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1 Introduction

In this paper we derive deterministic and stochastic homogenisation results for free-
discontinuity functionals in the space of functions of bounded variation.
We consider families of free-discontinuity functionals of the form

E.(w)(u, A) = f fw, %, Vu)dx +/ g, %, [ul, v)dHL (1)
A

SuNA

where w belongs to the sample space of a given probability space (2, 7, P) and labels
the realisations of the random integrands f and g, while ¢ > 0 is a parameter of either
geometrical or physical nature, and sets the scale of the problem. In (1.1) the set A
belongs to the class 7 of bounded open subsets of R” and the function u belongs
to the space SBV (A, R™) of special R”-valued functions of bounded variation on A
(see [21] and [5, Section 4.5]). Moreover, Vu denotes the approximate gradient of u,
[u] stands for the difference u™ — u™ between the approximate limits of u on both
sides of the discontinuity set S,,, v,, denotes the (generalised) normal to S,,, and H
is the (n — 1)-dimensional Hausdorff measure in R”.

Functionals as in (1.1) are commonly used in applications where the physical quan-
tity described by u can exhibit discontinuities, e.g. in variational models of fracture
mechanics, in the theory of computer vision and image segmentation, and in problems
involving phase transformations.

We are interested in determining the almost sure limit behaviour of E. as ¢ —
0+, when f and g satisfy linear growth and coercivity conditions in the gradient
and in the jump, respectively. The linear growth of the volume energy sets the limit
problem naturally in the space BV of functions of bounded variation. Indeed, in this
setting, limits of sequences of displacements with bounded energy can develop a
Cantor component in the distributional gradient.

This is in contrast with our previous work [16] (in the deterministic case) and [17]
(in the stochastic case), where, under the assumption of superlinear growth for f, the
limit problem was naturally set in the space SBV of special functions with bounded
variation.

The two main results of this paper are a deterministic homogenisation result for
functionals of the type (1.1), when w is fixed and f and g are not necessarily periodic,
and a stochastic homogenisation result, obtained for P-a.e. w € 2, under the additional
assumption of stationarity of f and g.

1.1 The deterministic result

For the deterministic result we consider w as fixed in (1.1) and write E,(u, A) instead
of E¢.(w)(u, A).

We study the limit behaviour of the functionals E,(-, A), for every A € &7, as
¢ — 0+, under the assumption that the energy densities f and g belong to suitable
classes F and G of admissible volume and surface densities (see Definition 3.1). As
announced above, a key requirement for the class F is that f satisfies linear upper
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and lower bounds in the gradient variable. Additionally, we require that the recession
function f*° of f is defined at every point. For the class G, we require that g is bounded
from below and from above by the amplitude of the jump, and that its directional
derivative go in the jump variable at [u] = O exists and is finite. The functions f*°
and go will play an important role in determining the limiting densities.

We stress here that we do not require any periodicity in the spatial variable x for
the volume and surface densities; moreover, we do not require any continuity in the
spatial variable either, since it would be unnatural for applications.

Under these general assumptions, using the so-called localisation method of I'-
convergence [18], we can prove that there exists a subsequence (&x) such that, for
every A € &, (Eg, (-, A)) I'-converges to an abstract functional E (-, A), that E E (-, A)
is finite only in BV, and that, for every u € BV} (R", R™), the set function E (u, )
is the restriction to &7 of a Borel measure (see Theorem 5.1).

Note that, without any additional assumptions, one cannot expect that E (-, A) can
be written in an integral form. In particular, since there is no guarantee that z +—
E (u(-—z), A+7z) is continuous (which is instead automatically satisfied in the periodic
case), we cannot directly apply the integral representation result in BV [10]. Our
integral representation result is hence obtained under some additional assumptions,
which are though more general than periodicity. We require that the limits of some
rescaled minimisation problems, defined in terms of f, g, f°°, and gy, exist and are
independent of the spatial variable. These limits will then define the densities of E.

More precisely, for A € @/, w € SBV(A,R™), f € F,and g € G we set

m’ 8w, A) = inf{/ f(x,Vu)dx—{—/ gCx, [ul, vi) dH" '
A

SuNA

u € SBV(A,R™), u = w near aA], (1.2)

and we assume that for every & € R™*" the limit

. ml80(g, 0, (rx))
lim

r—-+00 rh

= fhom(§) (1.3)

exists and is independent of x € R”, and that for every ¢ € R and v € S"~! the
limit

o omI T8 Uy, OF (rx) _
lim

r—+o00 pr—l

ghom (£, V) (1.4)

exists and is independent of x € R". In (1.3), £¢ denotes the linear function with
gradient &;in (1.4), Q) (rx) := Rv((—%, %)”) + rx, where R, is an orthogonal n xn
matrix such that R,e, = v, and

¢ if(y—rx)-v=>0,

g (V) 1= 0 if(y—rx)-v<0O.
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The limits (1.3) and (1.4) are the counterpart of the asymptotic cell-formulas in the
classical periodic homogenisation [10]. In that case, periodicity in the spatial variable
x ensures the existence of the limits and their homogeneity in x, that here we have
to postulate. Our assumptions are however weaker than periodicity: notably, they are
fulfilled in the case of stationary integrands, as we show in the present work.

In line with the result in [10], the functional being minimised in (1.3) (respectively
in (1.4)) has densities f and go (respectively f°° and g) rather than f and g. We
note that, if the density f satisfied a superlinear growth, then f*°(-, ) = +oo for
& # 0. Since one always has f°°(-,0) = 0, in the superlinear case there would be
the following changes in (1.4): on the one hand the minimisation would be done over
functions with Vu = 0; on the other hand the functional to be minimised would
reduce to just the surface term. This is indeed the situation in [16], where we assume a
superlinear growth for f. Moreover, in [ 16] we work under different growth conditions
for g as well, which in particular satisfies g > ¢, for a given fixed positive constant. In
that case gg = +oo (see (3.3)), and hence formally the minimisation in (1.3) would
be over Sobolev functions, and the functional to be minimised would reduce to just
the bulk term. Again, this is exactly what happens in [16] (see also [11, 28]).

In Lemmas 4.2 and 4.5 we show that fhom € F and ghom € G; the fact that
fhom € F guarantees in particular the existence of its recession function fi>> . In
Propositions 6.2, 7.2, and 8.3, we show that the functiorE Jfhom, &hom and fho(fm are
the densities of the volume, surface, and Cantor terms of E, respectively. To do so we
use the blow-up technique of Fonseca and Miiller [27] (see also [12]), extended to the
BV -setting by Bouchitté, Fonseca, and Mascarenhas [10]. More precisely, thanks to
(1.3) and (1.4), we prove that the following identities hold true for every A € 7 and
forevery u € L} (R", R™) with u|4 € BV (A, R™):

loc

%u) = from(Vu(x))  for L'ae. x € A,
d’f{f_(—%(x) = ghom ([u](x), v, (x)) for H" lae. x € S, NA,
and
dEw,), . (dC@W
m(x) = fhom(d|c(u)| (x)) for |C(u)|-a.e. x € A,

where £" is the Lebesgue measure in R”, H"~!'L_ S, is the measure defined by
(H" "L S,)(B) := H""'(S, N B) for every Borel set B C R”", and C(u) is the
Cantor part of the distributional derivative of u.

In particular, since the right-hand sides of the previous equalities do not depend
on (&), the homogenisation result holds true for the whole sequence (E). Moreover,
the fact that fhom € F and ghom € G implies that the classes F and G are closed
under homogenisation, and that on SBV the functionals E, and their I"-limit E are
free-discontinuity functionals of the same type.

As observed before, fhom and gnhom depend on both the volume and the surface
densities of the functional E,. Indeed, the minimisation problems in (1.3) and (1.4)
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involve both f (or f°°) and g (or go). In other words, volume and surface term
do interact in the limit, which is a typical feature of the linear-growth setting. This
is in contrast with the case of superlinear growth considered in [16], in which the
limit volume density only depends on the volume density of E., and similarly the
limit surface density only depends on the surface density of E.. The volume-surface
decoupling is typical of the S BV -setting in presence of superlinear growth conditions
on f [11, 16, 28].

Note however that, even in the superlinear case, if f and g satisfy “degenerate”
coercivity conditions, due for instance to the presence of perforations or “weak’ inclu-
sions in the domain, the situation is more involved. Indeed, while in [7, 14, 15, 25, 33]
the volume and surface terms do not interact in the homogenised limit, in [6, 8, 20,
32, 34, 35] they do interact and produce rather complex limit effects.

1.2 The stochastic result

In Section 9 we prove the almost sure I'-convergence of the sequence of random
functionals E;(w) in (1.1) to a random homogenised integral functional, under the
assumption that the volume and surface integrands f and g are stationary (see Defi-
nition 3.12 and Remark 3.16).

In the random setting stationarity is the natural counterpart of periodicity, since it
implies that f and g are “statistically” translation-invariant, or “periodic in law”.

The application of the deterministic result Theorem 4.1, at w fixed, ensures that
E.(w) I'-converges to the free-discontinuity functional

Enom(@)(u, A) = / From (@, Vit) dx + / Zhom (@, [u], v) dH*!
A

SuNA

o dC(u)
+ [ (o g dicwl

with

m/ (80 (te, 0, (rx))

Soom(@, §) := rl}r—i{loo n (1.5)
for every & € R™*" and
(), g(®) v
ghom(@. £, v) = lim ™ Wrrg: &, () (1.6)
r—+00 r’

forevery ¢ e R" and v € sr=1 provided the limits in (1.5) and (1.6) (which are the
same as (1.3) and (1.4), modulo the additional dependence on the random parameter
) exist and are independent of x € R". Therefore, to show that the I"-convergence of
E(w) towards Epom () actually holds true for P-a.e. w € 2 it is necessary to show
that the limits in (1.5) and (1.6) exist and are independent of x € R" for P-almost
every realisation w € 2. To do so, we follow the general strategy firstly introduced

@ Springer



8 Page6o0f89 F. CAGNETTI et al.

in [19] in the Sobolev setting, and then extended to the S BV -setting in [17] (see also
(3D.

This strategy relies on the Subadditive Ergodic Theorem by Akcoglu and Krengel
[1] (see Theorem 3.15) and requires, among other things, to show that the minimi-
sation problems in (1.5) and (1.6) define two subadditive stochastic processes (see
Definition 3.13).

This task however poses a challenge even at the very first step: proving that @ —
m/ (@80 and @ > m/”@-8@) are measurable. Indeed, while both m/ (@)-80(@)
and m/ ™~ (@-8@) by (1.2), involve the minimisation of measurable functionals in
the random variable w, such minimisation is performed over the space SBV, which
is not separable. Since the infimum in (1.2) cannot be reduced to a countable set,
the measurability of @ > m/(@-80@) and & > m/™(@-8@ cannot be inferred
directly from the measurability in w of f, f°°, g and go (see the Appendix). Let
us also observe that the situation here is substantially different from that treated in
[16, 17], for a number of reasons. Indeed in [16, 17], as observed before, due to the
different assumptions on f and g, the I"-limit exhibits a “separation” of the volume
and surface term. In particular, the limit volume density is obtained as the limit of
some minimisation problems similar to (1.2), but where the minimisation is done
over the space of Sobolev functions. Hence in that case the limit volume density is
w-measurable, due to the separability of the space (see also [19]). On the other hand,
the measurability of the minimisation problems defining the limit surface density
was delicate also in [17], since the minimum was taken over Caccioppoli partitions.
However, in [17] the minimisation involved only the surface term of the functional,
which makes the proof much simpler than the one required now.

Once the measurability in w is established (see Proposition A.12), we have to
face yet another difficulty: determining the dimension of the stochastic processes.
Indeed, using the competitors £z and u, ¢, in the minimisation problems m7(@)g0(@)
and m/~@)-8@) respectively, suggests the rescalings in (1.5) and (1.6). Hence it
suggests that m/@)-80(®) should define an n-dimensional process, while m /™ (©)-8(@)
should define an (n — 1)-dimensional process. On the other hand, in both cases the
functionals appearing in the minimisation problems, if seen as set functions, are defined
on n-dimensional sets.

To solve this problem we proceed as in [3, 13] and [17], where similar issues arise in
the study of pure surface energies of spin systems, and in the case of free-discontinuity
problems with superlinear growth, respectively.

Finally, the last difficulty consists in showing that, as in [3, 17], the limits in (1.5)
and (1.6) do not depend on x. This is particularly delicate for (1.6), due to the presence
of an x-dependent boundary condition.

We conclude by observing that our analysis also shows that, if f and g are ergodic,
then the homogenised integrands fhom and ghom are w-independent, and hence the
limit Epom is deterministic.
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1.3 Outline of the paper.

This paper is organised as follows. In Section 2 we introduce some notation. Section 3
consists of two parts: in Section 3.1 we introduce the stochastic free-discontinuity
functionals and recall the Ergodic Subadditive Theorem; in Section 3.2 we state the
main results of the paper.

Sections 4—-8 focus on the deterministic results. More in detail, in Section 4 we
state the deterministic I"-convergence results and prove some properties of the limit
densities; Section 5 is devoted to the abstract I"-convergence result; the volume, surface
and Cantor terms of the abstract I'-limit are then identified in Sections 6, 7 and 8,
respectively.

Finally, Section 9 focuses on the stochastic homogenisation result, while the proof
of the measurability of w > m/ @80 and o > m/™@-8@) s postponed to the
Appendix.

2 Notation

We introduce now some notation that will be used throughout the paper.

(a) m and n are fixed positive integers, with n > 2, R is the set of real numbers,
while Q is the set of rational numbers. The canonical basis of R” is denoted by
e1,...,ey. Fora,b € R", a - b denotes the Euclidean scalar product between a
and b, and | - | denotes the absolute value in R or the Euclidean norm in R”, R™, or
R™>" (the space of m x n matrices with real entries), depending on the context.
If v € R™ and w € R", the symbol v ® w stands for the matrix in R"*" whose

entries are (v @ w);; = vjw;, fori =1, .. mand]—l , .

(b) S"7! = (¢ = (41,...,;,") ERM 2442 = 1), = (x =
(X1,...,x,) €R" : 2 4 x2 =1}, and@fl ={xesS!: :I:x,(x) > 0},
where z(x) is the largest i € {l,...,n) such that x; # 0. Note that S"~! =
Sn IUSH 1

(c) L” denotes the Lebesgue measure on R” and H"~! the (n — 1)-dimensional Haus-
dorff measure on R”.

(d) o denotes the collection of all bounded open subsets of R”; if A, B € <7, by
A CC B we mean that A is relatively compact in B.

(e) Foru € BV(A,R™), with A € o7, the jump of u across the jump set S, is defined
by [u] := u™ — u~, while v, denotes the (generalised) normal to S, (see [5,
Definition 3.67]).

(f) For every u € BV (A, R™), with A € <7, the distributional gradient, denoted by
Du, is an R™*"_yalued Radon measure on A, whose absolutely continuous part
with respect to £, denoted by D%u, has a density Vu € L'(A, R"*™") (which
coincides with the approximate gradient of ), while the singular part D’u can be
decomposed as D*u = D7/u + C(u), where the jump part D/u is given by

D/u(B) = / [u] @ vudH"™ ! for every Borel set B C A,
BNS,

@ Springer



8 Page8o0f89 F. CAGNETTI et al.

and the Cantor part C () is an R”*"-valued Radon measure on A which vanishes
on all Borel sets B C A with H"~1(B) < +o0.
(g) For x € R" and p > 0 we define

By(x) :={y e R": |y — x| < p},
Qp(x):={yeR": |(y—x)-¢| <5 fori=1,...,n}.

