorem 3.18. Given ω ∈ �′, A ∈ A , and h ∈ L1(A,Rm), we have

inf
u∈SBV (A,Rm )

(
Eε(ω)(u, A) + ‖u − h‖L1(A,Rm )

)

−→ min
u∈BV (A,Rm )

(
Ehom(ω)(u, A) + ‖u − h‖L1(A,Rm )

)
(3.23)

as ε → 0+. Moreover, if (uε) ⊂ SBV (A,Rm) is a sequence such that

Eε(ω)(uε, A) + ‖uε − h‖L1(A,Rm )

≤ inf
u∈SBV (A,Rm )

(
Eε(ω)(u, A) + ‖u − h‖L1(A,Rm )

) + ηε (3.24)

for some ηε → 0+, then there exists a sequence ε j → 0+ such that (uε j ) j∈N
converges in L1(A,Rm), as j → +∞, to a solution of the minimisation problem

min
u∈BV (A,Rm )

(
Ehom(ω)(u, A) + ‖u − h‖L1(A,Rm )

)
. (3.25)
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Proof If A has aLipschitz boundary, then the functionals Eε(ω)(·, A)+‖·−h‖L1(A,Rm )

are equi-coercive in L1(A,Rm) thanks toRemark 3.2. Sincewe have�-convergence in
L1(A,Rm) by virtue of Theorem 3.18, the proof readily follows from the fundamental
property of �-convergence (see, e.g., [18, Corollary 7.20]).

We now show that the convergence of minimum values and of minimisers can be
obtained even if ∂A is not regular. Let us fix ω ∈ �′, A ∈ A , and h ∈ L1(A,Rm).
By Theorem 3.18 for every A′ ∈ A the functional Ehom(ω)(·, A′) is a �-limit in
L1
loc(R

n,Rm), hence it is lower semicontinuous in L1
loc(R

n,Rm) (see [18, Proposition
6.8]). This implies that Ehom(ω)(·, A′), considered as a functional on L1(A′,Rm), is
lower semicontinuous. Since

Ehom(ω)(·, A) = sup{Ehom(ω)(·, A′) : A′ ∈ A , A′ ⊂⊂ A},

the functional Ehom(ω)(·, A), defined on L1(A,Rm), is lower semicontinuous with
respect to the convergence in L1

loc(A,Rm).
Since fhom(ω, ·) and f ∞

hom(ω, ·) belong to F , while ghom(ω, ·, ·) belongs to G,
it follows from the definition of Ehom(ω)(·, A) that c2|Du|(A) + ‖u‖L1(A,Rm ) ≤
Ehom(ω)(u, A) + ‖u − h‖L1(A,Rm ) + ‖h‖L1(A,Rm ) for every u ∈ BV (A,Rm). This
shows that the functional u �→ Ehom(ω)(u, A) + ‖u − h‖L1(A,Rm ) is coercive in
BV (A,Rm) with respect to the convergence in L1

loc(A,Rm). Therefore it attains a
minimum value in BV (A,Rm), which we denote by μ0.

Let u0 be a minimum point in BV (A,Rm). We extend u0 to a function of
L1
loc(R

n,Rm), still denoted by u0. By �-convergence, for every sequence (ε j ) of
positive numbers converging to 0 there exists a sequence u j converging to u0 in
L1
loc(R

n,Rm) such that Eε j (ω)(u j , A) → Ehom(ω)(u0, A) < +∞. By the definition
of Eε j (ω) we have u j ∈ SBV (A,Rm) for j large enough, hence

inf
u∈SBV (A,Rm )

(
Eε j (ω)(u, A) + ‖u − h‖L1(A,Rm )

) ≤ Eε j (ω)(u j , A) + ‖u j − h‖L1(A,Rm ).

This implies that
lim sup
j→+∞

inf
u∈SBV (A,Rm )

(
Eε j (ω)(u, A) + ‖u − h‖L1(A,Rm )

) ≤ μ0.

Since the sequence ε j → 0 is arbitrary, we obtain

lim sup
ε→0+

inf
u∈SBV (A,Rm )

(
Eε(ω)(u, A) + ‖u − h‖L1(A,Rm )

) ≤ μ0. (3.26)

To prove the opposite inequality for the liminf, as well as the last statement of
the corollary, we fix a sequence (uε) ⊂ SBV (A,Rm) satisfying (3.24). For every
sequence (ε j ) of positive numbers converging to 0, by Remark 3.2 and by (3.26) the
sequence (uε j ) is bounded in BV (A,Rm). Therefore a subsequence, not relabelled,
converges in L1

loc(A,Rm) to a function u∗ ∈ BV (A,Rm).
Given A′ ∈ A , with A′ ⊂⊂ A, we can consider the functions v j , defined by

v j := uε j in A′ and v j := 0 inRn \ A′, which converge in L1(Rn,Rm) to the function
v∗, defined by v∗ := u∗ in A′ and v∗ := 0 inRn \ A′. Since Eε j (ω)(·, A′) �-converges
to Ehom(ω)(·, A′) in L1

loc(R
n,Rm), we have
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Ehom(ω)(u∗, A′) = Ehom(ω)(v∗, A′) ≤ lim inf
j→+∞ Eε j (ω)(v j , A

′)

≤ lim inf
j→+∞ Eε j (ω)(uε j , A),

which implies that

Ehom(ω)(u∗, A′) + ‖u∗ − h‖L1(A′,Rm )

≤ lim inf
j→+∞

(
Eε j (ω)(uε j , A) + ‖uε j − h‖L1(A,Rm )

)
.

Taking the supremum for A′ ⊂⊂ A in the previous inequalities we obtain

Ehom(ω)(u∗, A) ≤ lim inf
j→+∞ Eε j (ω)(uε j , A), (3.27)

and

μ0 ≤ Ehom(ω)(u∗, A) + ‖u∗ − h‖L1(A,Rm )

≤ lim inf
j→+∞

(
Eε j (ω)(uε j , A) + ‖uε j − h‖L1(A,Rm )

)

≤ lim inf
j→+∞ inf

u∈SBV (A,Rm )

(
Eε j (ω)(u, A) + ‖u − h‖L1(A,Rm )

)
. (3.28)

By the arbitrariness of the sequence ε j → 0+, this chain of inequalities, together
with (3.26), gives (3.23) and shows that u∗ is a solution of the minimisation problem
(3.25).

In turn, (3.23), (3.27), and (3.28) imply that ‖uε j −h‖L1(A,Rm ) → ‖u∗−h‖L1(A,Rm ).
Since uε j converges to u∗ in L1

loc(A,Rm), from the general version of the Dominated
Convergence Theorem we obtain that uε j converges to u∗ in L1(A,Rm). This con-
cludes the proof of the last statement of the corollary. ��

4 Deterministic homogenisation: properties of the homogenised
integrands

Let f ∈ F and g ∈ G. For ε > 0 consider the functionals Eε : L1
loc(R

n,Rm)×A −→
[0,+∞] defined by

Eε(u, A)

:=
⎧⎨
⎩

∫
A
f ( x

ε
,∇u) dx +

∫
Su∩A

g( x
ε
, [u], νu) dHn−1 if u|A∈ SBV (A,Rm),

+∞ otherwise in L1
loc(R

n,Rm).

(4.1)

In this section we prove the �-convergence of Eε under suitable assumptions on f
and g, which are more general than the periodicity with respect to x .
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The main result of this section is the following theorem.

Theorem 4.1 (Homogenisation) Let f ∈ F , g ∈ G, and let m f ,g0 and m f ∞,g be
defined as in (3.4) with ( f , g) replaced by ( f , g0) and ( f ∞, g), respectively. Assume
that

(a) for every x ∈ R
n, ξ ∈ R

m×n, ν ∈ S
n−1, and k ∈ N the limit

lim
r→+∞

m f ,g0(	ξ , Q
ν,k
r (r x))

kn−1rn
=: fhom(ξ) (4.2)

exists and is independent of x, ν, and k;
(b) for every x ∈ R

n, ζ ∈ R
m, and ν ∈ S

n−1 the limit

lim
r→+∞

m f ∞,g(urx,ζ,ν, Qν
r (r x))

rn−1 =: ghom(ζ, ν) (4.3)

exists and is independent of x.

Then fhom ∈ F and ghom ∈ G. Let f ∞
hom be the recession function of fhom and let

Ehom : L1
loc(R

n,Rm) × A −→ [0,+∞] be the functional defined by

Ehom(u, A) :=
∫
A
fhom(∇u) dx +

∫
Su∩A

ghom([u], νu)dHn−1

+
∫
A
f ∞
hom

( dC(u)

d|C(u)|
)
d|C(u)| (4.4)

if u|A ∈ BV (A,Rm), while Ehom(u, A) := +∞ if u|A /∈ BV (A,Rm). Then, for
every A ∈ A the functionals Eε(·, A) defined as in (4.1) �-converge to Ehom(·, A)

in L1
loc(R

n,Rm), as ε → 0+, meaning that for every sequence (ε j ) of positive
numbers converging to zero the sequence (Eε j (·, A)) �-converges to Ehom(·, A) in
L1
loc(R

n,Rm).

The proof of the homogenisation result Theorem 4.1 will be carried out in three
main steps. In the first step (Lemmas 4.2 and 4.5) we show that fhom ∈ F and
ghom ∈ G. In the second step (Theorem 5.1) we prove that, up to subsequences, for
every A ∈ A the functionals Eε(·, A) �-converge to some functional Ê(·, A), whose
domain is BV (A,Rm). Further, we prove that Ê satisfies some suitable properties
both as a functional and as a set-function. In particular Ê(u, ·) is the restriction to A
of a Borel measure.

In the third and last step we show that (4.2) and (4.3) imply, respectively, that the
following identities hold true for every A ∈ A and for every u ∈ L1

loc(R
n,Rm) with

u|A ∈ BV (A,Rm):

d Ê(u, ·)
dLn

(x) = fhom(∇u(x)) for Ln-a.e. x ∈ A, (4.5)

d Ê(u, ·)
dHn−1 Su

(x) = ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩ A, (4.6)

123



A global method for homogenisation in BV Page 21 of 89     8 

d Ê(u, ·)
d|C(u)| (x) = f ∞

hom

( dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A (4.7)

(see Propositions 6.2, 7.2, and 8.3). Moreover, thanks to (4.5)-(4.7) we deduce that
Ê coincides with the functional Ehom defined in (4.4); as a consequence, the �-
convergence result proved in the second step actually holds true for thewhole sequence
(Eε).

In the next lemmaswe prove that the homogenised integrands fhom and ghom belong
to the classes F and G, respectively.

Lemma 4.2 Let f ∈ F and g ∈ G. Assume that hypothesis (a) of Theorem 4.1 is
satisfied and let fhom be defined as in (4.2). Then fhom ∈ F .

Proof To prove ( f 2) we fix ξ1, ξ2 ∈ R
m×n and set ξ := ξ2 − ξ1. We claim that for

every r > 0

|m f ,g0(	ξ1 , Qr ) − m f ,g0(	ξ2 , Qr )|
≤ σ1(|ξ |)(m f ,g0(	ξ1 , Qr ) + m f ,g0(	ξ2 , Qr )) + c1|ξ |rn, (4.8)

where Qr := Qr (0). Indeed, by ( f 2), for every u ∈ SBV (Qr ,R
m) we have

E f ,g0(u + 	ξ , Qr ) ≤ E f ,g0(u, Qr ) + σ1(|ξ |)(E f ,g0(u + 	ξ , Qr )

+ E f ,g0(u, Qr )
) + c1|ξ |rn.

By rearranging the terms we get

(1 − σ1(|ξ |))E f ,g0(u + 	ξ , Qr ) ≤ (1 + σ1(|ξ |))E f ,g0(u, Qr ) + c1|ξ |rn.

If σ1(|ξ |) < 1, we minimise over all functions u ∈ SBV (Qr ,R
m) such that u = 	ξ1

near ∂Qr and, using (3.4), we obtain

(1 − σ1(|ξ |))m f ,g0(	ξ2 , Qr ) ≤ (1 + σ1(|ξ |))m f ,g0(	ξ1 , Qr ) + c1|ξ |rn.

This inequality is trivial if σ1(|ξ |) ≥ 1. Exchanging the roles of ξ1 and ξ2 we obtain
(4.8). We now divide both sides of this inequality by rn and, passing to the limit as
r → +∞, from (4.2) we obtain that fhom satisfies ( f 2).

Property ( f 1) for fhom follows from the continuity estimate ( f 2), since fhom does
not depend on x . The lower bound ( f 3) for fhom follows from the lower bound in
Remark 3.2, which gives

c2 inf |Du|(Qr ) ≤ m f ,g0(	ξ , Qr )

for every ξ ∈ R
m×n , where the infimum is over all functions u ∈ SBV (Qr ,R

m),
and such that u = 	ξ near ∂Qr . By Jensen’s inequality the left-hand side is equal to
c2|ξ |rn . Using (4.2) we conclude that that fhom satisfies ( f 3).
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Property ( f 4) for fhom follows from the fact that for every ξ ∈ R
m×n we have

1

rn
m f ,g0(	ξ , Qr ) ≤ 1

rn
E f ,g0(	ξ , Qr ) = 1

rn

∫
Qr

f (x, ξ) dx ≤ c3|ξ | + c4.

Passing to the limit as r → +∞, from (4.2) we obtain that fhom satisfies ( f 4).
We now prove that fhom satisfies ( f 5). Fix ξ ∈ R

m×n , s > 0, t > 0, and η ∈ (0, 1).
By (3.4) for every r > 0 there exists ur ∈ SBV (Qr ,R

m), with ur = 	ξ near ∂Qr ,
such that
∫
Qr

f (x, t∇ur ) dx +
∫
Sur ∩Qr

g0(x, t[ur ], νur ) dHn−1 ≤ m f ,g0(	tξ , Qr ) + ηrn .

(4.9)

By (3.6) for every x ∈ R
n and ξ ∈ R

m×n we have

1
s f (x, sξ) − c5

s − c5
s f (x, sξ)1−α ≤ 1

t f (x, tξ) + c5
t + c5

t f (x, tξ)1−α,

hence, using the positive 1-homogeneity of g0,

1

s

1

rn

∫
Qr

f (x, s∇ur ) dx − c5
s

− c5
s

1

rn

∫
Qr

f (x, s∇ur )
1−αdx

+1

s

1

rn

∫
Sur ∩Qr

g0(x, s[ur ], νur ) dHn−1

≤ 1

t

1

rn

∫
Qr

f (x, t∇ur ) dx + c5
t

+ c5
t

1

rn

∫
Qr

f (x, t∇ur )
1−αdx

+1

t

1

rn

∫
Sur ∩Qr

g0(x, t[ur ], νur ) dHn−1.

By Hölder’s inequality we obtain

1

s

1

rn

∫
Qr

f (x, s∇ur ) dx + 1

s

1

rn

∫
Sur ∩Qr

g0(x, s[ur ], νur ) dHn−1 − c5
s

−c5
s

( 1

rn

∫
Qr

f (x, s∇ur ) dx
)1−α

≤ 1

t

1

rn

∫
Qr

f (x, t∇ur ) dx + 1

t

1

rn

∫
Sur ∩Qr

g0(x, t[ur ], νur ) dHn−1 + c5
t

+c5
t

( 1

rn

∫
Qr

f (x, t∇ur ) dx
)1−α

.

By (4.9) this inequality implies that

1

s

( 1

rn

∫
Qr

f (x, s∇ur ) dx + 1

rn

∫
Sur ∩Qr

g0(x, s[ur ], νur ) dHn−1
)

− c5
s

123



A global method for homogenisation in BV Page 23 of 89     8 

−c5
s

( 1

rn

∫
Qr

f (x, s∇ur ) dx + 1

rn

∫
Sur ∩Qr

g0(x, s[ur ], νur ) dHn−1
)1−α

≤ 1

t

( 1

rn
m f ,g0(	tξ , Qr ) + η

)
+ c5

t
+ c5

t

( 1

rn
m f ,g0(	tξ , Qr ) + η

)1−α

. (4.10)

If

1

rn
m f ,g0(	sξ , Qr ) − c5

( 1

rn
m f ,g0(	sξ , Qr )

)1−α ≤ 0, (4.11)

then we have

1

s

1

rn
m f ,g0(	sξ , Qr ) − c5

s
− c5

s

( 1

rn
m f ,g0(	sξ , Qr )

)1−α

≤ 1

t

( 1

rn
m f ,g0(	tξ , Qr ) + η

)
+ c5

t
+ c5

t

( 1

rn
m f ,g0(	tξ , Qr ) + η

)1−α

, (4.12)

just because the left-hand side is negative and the right-hand side is positive. Since the
function τ �→ τ − c5τ 1−α , defined for τ > 0, is increasing in the half-line where it is
positive, from the inequality

m f ,g0(	sξ , Qr ) ≤
∫
Qr

f (x, s∇ur ) dx +
∫
Sur ∩Qr

g0(x, s[ur ], νur ) dHn−1

and from (4.10) we deduce that (4.12) is satisfied even if (4.11) is not.
Passing to the limit first as r → +∞ and then as η → 0+, from (4.2) and (4.12)

we obtain

1

s
fhom(sξ) − c5

s
− c5

s
fhom(sξ)1−α ≤ 1

t
fhom(tξ) + c5

t
+ c5

t
fhom(tξ)1−α.

By exchanging the roles of s and t we obtain (3.6). Recalling that fhom satisfies ( f 4),
we can apply Remark 3.4 and we obtain that fhom satisfies ( f 5). ��

To prove that ghom ∈ G we need the truncation result given by the following lemma,
which will be used several times in this paper. The proof is given in [9, Lemma 3.7]
(see also [10, Lemma 2.8]).

Lemma 4.3 Let C1 > 0, C2 > 0, and η > 0. Then there exists a constant M =
M(C1,C2, η) > 0 such that for every f ∈ F and g ∈ G, for every A ∈ A , for
every w ∈ SBV (A,Rm) ∩ L∞(A,Rm), with ‖w‖L∞(A,Rm ) ≤ C1, and for every
u ∈ BV (A,Rm), with ‖u‖L1(A,Rm ) +|Du|(A) ≤ C2 and u = w near ∂A, there exists
ũ ∈ SBV (A,Rm) ∩ L∞(A,Rm) such that

(a) ‖ũ‖L∞(A,Rm ) ≤ M,
(b) E f ,g(ũ, A) ≤ E f ,g(u, A) + η,
(c) ‖ũ − w‖L1(A,Rm ) ≤ ‖u − w‖L1(A,Rm ),
(d) ũ = w near ∂A.
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Remark 4.4 A careful inspection of the proof of [9, Lemma 3.7] shows that the lemma
also applies if u only attains the boundary conditions on a subset of ∂A, as defined
after (3.4). More precisely, if � ⊂ ∂A is a relatively open subset of ∂A, U is a
neighbourhood of � inRn , w ∈ SBV (A,Rm)∩ L∞(U ∩ A,Rm), and u = w Ln-a.e.
in U ∩ A, then the conclusion still holds true, with (d) replaced by

(d′) ũ = w Ln-a.e. in U ∩ A,

and in this case M = M(C̃1,C2, η) > 0, where ‖w‖L∞(U∩A,Rm ) ≤ C̃1.

We are now ready to prove that ghom ∈ G.

Lemma 4.5 Let f ∈ F and g ∈ G. Assume that hypothesis (b) of Theorem 4.1 is
satisfied and let ghom be defined as in (4.3). Then ghom ∈ G.

Proof To prove (g2) we fix ζ1, ζ2 ∈ R
m and ν ∈ S

n−1, and we set ζ := ζ2 − ζ1. We
claim that for every r > 0

|m f ∞,g(u0,ζ1,ν , Q
ν
r ) − m f ∞,g(u0,ζ2,ν , Q

ν
r )|

≤ σ2(|ζ |)(m f ∞,g(u0,ζ1,ν , Q
ν
r ) + m f ∞,g(u0,ζ2,ν , Q

ν
r )), (4.13)

where Qν
r := Qν

r (0). Indeed, for every u ∈ SBV (Qν
r ,R

m), by (g2) we have

E f ∞,g(u + u0,ζ,ν, Q
ν
r )

≤ E f ∞,g(u, Qν
r ) + σ2(|ζ |)(E f ∞,g(u + u0,ζ,ν, Q

ν
r ) + E f ∞,g(u, Qν

r )
)
.

By rearranging the terms we get

(1 − σ2(|ζ |))E f ∞,g(u + u0,ζ,ν, Q
ν
r ) ≤ (1 + σ2(|ζ |))E f ∞,g(u, Qν

r ).

If σ2(|ζ |) < 1, we minimise over all functions u ∈ SBV (Qν
r ,R

m) such that u =
u0,ζ1,ν near ∂Qν

r and by (3.4) we obtain

(1 − σ2(|ζ |))m f ∞,g(u0,ζ2,ν , Q
ν
r ) ≤ (1 + σ2(|ζ |))m f ∞,g(u0,ζ1,ν , Q

ν
r ).

This inequality is trivial if σ2(|ζ |) ≥ 1. Exchanging the roles of ζ1 and ζ2 we obtain
(4.13). We now divide both sides of this inequality by rn−1 and, passing to the limit
as r → +∞, from (4.3) we obtain that ghom satisfies (g2).

In view of (g2), to prove (g1) for ghom it is enough to show that for every ζ ∈ R
m

the restriction of the function ν �→ ghom(ζ, ν) to the sets Ŝn−1+ and Ŝn−1− is continuous.
We only prove this property for Ŝn−1+ , the other case being analogous. To this end, let
us fix ζ ∈ R

m , ν ∈ Ŝ
n−1+ , and a sequence (ν j ) ⊂ Ŝ

n−1+ such that ν j → ν as j → +∞.
Since the function ν �→ Rν is continuous on Ŝ

n−1+ , for every δ ∈ (0, 1
2 ) there exists

an integer jδ such that

|ν j − ν| < δ and Q
ν j

(1−δ)r ⊂⊂ Qν
r ⊂⊂ Q

ν j

(1+δ)r , (4.14)
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for every j ≥ jδ and every r > 0. Fix j ≥ jδ , r > 0, and η > 0. By (3.4) there exists
u ∈ SBV (Qν

r ,R
m), with u = u0,ζ,ν near ∂Qν

r , such that

∫
Qν
r

f ∞(x,∇u) dx +
∫
Su∩Qν

r

g(x, [u], νu) dHn−1 ≤ m f ∞,g(u0,ζ,ν, Q
ν
r ) + η.

(4.15)

We define v ∈ SBVloc(Q
ν j

(1+δ)r ,R
m) as

v(x) :=
{
u(x) if x ∈ Qν

r ,

u0,ζ,ν j (x) if x ∈ Q
ν j

(1+δ)r \ Qν
r .

Then v = u0,ζ,ν j near ∂Q
ν j

(1+δ)r and Sv ⊂ Su ∪ �, where

� := {
x ∈ ∂Qν

r : (x · ν)(x · ν j ) < 0
} ∪ (



ν j
0 ∩ (Q

ν j

(1+δ)r \ Qν
r )

)
.

By (4.14) there exists ς(δ) > 0, independent of j and r , with ς(δ) → 0 as δ → 0+,
such that Hn−1(�) ≤ ς(δ)rn−1. Thanks to (g4), (3.4) and (4.15) we then have

m f ∞,g(u0,ζ,ν j , Q
ν j

(1+δ)r ) ≤
∫
Q

ν j
(1+δ)r

f ∞(x,∇v) dx +
∫
Sv∩Q

ν j
(1+δ)r

g(x, [v], νv) dHn−1

≤
∫
Qν
r

f ∞(x,∇u) dx +
∫
Su∩Qν

r

g(x, [u], νu) dHn−1 + c3|ζ |ς(δ)rn−1

≤ m f ∞,g(u0,ζ,ν, Q
ν
r ) + η + c3|ζ |ς(δ)rn−1,

where we used the fact that f ∞(x, 0) = 0 for every x ∈ R
n . Dividing by rn−1 and

passing to the limit as r → +∞, recalling (4.3) we obtain

ghom(ζ, ν j )(1 + δ)n−1 ≤ ghom(ζ, ν) + c3|ζ |ς(δ).

Letting j → +∞ and then δ → 0+ we deduce that

lim sup
j→+∞

ghom(ζ, ν j ) ≤ ghom(ζ, ν).

An analogous argument, now using the cubes Q
ν j

(1−δ)r , implies that

ghom(ζ, ν) ≤ lim inf
j→+∞ ghom(ζ, ν j ),

hence the restriction of the function ν �→ ghom(ζ, ν) to Ŝ
n−1+ is continuous. This

concludes the proof of (g1) for ghom.
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The lower bound (g3) for ghom can be obtained from the lower bound inRemark 3.2,
which gives

c2 inf |Du|(Qν
r ) ≤ m f ∞,g(u0,ζ,ν, Q

ν
r )

for every ζ ∈ R
m and ν ∈ S

n−1, where the infimum is over all functions u ∈
SBV (Qν

r ,R
m) and such that u = u0,ζ,ν near ∂Qν

r . In turn, this infimum is larger
than or equal to

c2 inf |Dv|(Qν
r ), (4.16)

where the infimum is now over all scalar functions v ∈ SBV (Qν
r ) and such that v =

u0,|ζ |,ν near ∂Qν
r . Using (4.3), property (g3) for ghom follows from these inequalities

and from the fact that the value of (4.16) is c2|ζ |rn−1. This is a well kown fact, which
can be proved, for instance, using a slicing argument based on [5, Theorem 3.103].

Property (g4) for ghom follows from the fact that for every ζ ∈ R
m and ν ∈ S

n−1

we have

1

rn−1m
f ∞,g(u0,ζ,ν, Q

ν
r ) ≤ 1

rn−1 E
f ∞,g(u0,ζ,ν, Q

ν
r )

= 1

rn−1

∫

ν

0∩Qν
r

g(x, ζ, ν) dx ≤ c3|ζ |.

Passing to the limit as r → +∞, from (4.3) we obtain that ghom satisfies (g4).
We now prove that ghom satisfies (g5). Fix ζ ∈ S

m−1, ν ∈ S
n−1, s > 0, t > 0, and

η ∈ (0, 1). By (3.4) for every r > 0 there exists vr ∈ SBV (Qν
r ,R

m), with vr = u0,ζ,ν

near ∂Qν
r , such that

∫
Qν
r

f ∞(x, t∇vr ) dx +
∫
Svr ∩Qν

r

g(x, t[vr ], νvr ) dHn−1 ≤ m f ∞,g(u0,tζ,ν , Q
ν
r ) + ηtrn−1,

hence ∫
Qν
r

f ∞(x,∇vr ) dx + 1

t

∫
Svr ∩Qν

r

g(x, t[vr ], νvr ) dHn−1

≤ 1

t
m f ∞,g(u0,tζ,ν, Q

ν
r ) + ηrn−1,

where we used the positive 1-homogeneity of f ∞(x, ·).
Let Qν := Qν

1(0) and let wr ∈ SBV (Qν,Rm) be the rescaled function, defined by
wr (x) := vr (r x) for every x ∈ Qν . Then wr = u0,ζ,ν near ∂Qν and, by a change of
variables,

∫
Qν

f ∞(r x,∇wr ) dx + 1

t

∫
Swr ∩Qν

g(r x, t[wr ], νwr ) dHn−1

≤ 1

t

1

rn−1m
f ∞,g(u0,tζ,ν, Q

ν
r ) + η, (4.17)
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where we used the positive 1-homogeneity of f ∞(x, ·). Since the function gr ,t defined
by gr ,t (x, ζ, ν) := 1

t g(r x, tζ, ν) satisfies (g3) with the constant c2 independent of r
and t , and by (g4)

1

trn−1m
f ∞,g(u0,tζ,ν, Q

ν
r ) ≤ 1

trn−1 E
f ∞,g(u0,tζ,ν, Q

ν
r )

= 1

trn−1

∫

ν

0∩Qν
r

g(x, tζ, ν) dHn−1

≤ c3|ζ | = c3,

from Remark 3.2 and (4.17) we deduce that there exists a constant C such that
|Dwr |(Qν) ≤ C , for every r > 0, t > 0, andη ∈ (0, 1). In addition, sincewr coincides
withu0,ζ,ν near ∂Qν , we can applyPoincaré’s inequality and from the boundon its total
variation we deduce that wr is bounded in BV (Qν,Rm), uniformly with respect to r ,
by a constant that we still denote with C ; namely, ‖wr‖L1(Qν ,Rm ) + |Dwr |(Qν) ≤ C .

By Lemma 4.3 for every η ∈ (0, 1) there exists a constant Mη > 0, depending on
C but not on t > 0, r > 0, ζ ∈ S

m−1, and ν ∈ S
n−1, such that for every r > 0 there

exists a function w̃r ∈ SBV (Qν,Rm) ∩ L∞(Qν,Rm) with the following properties:
w̃r = u0,ζ,ν near ∂Qν , ‖w̃r‖L∞(Qν ,Rm ) ≤ Mη, and∫

Qν

f ∞(r x,∇w̃r ) dx + 1

t

∫
Sw̃r ∩Qν

g(r x, t[w̃r ], νw̃r ) dHn−1

≤
∫
Qν

f ∞(r x,∇wr ) dx + 1

t

∫
Swr ∩Qν

g(r x, t[wr ], νwr ) dHn−1 + η,

where we used the fact that f ∞ ∈ F and gr ,t ∈ G. By (4.17) this implies that∫
Qν

f ∞(r x,∇w̃r ) dx + 1

t

∫
Sw̃r ∩Qν

g(r x, t[w̃r ], νw̃r ) dHn−1

≤ 1

t

1

rn−1m
f ∞,g(u0,tζ,ν, Q

ν
r ) + 2η. (4.18)

Let ṽr ∈ SBV (Qν
r ,R

m)∩L∞(Qν
r ,R

m) be the function defined by ṽr (x) := w̃r (
x
r )

for every x ∈ Qν
r . Then ṽr = u0,ζ,ν near ∂Qν

r , ‖ṽr‖L∞(Qν
r ,R

m ) ≤ Mη, and, by a change
of variables, ∫

Qν
r

f ∞(x,∇ṽr ) dx + 1

t

∫
Sṽr ∩Qν

r

g(x, t[ṽr ], νṽr ) dHn−1

≤ 1

t
m f ∞,g(u0,tζ,ν, Q

ν
r ) + 2ηrn−1, (4.19)

whereweused (4.18) and thepositive 1-homogeneity of f ∞(x, ·). Since‖ṽr‖L∞(Qν
r ,R

m )

≤ Mη, by (3.11) we have

(
1 − 1

c2
λ(2sMη)

)( ∫
Qν
r

f ∞(x,∇ṽr ) dx + 1

s

∫
Sṽr ∩Qν

r

g(x, s[ṽr ], νṽr ) dHn−1
)
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≤
(
1 + 1

c2
λ(2tMη)

)( ∫
Qν
r

f ∞(x,∇ṽr ) dx + 1

t

∫
Sṽr ∩Qν

r

g(x, t[ṽr ], νṽr ) dHn−1
)
.

(4.20)

Assume that

1 − 1
c2

λ(2sMη) > 0. (4.21)

Since sṽr = u0,sζ,ν near ∂Qν
r , using the positive 1-homogeneity of f ∞ we obtain that

1

s
m f ∞,g(u0,sζ,ν, Q

ν
r ) ≤

∫
Qν
r

f ∞(x,∇ṽr ) dx + 1

s

∫
Sṽr ∩Qν

r

g(x, s[ṽr ], νṽr ) dHn−1.

Hence from (4.19) and (4.20) we have
(
1 − 1

c2
λ(2sMη)

) 1
s m

f ∞,g(u0,sζ,ν, Q
ν
r )

≤ (
1 + 1

c2
λ(2tMη)

)( 1
t m

f ∞,g(u0,tζ,ν, Q
ν
r ) + 2ηrn−1). (4.22)

This inequality holds also when (4.21) is not satisfied, since in that case the left-hand
side is nonpositive.

Since Mη does not depend on t , s, and r , we can divide (4.22) by rn−1 and, passing
to the limit as r → +∞, by (4.3) we obtain

(
1 − 1

c2
λ(2sMη)

) 1
s ghom(sζ, ν) ≤ (

1 + 1
c2

λ(2tMη)
)( 1

t ghom(tζ, ν) + 2η
)
,

which gives

1
s ghom(sζ, ν)− 1

t ghom(tζ, ν) ≤ 1
c2

λ(2sMη)
1
s ghom(sζ, ν)+ 1

c2
λ(2tMη)

1
t ghom(tζ, ν)

+2η
(
1 + 1

c2
λ(2tMη)

)
.

Since ghom satisfies (g4) and |ζ | = 1, from the previous inequality we deduce that

1
s ghom(sζ, ν) − 1

t ghom(tζ, ν) ≤ c3
c2

λ(2sMη) + c3
c2

λ(2tMη) + 2η
(
1 + 1

c2
λ(2tMη)

)
.

Exchanging the roles of s and t we obtain

| 1s ghom(sζ, ν) − 1
t ghom(tζ, ν)| ≤ c3

c2
λ(2sMη) + c3

c2
λ(2tMη) + 2η

(
2 + 1

c2
λ(2sMη)

+ 1
c2

λ(2tMη)
)

(4.23)

for every s > 0, t > 0, ζ ∈ S
m−1, and ν ∈ S

n−1.
Given τ > 0, we fix η > 0 such that 4η < τ

5 . Then, using (3.8), we find δ > 0
such that for every t ∈ (0, δ) we have c3

c2
λ(2tMη) < τ

5 and 2η 1
c2

λ(2tMη) < τ
5 . From

(4.23) we obtain
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| 1s ghom(sζ, ν) − 1
t ghom(tζ, ν)| ≤ τ (4.24)

for every s, t ∈ (0, δ), ζ ∈ S
m−1, and ν ∈ S

n−1. This shows that the function
t �→ 1

t ghom(tζ, ν) satisfies the Cauchy condition for t → 0+, hence the limit

ghom,0(ζ, ν) := lim
t→0+

1
t ghom(tζ, ν)

exists and is finite. This limit is uniform with respect to ζ ∈ S
m−1 and ν ∈ S

n−1

thanks to (4.24). This concludes the proof of (g5).
Property (g6) for ghom follows from (4.3) and from the fact that u0,−ζ,−ν = u0,ζ,ν −

ζ and Qν
r = Q−ν

r (see (h) in Section 2). ��

5 0-convergence of a subsequence of (E")

In this short section we show that, up to a subsequence, the functionals Eε defined in
(4.1) �-converge to some functional Ê as ε → 0+, and study the main properties of
this functional.

Theorem 5.1 (Properties of the �-limit) Let f ∈ F , let g ∈ G, and for ε > 0 let
Eε : L1

loc(R
n,Rm) × A −→ [0,+∞] be the functionals defined in (4.1). Then, for

every sequence of positive numbers converging to zero, there exist a subsequence (ε j )

and a functional Ê : L1
loc(R

n,Rm) ×A −→ [0,+∞] such that for every A ∈ A the
functionals Eε j (·, A) �-converge to Ê(·, A) in L1

loc(R
n,Rm), as j → +∞. Moreover,

Ê satisfies the following properties:

(a) (locality) Ê is local; i.e., Ê(u, A) = Ê(v, A) for every A ∈ A and every u,
v ∈ L1

loc(R
n,Rm) such that u = v Ln-a.e. in A;

(b) (semicontinuity) for every A ∈ A the functional Ê(·, A) is lower semicontinuous
in L1

loc(R
n,Rm);

(c) (bounds) for every A ∈ A and every u ∈ L1
loc(R

n,Rm) we have

c2|Du|(A) ≤ Ê(u, A) ≤ c3|Du|(A) + c4Ln(A) if u|A ∈ BV (A,Rm),

Ê(u, A) = +∞ otherwise;

(d) (measure property) for every u ∈ L1
loc(R

n,Rm) the set function Ê(u, ·) is the
restriction to A of a Borel measure defined on Bn, which we still denote by
Ê(u, ·);

(e) (translation invariance in u) for every A ∈ A and every u ∈ L1
loc(R

n,Rm) we
have

Ê(u + s, A) = Ê(u, A) for every s ∈ R
m .
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Proof Given an infinitesimal sequence (ε j ) of positive numbers, let Ê ′, Ê ′′ : L1
loc

(Rn,Rm) × A −→ [0,+∞] be the functionals defined as

Ê ′(·, A) := �- lim inf
j→+∞ Eε j (·, A) and Ê ′′(·, A) := �- lim sup

j→+∞
Eε j (·, A).

In view of the bounds ( f 3), ( f 4), (g3), and (g4) satisfied by f and g, it immediately
follows that

c2|Du|(A) ≤ Ê ′(u, A)

≤ Ê ′′(u, A) ≤ c3|Du|(A) + c4Ln(A) if u|A ∈ BV (A,Rm), (5.1)

Ê ′(u, A) = Ê ′′(u, A) = +∞ if u|A /∈ BV (A,Rm). (5.2)

By the definition of Eε j and the general properties of �-convergence, we can also
deduce that the functionals Ê ′ and Ê ′′ are local [18, Proposition 16.15], lower semi-
continuous (in u) [18, Proposition 6.8], and increasing (in A) [18, Proposition 6.7].
Moreover Ê ′ is superadditive (in A) [18, Proposition 16.12]. Since it is not obvious that
Ê ′ and Ê ′′ are inner regular (in A), at this stage of the proof we consider their inner
regular envelopes; i.e., the functionals Ê ′−, Ê ′′− : L1

loc(R
n,Rm) × A −→ [0,+∞]

defined as

Ê ′−(u, A) := sup
A′⊂⊂A
A′∈A

Ê ′(u, A′) and Ê ′′−(u, A) := sup
A′⊂⊂A
A′∈A

Ê ′′(u, A′).

Also Ê ′− and Ê ′′− are increasing, lower semicontinuous [18, Remark 15.10], and local
[18, Remark 15.25]. Moreover, by [18, Theorem 16.9] we can find a subsequence of
(ε j ) (not relabelled) such that the corresponding functionals Ê ′ and Ê ′′ satisfy

Ê ′− = Ê ′′− =: Ê . (5.3)

The functional Ê defined in (5.3) is inner regular [18, Remark 15.10] and superadditive
[18, Proposition 16.12].

By virtue of [11, Proposition 3.1] applied with p = 1 we can immediately deduce
that the functionals Eε satisfy the so-called fundamental estimate uniformly in ε.
Therefore [18, Proposition 18.4] yields the subadditivity of Ê(u, ·). Therefore, invok-
ing the measure-property criterion of De Giorgi and Letta [18, Theorem 14.23], we
can deduce that, for every u ∈ L1

loc(R
n,Rm), the set function Ê(u, ·) is the restriction

to A of a Borel measure defined on Bn .
Moreover [18, Proposition 18.6] and (5.1) imply that Ê(u, A) = Ê ′(u, A) =

Ê ′′(u, A) whenever u|A ∈ BV (A,Rm). Finally, it follows from (5.1) and (5.2) that
Ê(u, A) = Ê ′(u, A) = Ê ′′(u, A) = +∞ if u|A /∈ BV (A,Rm). We then conclude
that Ê = Ê ′ = Ê ′′ in L1

loc(R
n,Rm)×A , hence that Ê(·, A) is the�-limit of Eε j (·, A)

in L1
loc(R

n,Rm) for every A ∈ A .
Eventually, the translation invariance in u of Ê(·, A) can be easily checked arguing

as in [11, Lemma 3.7]. ��
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For later use we need to introduce the following notation. Let A ∈ A and w ∈
BV (A,Rm), we set

mÊ (w; A) := inf{Ê(u, A) : u∈ L1
loc(R

n,Rm), u|A ∈ BV (A,Rm), u=w near ∂A}.

6 Identification of the volume term

In Proposition 6.2 below we characterise the derivative of Ê with respect to the
Lebesgue measure Ln . In order to prove this result we need the estimate established
in the following lemma, whose proof is an immediate consequence of (3.9).

Lemma 6.1 Let g ∈ G, A ∈ A , and u ∈ BV (A,Rm) ∩ L∞(A,Rm). Then for every
t > 0

∫
Su∩A

∣∣g0(x, [u], νu) − 1
t g(x, t[u], νu)

∣∣ dHn−1

≤ λ(t‖[u]‖L∞(Su∩A,Rm ))

∫
Su∩A

|[u]| dHn−1,

where λ is the function defined in (3.7).

Proposition 6.2 (Homogenised volume integrand) Let f , g, Eε, (ε j ), and Ê be as in
Theorem 5.1. Assume that (a) of Theorem 4.1 holds, and let fhom be as in (4.2). Then
for every A ∈ A and every u ∈ L1

loc(R
n,Rm), with u|A ∈ BV (A,Rm), we have that

d Ê(u, ·)
dLn

(x) = fhom
(∇u(x)

)
for Ln-a.e. x ∈ A.

Proof Let us fix A ∈ A and u ∈ L1
loc(R

n,Rm), with u|A ∈ BV (A,Rm). We divide
the proof into two steps.

Step 1: We claim that

d Ê(u, ·)
dLn

(x) ≤ fhom
(∇u(x)

)
for Ln-a.e. x ∈ A. (6.1)

By (a)-(e) of Theorem 5.1 and by [10, Lemmas 3.1 and 3.5], arguing as in the proof
of (3.16) in [10, Theorem 3.7], for Ln-a.e. x ∈ A we have

d Ê(u, ·)
dLn

(x) = lim
ρ→0+

mÊ (	ξ(x), Qρ(x))

ρn
, (6.2)

where ξ(x) := ∇u(x). Fix x ∈ A such that (6.2) holds and set ξ := ξ(x) = ∇u(x).
For every ρ > 0 we have

fhom(ξ) = lim
r→+∞

m f ,g0(	ξ , Qr (
r x
ρ

))

rn
, (6.3)
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since the above identity directly follows from (4.2) by replacing x with x
ρ
.

Let us fix η ∈ (0, 1). By (3.4) for every ρ > 0 and r > 0 there exists v
ρ
r ∈

SBV (Qr (
r x
ρ

),Rm), with v
ρ
r = 	ξ near ∂Qr (

r x
ρ

), such that

E f ,g0(vρ
r , Qr (

r x
ρ

)) ≤ m f ,g0(	ξ , Qr (
r x
ρ

)) + ηrn ≤
∫
Qr (

r x
ρ

)

f (y, ξ) dy + ηrn

≤ (c3|ξ | + c4 + 1)rn, (6.4)

where we used that g0(·, 0, ·) = 0 and ( f 4). We extend v
ρ
r to R

n by setting v
ρ
r (y) =

	ξ (y) for every y ∈ R
n \ Qr (

r x
ρ

).

For every y ∈ R
n let w

ρ
r (y) := 1

r v
ρ
r ( r x

ρ
+ r y) − 1

ρ
	ξ (x). Clearly w

ρ
r ∈

SBVloc(Rn,Rm) andw
ρ
r = 	ξ near ∂Q and inRn \Q, where Q := Q1(0). Moreover,

by a change of variables we obtain

∫
Q

f
( r x

ρ
+ r y,∇wρ

r (y)
)
dy +

∫
S
w

ρ
r
∩Q

g0
( r x

ρ
+ r y, [wρ

r ](y), νw
ρ
r
(y)

)
dHn−1(y)

= 1

rn
E f ,g0(vρ

r , Qr (
r x
ρ

)), (6.5)

where we used the 1-homogeneity of g0 in the second variable. By the lower bounds
( f 3) and (g3), from (6.4) and (6.5)we deduce that there exists a constant K , depending
on |ξ |, such that |Dw

ρ
r |(Q) ≤ K for every ρ > 0 and r > 0. In addition, since w

ρ
r

coincides with 	ξ in R
n \ Q, we can apply Poincaré’s inequality and from the bound

on its total variation we deduce that the sequence (w
ρ
r ) is bounded in BVloc(Rn,Rm).

In particular it is bounded in BV (Q,Rm), uniformly with respect to ρ and r , by a
constant that we still denote with K .

By Lemma 4.3 and by (6.4) and (6.5) for every η ∈ (0, 1) there exists a constant
Mη, depending also on |ξ | and K , such that for every ρ > 0 and r > 0 there exists
w̃

ρ
r ∈ SBV (Q,Rm) ∩ L∞(Q,Rm) with the following properties: w̃ρ

r = 	ξ near ∂Q,
‖w̃ρ

r ‖L∞(Q,Rm ) ≤ Mη, and

∫
Q

f
( r x

ρ
+ r y,∇w̃ρ

r (y)
)
dy +

∫
S
w̃

ρ
r
∩Q

g0
( r x

ρ
+ r y, [w̃ρ

r ](y), νw̃
ρ
r
(y)

)
dHn−1(y)

≤ m f ,g0(	ξ , Qr (
r x
ρ

))

rn
+ 2η.

Let ṽ
ρ
r ∈ SBVloc(Rn,Rm) be defined by ṽ

ρ
r (y) := rw̃ρ

r (
y
r − x

ρ
) + r

ρ
	ξ (x). Then

ṽ
ρ
r = 	ξ near ∂Qr (

r x
ρ

) and, by a change of variables,

‖[ṽρ
r ]‖L∞(S

ṽ
ρ
r
∩Qr (

r x
ρ

),Rm ) ≤ 2Mηr , (6.6)

E f ,g0(ṽρ
r , Qr (

r x
ρ

)) ≤ m f ,g0(	ξ , Qr (
r x
ρ

)) + 2η rn . (6.7)
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Moreover, by combining (6.4) and (6.7) with the lower bound (g3) we immediately
deduce the existence of a constant C > 0, depending on |ξ |, such that

1

rn

∫
S
ṽ
ρ
r
∩Qr (

r x
ρ

)

|[ṽρ
r ]| dHn−1 ≤ C . (6.8)

By Lemma 6.1, applied with t = ρ/r , using (6.6) and (6.8) we obtain

1

rn

∫
S
ṽ
ρ
r
∩Qr (

r x
ρ

)

∣∣∣g0(y, [ṽρ
r ], νṽ

ρ
r
) − r

ρ
g(y, ρ

r [ṽρ
r ], νṽ

ρ
r
)

∣∣∣ dHn−1 ≤ Cλ(2ρMη).

This inequality, together with (6.3) and (6.7), gives

lim sup
r→+∞

1

rn

( ∫
Qr (

r x
ρ

)

f (y,∇ṽρ
r ) dy +

∫
S
ṽ
ρ
r
∩Qr (

r x
ρ

)

r
ρ
g(y, ρ

r [ṽρ
r ], νṽ

ρ
r
) dHn−1

)

≤ fhom(ξ) + 2η + Cλ(2ρMη).

Given ε > 0 and ρ > 0, we choose r = ρ/ε and for every y ∈ R
n we define

uρ
ε (y) := ε ṽ

ρ
r (

y
ε
) = ρ

r ṽ
ρ
r (

r y
ρ

). Then uρ
ε ∈ SBVloc(Rn,Rm), uρ

ε = 	ξ near ∂Qρ(x)
and in Rn \ Qρ(x). By a change of variables, from the previous inequality we get that
for every ρ > 0

lim sup
ε→0+

Eε(u
ρ
ε , Qρ(x))

ρn
≤ fhom(ξ) + 2η + Cλ(2ρMη). (6.9)

Since the functions uρ
ε coincide with 	ξ in Q(1+η)ρ(x)\ Q(1−δε)ρ(x) for some δε ∈

(0, 1), by ( f 4) we have Eε(u
ρ
ε , Q(1+η)ρ(x)) ≤ Eε(u

ρ
ε , Qρ(x)) + (c3|ξ | + c4)2nρnη,

which, together with (6.9), gives

lim sup
ε→0+

Eε(u
ρ
ε , Q(1+η)ρ(x))

ρn
≤ fhom(ξ) + Cλ(2ρMη) + K̃η, (6.10)

where K̃ := 2 + (c3|ξ | + c4)2n . Since uρ
ε coincides with 	ξ in R

n \ Qρ(x), using
Poincaré’s inequality and the lower bounds ( f 3) and (g3) we deduce from (6.10)
that for every ρ > 0 there exists ε(ρ) > 0 such that the sequence (uρ

ε ) is bounded
in BVloc(Rn,Rm). In particular it is bounded in BV (Qρ(x),Rm) uniformly with
respect to ε ∈ (0, ε(ρ)). Note that the bound on the L1-norm can be obtained by e.g.
[5, Theorem 3.47]. Then there exists a subsequence, not relabelled, of the sequence
(ε j ) considered in Theorem 5.1, such that (uρ

ε j ) converges in L1
loc(R

n,Rm) to some
uρ ∈ BVloc(Rn,Rm) with uρ = 	ξ in Q(1+η)ρ(x) \ Qρ(x). As a consequence
of the �-convergence of Eε j (·, Q(1+η)ρ(x)) to Ê(·, Q(1+η)ρ(x)), from (6.10) we
obtain
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mÊ (	ξ , Q(1+η)ρ(x))

ρn
≤ Ê(uρ, Q(1+η)ρ(x))

ρn
≤ lim sup

j→+∞
Eε j (u

ρ
ε j , Q(1+η)ρ(x))

ρn

≤ fhom(ξ) + Cλ(2ρMη) + K̃η.

Finally, passing to the limit as ρ → 0+, from (3.8) and (6.2) we get

(1 + η)n
d Ê(u, ·)
dLn

(x) ≤ fhom(ξ) + K̃η.