We omit the subscript p when p = 1.

(h) Forevery v € "~ et R, be an orthogonal nxn matrix such that Rye, = v; we
assume that the restrictions of the function v > R, to the sets S” ! defined in (b)
are continuous and that R_, 0(0) = R, Q(0) for every v € S"~ 1 ; moreover, we
assume that R, € O(n) N Q™" for every v € Q" N S"~!, Where O (n) denotes
the set of orthogonal n x n matrices. A map v — R, satisfying these properties
is provided in [16, Example A.1 and Remark A.2].

(i) Forx e R, p > 0,and v € S"! we set

0,(x) := RyQ,(0) + x.
For k € R, with k > 0, we also define the rectangle
00k (x) = Qvk(0) + x

where Q;’k (0) is obtained from Q (0) by a dilation of amplitude k in the directions
orthogonal to v; i.e.,

00%(0) = R((=22, k)=t 5 (-

[SThSY

. 5)-
We set

00Uk (x) 1= 90 (0 N Ry ((—52, K2y ~! X R),
O ) =905 0 NR(R' x (=4, 9)

namely the union of the faces of Q}’;k(x) that are orthogonal and parallel to v,
respectively.

() Let i and A be two Radon measures on A € .7, with values in a finite dimensional
Hilbert space X and in [0, 4+-00], respectively; forevery x € A the Radon-Nikodym
derivative of u with respect to X is defined as

u(x 4+rC)

_( )= lim Ax +rC)

whenever the limit exists in X and is independent of the choice of the bounded,
closed set C containing the origin in its interior (see [26, Definition 1.156]); accord-
ing to the Besicovich differentiation theorem < i K (x) exists for A-a.e. x € A and

@ Springer



A global method for homogenisation in BV Page 9 of 89 8

= %A + u*, where p° is the singular part of u with respect to A (see [26,

Theorem 1.155]).

(k) For & € R™ " the linear function from R” to R™ with gradient £ is denoted by
Lesie, £e(x) ;= &x, where x is considered as an n x 1 matrix.

(1) Forx e R", ¢ e R",and v € S"~! we define the function Uy, S

¢ if(y—x)-v=0,

U (V) 1= {o if (y—x) v <0.

(m) Forx € R" and v € $" !, we set
[My:={yeR":y-v=0} and I} :={yeR": (y —x)-v =0}

(n) For a given topological space X, Z(X) denotes its Borel o-algebra. For every
integer k > 1, %* is the Borel o-algebra of R¥, while S stands for the Borel
o-algebra of S"~1.

3 Setting of the problem and statements of the main results

This section consists of two parts: in Section 3.1 we introduce the stochastic free-
discontinuity functionals and recall the Ergodic Subadditive Theorem; in Section 3.2
we state the main results of the paper.

3.1 Setting of the problem

Throughout the paper we fix the following constants: c1, ¢, ¢3, ¢4, ¢5 € [0, +00),
with 0 < ¢3 < ¢3, and o € (0, 1). Moreover, we fix two nondecreasing continuous
functions o1, 07 : [0, +00) — [0, +00) such that o1 (0) = 02(0) = 0.

Definition 3.1 (Volume and surface integrands) Let F = F(cy, ¢2, ¢3, ¢4, C5, @, 01)
be the collection of all functions f: R" xR"™*" — [0, 4-00) satisfying the following
conditions:

(f1) (measurability) f is Borel measurable on R” x R"*";
(f2) (continuity in &) for every x € R" we have

|f (60 — f(x,8)] < o116 — £D(f(x, 6) + f(x,8)) +c1lé — &

for every &1, & € R™*";
(f3) (lower bound) for every x € R” and every & € R"*"

olfl = f(x, §);

(f4) (upper bound) for every x € R"” and every § € R™*"

f(x, &) <c3lé|+ca;
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8 Page 100f 89 F.CAGNETTI et al.

(f5) (recession function) for every x € R" and every & € R™*" the limit
R0 8) = lim {f(x,18), 3.1)
—>—400

which defines the recession function of f, exists and is finite; moreover, f°
satisfies the inequality

1f0,8) — Lf(x,18) < S+ S f(x,18) (3.2)

for every x € R”, every & € R™*", and every ¢ > 0.

Let G = G(c2, c3,02) be the collection of all functions g: R"xR" xS§"~! —
[0, 4-00) satisfying the following conditions:

(gl) (measurability) g is Borel measurable on R” x R™ xS§"~!;
(g2) (continuity in ¢) for every x € R” and every v € S"~! we have

|g(-xv {27 U) - g()C, 4-19 V)' = 62(|€1 - ;2')(g(xv gls V) + g(xs ;27 V))

for every ¢1, > € R™;
(g3) (lower bound) for every x € R, ¢ € R™, and v € S"~!

e2lf] = g(x, &, v);
(g4) (upper bound) for every x € R”, z € R”, and v € S*~!
g(x, ¢, v) =cs3l¢l;
(g5) (directional derivative at 0) for every x € R, ¢ e R™,and v € S"~! the limit

go(x, ¢, v) == lim 1g(x,1¢,v) (3.3)
t—0+

exists, is finite, and is uniform with respectto x € R", ¢ € S"=1 andv € "1,
(g6) (symmetry) for every x € R”, ¢ € R",and v € S"~!

g(X,E, U) = g('xv _gv _U).

Forevery f € F,g€ G, A€ o/, andu € SBV(A, R™) we set

E 8 (u, A) :=f f(x,Vu)dx+/ g(x, [ul, v) dH" !,
A

SuNA

and for every w € SBV (A, R™) we set

m’ 8w, A) == inf{E/¢(u, A) : u € SBV(A,R™), u = wnear dA}. (3.4)
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A global method for homogenisation in BV Page 11 of 89 8

The expression “u = w near dA” means that there exists a neighbourhood U of 9 A
such that u = w L"-a.e. in U N A. More in general, if A C 9A is a relatively open
subset of d A, the expression “u = w near A’ means that there exists a neighbourhood
U of AinR" such thatu = w L"-a.e.in U N A.

For technical reasons, related to the details of the statement of the Subadditive
Ergodic Theorem, it is convenient to extend this definition to an arbitrary bounded
subset A of R", by setting m 8w, A) = mf’g(w, intA), where intA denotes the
interior of A.

Remark3.2 If f € F and g € G, then f* € F and g9 € G. Moreover, the lower
bounds (f3) and (g3) imply that

2| Dul(A) < min{ES 8 (u, A), T30 (u, A), EX ™4 (u, A), EF™%0(u, A))

forevery A € of andu € L (R",R™), with u|4 € SBV (A, R™).

loc

Remark 3.3 From (f4) and (f5) it follows that for every L > 0 there exists M > 0,
depending on c3, c4, c5, and L, such that

1f2,8) = Lf,18) <M foreveryx e R", £ € R"*" with |§| = 1, and 7 > L.
(3.5)

Conversely, if the limit in (3.1) exists and f satisfies (f3), (f4), and (3.5) for some
L > 0and M > 0, then for every x € R", &€ € R"*" andt > 0 we have

|fox, &) — Lfe 1) < gt = Lypg)l-o < S f(x,6)7e ifr|E] = L,

l—a
tey

|fo0, &) — Lfx 18| < 2ok 4 o ifr|g] < L,

where in the last inequality we used the fact that that f*°(x, &) < c3|&| for every
x € R" and & € R™*". This implies that f satisfies (3.2) for a suitable constant cs,
depending only on ¢z, ¢3, ¢4, L, and M.

Remark 3.4 1f (f4) holds, then (f5) is equivalent to the fact that
1Lf(x,sE) = ) S S+ S (s + S+ S (187" (3.6)

for every x € R”, every & € R"™*", and every s, ¢t > 0. Indeed, using the triangle
inequality we obtain (3.6) from (3.2) for s and ¢. Conversely, if (f4) holds, then
S+ S f(x,16)!7 - 0ast — +oo. Therefore (3.6) implies that 1 %f(x, t€)
satisfies the Cauchy condition as t — 400, hence the limit in (3.1) exists, while (3.2)
follows from (3.6) by taking the limit as s — +o0.

Remark 3.5 Assume that g: R"xR”xS""! — [0, +00) satisfies (g5) and let
A: [0, +00) — [0, +00) be defined by
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A(t) == sup{|go(x, ¢, v) — %g(x, ) xeR, eSS ves r e, ).

3.7
Then A is nondecreasing and
lim A(z) =0, (3.8)
t—0+
180(x. £.v) = 78(x, 15, )] < [LIACILD), (3.9)

forevery x € R”, ¢ € R™, and v € S"~!. If g satisfies also (g3), then (3.9) gives

lgo(x, ¢, v) — Leg(x, ¢, v < Lawleh g, 1 ¢, v). (3.10)

=

Conversely, if the limit in (3.3) exists (even with no uniformity assumptions) and g
satisfies (g4) and (3.10), then it satisfies (3.9) with A replaced by i—;)\, which implies
that g satisfies (g5).

Remark 3.6 If g: R" xR™ xS"~1 — [0, +00) satisfies (g3), (g4), and (g5), then by
(3.10) and by the triangle inequality we get

80058, v) = 18(x 15,V < ZAGIEN {80 s 6 v) + ZAEIED Fgx, 1 ¢, v)
(3.11)

for every s,t > 0, x e R*, ¢ e R",and v € sn1. Conversely, if (g4) and (3.11)
hold, with some function A satisfying (3.8), then )»(t|;“|)%g(x, t¢,v) > 0ast — 0+
and hence, using (3.11), we deduce that the function ¢ % g(x,t ¢, v) satisfies the
Cauchy condition as ¢t — 0+4. This implies that the limit in (3.3) exists and is finite.
Moreover, passing to the limit as s — 04 from (3.11) we obtain (3.10), which, in
turn, yields (g5).

We are now ready to introduce the probabilistic setting of our problem. In what
follows (2, 7, P) denotes a fixed probability space.

Definition 3.7 (Random integrands) A function f: Q x R"” x R™*" — [0, +00) is
called a random volume integrand if

(al) fis7T @ A" Q@ AB™*"-measurable;
(bl) f(w,-, ) € Fforevery w € Q.

A function g: @ x R" x R" x §*~! — [0, +00) is called a random surface integrand
if

(@2) gis T @ #" @ B" ® Hg-measurable;
(b2) g(w, -, -, -) € G forevery w € Q.

Let f be a random volume integrand and let g be a random surface integrand.
For every w € 2 and every ¢ > 0 we consider the free-discontinuity functional
Eq(w): LI (R",R™) x o/ —> [0, +0o0] defined by

loc
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E¢(w)(u, A)

ff(a), =, Vu)dx +/ g(w, 7, [u], v)dH" " ifulp € SBV (A, R™),
=1Ja S.NA
+0o0

otherwise in L} _(R", R™).
(3.12)

Definition 3.8 1l f is a random volume integrand, we define f*°: Q x R" x R"*" —
[0, +00) by

f¥@.x.8) = lim Lf(w, x, 18). (3.13)

If g is a random surface integrand, we define go: 2 x R” x R” x st [0, +00)
by

go(w,x,¢,v) := lim %g(a),x,t{,v). (3.14)
t—0+

Remark 3.9 The existence of the limit in (3.13) follows from (b1) in Definition 3.7
and from (f5). Since for every t > 0 the functions (w, x, §) — %f(w, x, t€) are
T ® B" @ A™*"-measurable by (al), the same property holds for f°°. Moreover,
from Remark 3.2 and from (b1) we deduce that f*(w, -, -) € F forevery w € Q. We
conclude that f*° is a random volume integrand.

The existence of the limit in (3.14) follows from (b2) in Definition 3.7 and from
(g95). Since for every t > 0 the functions (w, x, {, V) %g(a), x,t¢,v)are 7 ®
PB" @ A" ® H's-measurable by (a2), the same property holds for go. Moreover, from
Remark 3.2 and from (b2) we deduce that go(w, -, -, -) € G for every v € Q. We
conclude that g¢ is a random surface integrand.

In the study of stochastic homogenisation an important role is played by the notions
introduced by the following definitions.

Definition 3.10 (P-preserving transformation) A P-preserving transformation on
(2,7, P)isamap T: Q —  satisfying the following properties:

(a) (measurability) T is 7 -measurable;
(b) (bijectivity) T is bijective;
(c) (invariance) P(T(E)) = P(E), forevery E € 7.

If, in addition, every set E € 7 which satisfies T (E) = E (called T -invariant set) has
probability O or 1, then T is called ergodic.

Definition 3.11 (Group of P-preserving transformations) Let d be a positive integer. A
group of P-preserving transformations on (£2, 7, P) is a family (t;)_ 7« of mappings
7, Q — Q satisfying the following properties:

(a) (measurability) t, is 7 -measurable for every z € 74,
(b) (bijectivity) . is bijective for every z € Z%;
(¢) (invariance) P(t;(E)) = P(E), forevery E € 7 and every z € 74
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(d) (group property) 1o = idg (the identity map on 2) and t,,, = t; o T for every
2,7 €74,

If, in addition, every set E € 7 which satisfies 7,(E) = E for every z € 74 has
probability O or 1, then (z;),z¢ is called ergodic.

We are now in a position to define the notion of stationary random integrand.

Definition 3.12 (Stationary random integrand) A random volume integrand f is sta-
tionary with respect to a group (t;) ez of P-preserving transformations on (2, 7, P)
if

f(a),x +Z7§) = f(fz(w)ax’é)

foreveryw € Q,x e R,z € Z", and § € R"*".
Similarly, a random surface integrand g is stationary with respect to (t;),czn if
gw,x+2z,8,v) =g(r:(w), x,¢,v)
foreveryw e Q,x e R", z € Z", ¢ e R",and v € S" .
We now recall the notion of subadditive stochastic process as well as the Subadditive
Ergodic Theorem by Akcoglu and Krengel [1, Theorem 2.7].

Let d be a positive integer. For every a, b € Rd, witha; < b; fori =1,...,d, we
define

[a,b) := {xeRd:ai <x; <bjfori=1,...,d},
and we set

Ty :={la,b):a,beR? a; <b;fori=1,...,d}. (3.15)

Definition 3.13 (Subadditive process) A d-dimensional subadditive process with
respect to a group (t;),cz4, d > 1, of P-preserving transformations on (2, T,P)
is a function pu: Q x Z; — R satisfying the following properties:

(a) (measurability) for every A € Z; the function w — u(w, A) is 7 -measurable;
(b) (covariance) for every w € Q, A € Zy, and z € 74 we have u(w, A + z) =

u(rz(w), A);
(c) (subadditivity) for every A € Z; and for every finite family (A;)ie; C Zg of
pairwise disjoint sets such that A = U;¢; A;, we have

wlw, A) < Z,u(a), A;) forevery w € Q;

iel

(d) (boundedness) there exists ¢ > 0 such that 0 < u(w, A) < ¢L4(A) for every
w € Qandevery A € 7.

Definition 3.14 (Regular family of sets) A family of sets (A;);~0 inZy is called regular
(with constant C > 0) if there exists another family of sets (A});~0 C Zg such that:
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(a) A; C A forevery t > 0;
(b) A, C A} whenever 0 < s <1
(©) 0 < L9(A})) < CLY(A) forevery t > 0.

If the family (A});~0 can be chosen in a way such that R = U,~0 A}, then we write
lim A, =R%
t—+00
We now state a variant of the pointwise ergodic Theorem [1, Theorem 2.7 and

Remark p. 59] which is suitable for our purposes. This variant can be found in [30,
Theorem 4.1].