Since ξ := ∇u(x), this gives (6.1) by the arbitrariness of η > 0.
Step 2: We claim that

d Ê(u, ·)
dLn

(x) ≥ fhom
(∇u(x)

)
for Ln-a.e. x ∈ A. (6.11)

We extend u to R
n by setting u = 0 on R

n \ A. By �-convergence there exists
(uε) ⊂ L1

loc(R
n,Rm), with uε|A ∈ SBV (A,Rm), such that

uε → u in L1
loc(R

n,Rm) and lim
ε→0+ Eε(uε, A) = Ê(u, A), (6.12)

along the sequence (ε j ) considered in Theorem 5.1. Passing to a further subsequence
we have

lim
ε→0+ uε(x) = u(x) (6.13)

forLn- a.e. x ∈ A. In the rest of the proof ε will always be an element of this sequence.
By (j) of Section 2 and by [5, Definition 3.70], for Ln-a.e. x ∈ A we have

lim
ρ→0+

1

ρn
|Du|(Qρ(x)) = |∇u(x)| < +∞, (6.14)

lim
ρ→0+

1

ρn+1

∫
Qρ(x)

|u(y) − u(x) − ∇u(x)(y − x)| dx = 0, (6.15)

lim
ρ→0+

Ê(u, Qρ(x))

ρn
= d Ê(u, ·)

dLn
(x). (6.16)

Let us fix x ∈ A such that (6.13)-(6.16) hold true.
Recalling (5.1) we have that Ê(u, Qρ(x)) ≤ c3|Du|(Qρ(x)) + c4ρn , hence by

(6.14) and (6.16) there exists ρ0 ∈ (0, 1) such that

Qρ(x) ⊂⊂ A and
Ê(u, Qρ(x))

ρn
≤ c3|∇u(x)| + c4 + 1 (6.17)

for every ρ ∈ (0, ρ0). Since Ê(u, ·) is a Radon measure, there exists a set B ⊂ (0, ρ0),
with (0, ρ0) \ B at most countable, such that Ê(u, ∂Qρ(x)) = 0 for every ρ ∈ B.
Then we have
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Ê(u, A) = Ê(u, Qρ(x)) + Ê(u, A \ Qρ(x))

for every ρ ∈ B. By �-convergence we also have

lim inf
ε→0+ Eε(uε, Qρ(x)) ≥ Ê(u, Qρ(x)),

lim inf
ε→0+ Eε(uε, A \ Qρ(x)) ≥ Ê(u, A \ Qρ(x)),

so that by (6.12) it follows that for every ρ ∈ B

lim
ε→0+ Eε(uε, Qρ(x)) = Ê(u, Qρ(x)). (6.18)

Note that for every ρ ∈ B there exists ε(ρ) > 0 such that for every ε ∈ (0, ε(ρ))

Eε(uε, Qρ(x))

ρn
≤ Ê(u, Qρ(x))

ρn
+ ρ ≤ c3|∇u(x)| + c4 + 2, (6.19)

where in the last inequality we used (6.17).
The rest of this proof is devoted to modifying uε in order to construct a competitor

for the minimisation problems appearing in (4.2), which defines fhom. To this end, for
everyρ ∈ B and ε > 0we consider the blow-up functions defined for y ∈ Q := Q1(0)
by

wρ
ε (y) := uε(x + ρy) − uε(x)

ρ
and wρ(y) := u(x + ρy) − u(x)

ρ
.

Then w
ρ
ε ∈ SBV (Q,Rm) and wρ ∈ BV (Q,Rm). Since uε → u in L1(Qρ(x),Rm)

by (6.12), using (6.13) for every ρ ∈ B we obtain

wρ
ε → wρ in L1(Q,Rm) as ε → 0+. (6.20)

Moreover, from (6.15) we can deduce that

wρ → 	ξ in L1(Q,Rm) as ρ → 0+, (6.21)

where we set ξ := ∇u(x). Therefore, by possibly reducing the values of ρ0 and ε(ρ),
we may assume that

‖wρ
ε − 	ξ‖L1(Q,Rm ) ≤ 1, (6.22)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). By the definition of w
ρ
ε , a change of variables

gives

Eε(uε, Qρ(x))

ρn
= Eρ

ε (wρ
ε , Q), (6.23)
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where Eρ
ε is the functional corresponding to the integrands f ρ

ε (y, ξ) := f ( x+ρy
ε

, ξ)

and gρ
ε (y, ζ, ν) := 1

ρ
g( x+ρy

ε
, ρζ, ν); i.e.,

Eρ
ε (w, Q) :=

∫
Q

f ( x+ρy
ε

,∇w(y)) dy

+
∫
Sw∩Q

1
ρ
g( x+ρy

ε
, ρ[w](y), νw(y))dHn−1(y)

for every w ∈ SBV (Q,Rm). Note that f ρ
ε satisfies ( f 3) and ( f 4), while gρ

ε satisfies
(g3) and (g4).

We now modify w
ρ
ε in a way such that it attains the linear boundary datum 	ξ

near ∂Q. To this end we apply the Fundamental Estimate [11, Proposition 3.1] to the
functionals Eρ

ε . Thus for η ∈ (0, 1
2 ) fixed there exist a constant Lη > 0 with the

following property: for every ρ ∈ B and ε ∈ (0, ε(ρ)) there exists a cut-off function
ϕ

ρ
ε ∈ C∞

c (Q), with 0 ≤ ϕ
ρ
ε ≤ 1 in Q, supp(ϕρ

ε ) ⊂ Q1−η := Q1−η(0), and ϕ
ρ
ε = 1 in

Q1−2η := Q1−2η(0), such that, setting ŵ
ρ
ε := ϕ

ρ
ε w

ρ
ε + (1 − ϕ

ρ
ε )	ξ , we have

Eρ
ε (ŵρ

ε , Q) ≤ (1 + η)
(
Eρ

ε (wρ
ε , Q) + Eρ

ε (	ξ , Q \ Q1−2η)
) + Lη‖wρ

ε − 	ξ‖L1(Q,Rm ).

(6.24)

We note that ŵρ
ε = 	ξ in Q \ Q1−η, as desired. Moreover in view of ( f 4) we have

Eρ
ε (	ξ , Q \ Q1−2η)) ≤ (c3|ξ | + c4)Ln(Q \ Q1−2η)) ≤ (c3|ξ | + c4)2nη. (6.25)

From (6.19), (6.22), (6.23), (6.24) and (6.25) we obtain

Eρ
ε (ŵρ

ε , Q) ≤ 3
2 (c3|ξ | + c4 + 2 + (c3|ξ | + c4)n) + Lη (6.26)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). By the lower bounds ( f 3) and (g3), we deduce that
the total variation of ŵρ

ε is bounded uniformlywith respect to ρ ∈ B and ε ∈ (0, ε(ρ)).
Note moreover that also the L1-norm of ŵ

ρ
ε is bounded uniformly, by (6.22). In

conclusion, the sequence (ŵ
ρ
ε ) is bounded in BV (Q,Rm) uniformly with respect to

ρ ∈ B and ε ∈ (0, ε(ρ)).
By Lemma 4.3 there exist a constant Mη > 0 with the following property: for

every ρ ∈ B and ε ∈ (0, ε(ρ)) there exists w̃
ρ
ε ∈ SBV (Q,Rm) ∩ L∞(Q,Rm), with

w̃
ρ
ε = 	ξ near ∂Q, such that

‖w̃ρ
ε ‖L∞(Q,Rm ) ≤ Mη, ‖w̃ρ

ε − 	ξ‖L1(Q,Rm ) ≤ ‖ŵρ
ε − 	ξ‖L1(Q,Rm ),

Eρ
ε (w̃ρ

ε , Q) ≤ Eρ
ε (ŵρ

ε , Q) + η. (6.27)

We now set r := ρ
ε

and v
ρ
ε (y) := rw̃ρ

ε (
y
r − x

ρ
) + r

ρ
	ξ (x); clearly v

ρ
ε ∈

SBV (Qr (
r x
ρ

),Rm), vρ
ε = 	ξ near ∂Qr (

r x
ρ

), and, by a change of variables

‖[vρ
ε ]‖L∞(S

v
ρ
ε
∩Qr (

r x
ρ

),Rm ) ≤ 2Mηr , (6.28)
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1

rn

( ∫
Qr (

r x
ρ

)

f (y,∇vρ
ε ) dy +

∫
S
v
ρ
ε
∩Qr (

r x
ρ

)

r
ρ
g(y, ρ

r [vρ
ε ], νv

ρ
ε
) dHn−1

)
= Eρ

ε (w̃ρ
ε , Q).

(6.29)

Moreover, by combining (6.26), (6.27), and (6.29) with the lower bound (g3) we
immediately deduce the existence of a constant C > 0, depending on |ξ |, such that

1

rn

∫
S
v
ρ
ε
∩Qr (

r x
ρ

)

|[vρ
ε ]| dHn−1 ≤ C . (6.30)

By Lemma 6.1, applied with t = ρ/r , using (6.28) and (6.30) we deduce that

1

rn

∫
S
v
ρ
ε
∩Qr (

r x
ρ

)

∣∣∣g0(y, [vρ
ε ], νv

ρ
ε
) − r

ρ
g(y, ρ

r [vρ
ε ], νv

ρ
ε
)

∣∣∣ dHn−1 ≤ Cλ(2ρMη)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). From this inequality and from (6.23), (6.24),
(6.25), (6.27), and (6.29) we obtain

E f ,g0(v
ρ
ε , Qr (

r x
ρ

))

rn
≤ (1 + η)

Eε(uε, Qρ(x))

ρn
+ Kη + Cλ(2ρMη)

+ Lη‖wρ
ε − 	ξ‖L1(Q,Rm ),

where K := (c3|ξ | + c4)3n + 1. Recalling that vρ
ε = 	ξ near ∂Qr (

r x
ρ

), we get

m f ,g0(	ξ , Qr (
r x
ρ

))

rn
≤ (1 + η)

Eε(uε, Qρ(x))

ρn
+ Kη + Cλ(2ρMη)

+ Lη‖wρ
ε − 	ξ‖L1(Q,Rm ).

Since r = ρ
ε
, by (4.2)with x replaced by x

ρ
, the left-hand side of the previous inequality

converges to fhom(ξ) as ε → 0+. By (6.18) and (6.20) we can pass to the limit in the
right-hand side as ε → 0+ and we obtain

fhom(ξ) ≤ (1 + η)
Ê(u, Qρ(x))

ρn
+ Kη + Cλ(2ρMη) + Lη‖wρ − 	ξ‖L1(Q,Rm ).

By (3.8), (6.16), and (6.21), passing to the limit as ρ → 0+ we get

fhom(ξ) ≤ (1 + η)
d Ê(u, ·)
dLn

(x) + Kη.

Since ξ = ∇u(x), this inequality gives (6.11) by the arbitrariness of η > 0. ��
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7 Identification of the surface term

In Proposition 7.2 below we characterise the derivative of Ê(u, ·) with respect to the
measure Hn−1 Su for a given BV -function u. In order to prove this result we need
the estimate established in the following lemma.

Lemma 7.1 Let f ∈ F , A ∈ A , v ∈ BV (A,Rm). Then for every t > 0

∫
A

| f ∞(x,∇v) − 1
t f (x, t∇v)| dx ≤ 1

t
c5(1 + c1−α

4 )Ln(A)

+ 1

tα
c5c

1−α
3 (Ln(A))α‖∇v‖1−α

L1(A,Rm )
.

Proof Let t > 0. By ( f 4) and (3.2), using Hölder’s inequality, we obtain that

∫
A

| f ∞(x,∇v) − 1
t f (x, t∇v)| dx ≤ c5

t
Ln(A) + c5

t

∫
A
f (x, t∇v)1−α dx

≤ c5
t
Ln(A) + c5

t
(Ln(A))α

( ∫
A
f (x, t∇v) dy

)1−α

≤ 1

t
c5(1 + c1−α

4 )Ln(A) + 1

tα
c5c

1−α
3 (Ln(A))α‖∇v‖1−α

L1(A,Rm )
.

This concludes the proof. ��
Proposition 7.2 (Homogenised surface integrand) Let f , g, Eε, (ε j ), and Ê be as in
Theorem 5.1. Assume that (b) of Theorem 4.1 holds, and let ghom be as in (4.3). Then
for every A ∈ A and every u ∈ L1

loc(R
n,Rm), with u|A ∈ BV (A,Rm), we have that

d Ê(u, ·)
dHn−1 Su

(x) = ghom
([u](x), νu(x)

)
forHn−1-a.e. x ∈ Su ∩ A.

Proof Let us fix A ∈ A and u ∈ L1
loc(R

n,Rm), with u|A ∈ BV (A,Rm). We divide
the proof into two steps.

Step 1: We claim that

d Ê(u, ·)
dHn−1 Su

(x) ≤ ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩ A. (7.1)

By (a)-(e) of Theorem 5.1 and by [10, Lemmas 3.1 and 3.5], arguing as in the proof
of (3.17) in [10, Theorem 3.7], for Hn−1-a.e. x ∈ Su ∩ A we have

d Ê(u, ·)
dHn−1 Su

(x) = lim
ρ→0+

mÊ (ux,[u](x),νu(x), Q
νu(x)
ρ (x))

ρn−1 . (7.2)

Fix x ∈ Su ∩ A such that (7.2) holds and set ζ := [u](x) and ν := νu(x).
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For every ρ > 0 we have

ghom(ζ, ν) = lim
r→+∞

m f ∞,g
(
u rx

ρ
,ζ,ν, Q

ν
r (

r x
ρ

)
)

rn−1 , (7.3)

since the above identity directly follows from (4.3) by replacing x with x
ρ
.

Let us fix η ∈ (0, 1). By (3.4) for every ρ ∈ (0, 1) and r > 0 there exists v
ρ
r ∈

SBV (Qν
r (

r x
ρ

),Rm), with v
ρ
r = u rx

ρ
,ζ,ν near ∂Qν

r (
r x
ρ

), such that

E f ∞,g(vρ
r , Qν

r (
r x
ρ

)) ≤ m f ∞,g(u rx
ρ

,ζ,ν, Q
ν
r (

r x
ρ

)
) + η rn−1

≤
∫


ν
r x
ρ

∩Qν
r (

r x
ρ

)

g(y, ζ, ν) dHn−1 + ηrn−1 ≤ (c3|ζ | + 1)rn−1,

(7.4)

where we used that f ∞(·, 0) = 0 and (g4). We extend v
ρ
r to R

n by setting v
ρ
r (y) =

u rx
ρ

,ζ,ν(y) for every y ∈ R
n \ Qν

r (
r x
ρ

).
By combining (7.4)with the lower bound ( f 3)we immediately deduce the existence

of a constant C > 0, depending on ζ , such that

1

rn−1

∫
Qν
r (

r x
ρ

)

|∇vρ
r | dy ≤ C . (7.5)

By Lemma 7.1, applied with t = r/ρ, using (7.5), we deduce that

1

rn−1

∫
Qν
r (

r x
ρ

)

∣∣ f ∞(x,∇vρ
r )− ρ

r f (x, r
ρ
∇vρ

r )
∣∣ dy≤c5(1+c1−α

4 )ρ+c5c
1−α
3 ραC1−α.

This inequality, together with (7.3) and (7.4), gives

lim sup
r→+∞

1

rn−1

( ∫
Qν
r (

r x
ρ

)

ρ
r f (y, r

ρ
∇vρ

r ) dy +
∫
S
v
ρ
r
∩Qν

r (
r x
ρ

)

g(y, [vρ
r ], νv

ρ
r
) dHn−1

)

≤ ghom(ζ, ν) + η + Kρα,

where K := c5(1 + c1−α
4 ) + c5c

1−α
3 C1−α .

Given ε > 0 and ρ ∈ (0, 1), for every y ∈ R
n we define uρ

ε (y) := v
ρ
r (

y
ε
) =

v
ρ
r (

r y
ρ

), with r := ρ/ε. Then uρ
ε ∈ SBVloc(Rn,Rm), uρ

ε = ux,ζ,ν near ∂Qν
ρ(x) and

in Rn \ Qν
ρ(x). By a change of variables, from the previous inequality we get that for

every ρ ∈ (0, 1)

lim sup
ε→0+

Eε(u
ρ
ε , Qν

ρ(x))

ρn−1 ≤ ghom(ζ, ν) + η + Kρα. (7.6)
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Since the functions uρ
ε coincide with ux,ζ,ν in Qν

(1+η)ρ(x) \ Qν
(1−δε)ρ

(x) for

some δε ∈ (0, 1), by (g4) we have Eε(u
ρ
ε , Qν

(1+η)ρ(x)) ≤ Eε(u
ρ
ε , Qν

ρ(x)) +
c3|ζ |2n−1ρn−1η, which, together with (7.6), gives

lim sup
ε→0+

Eε(u
ρ
ε , Qν

(1+η)ρ(x))

ρn−1 ≤ ghom(ζ, ν) + Kρα + K̃η, (7.7)

where K̃ := 1 + c3|ζ |2n−1. Since uρ
ε coincides with ux,ζ,ν in R

n \ Qν
ρ(x), using

the lower bounds ( f 3) and (g3) and Poincaré’s inequality we deduce from (7.7) that
for every ρ > 0 there exists ε(ρ) > 0 such that the functions uρ

ε are bounded in
BVloc(Rn,Rm) uniformly with respect to ε ∈ (0, ε(ρ)). Then there exists a subse-
quence, not relabelled, of the sequence (ε j ) considered in Theorem 5.1, such that
(uρ

εk ) converges in L1
loc(R

n,Rm) to some uρ ∈ BVloc(Rn,Rm) with uρ = ux,ζ,ν in
Qν

(1+η)ρ(x) \ Qν
ρ(x). As a consequence of the �-convergence of Eε j (·, Qν

(1+η)ρ(x))

to Ê(·, Qν
(1+η)ρ(x)), from (7.7) we obtain

mÊ (ux,ζ,ν, Qν
(1+η)ρ(x))

ρn−1 ≤ Ê(uρ, Qν
(1+η)ρ(x))

ρn−1 ≤ lim sup
j→+∞

Eε j (u
ρ
ε j , Q

ν
(1+η)ρ(x))

ρn−1

≤ ghom(ζ, ν) + Kρα + K̃η.

Finally, passing to the limit as ρ → 0+, from (7.2) we get

(1 + η)n−1 d Ê(u, ·)
dHn−1 Su

(x) ≤ ghom(ζ, ν) + K̃η.

Since ζ := [u](x) and ν = νu(x), this gives (7.1) by the arbitrariness of η > 0.
Step 2: We claim that

d Ê(u, ·)
dHn−1 Su

(x) ≥ ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩ A. (7.8)

We extend u to R
n by setting u = 0 on R

n \ A. By �-convergence there exists
(uε) ⊂ L1

loc(R
n,Rm), with uε|A ∈ SBV (A,Rm), such that

uε → u in L1
loc(R

n,Rm) and lim
ε→0+ Eε(uε, A) = Ê(u, A), (7.9)

along the sequence (εk) considered in Theorem 5.1.
By [5, Definition 3.67 and Step 2 in the proof of Theorem 3.77] and thanks to

a generalised version of the Besicovitch Differentiation Theorem (see [31] and [26,
Sections 1.2.1-1.2.2]), for Hn−1-a.e. x ∈ Su ∩ A we have

lim
ρ→0+

1

ρn−1 |Du|(Qνu(x)
ρ (x)) = |[u](x)| 	= 0, (7.10)
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lim
ρ→0+

1

ρn

∫
Qνu (x)

ρ (x)
|u(y) − ux,[u](x),νu(x)(y)|dy = 0, (7.11)

lim
ρ→0+

Ê(u, Qνu(x)
ρ (x))

ρn−1 = d Ê(u, ·)
dHn−1 Su

(x). (7.12)

Let us fix x ∈ Su ∩ A such that (7.10)-(7.12) are satisfied, and set ζ := [u](x) and
ν := νu(x).

Recalling (5.1) we have that Ê(u, Qν
ρ(x)) ≤ c3|Du|(Qν

ρ(x)) + c4ρn , hence by
(7.10) there exists ρ0 ∈ (0, 1) such that

Qν
ρ(x) ⊂⊂ A and

Ê(u, Qν
ρ(x))

ρn−1 ≤ c3|ζ | + 1 (7.13)

for every ρ ∈ (0, ρ0). Since Ê(u, ·) is a Radon measure, there exists a set B ⊂ (0, ρ0),
with (0, ρ0) \ B at most countable, such that Ê(u, ∂Qν

ρ(x)) = 0 for every ρ ∈ B.
Proceeding as in the proof of (6.18), by (7.9) we can show that for every ρ ∈ B

lim
ε→0+ Eε(uε, Q

ν
ρ(x)) = Ê(u, Qν

ρ(x)). (7.14)

Hence, for every ρ ∈ B there exists ε(ρ) > 0 such that for every ε ∈ (0, ε(ρ))

Eε(uε, Qν
ρ(x))

ρn−1 ≤ Ê(u, Qν
ρ(x))

ρn−1 + ρ ≤ c3|ζ | + 2, (7.15)

where in the last inequality we used (7.13).
The rest of this proof is devoted to modifying uε in order to construct a competitor

for the minimisation problems appearing in (4.3), which defines ghom. To this end, for
every ρ ∈ B and ε > 0 we consider the blow-up functions defined for y ∈ Qν :=
Qν

1(0) by

wρ
ε (y) := uε(x + ρy) and wρ(y) := u(x + ρy).

Thenw
ρ
ε ∈ SBV (Qν,Rm) andwρ ∈ BV (Qν,Rm). Since uε → u in L1(Qν

ρ(x),Rm)

by (7.9), for every ρ ∈ B we obtain

wρ
ε → wρ in L1(Qν,Rm) as ε → 0+; (7.16)

moreover, from (7.11) we have

wρ → u0,ζ,ν in L1(Qν,Rm) as ρ → 0+. (7.17)

Up to possibly reducing the values of ρ0 and ε(ρ), we may then assume that

‖wρ
ε − u0,ζ,ν‖L1(Qν ,Rm ) ≤ 1, (7.18)

123



    8 Page 42 of 89 F. CAGNETTI et al.

for every ρ ∈ B and ε ∈ (0, ε(ρ)). By a change of variables, we obtain the relation

Eε(uε, Qν
ρ(x))

ρn−1 = Eρ
ε (wρ

ε , Qν), (7.19)

where Eρ
ε is the functional corresponding to the integrands f ρ

ε (y, ξ) := ρ f ( x+ρy
ε

,
ξ
ρ
)

and gρ
ε (y, ζ, ν) := g( x+ρy

ε
, ζ, ν); i.e.,

Eρ
ε (w, Qν) :=

∫
Qν

ρ f ( x+ρy
ε

, 1
ρ

∇w(y)) dy +
∫
Sw∩Qν

g( x+ρy
ε

, [w](y), νw(y))dHn−1(y)

for everyw ∈ SBV (Qν,Rm). Note that f ρ
ε satisfies ( f 3) and ( f 4) (recall that ρ < 1),

while gρ
ε satisfies (g3) and (g4).

We now modify w
ρ
ε in a way such that it attains the boundary datum u0,ζ,ν near

∂Qν . This will be done by applying the Fundamental Estimate [11, Proposition 3.1]
to the functionals Eρ

ε . Thus for η ∈ (0, 1
2 ) fixed there exist a constant Lη > 0 with the

following property: for every ρ ∈ B and ε ∈ (0, ε(ρ)) there exists a cut-off function
ϕ

ρ
ε ∈ C∞

c (Qν), with 0 ≤ ϕ
ρ
ε ≤ 1 in Qν , supp(ϕρ

ε ) ⊂ Qν
1−η := Qν

1−η(0), and ϕ
ρ
ε = 1

in Qν
1−2η := Qν

1−2η(0), such that, setting ŵ
ρ
ε := ϕ

ρ
ε w

ρ
ε + (1 − ϕ

ρ
ε )u0,ζ,ν , we have

Eρ
ε (ŵρ

ε , Qν) ≤ (1 + η)
(
Eρ

ε (wρ
ε , Qν) + Eρ

ε (u0,ζ,ν, Q
ν \ Q

ν

1−2η)
)

+Lη‖wρ
ε − u0,ζ,ν‖L1(Qν ,Rm ). (7.20)

By definition we clearly have ŵ
ρ
ε = u0,ζ,ν in Qν \ Qν

1−η, as desired. Moreover, from
( f 4) and (g4) we obtain the bound

Eρ
ε (u0,ζ,ν, Q

ν \ Q
ν

1−2η)) ≤ c4Ln(Qν \ Qν
1−2η) + c3|ζ |Hn−1(
ν

0 ∩ (Qν \ Q
ν

1−2η))

≤ 2c4nη + 2c3|ζ |(n − 1)η, (7.21)

and hence, from (7.20) and (7.21) we have that

Eρ
ε (ŵρ

ε , Qν) ≤ (1 + η)Eρ
ε (wρ

ε , Qν) + Kη + Lη‖wρ
ε − u0,ζ,ν‖L1(Qν ,Rm ), (7.22)

for every ρ ∈ B and every ε ∈ (0, ε(ρ)), where K = 3(c4ρn + c3|ζ |(n − 1)). Note
that ( f 3), (g3), (7.15), (7.18), (7.19) and (7.22) imply that

c2

∫
Qν

|∇ŵρ
ε (y)| dy ≤ (1 + η)(c3|ζ | + 1) + Kη + Lη, (7.23)

for every ρ ∈ B and ε ∈ (0, ε(ρ)).
We finally set r := ρ

ε
and v

ρ
ε (y) := ŵ

ρ
ε (

y
r − x

ρ
); clearly v

ρ
ε ∈ SBV (Qν

r (
r x
ρ

),Rm),

v
ρ
ε = u rx

ρ
,ζ,ν near ∂Qν

r (
r x
ρ

), and via a change of variables, using also (7.23), we have
that
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1

rn−1

∫
Qν
r (

r x
ρ

)

|∇vρ
ε (y)| dy ≤ C, (7.24)

1

rn−1

( ∫
Qν
r (

r x
ρ

)

ρ
r f (y, r

ρ
∇vρ

ε ) dy +
∫
S
v
ρ
ε
∩Qν

r (
r x
ρ

)

g(y, [vρ
r ], νv

ρ
ε
) dHn−1

)

= Eρ
ε (ŵρ

ε , Qν), (7.25)

where C depends only on |ζ |. Hence by Lemma 7.1, applied with t = r/ρ, using
(7.24), we have

1

rn−1

∫
Qν
r (

r x
ρ

)

∣∣ f ∞(y,∇vρ
ε )− ρ

r f (y, r
ρ
∇vρ

ε )
∣∣ dy ≤ c5(1+c1−α

4 )ρ+c5c
1−α
3 ραC1−α

≤ K̃ρα (7.26)

for every ρ ∈ B and ε ∈ (0, ε(ρ)), where K̃ := c5(1 + c1−α
4 ) + c5c

1−α
3 C1−α . From

(7.19), (7.22), (7.25), and (7.26) we obtain

E f ∞,g(v
ρ
ε , Qν

r (
r x
ρ

))

rn−1 ≤ (1 + η)
Eε(uε, Qν

ρ(x))

ρn−1 + Kη + Lη‖wρ
ε − u0,ζ,ν‖L1(Qν ,Rm )

+ K̃ρα.