Theorem 3.15 (Subadditive Ergodic Theorem) Let d € {n — 1, n} and let (t;) <74 be
a group of P-preserving transformations on (2,7, P). Let u: Q@ x Iy — R be a
subadditive process with respect to (t;) ,cza. Then there exist a T-measurable function
@: Q— [0, 4+00) and a set Q' € T with P(Q)=1 such that

i B0 A)
—toe LAy O

for every regular family of sets (A;)i~0 C Zg with liT A, = R? and for every
—+00

w € Q' If in addition (t;)_cza is ergodic, then ¢ is constant P-a.e.

Remark 3.16 (Covariance with respect to a continuous group (7;),cg¢) Defini-
tions 3.11, 3.12, 3.13 and Theorem 3.15 can be adapted also to the case of a continuous
group (7;),crd, see for instance [17, Section 3.1].

3.2 Statement of the main results

In this section we state the main result of the paper, Theorem 3.18, which provides
a I'-convergence result for the random functionals (E;(®)).~¢ introduced in (3.12),
under the assumption that the volume and surface integrands f and g are stationary.

The next theorem proves the existence of the limits in the asymptotic cell formulas
that will be used in the statement of the main result.

When f and g are random integrands it is convenient to introduce the following
shorthand notation

mcfu,go = S @) 80(@0) mi‘)“,g =T @)8@)

mgwugo =T @) g0(@) (3.16)

where m /80, mfoc’g, and m/ ™8 are defined as in (3.4), with (f, g) replaced by
(f,g0), (f*, g),and (f*°, go), respectively.

Theorem 3.17 (Homogenisation formulas) Let f be a stationary random volume inte-
grand and let g be a stationary random surface integrand with respect to a group
(t2)zezn of P-preserving transformations on (2, T, P). Then there exists Q' € T,
with P(Q) = 1, such that
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(a) foreveryw € Q/, x e R" £ ¢ R™"*" y ¢ S"! and k € N the limir

; ml & e, Qr* (rx))
1m

r—+00 kn—=lpn

exists and is independent of x, v, and k;
(b) foreveryw e ', x e R", ¢ € R", v € S"~! the limit

. ml) " (rx gvr 0V (rx))

r—+00 =l

exists and is independent of x.

More precisely, there exist a random volume integrand fhom: 2 X R™*" — [0, +00),
and a random surface integrand gpom: 2 x R™ x S"=1 — [0, +00) such that for
everywe Q, x e R", £ e R"™" ¢ e R", andv € S !

f:80 v,k £.20
From(@. &) = lim Mo (e Q@) wf@)

r—+00 kn—lpn r—+00 r

, (3.17)

f<.g v . v
T My (urx,{,v’ Qr (rx)) T mey (’40,{,1), Qr)
Ehom (@, £, V) = rEI-II—loo pn—1 o r—llr—ir-loo rn—1 ’
(3.18)
where Q, 1= Q,(0) and Q; = 0, (0).
For every w € Q' and & € R™*" |et
. Jhom (@, t&)
o0 P—
o8 1= i e

(since fhom(w, -) € F, the existence of the limit is guaranteed by (f5)). Then for
everyw e Q,x e R, £ e R v e S"! and k € N we have

f.80 v,k
N Lm0 ot ey
fhom(w’ E) - r—I:Too Jn—1lpn B rllr-il-]oo

£%°.80
mey (Eés 0r)
r—”' (3.19)

If, in addition, (1;).czr is ergodic, then fhom and gnhom are independent of w and

Jhom(§) = lim i / m£’g0(eg, 0,)dP(w), (3.20)
r—>+o0o0 r" Jo
ghom(é‘a v) = lim I f ﬂliw’g(uo,g’v, Q‘,’)dP(w), (3.21)
r—-+oo 't Q
fhom(s) = lim : / ”l£ ’gO(ESs 0,)dP(w). (3.22)
r—>+o0o r" Jo

We are now ready to state the main result of this paper, namely the almost sure I"-
convergence of the sequence of random functionals (E(w))¢~0 introduced in (3.12).
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Theorem 3.18 (Almostsure I'-convergence) Let f and g be stationary random volume
and surface integrands with respect to a group (t;),czn of P-preserving transforma-
tions on (2, T, P), and for every ¢ > 0 and w € Q let E.(w) be as in (3.12). Let
Q' e T (with P(Q') = 1), fhom, frgm: and ghom be as in Theorem 3.17, and for every
w € Q let Enom(w): Ll R",R™) x &/ —> [0, +00] be the functional defined by

loc

Ehom(w)(u, A) := / Shom (@, Vu) dx +/ &hom (@, [u], Vu)dHnil
A

SuNA

o/ dC)
+ [ (o ) dicwl,

ifula € BV(A,R™), and by Enom(w)(u, A) := +o0, ifulp ¢ BV(A,R™). Then
for every @ € Q' and every A € o the functionals E¢(w)(-, A) T-converge to
Ehom(@)(+, A) in L. _(R", R™), as & — 0+

If, in addition, (t;),czn is ergodic, then Eyon is a deterministic functional; i.e., it

does not depend on w.

Thanks to Theorem 3.18 we can also characterise the asymptotic behaviour of some
minimisation problems involving E(w). An example is shown in the corollary below.
Since for every A € o the values of E.(w)(u, A) and Ehom (@) (1, A) depend only
on the restriction of u to A, in the corollary we regard E.(w)(u, -) and Enom (@) (u, -)
as functionals defined on L!(A, R™).

Corollary 3.19 (Convergence of minima and mininisers) Let f and g be stationary ran-
dom volume and surface integrands with respect to a group (t;).cz» of P-preserving
transformations on (2, T, P), and for every ¢ > 0 and w € 2 let E.(w) be as in
(3.12). Let Q' € T (with P(2') = 1) be as in Theorem 3.17, and let Enom(w) be as
in Theorem 3.18. Given w € Q', A € o7, and h € L' (A, R™), we have

inf E LA —h m
ueSBV(A,R™) (Es(@)w. )+ Ju liar ))

N ueBrJl(i/?,Rm) (Ehom(a))(u, A) + ||ju — h”Ll(A’]Rm)) (3.23)
as ¢ — 0+. Moreover, if (ug) C SBV (A, R™) is a sequence such that

Ee(w)(ue, A) + lug — hllp1a rm

< eso, (Ec(@)(w, A) + llu = hllg1apm) + 7 (3.24)

for some ns — O+, then there exists a sequence ¢j — 0+ such that (ug;)jeN
converges in L'(A, R™), as j — +00, to a solution of the minimisation problem

sy (Evom @)@, ) + = Al 1 zm) (3.25)
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Proof If A has a Lipschitz boundary, then the functionals E¢ () (-, A)+[l-=hll 114 gm)
are equi-coercive in L' (A, R™) thanks to Remark 3.2. Since we have I'-convergence in
L' (A, R™) by virtue of Theorem 3.18, the proof readily follows from the fundamental
property of I'-convergence (see, e.g., [18, Corollary 7.20]).

We now show that the convergence of minimum values and of minimisers can be
obtained even if dA is not regular. Let us fix w € @', A € &/, and h € LI(A, R™).
By Theorem 3.18 for every A’ € & the functional Epom(w)(-, A’) is a I'-limit in
LlloC (R™, R™), hence it is lower semicontinuous in LllOC (R"*, R™) (see [18, Proposition
6.8]). This implies that Enom (@) (-, A"), considered as a functional on LY(A, R™), is
lower semicontinuous. Since

Enom (@) (-, A) = sup{Enom (@) (-, A') : A" € o/, A" CC A},

the functional Epom(@)(-, A), defined on L1(A, R™), is lower semicontinuous with
respect to the convergence in LIIOC(A, R™).

Since fhom(w, ) and f5 (@, -) belong to F, while ghom(w, -, -) belongs to G,
it follows from the definition of Ehom(w)(-, A) that ¢;|Du|(A) + lullprarmy <
Ehom (@) (u, A) + llu — hllpra mmy + Il L1(arm) fOr every u € BV (A, R™). This
shows that the functional u +— FEpom(w)(u, A) + ||lu — h”Ll(AyRm) is coercive in
BV (A, R™) with respect to the convergence in LIIOC(A, R™). Therefore it attains a
minimum value in BV (A, R™), which we denote by 1.

Let up be a minimum point in BV (A, R™). We extend ug to a function of
LI]OC(R", R™), still denoted by ug. By I'-convergence, for every sequence (¢;) of
positive numbers converging to O there exists a sequence u; converging to ug in
LIIOC(R”, R™) such that E¢;(w)(uj, A) = Enom(®)(ug, A) < +00. By the definition
of Egj (w) we have u; € SBV (A, R™) for j large enough, hence

wes i (B @)@ A) = Bl 1 a o) = By @) A) + lltj = Bl a oy

This implies that

lims inf E.. VA —h ) < wo.
Jl'_>+l;§ueSBV(A,]Rm)( e (@)@, A) + I = Rll 1 momy) < 10

Since the sequence £; — 0 is arbitrary, we obtain

lim su inf E ,A —h my) < 0. 3.26
s»0+pueSBV(A,R’”)( e(@)(u, A) + lu ”L](A’R )) = Ho ( )

To prove the opposite inequality for the liminf, as well as the last statement of
the corollary, we fix a sequence (u;) C SBV (A, R™) satisfying (3.24). For every
sequence (&) of positive numbers converging to 0, by Remark 3.2 and by (3.26) the
sequence (usj) is bounded in BV (A, R™). Therefore a subsequence, not relabelled,
converges in LllOC (A, R™) to a function u, € BV (A, R™).

Given A’ € &/, with A’ CC A, we can consider the functions v j» defined by
Vj = Uy in A’ and vj :=0inR" \ A’, which converge in L! (R", R™) to the function
Uy, defined by vy := u, in A" and v, := 0inR"\ A’. Since E:;(o)(, A") T'-converges
t0 Epom(w)(-, A') in L (R", R™), we have

loc
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Enom (@) (4, A") = Epom(®)(vs, A') < lim inf Ea/- (@) (vy, A"
J—>+00

< liminf E¢, (0)(ue;, A),
J—>+00 ’

which implies that

Enom (@) (4, A/) + g — h”Ll(A’,]RW)
< liminf (Ee; (@) (ue; A) + s, = hll s zm):

Taking the supremum for A’ CC A in the previous inequalities we obtain

Enom (@) (ux, A) < liminf E¢ (@) (u;, A), (3.27)
J—+00

and

1o < Enom(w)(us, A) + |lusx — h”Ll(A,Rm)
= lim inf (e, (@)Gte; A) + e, = bl )

< liminf inf E.. A —h my ). 3.28
< lim inf uesg%,m( e (@), A) + lu = Rl 14 pmy) (3.28)

By the arbitrariness of the sequence ¢; — 0+, this chain of inequalities, together
with (3.26), gives (3.23) and shows that u, is a solution of the minimisation problem
(3.25).

Inturn, (3.23),(3.27), and (3.28) imply that [lug, —hll p 1o gy = s —hll11 4 g
Since Ug; converges to ux in LIOC(A, R™), from the general version of the Dominated
Convergence Theorem we obtain that Ug; CONVErges to Uy in L1(A, R™). This con-
cludes the proof of the last statement of the corollary. O

4 Deterministic homogenisation: properties of the homogenised
integrands

Let f € Fand g € G.Fore > 0 consider the functionals E, : L}
[0, +o00] defined by

R", R™) x of —>

loc

E.(u, A)
/f( Vi) dx +/ g, [u], v) dH"" if uls e SBV(A,R™),
NA

otherwisein L}OC(R”, R™).
“4.1)

In this section we prove the I'-convergence of E. under suitable assumptions on f
and g, which are more general than the periodicity with respect to x.
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The main result of this section is the following theorem.

Theorem 4.1 (Homogenisation) Let f € F, g € G, and let m!-8 and m’™8 be
defined as in (3.4) with (f, g) replaced by (f, go) and (f*°, g), respectively. Assume
that

(a) foreveryx € R", £ e R"™" v e S""! and k € N the limit

m! (e, 0, (rx)

dim = from (&) 4.2)
exists and is independent of x, v, and k;
(b) foreveryx € R", ¢ € R", and v € "~ the limit
778 Q) (rx))
. m Urx.t.vs rx
rllr-ililoo :ng_]i - =: ghom (¢, V) (4.3)

exists and is independent of x.

Then fhom € F and ghom € G. Let fio  be the recession function of fuom and let
Enhom: L, .(R",R™) x &/ —> [0, +00] be the functional defined by

1
loc

Epom(u, A) := / Jhom (Vu) dx +/ &hom ([u], Vu)dHn_l
A

S.NA

o/ dC(u)
+ [ () dicwl (“4)

if ulg € BV(A,R™), while Epom(u, A) := 400 ifulg ¢ BV(A,R™). Then, for
every A € o the functionals E.(-, A) defined as in (4.1) I'-converge to Epom (-, A)
in LIIOC(R”, R™), as ¢ — 0+, meaning that for every sequence (¢;) of positive
numbers converging to zero the sequence (Egj (-, A)) T-converges to Enom(:, A) in
Ll (R",R™).

The proof of the homogenisation result Theorem 4.1 will be carried out in three
main steps. In the first step (Lemmas 4.2 and 4.5) we show that fhom € F and
ghom € G. In the second step (Theorem 5.1) we prove that, up to subsequences, for
every A € < the functionals E, (-, A) '-converge to some functional E (-, A), whose
domain is BV (A, R™). Further, we prove that E satisfies some suitable properties
both as a functional and as a set-function. In particular E (u, +) is the restriction to .o/
of a Borel measure.

In the third and last step we show that (4.2) and (4.3) imply, respectively, that the
following identities hold true for every A € 7 and for every u € LllOC (R", R™) with
ula € BV(A,R™):

dE(u, 2 ;
W(x) = fhom(Vu(x)) for L"-ae.x € A, (4.5)
d’f(f_(—?L')&,(x) = ghom([U](x), v (x))  for H" -ae.x € S, N A, (4.6)
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dE(u, ")
d|C(u)|

o [ dCw)
(x) = fhom(dlc—(z)'(x)) for |C(u)|-ae. x € A 4.7)

(}s\ee Propositions 6.2, 7.2, and 8.3). Moreover, thanks to (4.5)-(4.7) we deduce that
E coincides with the functional Eyoy defined in (4.4); as a consequence, the I'-
convergence result proved in the second step actually holds true for the whole sequence
(Ee).

In the next lemmas we prove that the homogenised integrands fhom and gpom belong
to the classes F and G, respectively.

Lemma4.2 Let f € F and g € G. Assume that hypothesis (a) of Theorem 4.1 is
satisfied and let fnom be defined as in (4.2). Then fhom € F.

Proof To prove (f2) we fix &1, & € R™ " and set & := & — &;. We claim that for
everyr >0

Im? 80 (ts,, Q) — m/%0(Lg,, 0,)|
< o1(|EDm 80 Ly, Q) +mT 80 (Le,, 0)) + c1|E]F", (4.8)

where O, := Q,(0). Indeed, by (f2), for every u € SBV(Q,, R™) we have

ET8@w + ¢, 0,) < ETu, 0,) + a1 (IED(ET 0 (u + Le, Or)
+ES 8w, 0,)) + c1|E]r".

By rearranging the terms we get
(1 —o1(IENESu + L, Q) < A +a1(IEDETS(u, Q) + c11E]7".