Since v
ρ
ε = u rx

ρ
,ζ,ν near ∂Qν

r (
r x
ρ

), we have that

m f ∞,g(u rx
ρ

,ζ,ν, Q
ν
r (

r x
ρ

))

rn−1 ≤ (1 + η)
Eε(uε, Qν

ρ(x))

ρn−1 + Kη

+Lη‖wρ
ε − u0,ζ,ν‖L1(Qν ,Rm ) + K̃ρα.

Since r = ρ
ε
, by (4.3) with x replaced by x

ρ
, the left-hand side converges to ghom(ξ)

as ε → 0+. By (7.14) and (7.16) we can pass to the limit in the right-hand side as
ε → 0+ and we obtain

ghom(ζ, ν) ≤ (1 + η)
Ê(u, Qν

ρ(x))

ρn−1 + Kη + Lη‖wρ − u0,ζ,ν‖L1(Qν ,Rm ) + K̃ρα.

By (7.12) and (7.17), passing to the limit as ρ → 0+ we get

ghom(ζ, ν) ≤ (1 + η)
d Ê(u, ·)

dHn−1 Su
(x) + Kη.

Since ζ = [u](x) and ν = νu(x), this inequality gives (7.8) by the arbitrariness of
η > 0. ��
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8 Identification of the Cantor term

In Proposition 8.3 below we characterise the derivative of Ê(u, ·) with respect to
|C(u)|, the variaton of the Cantor part of the measure Du. At the end of this section
we conclude the proof of Theorem 4.1.

The following proposition shows that the recession function of fhom, which is
defined in terms of the minimum valuesm f ,g0 , can be obtained from suitably rescaled
limits of the minimum valuesm f ∞,g0 , involving now the recession function f ∞ of f .

Proposition 8.1 Let f ∈ F and g ∈ G, and let m f ,g0 and m f ∞,g0 be as in (3.4), with
( f , g) replaced by ( f , g0) and ( f ∞, g0), respectively. Assume that (a) of Theorem 4.1
holds, and let fhom be as in (4.2). Let f ∞

hom be the recession function of fhom (whose
existence is guaranteed by the fact that fhom ∈ F). Then

f ∞
hom(ξ) = lim

r→+∞
m f ∞,g0(	ξ , Q

ν,k
r (r x))

kn−1rn
(8.1)

for every x ∈ R
n, ξ ∈ R

m×n, ν ∈ S
n−1, and k ∈ N.

Proof Let x ∈ R
n , ξ ∈ R

m×n , ν ∈ S
n−1, k ∈ N, and η ∈ (0, 1) be fixed. By (3.4)

for every r > 0 there exists vr ∈ SBV (Qν,k
r (r x),Rm), with vr = 	ξ near ∂Qν,k

r (r x),
such that

E f ∞,g0(vr , Q
ν,k
r (r x)) ≤ m f ∞,g0(	ξ , Q

ν,k
r (r x)) + ηkn−1rn . (8.2)

Note that, by ( f 3) and ( f 4), this implies that

c2

∫
Qν,k
r (r x)

|∇vr |dy ≤ m f ∞,g0(	ξ , Q
ν,k
r (r x)) + ηkn−1rn ≤ (c3|ξ | + 1)kn−1rn,

(8.3)

where we used the fact that f ∞ satisfies ( f 4) with c4 = 0. Let t > 1; by Lemma 7.1
and by (8.3), recalling that α ∈ (0, 1), we have

∫
Qν,k
r (r x)

∣∣ f ∞(y,∇vr ) − 1
t f (y, t∇vr )

∣∣ dy

≤ 1

t
c5(1 + c1−α

4 )kn−1rn + 1

tα
c5c

1−α
3 (kn−1rn)α‖∇vr‖1−α

L1(Qν,k
r (r x),Rm )

≤ 1

tα
Kkn−1rn,

where K = c5(1 + c1−α
4 ) + c5(c3/c2)1−α(c3|ξ | + 1)1−α . Hence

E ft ,g0(vr , Q
ν,k
r (r x)) ≤ E f ∞,g0(vr , Q

ν,k
r (r x)) + 1

tα
Kkn−1rn,

where ft (y, ξ) := 1
t f (y, tξ).
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Since vr ∈ SBV (Qν,k
r (r x),Rm) and vr = 	ξ near ∂Q

ν,k
r (r x), the previous inequal-

ity, together with (3.4) and (8.2), gives

m ft ,g0(	ξ , Q
ν,k
r (r x))

kn−1rn
≤ m f ∞,g0(	ξ , Q

ν,k
r (r x))

kn−1rn
+ η + 1

tα
K . (8.4)

We now let r → +∞ in the previous estimate. For the left-hand side we note that, by
the definition of fhom, (3.4), and the positive 1-homogeneity of g0 with respect to its
second variable, by a change of variables we have

lim
r→+∞

m ft ,g0(	ξ , Q
ν,k
r (r x))

kn−1rn
= lim

r→+∞
m f ,g0(	tξ , Q

ν,k
r (r x))

t kn−1rn
= fhom(tξ)

t
. (8.5)

Hence, from (8.4) and (8.5) we have that

fhom(tξ)

t
≤ lim inf

r→+∞
m f ∞,g0(	ξ , Q

ν,k
r (r x))

kn−1rn
+ η + 1

tα
K .

By letting t → +∞, since η ∈ (0, 1) is arbitrary, we obtain the inequality

f ∞
hom(ξ) ≤ lim inf

r→+∞
m f ∞,g0(	ξ , Q

ν,k
r (r x))

kn−1rn
.

Exchanging the roles of ft and f ∞, an analogous argument yields the inequality

lim sup
r→+∞

m f ∞,g0(	ξ , Q
ν,k
r (r x))

kn−1rn
≤ f ∞

hom(ξ),

and hence (8.1) follows. ��
For later purposes it is convenient to prove that f ∞

hom can be equivalently expressed
in terms of a (double) limit involving minimisation problems where the Dirichlet
conditions are prescribed only on a part of the boundary. We recall that the definitions
of ∂⊥

ν Qν,k
r (r x) and ∂

‖
ν Q

ν,k
r (r x) are given in (i) in Section 2, while the meaning of the

boundary condition on a part of the boundary is explained after (3.4).

Lemma 8.2 Under the assumptions of Proposition 8.1 we have that

f ∞
hom(a ⊗ ν) = lim

k→+∞ lim inf
r→+∞

m̃ f ∞,g0(	a⊗ν, Q
ν,k
r (r x))

kn−1rn

= lim
k→+∞ lim sup

r→+∞
m̃ f ∞,g0(	a⊗ν, Q

ν,k
r (r x))

kn−1rn
(8.6)

for every x ∈ R
n, a ∈ R

m, and ν ∈ S
n−1, where

m̃ f ∞,g0(	a⊗ν, Q
ν,k
r (r x)) := inf{E f ∞,g0(v, Qν,k

r (r x)) : v ∈ Uν,k
a,r (x)}, (8.7)
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with Uν,k
a,r (x) := {v ∈ SBV (Qν,k

r (r x),Rm) : v = 	a⊗ν near ∂⊥
ν Qν,k

r (r x)}.
Proof Let x ∈ R

n , a ∈ R
m , and ν ∈ S

n−1 be fixed, and for every r > 0 and
k > 0 let Qν,k

x,r := Qν,k
r (r x). Since ∂⊥

ν Qν,k
x,r ⊂ ∂Qν,k

x,r , we have m̃ f ∞,g0(	a⊗ν, Q
ν,k
x,r ) ≤

m f ∞,g0(	a⊗ν, Q
ν,k
x,r ). Due to (8.1), to obtain (8.6) we only need to prove the inequality

f ∞
hom(a ⊗ ν) ≤ lim inf

k→+∞ lim inf
r→+∞

m̃ f ∞,g0(	a⊗ν, Q
ν,k
x,r )

kn−1rn
. (8.8)

To this aim, let us fix h ∈ N. For every r ≥ 1 and k ∈ N, with k ≥ h, there exists
vkr ∈ Uν,k

a,r (x) such that

E f ∞,g0(vkr , Q
ν,k
x,r ) ≤ m̃ f ∞,g0(	a⊗ν, Q

ν,k
x,r ) + 1 ≤ (c3|a| + 1)kn−1rn, (8.9)

where we used the fact that f ∞(y, ξ) ≤ c3|ξ | and 1 ≤ kn−1rn . By ( f 3) and (g3),
inequality (8.9) implies that

c2|Dvkr |(Qν,k
x,r ) ≤ (c3|a| + 1)kn−1rn . (8.10)

Changing vkr in an Ln-negligible set, we may assume that vkr (y) coincides with the
approximate limit of vkr at y for every y ∈ Qν,k

x,r \ Svkr
(see [5, Definition 3.63]). By

Fubini’s theorem we have

∫ k

k−h

∫
∂

‖
ν Q

ν,λ
x,r

|vkr − 	a⊗ν |dHn−1dλ = 2

r

∫
Qν,k

x,r \Qν,k−h
x,r

|vkr − 	a⊗ν | dy

≤ 2

r

∫
Qν,k

x,r

|vkr − 	a⊗ν | dy.

Since vkr − 	a⊗ν = 0 near ∂⊥
ν Qν,k

x,r , by Poincaré’s inequality on strips we have

1

r

∫
Qν,k

x,r

|vkr − 	a⊗ν | dy ≤ |Dvkr − a ⊗ ν|(Qν,k
x,r ) ≤ |Dvkr |(Qν,k

x,r ) + |a|kn−1rn .

(8.11)

Since Hn−1 is σ -finite on Svkr
, we have Hn−1(Svkr

∩ ∂
‖
ν Q

ν,λ
x,r ) = 0 for L1-a.e. λ ∈

(k − h, k). From (8.10)-(8.11) we deduce that there exists λkr ∈ (k − h, k) such that

Hn−1(Svkr
∩ ∂

‖
ν Q

ν,λkr
x,r ) = 0 and

∫
∂

‖
ν Q

ν,λkr
x,r

|vkr − 	a⊗ν |dHn−1 ≤ 2

h
|Dvkr |(Qν,k

x,r ) + 2|a|
h

kn−1rn ≤ C

h
kn−1rn . (8.12)

where C := 2(c3|a| + 1)/c2 + 2|a|.
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To prove (8.8) we need to modify vkr so that it attains the affine boundary datum
	a⊗ν near the whole boundary ∂Qν,k

x,r , and hence is a competitor for the minimisation
problem in the definition of f ∞

hom. The modified function is defined by

v̂kr :=
{

vkr in Q
ν,λkr
x,r ,

	a⊗ν in Rn \ Q
ν,λkr
x,r .

Then v̂kr ∈ SBV (Qν,k
x,r ,R

m) and v̂kr = 	a⊗ν near ∂Qν,k
x,r . Moreover, sinceHn−1(Svkr

∩
∂

‖
ν Q

ν,λkr
x,r ) = 0, by ( f 4) and (g4) we have

E f ∞,g0(v̂kr , Q
ν,k
x,r ) ≤ E f ∞,g0(vkr , Q

ν,k
x,r ) + c3|a|Ln(Qν,k

x,r \ Q
ν,λkr
x,r )

+c3

∫
∂

‖
ν Q

ν,λkr
x,r

|vkr − 	a⊗ν |dHn−1. (8.13)

Since kn−1 − (λkr )
n−1 ≤ kn−1 − (k − h)n−1 ≤ (n − 1)kn−2h, from (8.9), (8.12), and

(8.13) we obtain

m f ∞,g0(	a⊗ν, Q
ν,k
x,r ) ≤ E f ∞,g0(v̂kr , Q

ν,k
x,r )

≤ m̃ f ∞,g0(	a⊗ν, Q
ν,k
x,r ) + (n − 1)c3|a|kn−2hrn + c3C

h
kn−1rn + 1.

We then divide both sides of the previous inequality by kn−1rn , to obtain

m f ∞,g0(	a⊗ν, Q
ν,k
x,r )

kn−1rn
≤ m̃ f ∞,g0(	a⊗ν, Q

ν,k
x,r )

kn−1rn
+ (n − 1)c3|a|h

k
+ c3C

h
+ 1

kn−1rn
.

Taking the limit first as r → +∞, then as k → +∞, and finally as h → +∞, from
(8.1) we obtain (8.8), and hence (8.6). ��

In the next proposition we characterise the derivative of Ê(u, ·) with respect to
|C(u)|, for any BV -function u.

Proposition 8.3 (Homogenised Cantor integrand) Let f , g, Eε, (εk), and Ê be as in
Theorem 5.1. Assume that (a) of Theorem 4.1 holds, let fhom be as in (4.2), and let f ∞

hom
denote its recession function (whose existence is guaranteed by the fact that fhom ∈ F).
Then for every A ∈ A and every u ∈ L1

loc(R
n,Rm), with u|A ∈ BV (A,Rm), we have

that

d Ê(u, ·)
d|C(u)| (x) = f ∞

hom

(
dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A.
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Proof Let us fix A ∈ A and u ∈ L1
loc(R

n,Rm), with u|A ∈ BV (A,Rm). We divide
the proof into two steps.

Step 1: We claim that

d Ê(u, ·)
d|C(u)| (x) ≤ f ∞

hom

(
dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A. (8.14)

By Alberti’s rank-one theorem [2] we know that for |C(u)|-a.e. x ∈ A we have

dC(u)

d|C(u)| (x) = a(x) ⊗ ν(x) (8.15)

for a suitable pair (a(x), ν(x)) ∈ R
m ×S

n−1. Moreover, by (a)-(e) of Theorem 5.1 and
by [10, Lemma 3.9] we have that for |C(u)|-a.e. x ∈ A there exists a doubly indexed
positive sequence (tρ,k), with ρ > 0 and k ∈ N, such that

for every k ∈ N tρ,k → +∞ and ρ tρ,k → 0+ as ρ → 0+, (8.16)

d Ê(u, ·)
d|C(u)| (x) = lim

k→+∞ lim sup
ρ→0+

mÊ (	tρ,ka(x)⊗ν(x), Q
ν(x),k
ρ (x))

kn−1ρn tρ,k
. (8.17)

Let x ∈ A be fixed such that (8.15)-(8.17) hold true and set a := a(x) and ν := ν(x).
For every ρ > 0 and every k ∈ N we have

f ∞
hom(a ⊗ ν) = lim

r→+∞
m f ∞,g0(	a⊗ν, Q

ν,k
r ( r x

ρ
))

kn−1rn
, (8.18)

since the above identity directly follows from (8.1) by replacing x with x
ρ
.

Let us fix η ∈ (0, 1
2 ). By (3.4) for every k ∈ N, ρ ∈ (0, 1) and r > 0 there exists

a function v
ρ,k
r ∈ SBV

(
Qν,k

r
( r x

ρ

)
,Rm

)
with v

ρ,k
r = 	a⊗ν near ∂Qν,k

r ( r x
ρ

) and such
that

E f ∞,g0(vρ,k
r , Qν,k

r ( r x
ρ

)) ≤ m f ∞,g0(	a⊗ν, Q
ν,k
r ( r x

ρ
)) + η kn−1rn

≤ (c3|a| + 1)kn−1rn, (8.19)

where we used the fact that f ∞(y, ξ) ≤ c3|ξ |. We extend v
ρ,k
r to R

n by setting
v

ρ,k
r (y) = 	a⊗ν(y) for every y ∈ R

n \ Qν,k
r ( r x

ρ
).

For every y ∈ R
n we define w

ρ,k
r (y) := 1

r v
ρ,k
r ( r x

ρ
+ r y) − 	a⊗ν(

x
ρ
). Clearly

w
ρ,k
r ∈ SBVloc(Rn,Rm) and w

ρ,k
r = 	a⊗ν near ∂Qν,k and in R

n \ Qν,k , where
Qν,k := Qν,k

1 (0). Moreover, by a change of variables, using the 1-homogeneity of g0
in the second variable we have

E f ∞
r ,ρ ,gr ,ρ0 (wρ,k

r , Qν,k) = 1

rn
E f ∞,g0(vρ,k

r , Qν,k
r ( r x

ρ
)), (8.20)
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where E f ∞
r ,ρ ,gr ,ρ0 is the functional with integrands f ∞

r ,ρ(y, ξ) := f ∞( r x
ρ

+ r y, ξ) and

gr ,ρ0 (y, ζ, ν) := g0(
r x
ρ

+ r y, ζ, ν); i.e.,

E f ∞
r ,ρ ,gr ,ρ0 (w, Qν,k) =

∫
Qν,k

f ∞( r x
ρ

+ r y,∇w(y)) dy

+
∫
Sw∩Qν,k

g0(
r x
ρ

+ r y, [w](y), νw(y)) dHn−1(y)

for every w ∈ SBV (Qν,k,Rm). Note that f ∞
r ,ρ ∈ F and gr ,ρ0 ∈ G. By the lower

bounds ( f 3) and (g3), from (8.19) and (8.20), using also Poincaré’s inequality, we
deduce that ‖wρ,k

r ‖L1(Qν,k ,Rm ) + |Dw
ρ,k
r |(Qν,k) ≤ Ckn−1 for every ρ ∈ (0, 1) and

r > 0, with C := 2(c3|a| + 1)/c2 + 2|a|.
By Lemma 4.3 there exist a constant Mη,k > 0, depending also on |a|

and C , such that for every ρ ∈ (0, 1) and r > 0 there exists w̃
ρ,k
r ∈

SBV (Qν,k,Rm) ∩ L∞(Qν,k,Rm) with the following properties: w̃
ρ,k
r = 	a⊗ν near

∂Qν,k , ‖w̃ρ,k
r ‖L∞(Qν,k ,Rm ) ≤ Mη,k , and

E f ∞
r ,ρ ,gr ,ρ0 (w̃ρ,k

r , Qν,k) ≤ E f ∞
r ,ρ ,gr ,ρ0 (wρ,k

r , Qν,k) + η kn−1

≤ m f ∞,g0(	a⊗ν, Q
ν,k
r ( r x

ρ
))

rn
+ 2η kn−1, (8.21)

where the last inequality follows from (8.18) and (8.19). Let ṽρ,k
r ∈ SBVloc(Rn,Rm)

be defined by ṽ
ρ,k
r (y) := rw̃ρ,k

r (
y
r − x

ρ
)+	a⊗ν(

r x
ρ

). Then ṽ
ρ,k
r = 	a⊗ν near ∂Q

ν,k
r ( r x

ρ
)

and, by a change of variables,

‖[ṽρ,k
r ]‖L∞(Sṽ

ρ,k
r ∩Qr (

r x
ρ

),Rm ) ≤ 2Mη,k r , (8.22)

E f ∞,g0(ṽρ,k
r , Qν,k

r ( r x
ρ

)) = rn E f ∞
r ,ρ ,gr ,ρ0 (w̃ρ,k

r , Qν,k)

≤ m f ∞,g0(	a⊗ν, Q
ν,k
r ( r x

ρ
)) + 2η kn−1rn, (8.23)

where the last inequality follows from (8.21). Moreover, by combining (8.19) and
(8.23) with the lower bounds ( f 3) and (g3) we immediately deduce the existence of
a constant C > 0, depending on |a|, such that

1

kn−1rn

∫
Qν,k
r (

r x
ρ

)

|∇ṽρ,k
r | dy ≤ C, (8.24)

1

kn−1rn

∫
Sṽ

ρ,k
r ∩Qν,k

r (
r x
ρ

)

|[ṽρ,k
r ]|dHn−1 ≤ C . (8.25)
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Let ρ ∈ (0, 1) and k ∈ N, with tρ,k > 1. By Lemma 7.1, applied with t = tρ,k , and
(8.24), recalling that α ∈ (0, 1), we obtain that

1

kn−1rn

∫
Qν,k
r ( r x

ρ
)

∣∣∣ f ∞(y,∇ṽρ,k
r ) − 1

tρ,k
f (y, tρ,k∇ṽρ,k

r )

∣∣∣ dy

≤ 1

tρ,k
c5(1 + c1−α

4 ) + 1

tαρ,k
c5c

1−α
3 C1−α ≤ K1

tαρ,k
, (8.26)

where K1 := c5(1 + c1−α
4 ) + c5c

1−α
3 C1−α .

For every r > 0 and ρ ∈ (0, 1) we can apply Lemma 6.1 with t := ρ tρ,k
r . By (8.22)

and (8.25) we obtain

1

kn−1rn

∫
Sṽ

ρ,k
r ∩Qν,k

r ( r x
ρ

)

∣∣g0(y, [ṽρ,k
r ], ν

ṽ
ρ,k
r

) − r
ρ tρ,k

g(y,
ρ tρ,k
r [ṽρ,k

r ], ν
ṽ

ρ,k
r

)
∣∣ dHn−1

≤ λ(2Mη,k ρ tρ,k)C (8.27)

for every r > 0 and ρ ∈ (0, 1).
Estimates (8.26) and (8.27), together with (8.18) and (8.23), give

lim sup
r→+∞

1

kn−1rntρ,k

( ∫
Qν,k
r ( r x

ρ
)

f (y, tρ,k∇ṽρ,k
r ) dy

+ r

ρ

∫
S
ṽ
ρ,k
r

∩Qν,k
r ( r x

ρ
)

g(y,
ρ tρ,k
r [ṽρ,k

r ], ν
ṽ

ρ,k
r

) dHn−1
)

≤ f ∞
hom(a ⊗ ν) + 2η + K1t

−α
ρ,k + λ(2Mη,k ρ tρ,k)C . (8.28)

Given k ∈ N and ρ ∈ (0, 1), for every ε > 0 and y ∈ R
n we define uρ,k

ε (y) :=
ε tρ,k ṽ

ρ,k
r (

y
ε
) = ρ

r tρ,k ṽ
ρ,k
r (

r y
ρ

), with r := ρ/ε. Then uρ,k
ε ∈ SBVloc(Rn,Rm), uρ,k

ε =
tρ,k	a⊗ν near ∂Qν,k

ρ (x) and in R
n \ Qν,k

ρ (x). By a change of variables, from (8.28)
we have

lim sup
ε→0+

Eε(u
ρ,k
ε , Qν,k

ρ (x))

kn−1ρntρ,k
≤ f ∞

hom(a ⊗ ν) + 2η + K1t
−α
ρ,k + λ(2Mη,kρ tρ,k)C .

(8.29)

Since uρ,k
ε coincides with tρ,k	a⊗ν in R

n \ Qν,k
ρ (x), using Poincaré’s inequality

and the lower bounds ( f 3) and (g3) we deduce from (8.29) that for every ρ > 0
there exists ε(ρ) > 0 such that the functions uρ,k

ε are bounded in BVloc(Rn,Rm)

uniformly with respect to ε ∈ (0, ε(ρ)). Then there exists a subsequence, not rela-
belled, of the sequence (ε j ) considered in Theorem 5.1, such that (uρ,k

ε j ) converges in
L1
loc(R

n,Rm) to some uρ,k ∈ BVloc(Rn,Rm) as j → +∞ with uρ,k = tρ,k	a⊗ν in

Qν,k
(1+η)ρ(x) \ Qν,k

ρ (x). As a consequence of the �-convergence of Eε j (·, Qν,k
(1+η)ρ(x))

to Ê(·, Qν,k
(1+η)ρ(x)), from (8.29) we obtain
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mÊ (	tρ,ka⊗ν, Q
ν,k
(1+η)ρ(x))

kn−1ρn tρ,k
≤ Ê(uρ, Qν,k

(1+η)ρ(x))

kn−1ρn tρ,k
≤ lim sup

j→+∞

Eε j (u
ρ
ε j , Q

ν,k
(1+η)ρ(x))

kn−1ρn tρ,k

≤ f ∞
hom(a ⊗ ν) + 2η + K1t

−α
ρ,k + λ(2Mη,k ρ tρ,k)C .