If 01 (|§]) < 1, we minimise over all functions u € SBV (Q,, R™) such that u = £,
near d Q, and, using (3.4), we obtain

(1 —o1(IED)m 80 (Le,, Q) < (1 4+ o1(IE))M 80 (Lg,, Q) + c1]E]F".

This inequality is trivial if o1 (]€]) > 1. Exchanging the roles of &; and & we obtain
(4.8). We now divide both sides of this inequality by r" and, passing to the limit as
r — +o00, from (4.2) we obtain that f,om satisfies (f2).

Property (f1) for fhom follows from the continuity estimate ( f2), since fhom does
not depend on x. The lower bound (f3) for fhom follows from the lower bound in
Remark 3.2, which gives

coinf | Dul(Q,) < m! (g, Q)
for every £ € R™*", where the infimum is over all functions u € SBV(Q,, R™),

and such that u = £¢ near 0 Q,. By Jensen’s inequality the left-hand side is equal to
c2|&]r™. Using (4.2) we conclude that that fion satisfies (f3).
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Property (f4) for fhom follows from the fact that for every & € R™*" we have
1 /.80 1 /.80 1
—m’ 80, Q) = —EVWe, Q) = — | f(x,§)dx = c3|§] + ca.
r r r 0,

Passing to the limit as r — 400, from (4.2) we obtain that fj,on, satisfies (f4).

We now prove that fjom satisfies (f5). Fixé € R™*", s > 0, > 0,and n € (0, 1).
By (3.4) for every r > 0 there exists u, € SBV(Q,, R™), with u, = ¢ near 0Q,,
such that

f(x, tVu,)dx + / go(x, t[uy1, vy, ) dH"™1 < mP80 (4, Q1) 4+ .

o) 84,00,

(4.9)
By (3.6) for every x € R" and § € R™*" we have

e sE) =2 =S f(ns®) T < P ) + S+ S (197,
hence, using the positive 1-homogeneity of g,

11 1
-— | f(x,sVu)dx — = — C—S—/ fCx,sVu)'~dx
Or

n n
sr 0, N s r

11
+-—= go(x, s[u,], vy,) dH" !
sr SurNO;r

= __/ S N”’)dx”L_JFC_Si/ fx, tVu,)' "%dx

trh

+——,, goCx, t{ur], vy,) dH" .
tre Js, no,

By Holder’s inequality we obtain

11 n—1 Cs5
s ), JsVunds+ 2o gox, slup),vy,) dH"™ — =

S NQ;
bl _nf f(x,sVu,)dx)
r

—a
= __/ fx, tvur)dx+__/ go(x, tlu,], Vu,)dHn l
SurNOr

trh

+C—5 —/ f(x,tVur)dx>
t \r 0,

5

By (4.9) this inequality implies that

c5

1,1 1 -
-(—/ fx,sVu,)dx + —/ go(x, s[uy], vy, ) dH ) - —=
s\ Jo, " Js,no,
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cs /1 1 L\
“S(5 ] fensVupdx+ goCx, slur], vi,) dH" ")
s ' Jo, " JSu,00;
<1 ! fig0(p e ol f.80(p I 4.10
< (im0 e 0+ ) + 2+ S(Sml 0, 00 +n) L @10)
If

1 1 I—a
im0 (e, 0n) = es(Zm! (ke ) <0, (4.11)

then we have

11 cs cs /1 -«
om0 e, 00) = = Z(Zm 0. 0p)
1,1 cs c5/,1 —
= —(Gm e 00 +n) + Z+ Z(Sml e 0 +n) L @12

just because the left-hand side is negative and the right-hand side is positive. Since the
functiont — 7 — C5t1_"‘, defined for r > 0, is increasing in the half-line where it is
positive, from the inequality

mf',go(zsg’ 0,) S/Q f(x,sVu,)dx ~|—/S 0 go(x, slu,l, vur)dHn—l
r Mrm r

and from (4.10) we deduce that (4.12) is satisfied even if (4.11) is not.
Passing to the limit first as » — 400 and then as n — 0+, from (4.2) and (4.12)
we obtain

1 cs  cs _ 1 cs Cs _

— from(5€) = = = = faom(s8)' 7% = — from (18) + = + = faom (1§)' 7.

N N N t t t
By exchanging the roles of s and t we obtain (3.6). Recalling that fhom satisfies (f4),
we can apply Remark 3.4 and we obtain that fj,on satisfies (f5). O

To prove that gnom € G We need the truncation result given by the following lemma,
which will be used several times in this paper. The proof is given in [9, Lemma 3.7]
(see also [10, Lemma 2.8]).

Lemmad4.3 Let C; > 0, Co > 0, and n > 0. Then there exists a constant M =
M(Cy, Ca,m) > O such that for every f € F and g € G, for every A € <, for
every w € SBV(A,R™) N L®(A,R™), with ||w||feca,rmy < C1, and for every
u € BV(A,R™), with |[ull 1o gmy + |Dul(A) < C2 and u = w near dA, there exists
i€ SBV(A,R™)N L®°(A, R™) such that

(a) llullpocarmy < M,

(b) Ef8(ii, A) < ET8(u, A) +n,

(c) llu—wllprarmy < llu—wllgiarm),
(d) u = w near dA.
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Remark 4.4 A careful inspection of the proof of [9, Lemma 3.7] shows that the lemma
also applies if u only attains the boundary conditions on a subset of 9 A, as defined
after (3.4). More precisely, if A C dA is a relatively open subset of A, U is a
neighbourhood of A in R", w € SBV(A,R™")NL®(UNA,R™),andu = w L"-a.e.
in U N A, then the conclusion still holds true, with (d) replaced by

d) i =wL"ae inUNA,
and in this case M = M(El, C>,1n) > 0, where |[w]| o @wna,rm) < C‘l.
We are now ready to prove that gnom € G.

Lemma4.5 Let [ € F and g € G. Assume that hypothesis (b) of Theorem 4.1 is
satisfied and let gnom be defined as in (4.3). Then ghom € G.

Proof To prove (g2) we fix {1, 2> € R™ and v € S"~!, and we set ¢ := ¢, — ¢1. We
claim that for every r > 0

Im! ™8 (o ¢y, QF) — m! ™8 (uo.2y.0, QL)

< o (Ie)m! ™8 o ey vy OF) + m! 8 (o ¢, 0, OD)), (4.13)

where Q) := Q/(0). Indeed, for every u € SBV(Q;,R™), by (g2) we have

E/™ %+ uo ., Q)

< ET78u, 0) + 021G (BT 8w+ uo e, 00) + ET 5w, 0))).
By rearranging the terms we get

(1= o2 (ICET ™8 (u + 1oz, 0¥) < (1 +02(ICET™ 8 (u, QF).

If 02(|¢]) < 1, we minimise over all functions u € SBV(QY, R™) such that u =
uo,¢,,v near Q) and by (3.4) we obtain

(= oa(ig)m! ™ B (wo,cp0. Q) < (14 0201 DI ™ (uo .. O).

This inequality is trivial if 02 (]¢]) > 1. Exchanging the roles of ¢; and ¢» we obtain
(4.13). We now divide both sides of this inequality by "~! and, passing to the limit
as r — 400, from (4.3) we obtain that gpom satisfies (g2).

In view of (g2), to prove (g1) for ghom it is enough to show that for every ¢ € R™
the restriction of the function v — ghom (¢, V) to the sets S'}r_l and S"~! is continuous.
We only prove this property for /S\’_fl, the other case being analogous. To this end, let
usfix; e R™, v e §1_1, and a sequence (v;) C g’fl such thatv; — vas j — +oo.
Since the function v — R, is continuous on ’S\’rl, for every § € (0, %) there exists
an integer js such that

|l)j — 1)| <4 and Ql(}{_s)r CcC Q;‘) CcC Ql(){_,’_g)ra (414)
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for every j > js and every r > 0. Fix j > js,r > 0, and n > 0. By (3.4) there exists
u e SBV(Q;, R™), withu = ug ,, near dQy, such that

Fo(x, Vi) dx +/ gCr. [l v) dH™ < mT ™ (ug.c.0. Q) + 1.

oy SuNQy

(4.15)

We define v € SBVlOC(Q](){M)r, R™) as

u(x) ifx € QY,
v(x) = . \r;j v
uoﬁg,,,j(x) if x € Q(1+5)r \ O).

Then v = uo,¢,v; near HQE‘I’JF(SV and S, C S, U X, where

Ti={r€dQ): (x-v)(x-v)) <0} U (MY N(Q[ 4, \0O))

By (4.14) there exists ¢(§) > 0, independent of j and r, with ¢(§) — 0 as § — 0+,
such that H"~1(%) < g(8)r”_1. Thanks to (g4), (3.4) and (4.15) we then have

mfoo’g(uo,{,v./a Q‘(){+8)r) S f v foo('x’ VU) dx +/ vj g(x’ [v]’ vU)dHn_l

(A+48)r SoNQ i 45y,

<[ e v +/ gr. [l vi) dH + e3¢ (8)r!
Qr SuNQy
<m! " Eug.cv, OV) + 0+ 3l (S,

where we used the fact that f*°(x, 0) = 0 for every x € R”". Dividing by »"~! and
passing to the limit as » — +o0, recalling (4.3) we obtain

ghom (&, V) (1 +8)"~" < ghom (¢, v) + e31¢ 15 (8),
Letting j — 400 and then § — 0+ we deduce that

lim sup ghom (¢, vj) < ghom (¢, V).
Jj—4o00

An analogous argument, now using the cubes Q‘;f —8)r implies that

ghom (¢, v) < liminf ghom (¢, Vj)a
Jj—+0o0

hence the restriction of the function v +— ghom (¢, V) to /S\’_f] is continuous. This
concludes the proof of (g1) for gnhom-
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The lower bound (g3) for ghom can be obtained from the lower bound in Remark 3.2,
which gives

cyinf [Dul(QY) < m'™ 8 (o r.v, Q)

for every { € R™ and v € S"~! where the infimum is over all functions u €
SBV(Q;,R™) and such that u = ug ¢, near dQ;. In turn, this infimum is larger
than or equal to

cinf [ Dv|(QY), (4.16)

where the infimum is now over all scalar functions v € SBV (Q;) and such that v =
ug,|z|,v near dQ;. Using (4.3), property (g3) for ghom follows from these inequalities
and from the fact that the value of (4.16) is ¢ (¢ |r"~1. This is a well kown fact, which
can be proved, for instance, using a slicing argument based on [5, Theorem 3.103].

Property (g4) for ghom follows from the fact that for every ¢ € R and v € S"~!
we have

1

0 1
—m! 8 (g ¢y, QF) <

rin—
1
=—/ gx, ¢, v)dx < c3l¢].
l'l(”]ﬁQ‘;

CETT 8 (ug ¢, O))

,,.n

pn—1

Passing to the limit as r — 400, from (4.3) we obtain that gnom satisfies (g4).

We now prove that gnom satisfies (g5). Fix ¢ € sm=1yes'1 s>0,¢t>0,and
n € (0, 1). By (3.4) forevery r > O there exists v, € SBV(Q}, R™), withv, = uo¢,»
near dQ), such that

/ O, 1Vv,) dx + / g, t[ve ], vy ) dH"™" < m T8 (g e OF) + e,
0 8, N0}

hence

00 l n—1
F0e Vo) dx + - g(x, tlvr], vy, ) dH

o S NQY

1 _
< ;mf $(uo,re,0, Q) + nr" N

where we used the positive 1-homogeneity of f*°(x, -).

Let Q" := Q7(0) and let w, € SBV(Q", R™) be the rescaled function, defined by
w,(x) := v, (rx) for every x € Q". Then w, = ug,,, near Q" and, by a change of
variables,

1
Fo0rx, Vi) dx + - f g(rx, 1wy, vy, ) dH"!
Qv t Sw,NQY

11

pl m! "8 (o 1,0, OF) + 1, (4.17)
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where we used the positive 1-homogeneity of f°°(x, -). Since the function g, ; defined
by gr:(x,¢,v) 1= %g(rx, t¢, v) satisfies (g3) with the constant ¢, independent of r
and 7, and by (g4)

1 ~ 1w
! o, 0)) < BT o, 0))
1 n—1
= — g(x, 18, v)dH
e Jngnoy

< cal¢| =cs,

from Remark 3.2 and (4.17) we deduce that there exists a constant C such that
|[Dw,|(Q") < C,foreveryr > 0,t > 0,andn € (0, 1).Inaddition, since w, coincides
withug ¢, near d 9", we can apply Poincaré’s inequality and from the bound on its total
variation we deduce that w, is bounded in BV (Q", R™), uniformly with respect to r,
by a constant that we still denote with C; namely, [|wy | 11(gv rmy + [Dwy| Q") <cC.

By Lemma 4.3 for every n € (0, 1) there exists a constant M,, > 0, depending on
Chbutnotont >0,r >0,¢ € s and v € $"~!, such that for every r > 0 there
exists a function w, € SBV(Q", R™) N L>®(Q", R™) with the following properties:
w, = uo, ¢,y near an, ”ﬁ)r”LOO(QV,Rm) < M,}, and

) ~ 1 ~ n—1
f@rx, Vo) dx + — g(rx, tlw,], vg, ) dH
oY t Sz,NQOY

1
< f®@rx,Vw,)dx + —/ g(r)c,t[wr],vw,)dH"_1 +n,
Qv 1 Sy NQY

where we used the fact that f*° € F and g, ; € G. By (4.17) this implies that

Ferx, Vb )dx—i—l 0], vg -l
, Vi, glrx, tlw,], vp,) dH
t S5,N0"

m! ™8 o e, OV) + 2. (4.18)

QU

<
— ¢ yn—1

11
t

Lett, € SBV(Qy,R™)NL*®(Q), R™) be the function defined by v, (x) := w, (%)
forevery x € Q). Then v, = ug ¢ neardQy, vy ||Loo(gv.rRm) < Mj, and, by achange
of variables,

£, Vi) dx + ;/ g(x, t[v,], v;,r)danl

oy S, MO}

1 00
< ;mf 8 (U ee,v, OF) + 207", (4.19)

where we used (4.18) and the positive 1-homogeneity of £ (x, -). Since ||y [| o< gy, k)
< M,, by (3.11) we have

(1 _ lA(stn))(f £ (x, Vi) dx + lf g (x, s[5, v;)r)dH"’l)
2 0y § JSs;,.n0y
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- (1 n é)”(ZtM")>(/Qy £ (x, Vi) dx + %/S

g, 1[5,1, v3,) dH’H).
(4.20)

5 NOY

Assume that
— éx(st,,) > 0. 4.21)
Since sV, = u,s¢,» near 3 Q}, using the positive 1-homogeneity of f°° we obtain that
1 foo g ) o0 ~ 1 ~ n—1
—m’ % (uosz,0, Q) = [T, Vo) dx + - g(x, s[vr], vg)dH" .
s oy S Js5.noy
Hence from (4.19) and (4.20) we have

(1= 2a@sMp)tm ™8 o sz, Q)
1 178 v n—1
< (1 + CZA(ZtMn))(Im (wo,ic,v, Qp) + 2nr ) (4.22)
This inequality holds also when (4.21) is not satisfied, since in that case the left-hand
side is nonpositive.

Since M, does not depend on ¢, s, and r, we can divide (4.22) by 7"~ 1 and, passing
to the limit as r — +00, by (4.3) we obtain

(1= 22@2sMp)) Lgnom(sz. v) < (1+ 222 My)) (4 ghom (12, v) + 2n),
which gives

$8hom (58, V) = 1 ghom (18, V) < ZAQ25My) ghom (¢, V) + 2421 M) 1 ghom (18, v)
+2n(1 + SAQ21My)).

Since ghom satisfies (g4) and |¢| = 1, from the previous inequality we deduce that
§8hom (5. ) = 7 ghom (1, ) < EAQsMy) + ZAQMy) +20(1 + S12rMy)).
Exchanging the roles of s and ¢ we obtain

|+ 8hom (SC, V) = 1 ghom (1€, V)| < SA(2sM,) + SAQ2M,) + 20(2 + Lr(2sMy)
+ j—zx(th,,)) (4.23)

foreverys > 0,t > 0,¢ € S"=1 andv e S*— 1.

Given t > 0, we fix n > 0 such that 4n < % Then, using (3.8), we find § > 0
such that for every ¢ € (0, §) we have i—;A(ZtMn) < % and ZnéA(ZIM,,) < % From
(4.23) we obtain
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14 ghom (s, V) — T ghom (1L, V)| < T (4.24)

for every s, t € (0,68), ¢ € S"=1 and v € S"!. This shows that the function
t— % ghom (¢, v) satisfies the Cauchy condition for t — 0+, hence the limit

hom,0(¢, V) i= lim Lepom (12, v)
t—0+

exists and is finite. This limit is uniform with respect to ¢ € S"~! and v € §"~!
thanks to (4.24). This concludes the proof of (g5).

Property (g6) for gnom follows from (4.3) and from the fact that ug ¢ —, = uo,z,v —
¢ and Q7 = Q" (see (h) in Section 2). O

5 I'-convergence of a subsequence of (E;)

In this short section we show that, up to a subsequence, the functionals E, defined in
(4.1) I'-converge to some functional E as ¢ — 0+, and study the main properties of
this functional.

Theorem 5.1 (Properties of the I'-limit) Let f € F, let g € G, and for ¢ > 0 let
E.: Llloc(R”, R™) x of —> [0, +00] be the functionals defined in (4.1). Then, for
every sequence ojfgositive numbers converging to zero, there exist a subsequence (& ;)
and a functional E - LllOC R*,R™) x o«f —> [0, +00] such that for every A € < the

Junctionals E; (-, A) I"-converge to E(-, A)in Llloc(Rn’ R™), as j — +00. Moreover,
E satisfies the following properties:

(a) (locality) E is local; ie., E(u, A) = E(v, A) for every A € & and every u,

v E LIIOC(R”, R™) such thatu = v L"-a.e. in A, R

(b) (semicontinuity) for every A € <f the functional E(-, A) is lower semicontinuous
in L} (R", R™);

(c) (bounds) for every A € </ and every u € L (R", R™) we have

loc

c2|Dul(A) < E(u, A) < c3|Dul(A) + caL"(A) ifu), € BV(A,R™),
E(u, A) = +00 otherwise;

(d) (measure property) for every u € Ll (R",R™) the set function E(u, ) is the

loc
restriction to < of a Borel measure defined on %", which we still denote by

E\(uv ');
(e) (translation invariance in u) for every A € <7 and every u € LIIOC(R", R™) we
have

Eu+s,A) = Eu, A) for every s € R™.
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Proof Given an infinitesimal sequence (¢;) of positive numbers, let E, E": LlloC
(R™, R™) x o/ —> [0, +00] be the functionals defined as

E( A) =T- hmme ( A) and E”( A) =T- hmsupE (-, A).

Jj—+00

In view of the bounds (f3), (f4), (g3), and (g4) satisfied by f and g, it immediately
follows that

c2|Dul(A) < E'(u, A)
< E"(u, A) < c3|Dul(A) + c4L"(A)  ifuls € BV(A,R™), (5.1)
E'(u,A) = E"(u, A) = +0 ifula ¢ BV(A,R™). (5.2)

By the definition of E,; and the general properties of I'-convergence, we can also
deduce that the functionals E’ and E” are local [18, Proposition 16.15], lower semi-
continuous (in u) [18, Proposition 6.8], and increasing (in A) [18, Proposition 6.7].
Moreover E’ is superadditive (in A) [18, Proposition 16.12]. Since it is not obvious that
E’ and E” are inner regular (in A), at this stage of the proof we consider their inner
regular envelopes; i.e., the functionals E , E': L R*, R™) x o/ —> [0, +00]
defined as

loc

E (u,A):= sup E'(u,A') and E’(u,A):= sup E'(u,A).
A'ccA A'ccA
Aledf Aledf

Also E’_ and EZ are increasing, lower semicontinuous [18, Remark 15.10], and local
[18, Remark 15.25]. Moreover, by [18, Theorem 16.9] we can find a Eubsequence of
(/) (not relabelled) such that the corresponding functionals E” and E” satisfy

E =E' = E. (5.3)

The functional E defined in (5.3) isinner regular [18, Remark 15.10] and superadditive
[18, Proposition 16.12].

By virtue of [11, Proposition 3.1] applied with p = 1 we can immediately deduce
that the functionals E, satisfy the so-called fundamental estimate uniformly in ¢.
Therefore [18, Proposition 18.4] yields the subadditivity of E (u, -). Therefore, invok-
ing the measure-property cr1ter10n of De Giorgi and Letta [18, Theorem 14.23], we
can deduce that, forevery u € L loc (R™, R™), the set function E (u, -) is the restriction
to o7 of a Borel measure defined on %".

Moreover [18, Proposition 18.6] and (5.1) imply that E(u, A) = E’(u, A) =
E” (u, A) whenever u|s € BV (A, R™). Finally, it follows from (5.1) and (5.2) that
E(u, LA) = E (u, A) = E'(u, A) = +oo if ula ¢ BV(A,R™). We then conclude
thatE = E = E" 1nL1 (R",R™) x o/, hence that E(-, A) is the T-limit of E, i A)
in LIOC(R” R™) forevery A € <.

Eventually, the translation invariance in u of E(-, A) canbe easily checked arguing
asin [11, Lemma 3.7]. O
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For later use we need to introduce the following notation. Let A € o/ and w €
BV (A, R™), we set

mz(w; A):=inf{E(u, A) : ue Ll (R",R™), uls € BV(A, R™), u=w near dA}.

6 Identification of the volume term

In Proposition 6.2 below we characterise the derivative of E with respect to the
Lebesgue measure £". In order to prove this result we need the estimate established
in the following lemma, whose proof is an immediate consequence of (3.9).

Lemma6.1 Letg € G, A € &7, andu € BV(A,R™) N L*®°(A, R™). Then for every
t>0

A A |g0(.x,[l/i],vu)— %g(X,t[u],vu)|d'Hn_l
N

< ATl s, 0m 8 / Il dH
SuNA

where A is the function defined in (3.7).

Proposition 6.2 (Homogenised volume integrand) Let f, g, Ee, (¢;), and E be as in
Theorem 5.1. Assume that (a) of Theorem 4.1 holds, and let fnom be as in (4.2). Then
forevery A € of and everyu € LIIOC(R", R™), withuls € BV (A, R™), we have that
dE(u, -
%(x) = fhom(Vu(x)) for L™-a.e. x € A.

Proof Letus fix A € & and u € LllOC
the proof into two steps.
Step 1: We claim that

(R™, R™), with u|4 € BV (A, R™). We divide

dE(u, )
acnr

(X) < fhom(Vu(x)) for L"-ae. x € A. 6.1)

By (a)-(e) of Theorem 5.1 and by [10, Lemmas 3.1 and 3.5], arguing as in the proof
of (3.16) in [10, Theorem 3.7], for L"-a.e. x € A we have

dE@,) . mple, Qp()

6.2
dLn p—0+ p" 6.2)

where £(x) := Vu(x). Fix x € A such that (6.2) holds and set £ := £(x) = Vu(x).
For every p > 0 we have

from®) = i T @)
hom = >

r—+00 rh

(6.3)
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since the above identity directly follows from (4.2) by replacing x with %.

Let us fix n € (0,1). By (3.4) for every p > 0 and r > 0 there exists v/ €
SBV(Q, (%), R™), with vf = Lg near 90, (%), such that

ET$0@, 0,(2) <m0, Q, () + ' < / S & dy +ar"

0, ()

< (3l +ca + Dr", (6.4)

where we used that go(-, 0, -) = 0 and (f4). We extend v/ to R” by setting v/ (y) =
£z (y) forevery y € R" \ Q,(“0).
For every y € R” let w/(y) := %vf(% +ry) — %Eg(x). Clearly w/ e

SBViee(R", R™) and w? = le near dQ and in R" \ Q, where Q := Q(0). Moreover,
by a change of variables we obtain

pN

— gl 0, (2)), 6.5)
.

where we used the 1-homogeneity of gp in the second variable. By the lower bounds
(f3)and (g3), from (6.4) and (6.5) we deduce that there exists a constant K , depending
on |£|, such that |[Dw’|(Q) < K for every p > 0 and r > 0. In addition, since w/
coincides with £z in R" \ Q, we can apply Poincaré’s inequality and from the bound
on its total variation we deduce that the sequence (w?) is bounded in B Vioc (R”, R™).
In particular it is bounded in BV (Q, R™), uniformly with respect to p and r, by a
constant that we still denote with K.

By Lemma 4.3 and by (6.4) and (6.5) for every n € (0, 1) there exists a constant
M,,, depending also on |§| and K, such that for every p > 0 and » > O there exists
Wy € SBV(Q,R™) N L®(Q, R™) with the following properties: W} = ¢z near 3 Q,
197 | L= (g, em) < My, and

/; f(% + ry, Vd),{)(y)) dy +[g o go(% —+ ry, [ﬁ);‘o](y)’ Vu';i’()’)) danl(y)

m! 80 (L, 0r ()
< +2

n.

ri‘l

Let i € SBVioc(R", R™) be defined by 0/ (y) := rwy (* — 2) + Ze(x). Then
o = L¢ near 8Qr(%) and, by a change of variables,

||[ﬁf]”Lw(SﬁpﬂQ,.(%),Rm) <2M,r, (6.6)
ENS @0, 0,(2)) <m0 (e, 0,(2)) + 201", 6.7
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Moreover, by combining (6.4) and (6.7) with the lower bound (g3) we immediately
deduce the existence of a constant C > 0, depending on |£|, such that

1
— [5°11dH" ! < C. (6.8)
s 00

By Lemma 6.1, applied with t = p/r, using (6.6) and (6.8) we obtain

1

ri rx
SzpN0r ()

dH"™" < CAQ2pMy).

This inequality, together with (6.3) and (6.7), gives

. 1 ~ r Pr~ n—1
timsup— ([ (VI Ay + £ (v, 21371, vg) a1
r—+too 7" N0, (2 SN0, () ’

< fhom(&) +2n + CAQ2pM,).

Given ¢ > 0 and p > 0, we choose r = p/e and for every y € R" we define
uf(y) == evf () = gﬁf(%). Then uf € SBVige(R", R™), uf = €¢ near dQ,(x)
and in R" \ Q,(x). By a change of variables, from the previous inequality we get that
for every p > 0

li Es(ug, Q,o(x))
imsup —————

< fhom(§) +2n + CA(2pM;). (6.9)
£—04 P

Since the functions u’ coincide with £z in Q (144, (x) \ Q(1-s,), (x) for some §; €

(0, 1), by (f4) we have E¢ (u?, Q(14m)p(x)) < Es(uf, Qp(x)) + (c31&] + c4)2" p"n,
which, together with (6.9), gives

Jim sup Ee(uf, Q14n)p (X))

. < fhom(&) + CL2pMy) + Kn,  (6.10)
e—0+ P

where K 1= 2 + (c3|€| + ¢4)2". Since u? coincides with Le in R™" \ Q,(x), using
Poincaré’s inequality and the lower bounds (f3) and (g3) we deduce from (6.10)
that for every p > 0 there exists £(p) > 0 such that the sequence (u£) is bounded
in BVioc(R",R™). In particular it is bounded in BV (Q,(x), R™) uniformly with
respect to & € (0, £(p)). Note that the bound on the L'-norm can be obtained by e.g.
[5, Theorem 3.47]. Then there exists a subsequence, not relabelled, of the sequence
(&) considered in Theorem 5.1, such that (uf ;) converges in LllOC (R", R™) to some
u? € BVieeR", R™) with u? = Lg in Q4pp(x) \ Qp(x). As a consequence
of the I'-convergence of Egj(~, O14npx)) to E(~, O14n)p(x)), from (6.10) we
obtain
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mg(le, Qtmp (X)) _ E@”, Q(14y)p(x)) < fim sup Ee,(uf,, Q4np(x))
p" N " T st p"

< fhom(§) + CAQ2pM,;) + Ien-

Finally, passing to the limit as p — 0+, from (3.8) and (6.2) we get

dE(u, ")

T () = from(®) + K.

(I+n"

Since & := Vu(x), this gives (6.1) by the arbitrariness of n > 0.
Step 2: We claim that
dE(u, )
dLr

(x) > foom(Vu(x)) for L'-ae. x € A. 6.11)

We extend u to R" by setting u = 0 on R" \ A. By I'-convergence there exists
(ug) C L (R", R™), with u|4 € SBV (A, R™), such that

loc

ue — u in Lj (R",R™) and lim Ee(ue, A) = E(u, A),  (6.12)
e—>0+

along the sequence (g) considered in Theorem 5.1. Passing to a further subsequence
we have

Iim ue(x) = u(x) (6.13)
e—>0+

for £"-a.e.x € A.Intherestof the proof ¢ will always be an element of this sequence.
By (j) of Section 2 and by [5, Definition 3.70], for £L"-a.e. x € A we have

lim i|Du|(Qp()c)) = |Vu(x)| < 400, (6.14)
p—0+ ,On

lim L]./‘ lu(y) —u(x) — Vu(x)(y — x)|dx =0, (6.15)
p—0+ ,On+ 0, (x)

. E@w.Q,x)) dE(.)
pl_l)l&_ o = (x). (6.16)

Let us fix x € A such that (6.13)-&6.16) hold true.
Recalling (5.1) we have that E(u, Q,(x)) < c3|Du|(Q,(x)) + cap”, hence by
(6.14) and (6.16) there exists pg € (0, 1) such that

E(, 0,(x))

Q,(x) CCA and <c3|Vux)| +ca+1 (6.17)

forevery p € (0, po). Since E(u, -)is aRadon measure, there exists aset B C (0, po),
with (0, po) \ B at most countable, such that E(u, 0Q,(x)) = 0 for every p € B.
Then we have
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E(,A) = E(, 0p(x) + Eu, A\ Q,(x))
for every p € B. By I'-convergence we also have

lim(i)r}rf Ec(ug, Qp(x)) > E(u, 0, (x)),

lim inf Ec (e, A\ Q) (x)) > Eu, A\ Q,()),
so that by (6.12) it follows that for every p € B
JimE,(ue. Qp()) = Eut. Qp(x). (6.18)

Note that for every p € B there exists £(p) > 0 such that for every ¢ € (0, e(p))

Ee(ue, Qo)) _ E(u. Q,(x)
p}’l - pl‘l

+p = c3lVux)| +cs +2, (6.19)

where in the last inequality we used (6.17).