Now, passing to the limit as ρ → 0+, from (8.16) and (3.8) we get

lim sup
ρ→0+

mÊ (	tρ,ka⊗ν, Q
ν,k
(1+η)ρ(x))

kn−1ρn tρ,k
≤ f ∞

hom(a ⊗ ν) + 2η.

Finally, passing to the limit as k → +∞, by (8.17) we obtain

(1 + η)n
d Ê(u, ·)
d|C(u)| (x) ≤ f ∞

hom(a ⊗ ν) + 2η.

Sincea := a(x) and ν = ν(x), by (8.15) this inequality gives (8.14) by the arbitrariness
of η > 0.

Step 2: We claim that

d Ê(u, ·)
d|C(u)| (x) ≥ f ∞

hom

(
dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A. (8.30)

We extend u to R
n by setting u = 0 on R

n \ A. By �-convergence there exists
(uε) ⊂ L1

loc(R
n,Rm), with uε|A ∈ SBV (A,Rm), such that

uε → u in L1
loc(R

n,Rm) and lim
ε→0+ Eε(uε, A) = Ê(u, A), (8.31)

along the sequence (ε j ) considered in Theorem 5.1.
For |C(u)|-a.e. x ∈ A there exist a(x) ∈ R

m and ν(x) ∈ S
n−1 such that for every

k ∈ N we have

lim
ρ→0+

Du(Qν,k
ρ (x))

|Du|(Qν,k
ρ (x))

= dC(u)

d|C(u)| (x) = a(x) ⊗ ν(x), (8.32)

lim
ρ→0+

|Du|(Qν,k
ρ (x))

ρn
= +∞, (8.33)

lim
ρ→0+

|Du|(Qν,k
ρ (x))

ρn−1 = 0, (8.34)

lim
ρ→0+

Ê(u, Qν,k
ρ (x))

|Du|(Qν,k
ρ (x))

= d Ê(u, ·)
d|Du| (x) < +∞, (8.35)

where (8.32) follows by [2, Corollary 3.9], (8.33) and (8.34) are consequences of
[4, Proposition 2.2], while (8.35) holds true thanks to a generalised version of the
Besicovitch Differentiation Theorem (see [31] and [26, Sections 1.2.1-1.2.2]).
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Let us fix x ∈ A such that (8.32)-(8.35) hold true, and set a := a(x) and ν := ν(x).
For k ∈ N and ρ ∈ (0, 1) we set

tρ,k := |Du|(Qν,k
ρ (x))

kn−1ρn
.

Then

d Ê(u, ·)
d|C(u)| (x) = d Ê(u, ·)

d|Du| (x) = lim
ρ→0+

Ê(u, Qν,k
ρ (x))

kn−1ρntρ,k
. (8.36)

Note that, by (8.33) and (8.34), the following properies hold:

for every k ∈ N tρ,k → +∞ and ρ tρ,k → 0+ as ρ → 0+. (8.37)

Recalling (5.1), we have that Ê(u, Qν,k
ρ (x)) ≤ c3|Du|(Qν,k

ρ (x)) + c4kn−1ρn , hence
by (8.37) there exists ρk ∈ (0, 1) such that

Qν,k
ρ (x) ⊂⊂ A and

Ê(u, Qν,k
ρ (x))

kn−1ρntρ,k
≤ c3 + 1 for every ρ ∈ (0, ρk). (8.38)

Since Ê(u, ·) is a Radon measure, there exists a set Bk ⊂ (0, ρk), with (0, ρk) \ Bk at
most countable, such that Ê(u, ∂Qν,k

ρ (x)) = 0 for every ρ ∈ Bk . Proceeding as in the
proof of (6.18) and (7.14), by (8.31) we can show that for every ρ ∈ Bk

lim
ε→0+ Eε(uε, Q

ν,k
ρ (x)) = Ê(u, Qν,k

ρ (x)). (8.39)

Hence, for every ρ ∈ Bk there exists ε(ρ, k) > 0 such that for every ε ∈ (0, ε(ρ, k))

Eε(uε, Qν,k
ρ (x))

kn−1ρn tρ,k
≤ Ê(u, Qν,k

ρ (x))

kn−1ρn tρ,k
+ ρ ≤ c3 + 2, (8.40)

where in the last inequality we used (8.38).
Now, for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)) we consider the blow-up functions

defined for y ∈ Qν,k := Qν,k
1 (0) by

wρ,k
ε (y) := 1

kn−1ρ tρ,k

(
uε(x + ρy) − 1

kn−1ρn

∫
Qν,k

ρ (x)
uε(z) dz

)

wρ,k(y) := 1

kn−1ρ tρ,k

(
u(x + ρy) − 1

kn−1ρn

∫
Qν,k

ρ (x)
u(z) dz

)
.

Then w
ρ,k
ε ∈ SBV (Qν,k,Rm) and wρ,k ∈ BV (Qν,k,Rm). Since uε → u in

L1(Qν,k
ρ (x),Rm) by (8.31), for every ρ ∈ Bk we obtain

wρ,k
ε → wρ,k in L1(Qν,k,Rm) as ε → 0+. (8.41)
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Moreover, recalling (8.32), we have that the function wρ,k satisfies

∫
Qν,k

wρ,k(y) dy=0 and Dwρ,k(Qν,k)= Du(Qν,k
ρ (x))

|Du|(Qν,k
ρ (x))

→ a⊗ν as ρ → 0+.

By [4, Theorem 2.3] and [29, Lemma 5.1] up to a subsequence (not relabelled),

wρ,k → wk in L1(Qν,k,Rm) as ρ → 0+, (8.42)

where wk ∈ BV (Qν,k,Rm) can be represented as

wk(y) = ψk(y · ν)a, (8.43)

ψk( 12 ) − ψk(− 1
2 ) = 1

kn−1 and
∫ 1/2

−1/2
ψk(t) dt = 0, (8.44)

with ψk nondecreasing. By monotonicity these equalities imply that − 1
kn−1 ≤

ψk(− 1
2 ) ≤ 0 ≤ ψk( 12 ) ≤ 1

kn−1 , and so

|ψk(t)| ≤ 1
kn−1 for every t ∈ [− 1

2 ,
1
2 ]. (8.45)

By a change of variables we obtain the equality

Eε(uε, Qν,k
ρ (x))

kn−1ρn tρ,k
= Eρ,k

ε (wρ,k
ε , Qν,k), (8.46)

where Eρ,k
ε is the functional corresponding to the integrands f ρ,k

ε (y, ξ) :=
1

kn−1tρ,k
f ( x+ρy

ε
, kn−1tρ,k ξ) and gρ,k

ε (y, ζ, ν) := 1
kn−1ρ tρ,k

g( x+ρy
ε

, kn−1ρ tρ,kζ, ν);

i.e.,

Eρ,k
ε (w, Qν,k) :=

∫
Qν,k

1

kn−1 tρ,k
f ( x+ρy

ε
, kn−1tρ,k∇w(y)) dy

+
∫
Sw∩Qν,k

1

kn−1ρ tρ,k
g( x+ρy

ε
, kn−1ρ tρ,k[w](y), νw(y))dHn−1(y)

(8.47)

for every w ∈ SBV (Qν,k,Rm). Note that f ρ,k
ε satisfies ( f 3) and ( f 4), the latter with

c4 replaced by c4/(kn−1tρ,k), while g
ρ,k
ε satisfies (g3) and (g4).

Let 	k be the affine function onRn which satisfies 	k(y) = ψk(± 1
2 )a for y·ν = ± 1

2 ;
i.e.,

	k(y) := 1
kn−1 	a⊗ν(y) + (

ψk( 12 ) − 1
2kn−1

)
a = ( 1

kn−1 y · ν + ψk( 12 ) − 1
2kn−1

)
a

(8.48)
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for every y ∈ R
n . We now want to modify w

ρ,k
ε in a way such that it attains the

boundary datum 	k near ∂⊥
ν Qν,k (see (i) in Section 2 and after (3.4)). This will be

done by applying the Fundamental Estimate [11, Proposition 3.1] to the functionals
Eρ,k

ε . First note that, since by (8.37) tρ,k → +∞ as ρ → 0+, we can reduce the value
of the constant ρk > 0 introduced in (8.38) so that tρ,k ≥ 1 for every ρ ∈ (0, ρk).

Therefore, for η ∈ (0, 1
2 ) fixed, by slightly modifying the proof of [11, Proposition

3.1] we obtain the following property: for every k ∈ N, ρ ∈ Bk , and ε ∈ (0, ε(ρ, k))
there exists a cut-off function ϕ

ρ,k
ε ∈ C∞

c (Qν,k), with 0 ≤ ϕ
ρ,k
ε ≤ 1 in Qν,k ,

supp(ϕρ,k
ε ) ⊂ Rν,k

1−η := Rν

([− k
2 ,

k
2 ]n−1 × [− 1−η

2 ,
1−η
2 ]), and ϕ

ρ,k
ε = 1 in Rν,k

1−2η :=
Rν

([− k
2 ,

k
2 ]n−1×[− 1−2η

2 ,
1−2η
2 ]), such that, setting ŵ

ρ,k
ε := ϕ

ρ,k
ε w

ρ,k
ε +(1−ϕ

ρ,k
ε )	k

and Sν,k
2η := Qν,k \ R

ν,k
1−2η, we have

Eρ,k
ε (ŵρ,k

ε , Qν,k) ≤ (1 + η)
(
Eρ,k

ε (wρ,k
ε , Qν,k) + Eρ,k

ε (	k, Sν,k
2η )

)
+ L

η
‖wρ,k

ε − 	k‖L1(Sν,k
2η ,Rm )

, (8.49)

where L > 0 is independent of η, k, ρ, and ε. By definition we clearly have ŵ
ρ
ε = 	k in

Qν,k \Rν,k
1−η, as desired.Moreover, from the bound f ρ,k

ε (y, ξ) ≤ c3|ξ |+c4/(kn−1tρ,k)

we obtain the bound

Eρ,k
ε (	k, Sν,k

2η )) ≤
∫
Sν,k
2η

(c3|∇	k | + c4
kn−1tρ,k

) dy

= (c3|a|
kn−1 + c4

kn−1tρ,k

)
Ln(Sν,k

2η ) = (
c3|a| + c4

tρ,k

)
2η. (8.50)

Hence, from (8.40), (8.46), and (8.49), using also the inequalities η < 1
2 and tρ,k ≥ 1,

we obtain

Eρ,k
ε (ŵρ,k

ε , Qν,k) ≤ 3

2

(
c3 + 2 + c3|a| + c4

) + L
η
‖wρ,k

ε − 	k‖L1(Sν,k
2η ,Rm )

. (8.51)

We can estimate the last term in the following way:

‖wρ,k
ε −	k‖L1(Sν,k

2η ,Rm )
≤ ‖wρ,k

ε −wρ,k‖L1(Qν,k,Rm )

+ ‖wρ,k−wk‖L1(Qν,k,Rm ) + ‖wk−	k‖L1(Sν,k
2η ,Rm )

. (8.52)

By (8.43) and (8.48), thanks to a change of variables we have

‖wk − 	k‖L1(Sν,k
2η ,Rm )

= |a|
∫
Sν,k
2η

|ψk(y · ν) − 1
kn−1 y · ν − ψk( 12 ) + 1

2kn−1 | dy

= |a|kn−1
∫
Iη∪Jη

|ψk(t) − 1
kn−1 t − ψk( 12 ) + 1

2kn−1 | dt,
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where Iη = (− 1
2 ,− 1

2 + η) and Jη = ( 12 − η, 1
2 ). Hence, by (8.44) and (8.45),

by using the continuity of ψk at the endpoints, there exists a continuous function
τk : [0, 1

2 ] → [0, 3], with τk(0) = 0, such that

kn−1|ψk(t) − 1
kn−1 t − ψk( 12 ) + 1

2kn−1 | ≤ τk(η) for every t ∈ Iη ∪ Jη.

This gives

‖wk − 	k‖L1(Sν,k
2η ,Rm )

≤ 2|a|ητk(η). (8.53)

In particular, from (8.41), (8.42), (8.52), and (8.53), possibly reducing the values of
the constants ρk > 0 and ε(ρ, k) > 0, we obtain

‖wρ,k
ε − 	k‖L1(Sν,k

2η ,Rm )
≤ 1, (8.54)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)).
Note that ( f 3), (g3), (8.51), and (8.54) imply that the total variation of ŵ

ρ
ε in Qν,k

is bounded uniformly with respect to ρ ∈ Bk and ε ∈ (0, ε(ρ, k)). Since ŵ
ρ
ε = 	k

near ∂⊥
ν Qν,k , using Poincaré’s inequality we obtain a uniform bound also for the L1

norm of ŵ
ρ
ε in Qν,k . Hence by Lemma 4.3 and Remark 4.4 there exists a constant

Mη,k > 0 with the following property: for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)) there

exists w̃
ρ,k
ε ∈ SBV (Qν,k,Rm) ∩ L∞(Qν,k,Rm), with w̃

ρ,k
ε = 	k near ∂⊥

ν Qν,k , such
that

‖w̃ρ,k
ε ‖L∞(Qν,k ,Rm ) ≤ Mη,k and Eρ,k

ε (w̃ρ,k
ε , Qν,k) ≤ Eρ,k

ε (ŵρ,k
ε , Qν,k) + η.

(8.55)

Wenowset r := ρ
ε
andv

ρ,k
ε (y) := rw̃ρ,k

ε (
y
r − x

ρ
)+ r

ρ
1

kn−1 	a⊗ν(x)−r
(
ψk( 12 )− 1

2kn−1

)
a;

then v
ρ,k
ε ∈ SBV (Qν,k

r ( r x
ρ

),Rm), v
ρ,k
ε = 1

kn−1 	a⊗ν near ∂⊥
ν Qν,k

r ( r x
ρ

), and, by a
change of variables

‖[vρ,k
ε ]‖L∞(Sv

ρ,k
ε ∩Qν,k

r ( r x
ρ

),Rm )
≤ 2Mη,k r , (8.56)

∫
Qν,k
r (

r x
ρ

)

f (y, kn−1tρ,k∇vρ,k
ε ) dy

+1

ε

∫
Sv

ρ,k
ε ∩Qν,k

r (
r x
ρ

)

g(y, kn−1ε tρ,k[vρ,k
ε ], ν

v
ρ,k
ε

)dHn−1

= kn−1rntρ,k E
ρ,k
ε (w̃ρ,k

ε , Qν,k). (8.57)

Moreover, recalling (8.47) and combining (8.51), (8.54), (8.55), and (8.57) with the
lower bounds ( f 3) and (g3), we deduce the existence of a constant C > 0 such that

1

rn

∫
Qν,k
r (

r x
ρ

)

|∇vρ,k
ε |(y) dy ≤ C (8.58)
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1

rn

∫
Sv

ρ,k
ε ∩Qν,k

r (
r x
ρ

)

|[vρ,k
ε ]|dHn−1 ≤ C . (8.59)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)).
By Lemma 7.1, applied with t = kn−1tρ,k , using (8.58) and the inequality tρ,k ≥ 1

we obtain

1

rn

∫
Qν,k
r ( r x

ρ
)

∣∣∣ f ∞(y,∇vρ,k
ε ) − 1

kn−1tρ,k
f (y, kn−1tρ,k∇vρ,k

ε )

∣∣∣ dy

≤ 1

tρ,k
c5(1 + c1−α

4 ) + 1

tαρ,k
c5c

1−α
3 C1−α ≤ K1

tαρ,k
, (8.60)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)), where, as in (8.26), K1 := c5(1 + c1−α
4 ) +

c5c
1−α
3 C1−α .
Now note that, since by (8.37) ρtρ,k → 0+ as ρ → 0+, we can reduce the value

of the constant ρk > 0 introduced in (8.38) so that 2Mη,kkn−1ρ tρ,k ≤ 1 for every
ρ ∈ (0, ρk). By Lemma 6.1, applied with t := kn−1ε tρ,k , using (8.56) and (8.59), we
deduce that

1

rn

∫
Sv

ρ,k
ε ∩Qν,k

r (
r x
ρ

)

∣∣g0(y, [vρ,k
ε ], ν

v
ρ,k
ε

) − 1
kn−1ε tρ,k

g(y, kn−1ε tρ,k [vρ,k
ε ], ν

v
ρ,k
ε

)
∣∣ dHn−1

≤ λ(2Mη,kk
n−1ρ tρ,k)

1

rn

∫
Sv

ρ,k
ε

∩Qν,k
r ( r x

ρ
)

|[vρ,k
ε ]| dHn−1 ≤ λ(2Mη,kk

n−1ρ tρ,k)C,

(8.61)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)).
From (8.46), (8.49), (8.50), (8.54), (8.55), (8.57), (8.60), and (8.61) we obtain

E f ∞,g0(v
ρ,k
ε , Qν,k

r ( r x
ρ

))

rn
≤ (1 + η)

Eε(uε, Qν,k
ρ (x))

kn−1ρntρ,k
+

(3
2

(
c3|a| + 2c4

tρ,k

) + 1
)
η

+ L

η
‖wρ,k

ε −	k‖L1(Sν,k
2η ,Rm )

+ K1

tαρ,k
+λ(2Mη,kk

n−1ρ tρ,k)C .

(8.62)

By the positive 1-homogeneity of E f ∞,g0 , thanks to (8.7), and recalling that v
ρ,k
ε =

1
kn−1 	a⊗ν near ∂⊥

ν Qν,k
r ( r x

ρ
), we have

m̃ f ∞,g0
(
	a⊗ν, Q

ν,k
r

( r x
ρ

))
kn−1rn

≤ E f ∞,g0(v
ρ,k
ε , Qν,k

r ( r x
ρ

))

rn
.
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Combining this inequality with (8.62), we obtain

m̃ f ∞,g0
(
	a⊗ν, Q

ν,k
r

( r x
ρ

))
kn−1rn

≤ (1 + η)
Eε(uε, Qν,k

ρ (x))

kn−1ρntρ,k
+

(3
2

(
c3|a| + 2c4

tρ,k

) + 1
)
η

+ L

η
‖wρ,k

ε −	k‖L1(Sν,k
2η ,Rm )

+ K1

tαρ,k
+λ(2Mη,kk

n−1ρ tρ,k)C .

Passing to the limit as ε → 0+, recalling that r = ρ
ε
, and thanks to (8.39) and (8.41),

we have

lim sup
r→+∞

m̃ f ∞,g0
(
	a⊗ν, Q

ν,k
r

( r x
ρ

))
kn−1rn

≤ (1 + η)
Ê(u, Qν,k

ρ (x))

kn−1ρntρ,k
+

(3
2

(
c3|a| + 2c4

tρ,k

) + 1
)
η

+ L

η
‖wρ,k − 	k‖L1(Sν,k

2η ,Rm )
+ K1

tαρ,k
+ λ(2Mη,k k

n−1ρ tρ,k)C .

Now, passing to the limit as ρ → 0+, by (3.8), (8.36), and (8.37), and (8.42),

lim sup
r→+∞

m̃ f ∞,g0
(
	a⊗ν, Q

ν,k
r

( r x
ρ

))
kn−1rn

≤ (1 + η)
d Ê(u, ·)
d|C(u)| (x) +

(3
2
c3|a| + 1

)
η + L

η
‖wk − 	k‖L1(Sν,k

2η ,Rm )
.

Passing to the limit as η → 0+, by (8.53) we deduce that

lim sup
r→+∞

m̃ f ∞,g0
(
	a⊗ν, Q

ν,k
r

( r x
ρ

))
kn−1rn

≤ d Ê(u, ·)
d|C(u)| (x).

Finally, taking the limit as k → +∞, by (8.6) we deduce that

f ∞
hom(a ⊗ ν) = lim

k→+∞ lim sup
r→+∞

m̃ f ∞,g0
(
	a⊗ν, Q

ν,k
r

( r x
ρ

))
kn−1rn

≤ d Ê(u, ·)
d|C(u)| (x).

By (8.32), this concludes the proof of (8.30), since a = a(x) and ν = ν(x). ��
We are now in a position to prove the deterministic homogenisation theorem.

Proof of Theorem 4.1 By Lemma 4.2 the function fhom defined by (4.2) belongs to F
and by Lemma 4.5 the function ghom defined by (4.3) belongs to G. By Theorem 5.1
for every sequence of positive numbers converging to zero, there exist a subsequence
(ε j ) and a functional Ê : L1

loc(R
n,Rm)×A −→ [0,+∞] such that for every A ∈ A

the functionals Eε j (·, A) �-converge to Ê(·, A) in L1
loc(R

n,Rm), as j → +∞.
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Let us fix A ∈ A and u ∈ L1
loc(R

n,Rm). If u|A ∈ BV (A,Rm), then by Theo-
rem 5.1(c) and (d) the function Ê(u, ·) is a nonnegative bounded Radon measure on
B(A), which satisfies the inequality Ê(u, ·) ≤ c3|Du| + c4Ln . By the decomposi-
tion of the gradient of a BV function (see (f) in Section 2), the measure Ê(u, ·) is
absolutely continuous with respect to the measure Ln + Hn−1 Su + |C(u)|. Since
Ln , Hn−1 Su , and |C(u)| are carried by disjoint Borel sets, by the properties of the
Radon-Nikodym derivatives mentioned in (j) of Section 2 we have

Ê(u, A) =
∫
A

d Ê(u, ·)
dLn

dx +
∫
Su∩A

d Ê(u, ·)
dHn−1 Su

dHn−1 +
∫
A

d Ê(u, ·)
d|C(u)| d|C(u)|.

Using Propositions 6.2, 7.2, and 8.3 we obtain

Ê(u, A) =
∫
A
fhom(∇u) dx +

∫
Su∩A

ghom([u], νu)dHn−1

+
∫
A
f ∞
hom

( dC(u)

d|C(u)|
)
d|C(u)|.

If u|A /∈ BV (A,Rm), we have Ê(u, A) = +∞ by Theorem 5.1(c). Therefore,

Ê(u, A) = Ehom(u, A) for every u ∈ L1
loc(R

n,Rm) and every A ∈ A ,

where Ehom is the functional defined in (4.4). Since the limit does not depend on the
subsequence, by the Urysohn property of �-convergence in L1

loc(R
n,Rm) (see [18,

Proposition 8.3]) the functionals Eε(·, A) �-converge to Ehom(·, A) in L1
loc(R

n,Rm),
as ε → 0+. ��

9 Stochastic homogenisation

In this section we prove Theorems 3.17 and 3.18 concerning stationary random inte-
grands, according to Definition 3.12. We adopt the shorthand notation introduced
in (3.16).

We start by proving the existence of the limits which define the the homogenised
random volume integrand fhom.

Proposition 9.1 (Homogenised random volume integrand) Let f be a stationary ran-
dom volume integrand and let g be a stationary random surface integrand with respect
to a group (τz)z∈Zn of P-preserving transformations on (�, T , P). Then there exists
�′ ∈ T , with P(�′) = 1, such that for every ω ∈ �′, x ∈ R

n, ξ ∈ R
m×n, ν ∈ S

n−1,
k ∈ N, and ρ > 0 the limit

lim
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
ρr (r x))

kn−1ρnrn
(9.1)
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exists and is independent of x, ν, k, and ρ. More precisely, there exists a random
volume integrand fhom : � ×R

m×n → [0,+∞) such that for every ω ∈ �′, x ∈ R
n,

ξ ∈ R
m×n, ν ∈ S

n−1, k ∈ N, and ρ > 0

fhom(ω, ξ) = lim
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
ρr (r x))

kn−1ρnrn
= lim

r→+∞
m f ,g0

ω (	ξ , Qr (0))

rn
. (9.2)

If, in addition, (τz)z∈Zn is ergodic, then fhom is independent of ω and

fhom(ξ) = lim
r→+∞

1

rn

∫
�

m f ,g0
ω (	ξ , Qr (0)) dP(ω).

Proof We divide the proof into four main steps.
Step 1: Existence of the limit in (9.1) for ξ ∈ Q

m×n and ν ∈ S
n−1 ∩ Q

n fixed.
Let (�, T̂ , P̂) denote the completion of the probability space (�, T , P). Let ξ ∈

Q
m×n and ν ∈ S

n−1 ∩ Q
n be fixed. For every ω ∈ � and A ∈ In (see (3.15)) we set

μξ,ν(ω, A) := 1

Mn
ν

m f ,g0
ω (	ξ , MνRν A), (9.3)

where Rν is the orthogonal n × n matrix defined in (h) in Section 2, and Mν is a
positive integer such that MνRν ∈ Z

n×n .
Wenowclaim that themapμξ,ν : �×In → Rdefines ann-dimensional subadditive

process on (�, T̂ , P̂), according to Definition 3.13.
We start observing that the T̂ -measurability of ω �→ μξ,ν(ω, A) follows from

the T̂ -measurability of ω �→ m f ,g0
ω (	ξ , A) for every A ∈ A , which is ensured by

Proposition A.12, taking into account Remark 3.9. We are now going to prove that
μξ,ν is covariant; that is, we show that there exists a group (τ ν

z )z∈Zn of P̂-preserving
transformations on (�, T̂ , P̂) such that

μξ,ν(ω, A + z) = μξ,ν(τ
ν
z (ω), A), for every ω ∈ �, z ∈ Z

n, and A ∈ In .