The rest of this proof is devoted to modifying u, in order to construct a competitor
for the minimisation problems appearing in (4.2), which defines f},om. To this end, for
every p € Bande > 0 we consider the blow-up functions defined fory € Q := Q1(0)
by

U+ pY) U)o O pY) — )

wl (y) :=
o o

Then w? € SBV(Q,R™) and w” € BV(Q, R™). Since u, — u in L](Qp(x), R™)
by (6.12), using (6.13) for every p € B we obtain

w? — w” in L'(Q,R™)ase — 0+. (6.20)
Moreover, from (6.15) we can deduce that
w? — Le in L'(Q,R™)as p — 0+, (6.21)

where we set £ := Vu(x). Therefore, by possibly reducing the values of pg and £(p),
we may assume that

lwf = Lellpromrmy < 1, (6.22)

for every p € B and ¢ € (0, £(p)). By the definition of w{, a change of variables
gives

B 0 _ g g, (62
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where E? is the functional corresponding to the integrands fsp (y, &) = f (_x‘:py L E)
and gf (v, ¢, v) := s (%22, pr,v)s e,

Ef(w, Q) == /Q FEER Y (y)) dy
+ L2 p[w](y), vy ()dH ™ (v)
ﬁng e Plwl(y), vy (y y

for every w € SBV (Q, R™). Note that f£ satisfies (f3) and ( f4), while g/ satisfies
(g3) and (g4).

We now modify w? in a way such that it attains the linear boundary datum Le
near d Q. To this end we apply the Fundamental Estimate [11, Proposition 3.1] to the
functionals Ef. Thus for n € (0, %) fixed there exist a constant L, > 0 with the
following property: for every pEBande e (O, £(p)) there exists a cut-off function
¢f € C(Q), with0 < ¢f < 1in 0, supp(pf) C Q1 = 01 5(0), and ¢f' = Lin
Q1-2y := Q1-2(0), such that, setting W7 := f wf + (1 — ¢f )Lz, we have

EZWE, Q) < (1 +m(ELW!, Q) + EL(be, O\ Q1-2)) + Lyllwf — Lell 1o mm)-
(6.24)

We note that wf = £ in Q \ Q_,, as desired. Moreover in view of (f4) we have
EP(Lz, Q\ Q1-2y) < (3l + ) L7(Q \ Q1-2y) < (c3]&] 4 c4)2n7. (6.25)
From (6.19), (6.22), (6.23), (6.24) and (6.25) we obtain
EL@@F, Q) < 3(c3l&] + ca + 2+ (c3l€| + ca)n) + L, (6.26)

forevery p € Bande € (0, (p)). By the lower bounds ( f3) and (g3), we deduce that
the total variation of £ is bounded uniformly with respectto p € Band e € (0, £(p)).
Note moreover that also the L'-norm of %¢ is bounded uniformly, by (6.22). In
conclusion, the sequence (%) is bounded in BV (Q, R™) uniformly with respect to
p € Bande € (0, e(p)).

By Lemma 4.3 there exist a constant M, > 0 with the following property: for
every p € B and ¢ € (0, £(p)) there exists W € SBV(Q,R™) N L>®(Q,R™), with
We = £¢ near dQ, such that

WL ILooco.rmy < My, WE = Lellpigrmy < IWF — Lellpro rmys
EZ(Wf, Q) < EZ(WE, Q) + 1. (6.27)
We now set r = 2 and vf(y) = rwf(Z — %) + %Zg(x); clearly v/ €

SBV(Q,(%), R™), vf = €¢ near BQr(%), and, by a change of variables
”[Ué)]”LOO(SUgﬂQr(%),R”’) <2M,r, (6.28)
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1 _ .
—(/Q (,X)f(y,Vvé’)dwa/S o (rx)gg(y, 21w vyp)dH" ‘) = EL (07, Q).
s £ 005

r n

(6.29)

Moreover, by combining (6.26), (6.27), and (6.29) with the lower bound (g3) we
immediately deduce the existence of a constant C > 0, depending on ||, such that

1
— IweldH" ! < C. (6.30)
s pnor)

By Lemma 6.1, applied with t = p/r, using (6.28) and (6.30) we deduce that

1

n rx
r Svngr(f)

200y, [V1,vyp) — £8(y, 2101, vyp) [ dH'™ < Ch(2pMy)

for every p € B and ¢ € (0, e(p)). From this inequality and from (6.23), (6.24),
(6.25), (6.27), and (6.29) we obtain

ET$0@, 0,(5)
=

rn

(I+mn

+ Lyllw? = Lell Lo rmy»

W + K+ CA(2pM,)

where K := (c3/&| + c4)3n + 1. Recalling that v/ = ¢¢ near 90, (), we get

ml 80 (g, 0, (1))
=

rh

Ec(ue, Qp(x))

(I'+n)

+ Lﬂ ||w§ - Kg ”LI(Q,]R’")'

+ Ky + Cr(20M,)

Sincer = §, by (4.2) with x replaced by Z, the left-hand side of the previous inequality
converges to fhom(§) as & — 0+. By (6.18) and (6.20) we can pass to the limit in the
right-hand side as ¢ — 0+ and we obtain

Shom(€) < (1 +1n) + Kn+ CrQpMy) + Lyllw” — Lell 1o rm)-

E(u, 0,(x))
o
By (3.8), (6.16), and (6.21), passing to the limit as p — 0+ we get

dE(u,-)
acr

Jhom(§) = (1 +1n) (x) + Kn.
Since & = Vu(x), this inequality gives (6.11) by the arbitrariness of > 0. O
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7 Identification of the surface term
In Proposition 7.2 below we characterise the derivative of E (u, -) with respect to the

measure H" ! LS, for a given BV -function u. In order to prove this result we need
the estimate established in the following lemma.

Lemma7.1 Let f € F, A€ o/, ve BV(A,R™). Then for everyt > 0
1
f | f(x, Vo) — 1 f(x,1Vv)|dx < —es(l + ey L(A)
A
1
+t—c5c3 AL AN IVolltT

L’(A Rm)*

Proof Lett > 0. By (f4) and (3.2), using Holder’s inequality, we obtain that

/ |f®0x, Vo) — 1 f(x,tVv)|dx < Ct—scn(A) + 675[ fx, tVu) "% dx
A A

1—
= 2+ ey f fx,19v)dy)
1
< —Cs(l ey L A) + Zeses” (LN ADT IVl -
This concludes the proof. O

Proposition 7.2 (Homogenised surface integrand) Let f, g, E, (¢;), and E be as in

Theorem 5.1. Assume that (b) of Theorem 4.1 holds, and let ghom be as in (4.3). Then

forevery A € of and everyu € LIOC(R", R™), withu|s € BV (A, R™), we have that

dEu,-) _

m(x) = ghom ([U]1(x), vy (x)) for H" '-a.e. x € S, N A.

Proof Letus fix A € & andu € LIIOC(R", R™), with u|4 € BV (A, R™). We divide
the proof into two steps.
Step 1: We claim that

dE(u, ")

JE A, n—1_
dHTLS, (x) < ghom([u](x), vy (x)) forH ae.x € S, NA. (7.1)

By (a)-(e) of Theorem 5.1 and by [10, Lemmas 3.1 and 3.5], arguing as in the proof
of (3.17) in [10, Theorem 3.7], for Hlae x e S, N A we have

dE@) (o MR 05 0).

_ 2
dH LS, O o1 72)

Fix x € S, N A such that (7.2) holds and set ¢ := [u](x) and v := v, (x).
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For every p > 0 we have

fm,g( vrx
oI (e, QU(E)
&hom (£, v) = lim . &

r—+4o00 pn—1

) (7.3)

since the above identity directly follows from (4.3) by replacing x with %.

Let us fix n € (0, 1). By (3.4) for every p € (0, 1) and r > 0 there exists v e
SBV(Qﬁ(%), R™), with v’ = Urs g, near 8Q;’(%), such that

EV7R0f, Q1) < m/ T8 (uns o, 0)(55)) !
< / g, L) dH ™ " < (esle]+ Dt
M, 00} ()
(7.4)
where we used that £*°(-,0) = 0 and (g4). We extend v to R” by setting v/ (y) =
urx ¢ (y) forevery y R™\ Q7 (5).

By combining (7.4) with the lower bound ( f3) we immediately deduce the existence
of a constant C > 0, depending on ¢, such that

1
rn_—lfQ . IVuP|dy < C. (7.5)
r\p

By Lemma 7.1, applied with t = r /p, using (7.5), we deduce that

1 , _ _

r"—I/ . | F(x, va)—?f(x,%erp)}dyECS(ler Y ptesey @ prCTe

ov(Es)
0

This inequality, together with (7.3) and (7.4), gives

r—+oo I

. 1 _
lim sup ﬁ(/ SfO. 5V dy +/ gy, w1, v,p) dH" 1)
() S,pNQY(T)
< ghom(¢, V) + 1+ Kp“,

where K = c5(1 + c}fo‘) —+ csc;_“Cl_“.

Given ¢ > 0 and p € (0, 1), for every y € R” we define u? (y) := vf(%) =
vf(%), with r := p/e. Then uf € SBVioc(R", R™), uf = uy,, near dQ}(x) and
in R" \ Q) (x). By a change of variables, from the previous inequality we get that for
every p € (0, 1)

Ec(uf, Q) (x))

lim sup il

e—>0+

< ghom(¢, V) +n+ K;Oa. (7.6)
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Since the functions u? coincide with Ux,cv in Q‘(’Hn)p(x) \ QFI_BS)p(x) for

some 8 € (0,1), by (g4) we have Ec(uz, Qfy,, () < Ee(uz, Q)(x)) +

3121271 p"~ 1y, which, together with (7.6), gives

E; (uf, Q?H—n)p(x))

lim sup - < ghom(¢, V) + Kp® + Kn, (7.7
e—>0+ o
where K := 1 + C3|§|2"’1. Since u? coincides with Uy,c,y in R"\ Q;(x), using

the lower bounds ( f3) and (g3) and Poincaré’s inequality we deduce from (7.7) that
for every p > 0 there exists £(p) > 0 such that the functions u? are bounded in
BVioc (R", R™) uniformly with respect to ¢ € (0, (p)). Then there exists a subse-
quence, not relabelled, of the sequence (e i) considered in Theorem 5.1, such that
(ué’k) converges in LIIOC(R", R™) to some u” € BVioc(R", R™) with u” = uy ¢, in
lejn)p x)\ Q;(x). As a consequence of the I'-convergence of Eg; (-, Q‘(’Hmp(x))
to E(-, Q(vl+r1)p (x)), from (7.7) we obtain

Mgt Q™) _ E@’, QY ,p, ()

E¢;(uf,, o/ (x))
— < lim sup A hlad Gz
P

:On_l j—+oo :On_l

< ghom (¢, v) + K p* +I€7]~

Finally, passing to the limit as p — 04, from (7.2) we get

dE(u, ")

m(ﬁf) < ghom (&, v) + K.

(14!

Since ¢ := [u](x) and v = v, (x), this gives (7.1) by the arbitrariness of n > 0.
Step 2: We claim that

dEu, )

d’H”_—lLSu(x) > ghom ([#](x), v, (x)) for H' -ae. x €8, NA. (7.8)
We extend u to R" by setting u = 0 on R" \ A. By I'-convergence there exists
(ug) C Ll (R", R™), with |4 € SBV (A, R™), such that

loc

ue — u in L (R",R™) and lim Eq(ug, A) = E(u, A), (7.9)
e—>0+

along the sequence (&) considered in Theorem 5.1.

By [5, Definition 3.67 and Step 2 in the proof of Theorem 3.77] and thanks to
a generalised version of the Besicovitch Differentiation Theorem (see [31] and [26,
Sections 1.2.1-1.2.2]), for H"l-a.e. x € S, N A we have

1
lim
p—0+ pn=1

|Dul(Q)™ (x)) = |[u](x)] # 0, (7.10)
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1
lim — — dy=20 7.11
hm o Jomo lu(y) = ux [u)(x), v, ) (V) dy = 0, (7.11)

i B 030 dE@.)
p—0+ p"‘l d?{n_IL,Sﬁ

(x). (7.12)

Let us fix x € S, N A such that (7.10)-(7.12) are satisfied, and set ¢ := [u](x) and
v =, (x).

Recalling (5.1) we have that g(u, Q;(x)) < C3|Du|(Q}’)(x)) + c4p™, hence by
(7.10) there exists pg € (0, 1) such that

E(u, Q%(x))

pn—l

Q)(x) CC A and <cle|+1 (7.13)

for every p € (0, po). Since E(u, -) is a Radon measure, there exists a set B C (0, pg),
with (0, pg) \ B at most countable, such that E (u, BQZ (x)) = 0 for every p € B.
Proceeding as in the proof of (6.18), by (7.9) we can show that for every p € B

Jim Ee(ue, () = E, 0(x)). (7.14)
Hence, for every p € B there exists ¢(p) > 0 such that for every ¢ € (0, e(p))

Ec(ue, Q4(x))  E(u, Q%(x))
pnfl = pnfl

+p =clg)+2, (7.15)

where in the last inequality we used (7.13).

The rest of this proof is devoted to modifying u, in order to construct a competitor
for the minimisation problems appearing in (4.3), which defines gpom. To this end, for
every p € B and ¢ > 0 we consider the blow-up functions defined for y € QV :=

01(0) by
wé)(y) = ué‘(x + ,Oy) and wp(y) = u(x + py)

Thenw? € SBV(QV, R™)andw” € BV(Q', R™).Since u, — uinLl(Q}’)(x), R™)
by (7.9), for every p € B we obtain

w? — w” in L'(Q",R™) as ¢ — 0+; (7.16)
moreover, from (7.11) we have
w? = ug ey in L'(QY,R™) as p — 0+. (7.17)
Up to possibly reducing the values of pg and €(p), we may then assume that
lwf —uocvllLigrrmy <1, (7.18)
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for every p € B and ¢ € (0, ¢(p)). By a change of variables, we obtain the relation

EE &€ v
W — EP(w?, Q") (7.19)

where EY is the functional corresponding to the integrands £ (y, &) := p f (H%, %)
and gf (y, ¢, v) == g(*=22 ¢, v); e,

B¢ (w, 0% :/Q Pﬂ”%v%w(y))dw/s . ST v )
! wNQY

foreveryw € SBV (QV, R™). Note that £/ satisfies (f3) and (f4) (recall that p < 1),
while gf satisfies (g3) and (g4).