We have

MνRν(A + z) = MνRν A + MνRνz = MνRν A + zν,

where zν := MνRνz ∈ Z
n . Then by (9.3) we get

μξ,ν(ω, A + z) = 1

Mn
ν

m f ,g0
ω (	ξ , MνRν A + zν).

Given u ∈ SBV (int(MνRν A + zν),Rm) with u = 	ξ near ∂(MνRν A + zν), let
v ∈ SBV (int(MνRν A),Rm) be defined as v(x) := u(x+ zν)−ξ zν for every x ∈ R

n .
By a change of variables, using the stationarity of f and g0 we obtain

∫
Mν Rν A+zν

f (ω, x,∇u) dx +
∫
Su∩(Mν Rν A+zν )

g0(ω, x, [u], νu) dHn−1
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=
∫
Mν Rν A

f (ω, x + zν,∇v) dx +
∫
Sv∩(Mν Rν A)

g0(ω, x + zν, [v], νv) dHn−1

=
∫
Mν Rν A

f (τzν (ω), x,∇v) dx +
∫
Sv∩(Mν Rν A)

g0(τzν (ω), x, [v], νv) dHn−1.

Since we have v = 	ξ near ∂(MνRν A), we deduce that

m f ,g0
ω (	ξ , MνRν A + zν) = m f ,g0

τzν (ω)(	ξ , MνRν A),

and hence the covariance of μξ,ν with respect to the group of P̂-preserving transfor-
mations (τ ν

z )z∈Zn := (τzν )z∈Zn .
We now show thatμξ,ν is subadditive. To this end let A ∈ In and let (Ai )i=1,...,N ⊂

In be a finite family of pairwise disjoint sets such that A = ⋃N
i=1 Ai . For fixed η > 0

and i = 1, . . . , N , let ui ∈ SBV (int(MνRν Ai ),R
m), with ui = 	ξ near ∂(MνRν Ai ),

be such that

∫
Mν Rν Ai

f (ω, x,∇ui ) dx +
∫
Sui ∩(Mν Rν Ai )

g0(ω, x, [ui ], νui ) dHn−1

≤ m f ,g0
ω (	ξ , MνRν Ai ) + η

and on MνRν A define u(x) := ui (x) if x ∈ MνRν Ai for i = 1, . . . , N . By
construction we have that u is a competitor for m f ,g0

ω (	ξ , MνRν A), since u ∈
SBV (MνRν A,Rm) and u = 	ξ near ∂(MνRν A). Moreover Su ∩ ∂(MνRν Ai ) = ∅
for every i = 1, . . . , N . Therefore it holds

m f ,g0
ω (	ξ , MνRν A) ≤

∫
Mν Rν A

f (ω, x, ∇u) dx +
∫
Su∩(Mν Rν A)

g0(ω, x, [u], νu) dHn−1

=
N∑
i=1

( ∫
Mν Rν Ai

f (ω, x,∇ui ) dx

+
∫
Sui ∩(Mν Rν Ai )

g0(ω, x, [ui ], νui ) dHn−1
)

≤
N∑
i=1

m f ,g0
ω (	ξ , MνRν Ai ) + Nη,

thus the subadditivity of μξ,ν follows from (9.3), by the arbitrariness of η > 0. Note
that the same proof shows that

m f ,g0
ω

(
	ξ ,

N⋃
i=1

Ai

)
≤

N∑
i=1

m f ,g0
ω (	ξ , Ai ) (9.4)

for every finite disjoint family (Ai )i=1,...,N ⊂ In,
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even when
⋃N

i=1 Ai /∈ In .
Eventually, in view of ( f 4) we have

μξ,ν(ω, A) = 1

Mn
ν

m f ,g0
ω (	ξ , MνRν A)

≤ 1

Mn
ν

∫
Mν Rν A

f (ω, x, ξ) dx ≤ (c3|ξ | + c4)Ln(A), (9.5)

for every ω ∈ �.
We note now that for every x ∈ R

n , k ∈ N, and ρ > 0, we have that (Qen ,k
ρr (r x))r>0

is a regular family in In (cf. Definition 3.14). Therefore for every fixed ξ ∈ Q
n

and ν ∈ S
n−1 ∩ Q

n we can apply Theorem 3.15 to the subadditive process μξ,ν on
(�, T̂ , P̂) to deduce the existence of a T̂ -measurable function ϕξ,ν : � → [0,+∞)

and a set �̂ξ,ν ⊂ �, with �̂ξ,ν ∈ T̂ and P(�̂ξ,ν) = 1 such that

lim
r→+∞

μξ,ν(ω, Qen ,k
ρr (r x))

kn−1ρnrn
= ϕξ,ν(ω), (9.6)

for every ω ∈ �̂ξ,ν , x ∈ R
n , k ∈ N, and ρ > 0. Then, by the properties of the

completion there exist a set �ξ,ν ∈ T , with P(�ξ,ν) = 1, and a T -measurable
function, which we still denote by ϕξ,ν , such that (9.6) holds for every ω ∈ �ξ,ν . Thus
choosing in (9.6) x = 0, k = 1, and ρ = 1, thanks to (9.3) we get

ϕξ,ν(ω) = lim
r→+∞

μξ,ν(ω, Qr (0))

rn
= lim

r→+∞
m f ,g0

ω (	ξ , Qν
r (0))

rn
.

Furthermore, if (τz)z∈Zn is ergodic, then Theorem3.15 ensures thatϕξ,ν is independent
of ω.
Step 2: Existence of the limit in (9.1) for every ξ ∈ R

m×n and ν ∈ S
n−1.

Let �̃ denote the intersection of the sets �ξ,ν for ξ ∈ Q
n and ν ∈ S

n−1 ∩ Q
n ;

clearly �̃ ∈ T and P(�̃) = 1. For every k ∈ N and ρ > 0 we now introduce the
auxiliary functions f ρ,k, f ρ,k : �̃ × R

n × R
m×n × S

n−1 → [0,+∞) defined as

f ρ,k(ω, x, ξ, ν) := lim inf
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
ρr (r x))

kn−1ρnrn

f ρ,k(ω, x, ξ, ν) := lim sup
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
ρr (r x))

kn−1ρnrn
.

We notice that

f ρ,k(ω, x, ξ, ν) = f ρ,k(ω, x, ξ, ν) = ϕξ,ν(ω) (9.7)

for every ω ∈ �̃, ξ ∈ Q
m×n , ν ∈ S

n−1 ∩Q
n , k ∈ N, and ρ > 0. The proof of property

(4.8) in Lemma 4.2 can be adapted to the rectangles Qν,k
ρr (r x), obtaining that for every
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ω ∈ �̃, x ∈ R
n , ν ∈ S

n−1, k ∈ N, and ρ > 0, the functions ξ �→ f ρ,k(ω, x, ξ, ν) and

ξ �→ f ρ,k(ω, x, ξ, ν) are continuous on R
m×n , and their modulus of continuity does

not depend on ω, x , ν, k, and ρ. By (9.7) this implies that for every ξ ∈ R
m×n and

ν ∈ S
n−1 ∩ Q

n there exists a T -measurable function, which we still denote by ϕξ,ν ,
such that

f ρ,k(ω, x, ξ, ν) = f ρ,k(ω, x, ξ, ν) = ϕξ,ν(ω) (9.8)

for every ω ∈ �̃, x ∈ R
n , k ∈ N, and ρ > 0.

We now show that, for every ω ∈ �̃, x ∈ R
n , ξ ∈ R

m×n , k ∈ N, and ρ > 0,
the functions ν �→ f ρ,k(ω, x, ξ, ν) and ν �→ f ρ,k(ω, x, ξ, ν), restricted to Ŝ

n−1+ and

Ŝ
n−1− , are continuous. We will only prove this property for f ρ,k and Ŝ

n−1+ , the other
proofs being analogous. To this end, let ω ∈ �̃, x ∈ R

n , ξ ∈ R
m×n , k ∈ N, and

ρ > 0 be fixed. Let ν ∈ Ŝ
n−1+ and let (ν j ) ⊂ Ŝ

n−1+ be such that ν j → ν as j → +∞.
Since ν �→ Rν is continuous in Ŝn−1+ , for every δ ∈ (0, 1/2) there exists an integer ĵ ,
depending on ρ, k, and δ, such that

Q
ν j ,k
(1−δ)ρr (r x) ⊂⊂ Qν,k

ρr (r x) ⊂⊂ Q
ν j ,k
(1+δ)ρr (r x)

for every j ≥ ĵ and r > 0. Given r > 0, j ≥ ĵ , and η > 0, let u ∈
SBV (Qν,k

ρr (r x),Rm) be such that u = 	ξ near ∂Qν,k
ρr (r x) and

∫
Qν,k

ρr (r x)
f (ω, y,∇u) dy +

∫
Su∩Qν,k

ρr (r x)
g0(ω, y, [u], νu) dHn−1

≤ m f ,g0
ω (	ξ , Q

ν,k
ρr (r x)) + ηkn−1ρnrn .

We define now v ∈ SBV (Q
ν j ,k
(1+δ)ρr (r x),R

m) as

v(y) =
{
u(y) if y ∈ Qν,k

ρr (r x),

	ξ (y) if y ∈ Q
ν j ,k
(1+δ)ρr (r x) \ Qν,k

ρr (r x).

Note that v = 	ξ near ∂Q
ν j ,k
(1+δ)ρr (r x) and that ∂Qν,k

ρr (r x) ∩ Sv = ∅. Therefore,

m f ,g0
ω (	ξ , Q

ν j ,k
(1+δ)ρr (r x))

≤
∫
Q

ν j ,k

(1+δ)ρr (r x)
f (ω, y,∇v) dy +

∫
Sv∩Q

ν j ,k

(1+δ)ρr (r x)
g0(ω, y, [v], νv) dHn−1

≤
∫
Qν,k

ρr (r x)
f (ω, y,∇u) dx

+
∫
Su∩Qν,k

ρr (r x)
g0(ω, y, [u], νu) dHn−1 + (c3|ξ | + c4)

(
(1 + δ)n − 1

)
kn−1ρnrn
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≤ m f ,g0
ω (	ξ , Q

ν,k
ρr (r x)) + ηkn−1ρnrn + (c3|ξ | + c4)

(
(1 + δ)n − 1

)
kn−1ρnrn .

Dividing by kn−1ρnrn and passing to the liminf as r → +∞ we obtain

(1 + δ)n f ρ,k(ω, x, ξ, ν j ) ≤ f ρ,k(ω, x, ξ, ν) + η + (c3|ξ | + c4)
(
(1 + δ)n − 1

)
.

Passing to the limsup first as j → +∞, then as δ → 0+ and η → 0+ we get

lim sup
j→+∞

f ρ,k(ω, x, ξ, ν j ) ≤ f ρ,k(ω, x, ξ, ν).

A similar argument, using the cubes Q
ν j ,k
(1−δ)ρr (r x), gives

f ρ,k(ω, x, ξ, ν) ≤ lim inf
j→+∞ f (ω, x, ξ, ν j ),

and so the continuity of ν �→ f ρ,k(ω, x, ξ, ν) follows.

It is known that Qn ∩ S
n−1 is dense in Sn−1(see, e.g., [16, Remark A.2]). Arguing

as in the proof of [16, Theorem 5.1] it is easy to show thatQn ∩ Ŝ
n−1± is dense in Ŝn−1± .

Therefore, from the continuity property proved above and from (9.8) we deduce that
for every ξ ∈ R

m×n and ν ∈ S
n−1 there exists a T -measurable function, which we

still denote by ϕξ,ν , such that

f ρ,k(ω, x, ξ, ν) = f ρ,k(ω, x, ξ, ν) = ϕξ,ν(ω) (9.9)

for every ω ∈ �̃, x ∈ R
n , ξ ∈ R

m×n , ν ∈ S
n−1, k ∈ N, and ρ > 0. This implies that

ϕξ,ν(ω) = lim
r→+∞

m f ,g0
ω (	ξ , Q

ν,k
ρr (r x))

kn−1ρnrn
(9.10)

for every ω ∈ �̃, x ∈ R
n , ξ ∈ R

m×n , ν ∈ S
n−1, k ∈ N, and ρ > 0, concluding the

proof of Step 2.
Step 3: The limit in (9.1) is independent of ν.

We now show that ϕξ,ν(ω) does not depend on ν; i.e., we show that

ϕξ,ν(ω) = ϕξ,en (ω) for every ω ∈ �̃, ξ ∈ R
m×n, ν ∈ S

n−1. (9.11)

For every r > 0 let Qν
r := Qν

r (0) and let η > 0 be fixed. Let (Qρi (xi )) be a family
of pairwise disjoint cubes, with ρi ∈ (0, 1), i = 1, . . . , Nη, with faces parallel to the
coordinate axes, such that

Nη⋃
i=1

Qρi (xi ) ⊂ Qν
r and Ln

(
Qν

1 \
Nη⋃
i=1

Qρi (xi )

)
= 1 −

Nη∑
i=1

ρn
i < η.
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By using arguments similar to those used to prove the subadditivity in Step 1, we can
prove that

m f ,g0
ω (	ξ , Q

ν
r ) ≤ m f ,g0

ω

(
	ξ ,

Nη⋃
i=1

Qρi r (r xi )

)
+ η(c3|ξ | + c4)r

n .

Then, by (9.4), for every r > 0 we have

m f ,g0
ω (	ξ , Qν

r )

rn
≤

Nη∑
i=1

m f ,g0
ω (	ξ , Qρi r (r xi ))

rn
+ η(c3|ξ | + c4)

=
Nη∑
i=1

m f ,g0
ω (	ξ , Qρi r (r xi ))

ρn
i r

n
ρn
i + η(c3|ξ | + c4).

Hence, passing to the limit as r → +∞ and using (9.10) we obtain

ϕξ,ν(ω) ≤ ϕξ,en (ω)

Nη∑
i=1

ρn
i + η(c3|ξ | + c4) ≤ ϕξ,en (ω) + η(c3|ξ | + c4),

thus taking the limit as η → 0+ we get ϕξ,ν(ω) ≤ ϕξ,en (ω). By repeating a similar
argument, now using coverings of Q1(0) by cubes of the form Qν

ρi
(xi ), we obtain the

opposite inequality, and eventually the claim.
Step 4: Definition and properties of fhom.

For every ω ∈ � and ξ ∈ R
m×n we define

fhom(ω, ξ) :=
{

ϕξ,en (ω) if ω ∈ �̃,

c2|ξ | if ω ∈ � \ �̃.

Then (9.2) follows from (9.10) and (9.11). From the measurability of ϕξ,en , proved in
Step 2, we obtain that fhom(·, ξ) is T -measurable in� for every ξ ∈ R

m×n . Moreover,
since the function ξ �→ f ρ,k(ω, x, ξ, ν) is continuous onRm×n , from (9.9) we deduce
that fhom(ω, ·) is continuous inRm×n for everyω ∈ �, and this implies theT ⊗Bm×n-
measurability of fhom on � × R

m×n . Finally, Lemma 4.2 allows us to conclude that
fhom(ω, ·) ∈ F for every ω ∈ �. Therefore, fhom is a random volume integrand
according to Definition 3.7. ��

The following result is a direct consequence of Propositions 8.1 and 9.1 . In the
ergodic case, (9.13) can be obtained by integrating (9.12) and observing that, thanks
to (9.5), we can apply the Dominated Convergence Theorem.

Proposition 9.2 (Homogenised random Cantor integrand) Under the assumptions of
Proposition 9.1, for every ω ∈ �′ and ξ ∈ R

m×n let

f ∞
hom(ω, ξ) := lim

t→+∞
fhom(ω, tξ)

t
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(since fhom(ω, ·) ∈ F , the existence of the limit is guaranteed by ( f 5)). Then f ∞
hom is

a random volume integrand and for every ω ∈ �′, x ∈ R
n, ξ ∈ R

m×n, ν ∈ S
n−1, and

k ∈ N we have

f ∞
hom(ω, ξ) = lim

r→+∞
m f ∞,g0

ω (	ξ , Q
ν,k
r (r x))

kn−1rn
= lim

r→+∞
m f ∞,g0

ω (	ξ , Qr )

rn
, (9.12)

where Qr := Qr (0). If, in addition, (τz)z∈Zn is ergodic, then f ∞
hom is independent of

ω and

f ∞
hom(ξ) = lim

r→+∞
1

rn

∫
�

m f ∞,g0
ω (	ξ , Qr ) dP(ω). (9.13)

The following proposition establishes the existence of the random surface integrand
ghom.

Proposition 9.3 (Homogenised random surface integrand) Let f be a stationary ran-
dom volume integrand and let g be a stationary random surface integrand with respect
to a group (τz)z∈Zn of P-preserving transformations on (�, T , P). Then there exists
�′ ∈ T , with P(�′) = 1, such that for every ω ∈ �′, x ∈ R

n, ζ ∈ R
m, ν ∈ S

n−1, the
limit

lim
r→+∞

m f ∞,g
ω (urx,ζ,ν , Qν

r (r x))

rn−1 (9.14)

exists and is independent of x. More precisely, there exists a random volume integrand
ghom : � ×R

m × S
n−1 → [0,+∞) such that for every ω ∈ �′, x ∈ R

n, ζ ∈ R
m, and

ν ∈ S
n−1

ghom(ω, ζ, ν) = lim
r→+∞

m f ∞,g
ω (urx,ζ,ν, Qν

r (r x))

rn−1 = lim
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 ,

where Qν
r := Qν

r (0). If, in addition, (τz)z∈Zn is ergodic, then ghom is independent of
ω and

ghom(ζ, ν) = lim
r→+∞

1

rn−1

∫
�

m f ∞,g
ω (u0,ζ,ν, Q

ν
r ) dP(ω).

The proof of Proposition 9.3 follows immediately from Propositions 9.4 and 9.5
below. In the first one we prove the existence of the limit in (9.14) for x = 0, while
in the second one we consider the general case x 	= 0 and prove that the limit is
independent of x .

Proposition 9.4 Let f be a stationary random volume integrand and let g be a sta-
tionary random surface integrand with respect to a group (τz)z∈Zn of P-preserving

123



    8 Page 66 of 89 F. CAGNETTI et al.

transformations on (�, T , P). Then there exist �̃ ∈ T , with P(�̃) = 1, and a random
surface integrand ghom : � × R

m × S
n−1 → R such that

ghom(ω, ζ, ν) = lim
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 , (9.15)

for every ω ∈ �̃, ζ ∈ R
m, and ν ∈ S

n−1, where Qν
r := Qν

r (0). If, in addition, (τz)z∈Zn

is ergodic, then ghom is independent of ω and

ghom(ζ, ν) = lim
r→+∞

1

rn−1

∫
�

m f ∞,g
ω (u0,ζ,ν, Q

ν
r ) dP(ω). (9.16)

Proof We adapt the proof of [17, Theorem 5.1]. The main difference is that now the
functional to be minimised depends also on f ∞, while in [17, Theorem 5.1] it depends
only on g. Since this requires some changes, for completeness we prefer to give the
whole proof in detail. We divide it into four steps.
Step 1: Existence of the limit in (9.15) for fixed ζ ∈ Q

m and ν ∈ S
n−1 ∩ Q

n .
Let ν ∈ S

n−1 ∩ Q
n−1 and ζ ∈ Q

m be fixed, let Rν ∈ O(n) ∩ Q
n×n be the

orthogonal n × n matrix as in (h) in Section 2, and let Mν be a positive integer
such that MνRν ∈ Z

n×n . Note that, in particular, for every z′ ∈ Z
n−1 we have that

MνRν(z′, 0) ∈ 
ν
0 ∩Z

n , namely MνRν maps integer vectors perpendicular to en into
integer vectors perpendicular to ν.

Given A′ = [a1, b1) × · · · × [an−1, bn−1) ∈ In−1 (see (3.15)), we define the
(rotated) n-dimensional interval Tν(A′) as

Tν(A
′) := MνRν

(
A′ × [−c, c)

)
, with c := 1

2
max

1≤ j≤n−1
(b j − a j ). (9.17)

For every ω ∈ � and A′ ∈ In−1 we set

μζ,ν(ω, A′) := 1

Mn−1
ν

m f ∞,g
ω (u0,ζ,ν, Tν(A

′)). (9.18)

Now let (�, T̂ , P̂) denote the completion of the probability space (�, T , P). We
claim that the functionμζ,ν : �×In−1 → R as in (9.18) defines an (n−1)-dimensional
subadditive process on (�, T̂ , P̂). Indeed, thanks to Remark 3.9 and PropositionA.12,
for every A ∈ A the function ω �→ m f ∞,g

ω (u0,ζ,ν, A) is T̂ -measurable. From this, it
follows that the function ω �→ μζ,ν(ω, A′) is T̂ -measurable too.

We are now going to prove that μζ,ν is covariant; that is, we show that there exists
a group (τ ν

z′)z′∈Zn−1 of P̂-preserving transformations on (�, T̂ , P̂) such that

μζ,ν(ω, A′ + z′) = μζ,ν(τ
ν
z′(ω), A′), for every ω ∈ �, z′ ∈ Z

n−1, and A′ ∈ In−1.

To this end fix z′ ∈ Z
n−1 and A′ ∈ In−1. Note that, by (9.17),

123



A global method for homogenisation in BV Page 67 of 89     8 

Tν(A
′ + z′) = MνRν((A

′ + z′) × [−c, c)) = MνRν(A
′ × [−c, c)) + MνRν(z

′, 0)
= Tν(A

′) + z′ν,

where z′ν := MνRν(z′, 0) ∈ 
ν
0 ∩ Z

n . Then, by (9.18)

μζ,ν(ω, A′ + z′) = 1

Mn−1
ν

m f ∞,g
ω (u0,ζ,ν, Tν(A

′ + z′))

= 1

Mn−1
ν

m f ∞,g
ω (u0,ζ,ν, Tν(A

′) + z′ν). (9.19)

Given u ∈ SBV (int(Tν(A′) + z′ν),Rm) with u = u0,ζ,ν near ∂(Tν(A′) + z′ν), let
v ∈ SBV (int(Tν(A′)),Rm) be defined as v(x) := u(x + z′ν) for every x ∈ R

n . By a
change of variables, using the stationarity of f ∞ and g we obtain

∫
Tν (A′)+z′ν

f ∞(ω, x,∇u) dx +
∫
Su∩(Tν (A′)+z′ν )

g(ω, x, [u], νu) dHn−1

=
∫
Tν (A′)

f ∞(ω, x + z′ν,∇v) dx +
∫
Sv∩Tν (A′)

g(ω, x + z′ν, [v], νv) dHn−1

=
∫
Tν (A′)

f ∞(τz′ν (ω), x,∇v) dx +
∫
Sv∩Tν (A′)

g(τz′ν (ω), x, [v], νv) dHn−1.

Since z′ν is perpendicular to ν, we have u0,ζ,ν(x) = u0,ζ,ν(x + z′ν) for every x ∈ R
n .

Therefore, from (9.18) and (9.19) we obtain that

μζ,ν(ω, A′ + z′) = μζ,ν(τ
ν
z′(ω), A′),

where we set

(
τ ν
z′
)
z′∈Zn−1 := (τz′ν )z′∈Zn−1 .

We now show that μζ,ν is subadditive in In−1. To this end let A′ ∈ In−1 and let
(A′

i )1≤i≤N ⊂ In−1 be a finite family of pairwise disjoint sets such that A′ = ⋃
i A

′
i .

For fixed η > 0 and i = 1, . . . , N , let ui ∈ SBV (int(Tν(A′
i )),R

m) be such that
ui = u0,ζ,ν in a neighbourhood of ∂Tν(A′

i ) and

∫
Tν (A′

i )

f ∞(ω, x,∇ui ) dx +
∫
Su∩Tν (A′

i )

g(ω, x, [ui ], νui ) dHn−1

≤ m f ∞,g
ω (u0,ζ,ν, Tν(A

′
i )) + η. (9.20)

Note that Tν(A′) can differ from
⋃

i Tν(A′
i ) (see for instance [17, Figure 2]), but, by

construction, we always have
⋃

i Tν(A′
i ) ⊂ Tν(A′).
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Now we define

u(x) :=
{
ui (x) if x ∈ Tν(A′

i ), i = 1, . . . , N ,

u0,ζ,ν(x) if x ∈ Tν(A′) \ ⋃
i Tν(A′

i );

then u ∈ SBV (Tν(A′),Rm) and u = u0,ζ,ν near ∂Tν(A′). Note that we also have x

Su ∩ Tν(A
′) =

N⋃
i=1

(Sui ∩ Tν(A
′
i )).

Indeed, Su ∩ Tν(A′) ∩ ∂Tν(A′
i ) = ∅ for every i = 1, . . . , N . Moreover, u = u0,ζ,ν

in Tν(A′) \ ⋃
i Tν(A′

i ), hence ∇u = 0 a.e. in this set. Therefore, recalling that
f ∞(ω, ·, 0) ≡ 0, we obtain

∫
Tν (A′)

f ∞(ω, x,∇u) dx +
∫
Su∩Tν (A′)

g(ω, x, [u], νu) dHn−1

=
N∑
i=1

( ∫
Tν (A′

i )

f ∞(ω, x,∇ui ) dx +
∫
Sui ∩Tν (A′

i )

g(ω, x, [ui ], νui ) dHn−1
)

.