We now modify wf in a way such that it attains the boundary datum ug,¢,v near
9 Q". This will be done by applying the Fundamental Estimate [11, Proposition 3.1]
to the functionals EZ . Thus for n € (0, %) fixed there exist a constant L, > 0 with the
following property: for every p € B and ¢ € (0, e(p)) there exists a cut-off function
¢f € C2(Q"), with0 < ¢f < 1in ¥, supp(¢!) C Q}_, = Q}_, (0).and ¢{ = 1
in Q‘lj—zn = Q‘f_Zn (0), such that, setting w5 := ¢f wf + (1 — (pf)uo,;,v, we have

EL P, Q") < (1 +m)(EL (!, Q") + Ef (uocvr "\ Q) _2,))
+L,7||w§ — MO:{»””LI(QU,R’”)' (720)

By definition we clearly have ! = uo,cvin Q¥ \ Q as desired. Moreover, from

(f4) and (g4) we obtain the bound

v
1-n°
Ef oz, QV\ Q) 2,)) < cal™(Q"\ @} _,,) + c3l¢| HH(ITH N (QV\ Q) )
< 2c4nn + 2¢30¢|(n — D)7, (7.21)
and hence, from (7.20) and (7.21) we have that
EL@F, Q") < (1 +mELwf, Q") + Kn+ Lyllwf — uozllpigrpmy.  (7.22)

for every p € B and every ¢ € (0, (p)), where K = 3(capn + c3|¢|(n — 1)). Note
that (f3), (g3), (7.15), (7.18), (7.19) and (7.22) imply that

Cz/ V@ (W Idy < (1+n)(esl¢l+1) + Kn+ Ly, (7.23)
Ql)

for every p € B and ¢ € (0, e(p)).
We finally set r := 2 and vf(y) := 9f (£ — 2); clearly vl e SBV(Q; (%), R™),
vl = ¢,v ear 9 Qﬁ(%), and via a change of variables, using also (7.23), we have
Ry

that
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1
/QV(H) IVl (»ldy < C, (7.24)

pn—1
N p

1

pn—1

(f 2f(y. ’va)dy+f L 80 vf, vvg)dH”_l)
oy ( vgpﬂQ,V(;)
= EP (WP, Q ), (7.25)

where C depends only on |¢|. Hence by Lemma 7.1, applied with ¢ = r/p, using
(7.24), we have

1

rnfl

/ 1F0 VO, 5V dy = esC1 e )ptesel eI
< Kp® (7.26)

for every p € B and ¢ € (0, e(p)), where K :=cs5(1 + c}l_a) + C5c§_“Cl_°‘. From
(7.19), (7.22), (7.25), and (7.26) we obtain

Ef™s éo’ F (= e(ue, Q)
(e, Q7(5)) - (1+77)E (ug, Q,(x))

+ Kp“.

+ KT] + Lnllwé) — MO,;,V”LI(QV’R”L)

pn—1 pn—l

Since v/ = urx ¢,y near BQ‘;(%), we have that
s

F.8 (1 rx vrx
m (er g0y Qr () <4 n)E e (U, Qp(x))

rn—l ,0” 1

+L,7 ||wf — Uo,¢,v ”LI(Q”,R'") + 12,00[.
Since r = g, by (4.3) with x replaced by %, the left-hand side converges to gnom (§)

as ¢ = 04. By (7.14) and (7.16) we can pass to the limit in the right-hand side as
& — 0+ and we obtain

E, 0, (x))
ghom(¢,v) < (1417 )p—+K77+L ||wp_u0§v||L1(Q"Rm)+Kp

By (7.12) and (7.17), passing to the limit as p — 0+ we get

E@, ")

_ K
H"ILS (x)+ n-

ghom (&, v) < (1 +1)

Since ¢ = [u](x) and v = v, (x), this inequality gives (7.8) by the arbitrariness of
n > 0. O
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8 Identification of the Cantor term

In Proposition 8.3 below we characterise the derivative of E (u, -) with respect to
|C(u)|, the variaton of the Cantor part of the measure Du. At the end of this section
we conclude the proof of Theorem 4.1.

The following proposition shows that the recession function of fyom, Which is
defined in terms of the minimum values m />89, can be obtained from suitably rescaled
limits of the minimum values m/" 80, involving now the recession function f° of f.

Proposition 8.1 Let f € F and g € G, and let m/-20 and m!™% be as in (3.4), with
(f, g) replaced by (f, go) and (f°°, go), respectively. Assume that (a) of Theorem 4.1
holds, and let fhom be as in (4.2). Let fi%  be the recession function of fhom (Whose
existence is guaranteed by the fact that from € F). Then

mI™:80(ee, Q2 (rx))

kn—1lyn

from () = lim 8.1

foreveryx e R, £ e R"™*" v e S" ! andk € N.
Proof Letx € R", &£ € R™" v e S ! k € N,and 5 € (0, 1) be fixed. By (3.4)
for every r > 0 there exists v, € SBV (QL*(rx), R™), with v, = ¢ near 30V (rx),
such that
ET™ 80, QU (rx)) < m! 80 (L, @V (rx)) + k" (8.2)
Note that, by (f3) and (f4), this implies that
e / _IVuldy =m0, 0K (re) k" < (eslg] + DR
07" (rx)

(8.3)

where we used the fact that f°° satisfies (f4) with ¢4 = 0. Let7 > 1; by Lemma 7.1
and by (8.3), recalling that « € (0, 1), we have

/ka )‘foo(ysvvr)_%f(yvtvvr)‘dy
y(rx

1 ' 1 1
< —aypn—1_n l—a pn—1_nya \v4 l—a < n—1,.n
< 165(1 +oe, KT+ 0563 (K" )% vr”L](Q;;,k(rx)yRm) = KK"r",

where K = cs(1 4 ¢} %) + es(e3/e2)' = (c31€| + 1)1 7. Hence

o0 1
EF0,, 0% (rx)) < B0 oy, 011 (r0) + S KK,

where f;(y, &) := L f(y, 18).
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Since v, € SBV(QV*(rx), R™)and v, = ¢ near d 0V* (rx), the previous inequal-
ity, together with (3.4) and (8.2), gives

ml80 (e, 0} (rx)) =80, 0 (rx))
kn— lrn kn 1 P

1
+n+ oK. (8.4)

We now let r — 400 in the previous estimate. For the left-hand side we note that, by
the definition of fhom, (3.4), and the positive 1-homogeneity of gg with respect to its
second variable, by a change of variables we have

. ml80(0g, QVF (rx)) e m?-80 (0, QVF (rx)) thon;(té). ®5)

r—+00 kn—lpn r—+00 tkn—lpn

Hence, from (8.4) and (8.5) we have that

£.80(p v,k
< I (e, Qr " (rx)) n

1
r—+00 kn—1pn K.

1

fhon;(tf) n+

By letting ¢t — +00, since 1 € (0, 1) is arbitrary, we obtain the inequality

180 (g, QY "(rx))
kn— lrn

00 o
Jhom () = lim inf
Exchanging the roles of f; and f°°, an analogous argument yields the inequality

m! ™80 te, 07 (rx))

li < £ ,
im sup = < Jfhom©)
and hence (8.1) follows. O

For later purposes it is convenient to prove that fi°°  can be equivalently expressed
in terms of a (double) limit involving minimisation problems where the Dirichlet
conditions are prescribed only on a part of the boundary. We recall that the definitions

of 31} Q‘,”k (rx) and 8,U Q})’k(rx) are given in (i) in Section 2, while the meaning of the
boundary condition on a part of the boundary is explained after (3.4).

Lemma 8.2 Under the assumptions of Proposition 8.1 we have that

™80 (Lag, OFF (rx))

00
fhom (@a®v) = ETOO lrlin-il-[cg kn—1lyn
= lim limsup i/ (g, 07 () (8.6)
k—>~400 r—s 400 kn—lpn '

forevery x e R", a € R, and v € S"~!, where

A8 (Cagy, QU (rx)) == inf(EST 80 (v, Q2K (rx)) v e UDF0O), (87
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with Uy K (x) := (v € SBV(QV (rx). R™): v = Lyg, near 3102  (rx)).

Proof Let x € R", a € R™, and v € S"! be fixed, and for every r > 0 and
k> 0let QU% := QV*(rx). Since 0L QUK 90Uk, we have i /™80 (£4,, QVY) <
m/ 80 oz, Q;:I;). Due to (8.1), to obtain (8.6) we only need to prove the inequality

7180 (p v.k
fim(@ ®v) < liminf lim inf n Cagy. Ovir) (8.8)

—+00 r—>+00 kn—lpn

To this aim, let us fix & € N. For every r > 1 and k € N, with k > h, there exists
vk e U;f (x) such that

ETT 80k, 0VK) < it/ T80 (Lugy, QUK + 1 < (calal + DK™, (8.9)

where we used the fact that f>°(y, £) < ¢3]&| and 1 < k"~!r". By (f£3) and (g3),
inequality (8.9) implies that

2 DVf[(QY%) < (eslal + DK™ 1" (8.10)

Changing vf in an £"-negligible set, we may assume that vf(y) coincides with the
approximate limit of vf at y forevery y € Q;:]ﬁ \ Sv’; (see [5, Definition 3.63]). By
Fubini’s theorem we have

k 2
/k , ‘/;;HQW» |vf — Ea®v|d7‘ln71d)» = = _/AQv,k\Qv.kh |vf — Lagy| dy

xX,r

2 k
< - vy — Lagul dy.
r v,k

x,r

Since v¥ — €45, = 0 near 3 ,'ﬁlﬁ, by Poincaré’s inequality on strips we have
r ® v )

1 _
;/ 0 = Lagol dy < IDvf —a @ v|(QY5) < IDVfI(QY)) + lalk"~'r",
o3

X1

(8.11)

Since H"~! is o-finite on Svf, we have H”’l(Svil_c N a,U Q;:’}) = 0 for Ll-ae. & €

(k — h, k). From (8.10)-(8.11) we deduce that there exists )Jr‘ € (k — h, k) such that
k

H'1 (S N9} QY) = 0and

2|a
| |kn71rn <

c
== < 2K (8.12)
h h

_ 2
/e;gv-*f? o = LaguldH" ™! < ZIDUIQL)) +

where C := 2(c3lal + 1)/c2 + 2|al.
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To prove (8.8) we need to modify vf so that it attains the affine boundary datum

£,&v near the whole boundary o Q;’,lﬁ, and hence is a competitor for the minimisation
problem in the definition of £,°° . The modified function is defined by

hom

k
k . VA
. {vr in Q)"

o k
" | tagy mR*\ QY
Then 0 € SBV(Q;’,];, R™) and 0¥ = €,g, near 3 Q;’,I;. Moreover, since H"_l(SUrk N
k
HQ;’,);’) =0, by (f4) and (g4) we have
[e'S) ~ o) ,)Lff
ETT80(0f, Qvh) < ETT00@f, QU + e3lal£"(QVE\ Qx77)

+c3 / gt [ — CagnldH L. (8.13)

Since k"1 — (W=l < k"1 — (k — h)"~! < (n — 1)k"2h, from (8.9), (8.12), and
(8.13) we obtain

o) k o ~k k
m! 80 (L, QUF) < ETT805F, UKy

~ fo0 C
< /8 Eagy, Q) + (1 = Deslalk 2 hr 4 Sk 1.

We then divide both sides of the previous inequality by & ~!7”, to obtain

00 k ~ £00 k
m! ™8 lagy. Q) _ S8 (Lagy. OVr)
kn—lyn - kn—1lyn

C3C 1
T e

h
+ (n — l)C3|a|% +

Taking the limit first as r — +o0, then as k — 400, and finally as & — 400, from
(8.1) we obtain (8.8), and hence (8.6). O

In the next proposition we characterise the derivative of E(u,-) with respect to
|C(u)|, for any BV -function u.

Proposition 8.3 (Homogenised Cantor integrand) Let f, g, E,, (ex), and E be as in
Theorem 5.1. Assume that (a) of Theorem 4.1 holds, let fhom be asin (4.2), and let fis
denote its recession function (whose existence is guaranteed by the fact that fhom € F).
Then for every A € &/ and everyu € L]IOC(]R", R™), withu|s € BV(A, R™), we have
that

dEu,) o (dC)
aice) = fh°m(d|C(u)| m)

for |C(u)|-a.e. x € A.
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Proof Letus fix A € & andu € LIIOC(R", R™), with u|4 € BV (A, R™). We divide
the proof into two steps.
Step 1: We claim that

dE(u 3 dC(u)

—(x) < f° ( (x)) for |C(u)|-a.e. x € A. (8.14)
d|C(u)| rom\ d|C(u)l
By Alberti’s rank-one theorem [2] we know that for |C(u)|-a.e. x € A we have

dC(u)
d|C(u)]

(x) = a(x) ®v(x) (8.15)

for a suitable pair (a(x), v(x)) € R™ x S*~!. Moreover, by (a)-(e) of Theorem 5.1 and
by [10, Lemma 3.9] we have that for |C(u)|-a.e. x € A there exists a doubly indexed
positive sequence (¢, k), with o > 0 and k € N, such that

foreveryk e N t, — +oo and pt,r — 0+ asp — 0+, (8.16)

- k
dE(u’.)(x)— lim lim sup UASAGEIOL Qp M ))
d|C(u)] k—>+00 5,0+ kn=tpn 1, i

(8.17)

Let x € A be fixed such that (8.15)-(8.17) hold true and set @ := a(x) and v := v(x).
For every p > 0 and every k € N we have

N om0 g, 01 ()
.fhom(a ® U) = r—lgm ) (818)

+00 kn—lpn

since the above identity directly follows from (8.1) by replacing x with %.
Let us fix n € (0, %). By (3.4) forevery k € N, p € (0, 1) and r > 0 there exists

a function v/** € SBV(Q‘;’k(%), R™) with vP™* = €,y near 8Qﬁ’k(%) and such
that

Efw,go(vf‘k’ Qr,k(%)) < meOygo(Ea@v’ Q:’k(%)) + nknflrn
< (c3la] + DK 1rn, (8.19)

where we used the fact that f®(y, &) < c3]&|. We extend v/ * to R by setting
k ,
v () = Lagy () for every y € R” \ 0r* ().

For every y € R”" we define w/ (y) lvr (”‘ +ry) — a®v(£) Clearly

wr ke SBVlOC(]R” R™) and w, = {,gy near BQ"]‘ and in R" \ Q"K, where
ovk: Ql (O) Moreover, by a change of variables, using the 1-homogeneity of gg
in the second variable we have

E559:80" (wh, Kk ovky = Ef 80 (P, k oV k(rX)) (8.20)
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where E/°780" is the functional with integrands £, (v, §) := foo(% +ry, &) and
8 (. ¢.v) = g0 +ry g v)se,

EF580” (w, V) = / k O +ry. Vu(y)dy
0"

+/ g0 +ry, [wl(y), v () dH" ™" ()
SwmQU’k

for every w € SBV(Q", R™). Note that 1> € Fand g, € G. By the lower
bounds (f3) and (g3) from (8.19) and (8 20), using also Poincaré’s inequality, we
deduce that |w!” ||L1(Qv,k,Rm) + |Dw} |(Q” *y < k"1 for every p € (0, 1) and
r > 0, with C :=2(c3lal + 1)/c2 + 2]al.