As a consequence, by (9.20),

m f ∞,g
ω (u0,ζ,ν, Tν(A

′)) ≤
N∑
i=1

m f ∞,g
ω (u0,ζ,ν, Tν(A

′
i )) + Nη,

thus the subadditivity of μζ,ν follows from (9.18), by the arbitrariness of η > 0.
Finally, in view of (g4) for every A′ ∈ In−1 and for P̂-a.e. ω ∈ � we have

μζ,ν(ω, A′) = 1

Mn−1
ν

m f ∞,g
ω (u0,ζ,ν, Tν(A

′))

≤ 1

Mn−1
ν

∫
Su0,ζ,ν

∩Tν (A′)
g(ω, x, ζ, ν) dHn−1

≤ c3|ζ |
Mn−1

ν

Hn−1(
ν
0 ∩ Tν(A

′)) = c3|ζ |Ln−1(A′), (9.21)

where we used again the fact that f ∞(ω, ·, 0) ≡ 0. This concludes the proof of the
fact that μζ,ν is an (n − 1)-dimensional subadditive process.

We can now apply Theorem 3.15 to the subadditive process μζ,ν , defined on
(�, T̂ , P̂) by (9.18), to deduce the existence of a T̂ -measurable function ψζ,ν : � →
[0,+∞) and a set �̂ζ,ν ⊂ �, with �̂ζ,ν ∈ T̂ and P(�̂ζ,ν) = 1 such that

lim
r→+∞

μζ,ν(ω, r Q′)
rn−1 = ψζ,ν(ω) (9.22)
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for every ω ∈ �̂ζ,ν , where Q′ := [− 1
2 ,

1
2 )

n−1. Then, by the properties of the com-
pletion, there exist a set �ζ,ν ∈ T , with P(�ζ,ν) = 1, and a T -measurable function,
which we still denote by ψζ,ν , such that (9.22) holds for every ω ∈ �ζ,ν . Using the
definition of μζ,ν we then have

ψζ,ν(ω) = lim
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 (9.23)

for every ω ∈ �ζ,ν .
Step 2: Existence of the limit in (9.15) for every ζ ∈ R

m and ν ∈ S
n−1.

Let �̃ denote the intersection of the sets �ζ,ν for ζ ∈ Q
m and ν ∈ S

n−1 ∩ Q
n ;

clearly �̃ ∈ T and P(�̃) = 1. Let g, g : �̃×R
m ×S

n−1 → [0,+∞] be the functions
defined as

g(ω, ζ, ν) := lim inf
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 , (9.24)

g(ω, ζ, ν) := lim sup
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 . (9.25)

By (9.23) we have

g(ω, ζ, ν)=g(ω, ζ, ν) = ψζ,ν(ω) for every ω ∈ �̃, ζ ∈ Q
m , and ν ∈ S

n−1 ∩ Q
n .

(9.26)

By Lemma 4.5 (property (4.13)), for every ω ∈ �̃ and ν ∈ S
n−1 the functions

ζ �→ g(ω, ζ, ν) and ζ �→ g(ω, ζ, ν) are continuous on R
m and their modulus of

continuity does not depend on ω and ν. More precisely, recalling (g4), for every
ω ∈ �̃ and ν ∈ S

n−1 we have

|g(ω, ζ1, ν) − g(ω, ζ2, ν)| ≤ c3 σ2(|ζ1 − ζ2|)(|ζ1| + |ζ2|),
|g(ω, ζ1, ν) − g(ω, ζ2, ν)| ≤ c3 σ2(|ζ1 − ζ2|)(|ζ1| + |ζ2|),

for every ζ1, ζ2 ∈ R
m .

(9.27)

From these inequalities and from (9.26) we deduce that for every ζ ∈ R
m and ν ∈

S
n−1 ∩Q

n there exists a T -measurable function, which we still denote by ψζ,ν , such
that

g(ω, ζ, ν) = g(ω, ζ, ν) = ψζ,ν(ω) for every ω ∈ �̃. (9.28)

We now claim that for every ω ∈ �̃ and every ζ ∈ R
m the restrictions of the func-

tions ν �→ g(ω, ζ, ν) and ν �→ g(ω, ζ, ν) to the sets Ŝn−1+ and Ŝ
n−1− are continuous.

We only prove this property for g and Ŝn−1+ , the other proofs being analogous. To this

end, let us fix ζ ∈ R
m , ν ∈ Ŝ

n−1+ , and a sequence (ν j ) ⊂ Ŝ
n−1+ such that ν j → ν as
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j → +∞. Since the restriction of the function ν �→ Rν to Ŝ
n−1+ is continuous, for

every δ ∈ (0, 1
2 ) there exists an integer jδ such that

Q
ν j

(1−δ)r ⊂⊂ Qν
r ⊂⊂ Q

ν j

(1+δ)r , (9.29)

for every j ≥ jδ and every r > 0. Fix j ≥ jδ , r > 0, and η > 0. Let u ∈
SBV (Qν

r ,R
m) be such that u = u0,ζ,ν near ∂Qν

r and

∫
Qν
r

f ∞(ω, x,∇u) dx +
∫
Su∩Qν

r

g(ω, x, [u], νu) dHn−1 ≤ m f ∞,g
ω (u0,ζ,ν , Q

ν
r ) + ηrn−1.

We define v ∈ SBV (Q
ν j

(1+δ)r ,R
m) as

v(x) :=
{
u(x) if x ∈ Qν

r ,

u0,ζ,ν j (x) if x ∈ Q
ν j

(1+δ)r \ Qν
r .

Then, v = u0,ζ,ν near ∂Q
ν j

(1+δ)r and Sv ⊂ Su ∪ �, where

� := {
x ∈ ∂Qν

r : (x · ν)(x · ν j ) < 0
}

∪ (



ν j
0 ∩ (Q

ν j

(1+δ)r \ Qν
r )

)
.

Moreover |[v]| ≤ |ζ | Hn−1-a.e. on �. By (9.29) there exists ς j (δ) > 0, independent
of r , with ς j (δ) → (1 + δ)n−1 − 1 as j → +∞, such that Hn−1(�) ≤ ς j (δ)rn−1.
Thanks to (g4) we then have

m f ∞,g
ω (u0,ζ,ν , Q

ν j

(1+δ)r ) ≤
∫
Q

ν j
(1+δ)r

f ∞(ω, x,∇v) dx

+
∫
Sv∩Q

ν j
(1+δ)r

g(ω, x, [v], νv) dHn−1

≤
∫
Qν
r

f ∞(ω, x, ∇u) dx +
∫
Su∩Qν

r

g(ω, x, [u], νu) dHn−1

+ c3|ζ |ς j (δ)r
n−1

≤ m f ∞,g
ω (u0,ζ,ν , Q

ν
r ) + ηrn−1 + c3|ζ |ς j (δ)r

n−1,

where we used the fact that f ∞(ω, ·, 0) ≡ 0. Recalling definition (9.24), dividing by
rn−1, and passing to the liminf as r → +∞, we obtain

g(ω, ζ, ν j )(1 + δ)n−1 ≤ g(ω, ζ, ν) + η + c3|ζ |ς j (δ). (9.30)

Letting j → +∞, then δ → 0+, and then η → 0+, we deduce that

lim sup
j→+∞

g(ω, ζ, ν j ) ≤ g(ω, ζ, ν).
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An analogous argument, now using the cubes Q
ν j

(1−δ)r , shows that

g(ω, ζ, ν) ≤ lim inf
j→+∞ g(ω, ζ, ν j ),

hence the claim follows. Note that, together with (9.27), this implies that for every
ω ∈ �̃ the restriction of the function (ζ, ν) �→ g(ω, ζ, ν) toRm × Ŝ

n−1± is continuous,
and the same holds true for (ζ, ν) �→ g(ω, ζ, ν).

As we already observed in the proof of Step 2 of Proposition 9.1, the set Ŝn−1± ∩Q
n

is dense in Ŝn−1± . Therefore, from the continuity property proved above and from (9.28)
we deduce that for every ζ ∈ R

m and ν ∈ S
n−1 there exists a T -measurable function,

which we still denote by ψζ,ν , such that

g(ω, ζ, ν) = g(ω, ζ, ν) = ψζ,ν(ω) for every ω ∈ �̃. (9.31)

By (9.24) and (9.25) this implies that

ψζ,ν(ω) = lim
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r )

rn−1 (9.32)

for every ω ∈ �̃, ζ ∈ R
m , and ν ∈ S

n−1, concluding the proof of Step 2.
Step 3: Definition and properties of ghom.

For every ω ∈ � and ζ ∈ R
m , and ν ∈ S

n−1 we define

ghom(ω, ζ, ν) :=
{

ψζ,ν(ω) if ω ∈ �̃,

c2|ζ | if ω ∈ � \ �̃.

Then (9.15) follows from (9.32). From the measurability of ψζ,ν , proved in Step 2,
we obtain that ghom(·, ζ, ν) is T -measurable in � for every ζ ∈ R

m and ν ∈ S
n−1.

Moreover, since for every ω ∈ �̃ the restriction of the function (ζ, ν) �→ g(ω, ζ, ν) to

R
m × Ŝ

n−1± is continuous, from (9.31) we deduce that for every ω ∈ � the restriction
of ghom(ω, ·, ·) to R

m × Ŝ
n−1± is continuous and this implies the T ⊗ Bm×n ⊗ Bn

S-
measurability of ghom on � ×R

m × S
n−1. Finally, Lemma 4.5 allows us to conclude

that ghom(ω, ·, ·) ∈ G for every ω ∈ �.
Step 4: In the ergodic case ghom is deterministic.

Set �̂ := ⋂
z∈Zn τz(�̃); we clearly have that �̂ ∈ T , �̂ ⊂ �̃, and τz(�̂) = �̂ for

every z ∈ Z
n ; moreover, since τz is a P-preserving transformation and P(�̃) = 1, we

have P(�̂) = 1. We claim that

ghom(τz(ω), ζ, ν) = ghom(ω, ζ, ν), (9.33)

for every z ∈ Z
n , ω ∈ �̂, ζ ∈ R

m , and ν ∈ S
n−1.

We start noting that to prove (9.33) it is enough to show that

ghom(τz(ω), ζ, ν) ≤ ghom(ω, ζ, ν) (9.34)
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for every z ∈ Z
n , ω ∈ �̂, ζ ∈ R

m , and ν ∈ S
n−1. Indeed, the opposite inequality is

obtained by applying (9.34) with ω replaced by τz(ω) and z replaced by −z.
Let z ∈ Z

n , ω ∈ �̂, ζ ∈ R
m , and ν ∈ S

n−1 be fixed. For every r > 3|z|, let
ur ∈ SBV (Qν

r ,R
m) be such that ur = u0,ζ,ν near ∂Qν

r , and

∫
Qν
r

f ∞(ω, x,∇ur ) dx +
∫
Sur ∩Qν

r

g(ω, x, [ur ], νur ) dHn−1

≤ m f ∞,g
ω (u0,ζ,ν, Q

ν
r ) + 1. (9.35)

By the stationarity of f ∞ and g, a change of variables gives

m f ∞,g
τz(ω) (u0,ζ,ν, Q

ν
r ) = m f ∞,g

ω (uz,ζ,ν, Q
ν
r (z)). (9.36)

We now modify ur to obtain a competitor for a minimisation problem related to the
right-hand side of (9.36). Noting that Qν

r ⊂⊂ Qν
r+3|z|(z) we define

vr (x) :=
{
ur (x) if x ∈ Qν

r ,

uz,ζ,ν(x) if x ∈ Qν
r+3|z|(z) \ Qν

r .

Clearly vr ∈ SBV (Qν
r+3|z|(z),Rm) and vr = uz,ζ,ν near ∂Qν

r+3|z|(z). Moreover we
notice that Svr = Sur ∪ �1 ∪ �2, where

�1 := {
x ∈ ∂Qν

r : (
x · ν)(

(x − z) · ν)
< 0

}
and �2 := 
ν

z ∩ (Qν
r+3|z|(z) \ Qν

r ).

Moreover |[vr ]| = |ζ | Hn−1-a.e. on �1 ∪ �2. Since 3|z| < r , we have Hn−1(�1) =
2(n−1)|z ·ν| rn−2 andHn−1(�2) = (r+3|z|)n−1−rn−1 ≤ 3(n−1)|z|(r+3|z|)n−2 <

2n(n − 1)|z| rn−2. Therefore, using the fact that f ∞(ω, ·, 0) ≡ 0, thanks to (g4) we
have

∫
Qν
r+3|z|(z)

f ∞(ω, x,∇vr ) dx +
∫
Svr ∩Qν

r+3|z|(z)
g(ω, x, [vr ], νvr ) dHn−1

≤
∫
Qν
r

f ∞(ω, x,∇ur ) dx +
∫
Sur ∩Qν

r

g(ω, x, [ur ], νur ) dHn−1 + Mζ,z r
n−2,

where Mζ,z := c3(n − 1)(2+ 2n)|z||ζ |. This inequality, combined with (9.35) yields

m f ∞,g
ω (uz,ζ,ν, Q

ν
r+3|z|(z)) ≤ m f ∞,g

ω (u0,ζ,ν, Q
ν
r ) + 1 + Mζ,z r

n−2. (9.37)

Recalling that τz(ω) ∈ �̂ ⊂ �̃, by (9.15) and (9.36) we get

ghom(τz(ω), ζ, ν) = lim
r→+∞

m f ∞,g
τz(ω) (u0,ζ,ν, Qν

r ))

rn−1 = lim
r→+∞

m f ∞,g
ω (uz,ζ,ν, Qν

r (z))

rn−1
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= lim
r→+∞

m f ∞,g
ω (uz,ζ,ν, Qν

r+3|z|(z))
rn−1 ,

where in the last equality we have used the fact that rn−1/(r + 3|z|)n−1 → 1 as
r → +∞. Therefore, dividing all terms of (9.37) by rn−1 and passing to the limit as
r → +∞, from (9.15) we obtain the inequality

ghom(τz(ω), ζ, ν) ≤ ghom(ω, ζ, ν),

which proves (9.34) and hence the claim.
If (τz)z∈Zn is ergodic we can invoke [17, Corollary 6.3] to deduce that ghom does

not depend on ω and hence is deterministic. In this case, (9.16) can be obtained
by integrating (9.15) over � and observing that, thanks to (9.21), we can apply the
Dominated Convergence Theorem. ��

We now prove that the limit (9.14) that defines ghom is independent of x . More
precisely we prove the following result.

Proposition 9.5 Let f be a stationary random volume integrand and let g be a sta-
tionary random surface integrand with respect to a group (τz)z∈Zn of P-preserving
transformations on (�, T , P). Then there exist �′ ∈ T , with P(�′) = 1, and a
random surface integrand ghom : � × R

m × S
n−1 → R, independent of x, such that

ghom(ω, ζ, ν) = lim
r→+∞

m f ∞,g
ω (urx,ζ,ν , Qν

r (r x))

rn−1 , (9.38)

for every ω ∈ �′, x ∈ R
n, ζ ∈ R

m, ν ∈ S
n−1.

Proof The proof closely follows that of [17, Theorem 6.1], therefore here we only
discuss the main differences with respect to [17].

Let ghom be the random surface integrand introduced in Proposition 9.4. Arguing
as in the proof of [17, Theorem 6.1], we can prove the existence of �′ ∈ T , with
P(�′) = 1, such that (9.38) holds for every ω ∈ �′, x ∈ R

n , ζ ∈ R
m , and ν ∈

S
n−1 ∩ Q

n−1. Hence, to conclude it remains to show than (9.38) holds true for every
ν ∈ S

n−1.
To this end, for fixed ω ∈ �′, x ∈ R

n , ζ ∈ R
m , and ν ∈ S

n−1, we introduce the
auxiliary functions

g(ω, x, ζ, ν) := lim inf
r→+∞

m f ∞,g
ω (urx,ζ,ν , Qν

r (r x))

rn−1 , (9.39)

g(ω, x, ζ, ν) := lim sup
r→+∞

m f ∞,g
ω (urx,ζ,ν , Qν

r (r x))

rn−1 . (9.40)

Let ν ∈ Ŝ
n−1+ be fixed. As we already observed in the proof of Step 2 of

Proposition 9.1, the set Ŝn−1+ ∩ Q
n is dense in Ŝ

n−1+ , hence there exists a sequence
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(ν j ) ⊂ Ŝ
n−1+ ∩Q

n−1 such that ν j → ν as j → ∞.We claim that for every δ ∈ (0, 1/2)
there exists jδ ∈ N such that

(1 + δ)n−1g(ω, x
1+δ

, ζ, ν j ) ≤ g(ω, x, ζ, ν) + c3|ζ |ς j (δ), (9.41)

g(ω, x, ζ, ν) ≤ (1 − δ)n−1g(ω, x
1−δ

, ζ, ν j ) + c3|ζ |ς j (δ), (9.42)

for every j ≥ jδ , where ς j (δ) is such that ς j (δ) → (1 + δ)n−1 − 1 as j → +∞.
The proof of (9.41) and (9.42) is similar to that of (9.30) in Proposition 9.4. Thanks

to the continuity of the restriction of ν �→ Rν to Ŝ
n−1+ , for every δ ∈ (0, 1

2 ) there exists
an integer jδ such that

Q
ν j

(1−δ)r (r x) ⊂⊂ Qν
r (r x) ⊂⊂ Q

ν j

(1+δ)r (r x), (9.43)

for every j ≥ jδ and every r > 0. Fix j ≥ jδ , r > 0, and η > 0. Let u ∈
SBV (Qν

r (r x),R
m) be such that u = urx,ζ,ν near ∂Qν

r (r x) and

∫
Qν
r (r x)

f ∞(ω, y,∇u) dy +
∫
Su∩Qν

r (r x)
g(ω, y, [u], νu) dHn−1

≤ m f ∞,g
ω (urx,ζ,ν , Q

ν
r (r x)) + ηrn−1.

We define v ∈ SBV (Q
ν j

(1+δ)r (r x),R
m) as

v(y) :=
{
u(y) if y ∈ Qν

r (r x),

urx,ζ,ν j (y) if y ∈ Q
ν j

(1+δ)r (r x) \ Qν
r (r x).

Then, v = urx,ζ,ν j near ∂Q
ν j

(1+δ)r (r x), and Sv ⊂ Su ∪ �, where

� := {
y ∈ ∂Qν

r (r x) : ((y − r x) · ν)((y − r x) · ν j )

< 0
} ∪ (



ν j
r x ∩ (Q

ν j

(1+δ)r (r x) \ Qν
r (r x))

)
.

Moreover |[v]| ≤ |ζ | Hn−1-a.e. on �. By (9.43) there exists ς j (δ) > 0, independent
of r , with ς j (δ) → (1 + δ)n−1 − 1 as j → +∞, such that Hn−1(�) ≤ ς j (δ)rn−1.
Thanks to (g4) we then have

m f ∞,g
ω (urx,ζ,ν j , Q

ν j

(1+δ)r (r x))

≤
∫
Q

ν j
(1+δ)r (r x)

f ∞(ω, x,∇v) dx +
∫
Sv∩Q

ν j
(1+δ)r (r x)

g(ω, x, [v], νv) dHn−1

≤
∫
Qν
r (r x)

f ∞(ω, x,∇u) dx +
∫
Su∩Qν

r (r x)
g(ω, x, [u], νu) dHn−1 + c3|ζ |ς j (δ)r

n−1

≤ m f ∞,g
ω (urx,ζ,ν, Q

ν
r (r x)) + ηrn−1 + c3|ζ |ς j (δ)r

n−1,
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where we used the fact that f ∞(ω, ·, 0) ≡ 0. Recalling definition (9.39), dividing by
rn−1, and passing to the liminf as r → +∞, we obtain

(1 + δ)n−1g(ω, x
1+δ

, ζ, ν j ) ≤ g(ω, x, ζ, ν) + η + c3|ζ |ς j (δ),

which gives (9.41) by the arbitrariness of η. The proof of (9.42) is analogous.
From (9.41) and (9.42) we get

(1 + δ)n−1g(ω, x
1+δ

, ζ, ν j ) − c3|ζ |ς j (δ) ≤ g(ω, x, ζ, ν) ≤ g(ω, x, ζ, ν)

≤ (1 − δ)n−1g(ω, x
1−δ

, ζ, ν j ) + c3|ζ |ς j (δ)

for every j ≥ jδ . Since ν j ∈ S
n−1 ∩Q

n , and (9.38) holds true for rational directions,
we have

g(ω, x
1+δ

, ζ, ν j ) = g(ω, x
1−δ

, ζ, ν j ) = ghom(ω, ζ, ν j ).

This, together with the previous inequality, yields

(1 + δ)n−1ghom(ω, ζ, ν j ) − c3|ζ |ς j (δ) ≤ g(ω, x, ζ, ν) ≤ g(ω, x, ζ, ν)

≤ (1 − δ)n−1ghom(ω, ζ, ν j ) + c3|ζ |ς j (δ)

for every j ≥ jδ . Hence, taking the liminf as j → +∞ and then the limit as δ → 0+,
we obtain

lim inf
j→+∞ ghom(ω, ζ, ν j ) ≤ g(ω, x, ζ, ν) ≤ g(ω, x, ζ, ν) ≤ lim inf

j→+∞ ghom(ω, ζ, ν j )

and hence

g(ω, x, ζ, ν) = g(ω, x, ζ, ν) = lim inf
j→+∞ ghom(ω, ζ, ν j ).

Note that, in particular, all the terms in the above chain of equalities do not depend
on x . Then, in view of the definition of g and g (see (9.39) and (9.40)) we get that the
limit

lim
r→+∞

m f ∞,g
ω (urx,ζ,ν, Qν

r (r x))

rn−1

exists and is independent of x . Therefore we obtain

lim
r→+∞

m f ∞,g
ω (ux,ζ,ν, Qν

r (r x))

rn−1 = lim
r→+∞

m f ∞,g
ω (u0,ζ,ν, Qν

r (0))

rn−1 = ghom(ω, ζ, ν),

for every ω ∈ �′, x ∈ R
n , ζ ∈ R

m , and ν ∈ Ŝ
n−1+ . Since the same property holds for

ν ∈ Ŝ
n−1− , this concludes the proof. ��
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We are now in a position to prove the theorem concerning the existence, for P-
almost every ω ∈ �, of the limits which define the homogenised integrands.

Proof of Theorem 3.17 Property (a), (3.17), and (3.20) are proved in Proposition 9.1,
while property (b), (3.18), and (3.21) are proved in Proposition 9.3. Equalities (3.19)
and (3.22) coincide with (9.12) and (9.13), which are proved in Proposition 9.2. ��

We now prove the main result of the paper.

Proof of Theorem 3.18 It is enough to apply Theorem 3.17 together with the determin-
istic homogenisation result in Theorem 4.1, applied for fixed ω ∈ �′. ��
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Appendix. Measurability issues

The purpose of this section is to prove the measurability of the functions defined in
(3.16). This will be done in PropositionA.12, which requires some preliminary results.

We start by introducing some notation that will be used throughout the proofs. For
every A ∈ A let Mb(A,Rm×n) be the Banach space of all Rm×n-valued bounded
Radonmeasures on A. This space is identified with the dual of the spaceC0(A,Rm×n)

of all Rm×n-valued continuous functions on A vanishing on ∂A. For every R > 0 we
set

Mm×n
R,A := {μ ∈ Mb(A,Rm×n) : |μ|(A) ≤ R},

where |μ| denotes the variation of μ with respect to the Euclidean norm in Rm×n . On
Mm×n

R,A we consider the topology induced by the weak∗ topology of Mb(A,Rm×n),

which will be called the weak∗ topology on Mm×n
R,A . Since Mb(A,Rm×n) is the dual

of a separable Banach space, there exists a distance dm×n
R,A on Mm×n

R,A which induces

the weak∗ topology onMm×n
R,A (see [23, Theorem V.5.1]). Moreover, the metric space

(Mm×n
R,A , dm×n

R,A ) is compact by the Banach-Alaoglu Theorem.
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For everyμ ∈ Mb(A,Rm×n) the absolutely continuous part ofμwith respect to the
LebesguemeasureLn is denotedwithμa . Note that, ifμ ∈ Mm×n

R,A , thenμa ∈ Mm×n
R,A .

The following lemma concerns the mesurability properties of the density of μa

with respect to Ln .

Lemma A.1 Let A ∈ A and R > 0. Then there exists a B(A) ⊗ B(Mm×n
R,A )-

measurable function γ : A × Mm×n
R,A → R

m×n such that

γ (·, μ) ∈ L1(A,Rm×n) for every μ ∈ Mm×n
R,A ,

μa(B) =
∫
B

γ (x, μ) dx for every μ ∈ Mm×n
R,A and B ∈ B(A). (A.1)

Proof For every (x, μ) ∈ A × Mm×n
R,A let γ (x, μ) ∈ R

m×n be defined as

γ (x, μ) :=
⎧⎨
⎩

lim
ρ→0+

μ(Bρ(x) ∩ A)

ωnρn
if the limit exists in R

m×n,

0 otherwise,

where ωn denotes the volume of the unit ball ofRn . From the theory of differentiation
of measures (see, e.g., [26, Theorem 1.155]), for every μ ∈ Mm×n

R,A we have that

γ (·, μ) ∈ L1(A,Rm×n) and

μa(B) =
∫
B

γ (x, μ) dx for every B ∈ B(A),

which proves (A.1).
To prove the measurability of the function γ it suffices to show that for every ρ > 0

the function

(x, μ) �→ μ(Bρ(x) ∩ A) (A.2)

from A×Mm×n
R,A to Rm×n isB(A)⊗B(Mm×n

R,A )-measurable. To this end, for a fixed
ρ > 0 we introduce an increasing sequence of nonnegative functions (ϕ j ) ⊂ Cc(R

n)

pointwise converging to the characteristic function of the open ball Bρ(0), and we
observe that

μ(Bρ(x) ∩ A) = lim
j→+∞

∫
A

ϕ j (y − x) dμ(y),

by the Monotone Convergence Theorem.
Let Aρ := {x ∈ A : dist(x, ∂A) > ρ}. Since for every j ∈ N the function

(x, μ) �→
∫
A

ϕ j (y − x) dμ(y)
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is continuous on Aρ ×Mm×n
R,A (considering onMm×n

R,A the weak∗ topology), the func-
tion (A.2) from Aρ × Mm×n

R,A to R
m×n is B(Aρ) ⊗ B(Mm×n

R,A )-measurable. By the

arbitrariness of ρ > 0 we obtain that the same function considered on A × Mm×n
R,A is

B(A) ⊗ B(Mm×n
R,A )-measurable. ��

To prove the measurability of the map μ �→ μa , from Mm×n
R,A to Mm×n

R,A , we need
the following lemma.

Lemma A.2 Let A ∈ A , let R > 0, let (Y , E) be a measurable space, and let h : A ×
Y → R

m×n be aB(A) ⊗ E-measurable function such that

∫
A

|h(x, y)| dx ≤ R for every y ∈ Y .

For every y ∈ Y , we define the Rm×n-valued measure λy ∈ Mm×n
R,A as

λy(B) :=
∫
B
h(x, y) dx for every B ∈ B(A).

Then the map y �→ λy is measurable from (Y , E) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof We start by observing that for every ϕ ∈ Cc(A,Rm×n) the scalar function

y �→
∫
A

ϕ(x)·dλy(x) is E-measurable, (A.3)

where · denotes the Euclidean scalar product between matrices. Indeed, by definition
we have

∫
A

ϕ(x)·dλy(x) =
∫
A

ϕ(x)·h(x, y) dx,

and the measurability with respect to y follows from the Fubini Theorem.
Note now that a basis for the open sets of the space Mm×n

R,A (endowed with the
weak∗ topology) is given by the collection of sets

{
λ ∈ Mm×n

R,A :
∣∣∣
∫
A

ϕi (x)·dλ(x) −
∫
A

ϕi (x)·dλ̂(x)
∣∣∣ < η for i = 1, . . . l

}
,

with η > 0, λ̂ ∈ Mm×n
R,A , l ∈ N, and ϕ1, . . . , ϕl ∈ Cc(A,Rm×n). By (A.3), the pre-

image of these sets under the function y �→ λy belongs to E . This implies that this
function is measurable from (Y , E) to (Mm×n

R,A ,B(Mm×n
R,A )), since the weak∗ topology

inMm×n
R,A has a countable basis. ��

The following lemma shows the measurable dependence of μa on μ.

Lemma A.3 The map μ �→ μa is measurable from (Mm×n
R,A ,B(Mm×n

R,A )) to

(Mm×n
R,A ,B(Mm×n

R,A )).
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Proof Thanks to (A.1), the conclusion follows from Lemma A.2 with (Y , E) =
(Mm×n

R,A ,B(Mm×n
R,A )) and h = γ . ��

Given A ∈ A , we set

BVm
R,A := {u ∈ BV (A,Rm) : ‖u‖L1(A,Rm ) ≤ R and |Du|(A) ≤ R}. (A.4)

On BVm
R,A we consider the topology induced by the distance dmR,A defined by

dmR,A(u, v) := ‖u − v‖L1(A,Rm ) + dm×n
R,A (Du, Dv),

where dm×n
R,A is the distance on Mm×n

R,A that metrizes the weak∗ topology.
Note that BV (A,Rm) is the dual of a separable space, and that,when A hasLipschitz

boundary, the topology just defined coincides with the topology induced on BVm
R,A

by the weak∗ topology of BV (A,Rm) (see [5, Remark 3.12]).
The following lemma will be crucial in the proof of Proposition A.12.

Lemma A.4 Assume that A ∈ A has Lipschitz boundary. Then the metric space
(BVm

R,A, dm×n
R,A ) is compact.

Proof Let (uk) be a sequence in BVm
R,A. By (A.4) this sequence is bounded in

BV (A,Rm). Recalling the compact embedding of BV (A,Rm) into L1(A,Rm) and
the compactness of Mm×n

R,A , there exist a subsequence, not relabelled, and a function

u ∈ BV (A,Rm) such that uk → u strongly in L1(A,Rm) and Duk⇀Du weakly∗ in
Mb(A,Rm×n). It is easy to see that u ∈ BVm

R,A and that dm×n
R,A (uk, u) → 0. ��

We now prove the measurability with respect to (ω, u) of the integral functional
corresponding to a random volume integrand.

Lemma A.5 Let A ∈ A with Lipschitz boundary, let R > 0, and let f be a random
volume integrand as in Definition 3.7. Then, the function

(ω, u) �−→
∫
A
f (ω, x,∇u) dx

from � × BVm
R,A to R is T ⊗ B(BVm

R,A)-measurable.

Proof Let γ be the function introduced in Lemma A.1. We observe that for every
u ∈ BVm

R,A

γ (x, Du) = ∇u(x) for Ln-a.e. x ∈ A.

Therefore,

∫
A
f (ω, x,∇u) dx =

∫
A
f (ω, x, γ (x, Du)) dx .
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We claim that the function (x, u) �→ γ (x, Du) from A × BVm
R,A to R

m×n is
B(A) ⊗ B(BVm

R,A)-measurable. Indeed, it is the composition of the functions

(x, u) �→ (x, Du), which is continuous from A × BVm
R,A to A × Mm×n

R,A , and the

function (x, μ) �→ γ (x, μ) from A×Mm×n
R,A toRm×n , which isB(A)⊗B(BVm

R,A)-
measurable, by Lemma A.1. Therefore, the function (ω, x, u) �→ (ω, x, γ (x, Du)) is
measurable from (�×A×BVm

R,A, T ⊗B(A)⊗B(BVm
R,A)) to (�×R

n×R
m×n, T ⊗

Bn⊗Bm×n). By the T ⊗Bn⊗Bm×n-measurability of f we deduce that the function
(ω, x, u) �→ f (ω, x, γ (x, Du)) from�×A×BVm

R,A toR is T ⊗B(A)⊗B(BVm
R,A)-

measurable. The conclusion then follows from Fubini’s Theorem. ��
The following two lemmas are used to prove the measurable dependence on u of

the surface integral functional corresponding to a continuous surface integrand.
For every A ∈ A , μ ∈ Mb(A,Rm×n), x ∈ A, and ρ > 0 we set

θA,ρ(μ, x) := μ(Bρ(x) ∩ A)

ωn−1ρn−1 , (A.5)

where ωn−1 denotes the volume of the unit ball of Rn−1.

Lemma A.6 Let A ∈ A and u ∈ BV (A,Rm). Then

lim
ρ→0+ θA,ρ(Du, x) = ([u](x) ⊗ νu(x)

)
χSu (x) for Hn−1-a.e. x ∈ A, (A.6)

where χSu (x) = 1 if x ∈ Su and χSu (x) = 0 if x ∈ A \ Su.

Proof Step 1. We claim that

lim
ρ→0+ θA,ρ(Dua, x) = 0 for Hn−1-a.e. x ∈ A. (A.7)

We now recall that, for a positive Radon measure μ in A and for d ∈ N, the d-
dimensional upper density of μ at x ∈ A is defined as

�∗,d(μ, x) = lim sup
ρ→0+

μ(Bρ(x) ∩ A)

ωdρd
,

where ωd denotes the volume of the unit ball ofRd (see, e.g., [5, Definition 2.55]). To
prove (A.7) it is then sufficient to show that

�∗,n−1(|Dau|, x) = 0 for Hn−1-a.e. x ∈ A. (A.8)

To do so, for any t > 0 we define the set

Et := {x ∈ A : �∗,n−1(|Dau|, x) > t};
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note that

Et ⊂ {x ∈ A : �∗,n(|Dau|, x) = +∞}.

By the Lebesgue Differentiation Theorem we have Ln(Et ) = 0 and, since |Dau| <<

Ln , we have |Dau|(Et ) = 0.
Since |Dau| is a finite Radon measure, for every k ∈ N there exists an open set

Ak ⊂ A with Et ⊂ Ak such that

|Dau|(Ak) < 1
k .

Thanks to [24, Section 2.10.19(3) and Section 2.10.6] this implies that

tHn−1(Et ) ≤ |Dau|(Ak) < 1
k for every k ∈ N.

Taking the limit as k → ∞, we obtain that

Hn−1(Et ) = 0 for every t > 0.

From this, it follows that

Hn−1({x ∈ A : �∗,n−1(|Dau|, x) > 0}) = 0

and this proves (A.8), which gives (A.7).
Step 2. We claim that

lim
ρ→0+ θA,ρ(C(u), x) = 0 for Hn−1-a.e. x ∈ A. (A.9)

As before, it is sufficient to show that

�∗,n−1(|C(u)|, x) = 0 for Hn−1-a.e. x ∈ A. (A.10)

To do so, for any t > 0 we define the set

Et := {x ∈ A : �∗,n−1(|C(u)|, x) > t}.

Now, let K ⊂ Et be a compact set with Hn−1(K ) < +∞ so that, in particular,
|C(u)|(K ) = 0. Then, by [24, Section 2.10.19(3) and Section 2.10.6] we have that

tHn−1(K ) ≤ |C(u)|(V ) for every open set V containing K .

Since C(u) is a finite Radon measure, taking the infimum of the above inequality over
all open sets V containing K we obtain that

tHn−1(K ) ≤ |C(u)|(K ).

123



    8 Page 82 of 89 F. CAGNETTI et al.

Since |C(u)|(K ) = 0, from the above inequality it follows thatHn−1(K ) = 0. Using
the fact that Et is a Borel (and hence Suslin) set, by [24, Corollary 2.10.48] we have
that

Hn−1(Et ) = sup{Hn−1(K ) : K compact, K ⊂ Et , Hn−1(K ) < +∞},

and soHn−1(Et ) = 0 for every t > 0, which implies (A.10) and, in turn, (A.9).
Step 3. We claim that

lim
ρ→0+ θA,ρ(D ju, x) = 0 for Hn−1-a.e. x ∈ A \ Su . (A.11)

Observe that |D ju|(A \ Su) = 0. By [24, Section 2.10.19(4) and Section 2.10.6] we
have immediately that

�∗,n−1(|D ju|, x) = 0 for Hn−1-a.e. x ∈ A \ Su,

which implies (A.11).
Step 4. By Besicovich Derivation Theorem (see [5, Theorems 2.22, 2.83, and 3.78])

we have that

lim
ρ→0+ θA,ρ(D ju, x) = [u](x) ⊗ νu(x) for Hn−1-a.e. x ∈ Su .

Together with the previous steps, this gives (A.6). ��
Lemma A.7 Let A ∈ A and let g : A×R

m×n → R be a continuous function. Assume
that there exists a > 0 such that

|g(x, ξ)| ≤ a|ξ | (A.12)

for every (x, ξ) ∈ A × R
m×n. Then for every u ∈ BV (A,Rm)

lim
η→0+ lim

ρ→0+

∫
A

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η
d|Du|(x) =

∫
A∩Su

g(x, [u](x) ⊗ νu(x)) dHn−1(x),

where θA,ρ is defined in (A.5).

Proof Let u ∈ BV (A,Rm) be fixed.
Step 1. Thanks to (A.12) and to the bound

∫
A∩Su

|[u](x)| dHn−1(x) < +∞, (A.13)

the function x �→ g(x, [u](x) ⊗ νu(x)) isHn−1-integrable on A ∩ Su .
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Step 2. We claim that for every η > 0

lim
ρ→0+

∫
A

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η
d|Dau + C(u)|(x) = 0.

By Lemma A.6 we have that

lim
ρ→0+ θA,ρ(Du, x) = 0 for |Dau + C(u)|-a.e. x ∈ A,

and by (A.12) we have the inequality

|g(x, θA,ρ(Du, x))|
|θA,ρ(Du, x)| ∨ η

≤ a. (A.14)

The claim then follows from the Dominated Convergence Theorem, since g is contin-
uous, g(x, 0) = 0, and |Dau + C(u)| is a bounded measure.

Step 3. Recalling (f) in Section 2, to conclude the proof it is sufficient to show that

lim
η→0+ lim

ρ→0+

∫
A∩Su

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η
|[u](x) ⊗ νu(x)| dHn−1(x)

=
∫
A∩Su

g(x, [u](x) ⊗ νu(x)) dHn−1(x).

By Lemma A.6 and by the continuity of g we have that for every η > 0

lim
ρ→0+

∫
A∩Su

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η
|[u](x) ⊗ νu(x)| dHn−1(x)

=
∫
A∩Su

g(x, [u](x) ⊗ νu(x))
|[u](x) ⊗ νu(x)|

|[u](x) ⊗ νu(x)| ∨ η
dHn−1(x),

where we used the Dominated Convergence Theorem, thanks to (A.13) and (A.14).
Note that forHn−1-almost every x ∈ Su

lim
η→0+

|[u](x) ⊗ νu(x)|
|[u](x) ⊗ νu(x)| ∨ η

= sup
η>0

|[u](x) ⊗ νu(x)|
|[u](x) ⊗ νu(x)| ∨ η

= 1,

since [u](x) 	= 0. Thanks to (A.12) and (A.13) we can apply again the Dominated
Convergence Theorem and deduce the claim in the limit η → 0+. ��

We are now in a position to prove the measurable dependence on u of the integral
functional corresponding to a continuous surface integrand.

Lemma 9.6 Let A ∈ A with Lipschitz boundary, let R > 0, and let g be as in
Lemma A.7. Then the function

u �−→
∫
Su∩A

g(x, [u](x) ⊗ νu(x)) dHn−1(x)
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from BVm
R,A to R isB(BVm

R,A)-measurable.

Proof ByLemmaA.7 the thesis follows by proving that for everyρ, η > 0 the function

u �→
∫
A

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η
d|Du|(x) (A.15)

from BVm
R,A to R isB(BVm

R,A)-measurable. Let ρ, η > 0 be fixed. First note that, by

theB(A) ⊗ B(Mm×n
R,A )-measurability of (A.2) and the continuity of g, the function

(x, μ) �→ g(x, θA,ρ(μ, x))

|θA,ρ(μ, x)| ∨ η

is B(A) ⊗ B(Mm×n
R,A )-measurable. Moreover it is bounded by (A.14). So by [17,

Corollary A.3]

μ �→
∫
A

g(x, θA,ρ(μ, x))

|θA,ρ(μ, x)| ∨ η
d|μ|(x)

is B(Mm×n
R,A )-measurable. Since u �→ Du is continuous from (BVm

R,A, dmR,A) to

(Mm×n
R,A , dm×n

R,A ), theB(BVm
R,A)-measurability of (A.15) follows. ��

We now prove the measurability with respect to (ω, u) of the integral functional
corresponding to a random surface integrand, with no continuity assumption with
respect to x .

Lemma A.8 Let A ∈ A with Lipschitz boundary, let R > 0, and let g : �× A×R
m ×

S
n−1 → R be a T ⊗ B(A) ⊗ Bm ⊗ Bn

S-measurable function. Assume that there
exists a > 0 such that

g(ω, x, ζ, ν) = g(ω, x,−ζ,−ν), (A.16)

|g(ω, x, ζ, ν)| ≤ a|ζ |, (A.17)

for every (ω, x, ζ, ν) ∈ � × A × R
m × S

n−1. Then the function

(ω, u) �−→
∫
Su∩A

g(ω, x, [u](x), νu(x)) dHn−1(x)

from � × BVm
R,A to R is T ⊗ B(BVm

R,A)-measurable.

Proof We recall that a matrix ξ ∈ R
m×n has rank ≤ 1 if and only if ξ = ζ ⊗ ν for

some ζ ∈ R
m and ν ∈ S

n−1, and that the pair (ζ, ν) is uniquely determinded by ξ ,
up to a change of sign of both terms. Therefore, thanks to (A.16), we can define a
T ⊗B(A)⊗Bm×n-measurable function g̃ : �× A×R

m×n → R by setting for every
(ω, x, ξ) ∈ � × A × R

m×n

g̃(ω, x, ξ) :=
{
g(ω, x, ζ, ν) if ξ = ζ ⊗ ν, with ζ ∈ R

m and ν ∈ S
n−1,

0 if rank(ξ) > 1.
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By (A.17) we have |g̃(ω, x, ξ)| ≤ a|ξ | for every (ω, x, ξ) ∈ � × A × R
m×n .

To prove the thesis it is enough to show that

(ω, u) �−→
∫
Su∩A

g̃(ω, x, [u](x) ⊗ νu(x)) dHn−1 is T ⊗ B(BVm
R,A)-measurable.

(A.18)

Note that the function g̃ can be written as

g̃(ω, x, ξ) = ĝ(ω, x, ξ)a|ξ |, (A.19)

where ĝ is T ⊗ B(A) ⊗ B(Rm×n)-measurable and satisfies |ĝ| ≤ 1.
LetR be the set of all bounded T ⊗B(A) ⊗Bm×n-measurable functions ĝ : � ×

A×R
m×n → R such that the function g̃ defined as in (A.19) satisfies the claim (A.18).

In order to conclude the proof, we need to show that R contains all bounded
T ⊗B(A)⊗Bm×n-measurable functions. Toprove this property, note thatR is a vector
space of bounded real-valued functions that contains the constants and is closed both
under uniform convergence and under monotone convergence of uniformly bounded
sequences. Let C be the set of all functions ĝ : �× A×R

m×n → R that can be written
as

ĝ(ω, x, ξ) = α(ω)β(x, ξ),

where α : � → R is bounded and T -measurable, and β : A×R
m×n → R is bounded

and continuous. Note that C is stable under multiplication and that the σ -algebra
generated by C is T ⊗ B(A) ⊗ Bm×n .

By Lemma 9.6 we have C ⊂ R. Hence the functional form of the Monotone Class
Theorem (see [22, Chapter I, Theorem 21]), implies that R contains all bounded
T ⊗ B(A) ⊗ Bm×n-measurable functions, and this concludes the proof. ��

We now prove the measurability of the map u �→ D ju.

Lemma A.9 Let A ∈ A with Lipschitz boundary and let R > 0. Then the map

u �→ D ju

is measurable from (BVm
R,A,B(BVm

R,A)) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof As in the proof of Lemma A.2 it is sufficient to show that

u �−→
∫
A

ϕ(x)·d(D ju)(x) =
∫
A∩Su

ϕ(x)·([u](x) ⊗ νu(x)) dHn−1(x)

from BVm
R,A to R is B(BVm

R,A)-measurable for every ϕ ∈ Cc(A,Rm×n). To this end
we set g(x, ζ, ν) := ϕ(x)·(ζ ⊗ ν), and note that |g(x, ζ, ν)| ≤ a|ζ |, where a is the
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maximum of |ϕ|. Therefore, by Lemma A.8 it follows that

u �−→
∫
Su∩A

g(x, [u](x), νu(x)) dHn−1(x)

from BVm
R,A to R isB(BVm

R,A)-measurable, and hence the claim. ��
The following corollary deals with the Cantor part.

Corollary A.11 Let A ∈ A with Lipschitz boundary and let R > 0. Then the map

u �→ C(u)

is measurable from (BVm
R,A,B(BVm

R,A)) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof Since C(u) = Du − Dau − D ju, the result follows from the continuity of the
map u �→ Du from (BVm

R,A, dmR,A) to (Mm×n
R,A , dm×n

R,A ), using Lemmas A.3 and A.9 .
��

We are now ready to prove the main result of the section.

Proposition A.12 Let f and g be random volume and surface integrands, respectively,
according to Definition 3.7, and let (�, T̂ , P̂) be the completion of the probability
space (�, T , P). Let A ∈ A , let w ∈ SBV (A,Rm), and for every ω ∈ � let
m f ,g

ω (w, A) be defined as in (3.4) and (3.16). Then the function ω �→ m f ,g
ω (w, A) is

T̂ -measurable.

Proof For every ω ∈ �, B ∈ B(A), and u ∈ BV (A,Rm), we define

E(ω)(u, B) :=
∫
B
f (ω, x,∇u) dx +

∫
Su∩B

g(ω, x, [u], ν) dHn−1.

Let us fix a sequence (A j ) of open sets with Lipschitz boundary, with A j ⊂⊂ A j+1
for every j ∈ N and ∪ j A j = A. It follows easily from the definition that

m f ,g
ω (w, A)

= lim
j→+∞ inf{E(ω)(u, A) : u ∈ SBV (A,Rm), u = w in A \ A j }

= lim
j→+∞

(
inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R

m), u = w in A j+1 \ A j }

+E(ω)(w, A \ A j+1)
)

= lim
j→+∞ inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R

m), u = w in A j+1 \ A j },

where in the last equality we used the fact that E(ω)(w, A \ A j+1) → 0 as j → +∞
since, by ( f 4) and (g4), we have E(ω)(w, A\A j+1) ≤ c3|Dw|(A\A j+1)+c4Ln(A\
A j+1).
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Let us fix j ∈ N. It is obvious that

inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R
m), u = w in A j+1 \ A j }

= inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R
m), E(ω)(u, A j+1)

≤ E(ω)(w, A j+1), u = w in A j+1 \ A j }.

By ( f 4) and (g4) we have E(ω)(w, A j+1) ≤ c3|Dw|(A j+1) + c4Ln(A j+1). There-
fore, from Remark 3.2 we obtain that there exists R1 > 0, depending on A j+1 and w,
such that

inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R
m), u = w in A j+1 \ A j }

= inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R
m),

|Du|(A j+1) ≤ R1, u = w in A j+1 \ A j }.

Thanks to Poincaré’s inequality, there exists R ≥ R1, depending on A j+1, w, and
R1, such that every function u ∈ BV (A j+1,R

m), satisfying |Du|(A j+1) ≤ R1 and
u = w in A j+1 \ A j , satisfies also ‖u‖L1(A j+1,R

m ) ≤ R. This implies that

inf
{
E(ω)(u, A j+1) : u ∈ SBV (A j+1,R

m), u = w in A j+1 \ A j
}

= inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R
m), ‖u‖L1(A j+1,R

m ) ≤ R,

|Du|(A j+1) ≤ R, u = w in A j+1 \ A j }.

Therefore, to prove the proposition it is enough to show that the function

ω �→ inf{E(ω)(u, A j+1) : u ∈ SBV (A j+1,R
m) ∩ BVm

R,A j+1
, u = w in A j+1 \ A j }

(A.20)

is T̂ -measurable.
We define H : BVm

R,A j+1
→ [0,+∞] as

H(u) :=
{
0 if C(u) = 0 and u = w in A j+1 \ A j ,

+∞ otherwise,

where the equality C(u) = 0 means that C(u)(B) = 0 for every B ∈ B(A j+1). By
(A.20) to conclude the proof it suffices to show that the function

ω �→ inf{E(ω)(u, A j+1) + H(u) : u ∈ BVm
R,A j+1

} (A.21)

is T̂ -measurable.
To this aim, we apply the Projection Theorem. Note that the function (ω, u) �→

E(ω)(u, A j+1) from � × BVm
R,A j+1

to R is T ⊗B(BVm
R,A j+1

)-measurable, by Lem-
mas A.5 and A.8 . Moreover, the function u �→ H(u) from BVm

R,A j+1
to R is
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B(BVm
R,A j+1

)-measurable, since the set {u ∈ BVm
R,A j+1

: C(u) = 0} belongs to
B(BVm

R,A j+1
) by Corollary A.11, while the set {u ∈ BVm

R,A j+1
: u = w in A j+1 \ A j }

is closed in (BVm
R,A j+1

, dmR,A j+1
). Hence, for every t > 0 we have

{(ω, u) ∈ � × BVm
R,A j+1

: E(ω)(u, A j+1) + H(u) < t} ∈ T ⊗ B(BVm
R,A j+1

).

(A.22)

Since the metric space (BVm
R,A j+1

, dmR,A j+1
) is compact thanks to Lemma A.4, by the

Projection Theorem (see, e.g., [22, Theorem III.13 and 33(a)]) the projection onto �

of the set above belongs to T̂ . On the other hand, the projection onto � of the set in
(A.22) coincides with the set of points ω ∈ � such that

inf{E(ω)(u, A j+1) + H(u) : u ∈ BVm
R,A j+1

} < t .

Since this set belongs to T̂ for every t > 0, the function in (A.21) is T̂ -measurable. ��
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