By Lemma 4.3 there exist a constant M, > 0, depending also on |a|
and C, such that for every p € (0,1) and r > 0 there exists wf -
SBV(QUK, R™) N L>®(QV*, R™) with the following properties: ﬁ)f’k = {,gy near
00"k, 0f ™ | o (i omy < Mk, and

00 TP 00 1P —
EFns” ek, 0vky < EFRa” (wpk, 0 4 k!

f%80(¢ vk rx
m v, @r (5)
< T 0 o (8.21)

rn

where the last inequality follows from (8.18) and (8.19). Let 07 *esB Vioc (R™, R™)
be defined by /" (y) =raf (— - —)+£a®v(”) Then &/ pk_ Lagy nearBQ'r)’k(%)
and, by a change of variables,

Iy
00 - oo P
ETT 0@ Q) = M Efes @k, 0™

k]”LOQ(S;,;”kﬁQr(%),Rm) <2Myr, (8.22)

<m0 (U, OPF () + 20K, (8.23)

where the last inequality follows from (8.21). Moreover, by combining (8.19) and
(8.23) with the lower bounds (f3) and (g3) we immediately deduce the existence of
a constant C > 0, depending on |a/|, such that

1
V~p,k
kn—1pn /Q:.k(—r,f)l v/%|dy < C, (8.24)

1
I ~p.k n—1
kn—1pn /S/?kﬂka rx |[vr ]|dH =C. (825)

P
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Letp € (0,1) and k € N, with 7, x > 1. By Lemma 7.1, applied with t = 7, ;, and
(8.24), recalling that o € (0, 1), we obtain that

1 / .
- [y, vif )——f(y,tkavP )\ dy
kn=tem Jgukex,)
1 1 K
< —cs(l+ey™) + —cse} 4 C T < a—l, (8.26)
Ip.k Pk t

where K := c5(1 + cl_o‘) + cscl_“Cl’“
Forevery r > 0 and p € (0, 1) we can apply Lemma 6.1 with 7 := 2 t" L By (8.22)
and (8.25) we obtain

1
kn—lrn

<A 2My s ptpx)C (8.27)

~p.k ~ _ ptpk p.k dHn 1
/Spkmguyk(m)|go(y, (5740 vpi) = 58 (v S L vpn))|

forevery r > 0 and p € (0, 1).
Estimates (8.26) and (8.27), together with (8.18) and (8.23), give

r—+00

1
. ~p.,k
tim sup 7 fQ sty T VY

r

+—/ . g(y,@[ﬁﬂ"],vﬁp.k)d?f"—l)
P JS ok Qr* (5 "

< from(@®v) +2n+ Klt;% +AQMy i ptpr)C. (8.28)

Given k € N and p € (0, 1), for every ¢ > 0 and y € R" we define u?" (y)
ety 100 (D) = L1y 40 ~”k(”) withr := p/e. Then u?™* € SBVige(R", R™), u?"* =
1y klagy near 8ka(x) and in R™ \ Q/”,k(x). By a change of variables, from (8.28)
we have

E. ", ou* ()

lim sup £ k:*‘ np < from(@®v) +2n + Kltp_f,’(‘ +AQRMykptpr)C.
=0+ P ok
(8.29)

Since u? * coincides with toilagy in R\ Q}’;k(x), using Poincaré’s inequality
and the lower bounds (f3) and (g3) we deduce from (8.29) that for every p > 0

there exists e(p) > 0 such that the functions u% £k are bounded in B Vi (R", R™)
uniformly with respect to ¢ € (0, €(p)). Then there exists a subsequence, not rela-
belled, of the sequence (¢;) considered in Theorem 5.1, such that (ufj?k) converges in
Ll (R",R™) to some u”* € BVioc(R", R™) as j — +oo with u?* =1, kemv in
inj-n)ﬂ x)\ Q” k(x) As a consequence of the I"-convergence of Esj( Q(Hn)p (x))
to E(-, Q(1+,7)p(x)), from (8.29) we obtain
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. k -~ k P N
Mty aon Oty @) _ EW. Oy, L B @ Qi)
kn—lpn thk - kn—lpn fpk - i +00 kn—lpn tpk

< from@®v) + 20+ K11, +2Q2My i p 1, 1)C.

Now, passing to the limit as p — 04, from (8.16) and (3.8) we get

. v,k
Jim sup mE(ﬁtp,ka@)w Q(1+77)p (x))

0+ kn—llon tp x = fho(?m(a ® V) + 277-

Finally, passing to the limit as k — 400, by (8.17) we obtain

dE(u, ")

1 n
D Gew)

(¥) < from(@ ® v) + 21.

Sincea := a(x) andv = v(x), by (8.15) this inequality gives (8.14) by the arbitrariness
of n > 0.
Step 2: We claim that

dEu, ")
d|C(u)|

(x) > fho(fm(%(x)) for |C(u)|-a.e. x € A. (8.30)

We extend u to R" by setting u = 0 on R" \ A. By I'-convergence there exists
(ug) C L (R", R™), with u;|4 € SBV (A, R™), such that

loc

ue — u in LL (R".R™) and lim E,(us, A) = E(u,A),  (831)
e—>0+

along the sequence () considered in Theorem 5.1.
For |C(u)|-a.e. x € A there exist a(x) € R™ and v(x) € S"~! such that for every
k € N we have

Du(Qy*(x))  dC)
- = : 8.32
p—1>n(r)l+ IDul(Qf;k(x)) d|C ()| (x) =a(x) ®v(x) (8.32)

| Dul(QY*(x))
— =

Jlim, o 00, (8.33)
Du|(QVF(x
p—0+ % =0, (8.34)

. E@w, 05 )  dE@, )
p=0+ |Dul(Q4*(x))  dIDul

(x) < +o0, (8.35)

where (8.32) follows by [2, Corollary 3.9], (8.33) and (8.34) are consequences of
[4, Proposition 2.2], while (8.35) holds true thanks to a generalised version of the
Besicovitch Differentiation Theorem (see [31] and [26, Sections 1.2.1-1.2.2]).
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Letus fix x € A such that (8.32)-(8.35) hold true, and seta := a(x) and v := v(x).
Fork € Nand p € (0, 1) we set

_ 1Dul(Qp*(x))

p.k = kn—lpn
Then
dEu, - dEu, - E(u, 0V (x)
(e )(x) = (e )(x) = lim w (8.36)
d|C(u)| d|Du| p—0+ k" lpnt, k

Note that, by (8.33) and (8.34), the following properies hold:
forevery k e N 1, — 400 and pt,; — 0+ asp — 0+. (8.37)

Recalling (5.1), we have that E(u, Q;’;k(x)) <3 |Du|(Q;’;k(x)) + ¢4k p", hence
by (8.37) there exists px € (0, 1) such that

E(u, Q%% (x))

TN <c3+1 forevery p € (0, pr). (8.38)

Q‘[’;k(x) CC A and

Since E(u, -) is a Radon measure, there exists a set By C (0, px), with (0, px) \ By at
most countable, such that £ (u, 0 Q;;k (x)) = Oforevery p € By.Proceeding as in the
proof of (6.18) and (7.14), by (8.31) we can show that for every p € By

Jim Ee(ue, 05 (0) = Ew, 03" (x)). (8.39)

Hence, for every p € By there exists €(p, k) > 0 such that for every ¢ € (0, e(p, k))

Eelue, Op* () _ E(w, Qp* ()
kn—lpn tp,k - kn—lpn t,o,k

+p=<c3+2, (8.40)

where in the last inequality we used (8.38).
Now, for every p € By and ¢ € (0, ¢(p, k)) we consider the blow-up functions
defined for y € 0"* := 01*(0) by

1 1
wH(y) = m(us(x +py) — 1 on /Q”’k(x) ue(z) dZ)
, P
1 1
W) = oo (U + o) = o u(z)dz).
kn 1,0 tp,k kn lpn Qz’k(x)

Then w?* e SBV(QVK,R™) and w”* € BV(Q"F,R™). Since u, — u in
LI(Q;’;k(x), R™) by (8.31), for every p € By we obtain
wP* > wPk in LY(QVF,R™) as € — 0+ (8.41)
& ’ . R
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Moreover, recalling (8.32), we have that the function w” k satisfies

Du(Q%*(x))

————— — a®v asp—> 0+
[Dul(Qp" (x))

/ wp.k(y) dy:o and pr,k(Qv,k):
v,k

By [4, Theorem 2.3] and [29, Lemma 5.1] up to a subsequence (not relabelled),
w’* > wk in LY(Q"F,R™) as p — 0+, (8.42)

where wX € BV (QV*, R™) can be represented as

w'(y) =y (- va. (8.43)
1/2
v (3) =y (=3 =5 and / Y0 de =0, (8.44)
-1/2
with 1 nondecreasing. By monotonicity these equalities imply that —knl,l <
Y(=3) <0 < yk(3) < 7, and so
k@) < ot forevery r € [—3, 5. (8.45)
By a change of variables we obtain the equality
Ee(ue, Q)" (1))
—kn_lpftpk = EL g, 0", (8.46)
where Ef * s the functional corresponding to the integrands £/ k(y,é;‘) =
gt SR Ky €) and gl v = o T 8T K T ot k8L V)

iLe.,

Eg),k(w, Qv,k) ::/

. mf(xtpy, Ky kVw(y)) dy
o ps

1
+ '/*;ItzmQu’k kn_lpt

- (LY ot [w](y), v (M)AH" ()
P,
(8.47)

forevery w € SBV (Q"K, R™). Note that fgp’k satisfies (f3) and ( f4), the latter with
¢4 replaced by C4/(k"_1tp,k), while gé)’k satisfies (g3) and (g4).

Let £X be the affine function on R” which satisfies £ (y) = ¥ (j:%)a fory-v =&+ %;
ie.,

) = Grbaev ) + (V3 — gp=r)a = (Y v + ¥ 3) — 5pr)a
(8.48)
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for every y € R”. We now want to modify w *in a way such that it attains the
boundary datum ¢ near aj QYK (see (i) in Section 2 and after (3.4)). This will be
done by applying the Fundamental Estimate [11, Proposition 3.1] to the functionals
Eé)’k. First note that, since by (8.37) t, x — +ocas p — 0+, we can reduce the value
of the constant p; > 0 introduced in (8.38) so that z, ; > 1 for every p € (0, py).

Therefore, for n € (0, %) fixed, by slightly modifying the proof of [11, Proposition
3.1] we obtain the following property: for every k € N, p € By, and ¢ € (0, e(p, k))
there exists a cut-off function gof’k € CCOO(Q”’k), with 0 < (pé)’k < 1lin Q"’k,
supp(tpf’k) C er,] = Rv([_%, %]”_1 X [—1%’, 177"]), and <pf’k = 1in Ri’on =
RU([—]%, %]"_1 X [—%, %]) such that, setting ﬁ)g’k = gof’kwf’k +(1 —gof’k)ﬂk
and S;bk = QUK \F{fzn, we have

ELR@LY, 00 < (L m)(EL wf*, 070 + ELF (X, 530))

+E wg (8.49)

k
—¢ ”Ll(S;’k Rm)?
N

where L > 0isindependent of n, k, p, and €. By definition we clearly have 0l = 2% in
Qvk \Ri)fn, as desired. Moreover, from the bound fgp’k (v, &) < 3l +C4/(k"_1tp)k)
we obtain the bound

C4
kn— 1 t,O &

B s < [ @ive+ ) dy
2

c3lal 4
(kn—l +

G yersiky = S (850
kn_ltp’k) (S3) (63"’”%) . (850)

Hence, from (8.40), (8.46), and (8.49), using also the inequalities n < % andt, > 1,
we obtain

3
koo k k L k k
EPR@@P", 0VF) < §(C3 + 2+ c3lal +C4) + ﬁllwé’ — 0 ||L|(S;;7k’Rm). (8.51)
We can estimate the last term in the following way:

k k k k
||u)§ _E ”LI(S;;Ik,Rm) S ||u)§ _u)p ||L1(Q"'k,Rm)

+ w? K —wH | 1 guk gy + ||w"—e’<||u(s2v,k - (8.52)
i

By (8.43) and (8.48), thanks to a change of variables we have

ok = 11 558 gy = e /Sk W) — Sy — pE) + sl dy
21

- |a|k"“/m WA — ot — * () + sl dr,
n n
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where I;, = (—%, —% +n) and J; = (% -, %). Hence, by (8.44) and (8.45),
by using the continuity of ¥* at the endpoints, there exists a continuous function
7 : [0, 1 — [0, 3], with 7 (0) = 0, such that

KHYE@) = gt = v Q) + | < wn) forevery 1 € 1, U Uy,
This gives
k k

In particular, from (8.41), (8.42), (8.52), and (8.53), possibly reducing the values of
the constants p; > 0 and €(p, k) > 0, we obtain

|wP* — <1, (8.54)

gk||L1(S2V;7k)Rm)
for every p € By and € € (0, e(p, k)).

Note that (f3), (g3), (8.51), and (8.54) imply that the total variation of 0 in QVvk
is bounded uniformly with respect to p € By and ¢ € (0, ¢(p, k)). Since wl = ¢k
near 3,} Q"*, using Poincaré’s inequality we obtain a uniform bound also for the L'
norm of wf in Q"¥. Hence by Lemma 4.3 and Remark 4.4 there exists a constant
M, >0 with the following property: for every p € B and e € (0,e(p, k)) there
exists WY ke SBV(QV*, R™) N L®(QVK, R™), with wg = ¢k near B‘f-Q”’k, such
that

~ 0,k koo~ p.k k koo~ pLk k
||u)f ”LOO(Q"'k,R’")SMﬂ,k and E&"O (wf ,Qv )SEf (w;? ,Qv )+7’]

(8.55)
Wenowsetr := 2andvf™* (y) := rif ™ (2 - X)+;k,} rlagy () —r (Y (3)—55-7)a:
then v € SBV(QY (), R™), vf" = Lilagy near 9 Q) (), and, by a
change of variables
k
”[Uéj ]”LOO(SUé).karvk(%)’Rm) S 2M7],k r, (856)

/‘Ql)k(”x f(y’kniltp’kvvgp’k) dy

1 - [
+_kavak rx g(y’k” 18tp’k[vé)’k]7vuf-k)dHn 1

_ knflrntp’kEé),k(a)g»k’ QVJ‘)_ (8.57)

Moreover, recalling (8.47) and combining (8.51), (8.54), (8.55), and (8.57) with the
lower bounds ( f3) and (g3), we deduce the existence of a constant C > 0 such that

i IVl |(y)dy < € (8.58)
vk rx € yyay = :

Gy
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i I kaH " < C. (8.59)

SpkaVk rx

for every p € By and € € (0, e(p, k)).
By Lemma 7.1, applied with t = k"’ltp,k, using (8.58) and the inequality 7, x > 1
we obtain

1

FR V) — et F K V0P | dy

orf ()
1 1 K
< —es ¢+ gesey “C1e a—‘, (8.60)
1ok p X t

for every p € Brand ¢ € (0, e(p, k)), where, as in (8.26), K1 := c¢5(1 + ci_“) +
C5C3 —acl-a,

Now note that, since by (8.37) pt, x — 0+ as p — 0+, we can reduce the value
of the constant p; > 0 introduced in (8.38) so that 2M,7,kk”’1p tp.k < 1 for every
p € (0, pr). By Lemma 6.1, applied with ¢ := k" le 1o k> using (8.56) and (8.59), we
deduce that

1 kl‘l 1 P, d n—1
7 Jsgengrie, 800y, 021, v,p0) = G 8 K" e 1 k[0 ), v ) | dHE

< A2M, k"™ ptm— /S ot )|[vg”"]|dH"—1suzMn,kk"— ptp0)C,
noYk =

(8.61)

forevery p € By and ¢ € (0, e(p, k)).
From (8.46), (8.49), (8.50), (8.54), (8.55), (8.57), (8.60), and (8.61) we obtain

ET™s0pk, ork(xy) Ec(ue, QU5 () /3 2¢
) P < 1 £ o) P ( _4 1)
T <( +n)—k”—1p"t t (c3lal + )+ n

L
+;||wp —tf ||L1(SukRm)+ L @My K" p 1, 00C.
p,

(8.62)

By the positive 1-homogeneity of E/ .80, thanks to (8.7), and recalling that v/ ok

—knl_1 Lay near 3# Q?’k(%), we have

Al O (5) Bl 0D

kn—lyn — n
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Combining this inequality with (8.62), we obtain

At 074(2)
ktlfvlrn - : ={+n

Ec(ue, Q0% (%) /3 2c4
—_— ) +1
ey + (2(C3|a| + p’k) + )77

Ky n—1
FAQMy K" p 1, )C.

L k k
+_||w£’ 4 ”LI(S”/‘ Rm)+
p

Passing to the limit as ¢ — 0+, recalling that r = §, and thanks to (8.39) and (8.41),
we have

80 (Lagy, OFF ()

lim sup

r——+00 kn—lyn

E, 0% (x) /3
< (1 = -4 1
= (e + (5 (eslal + pk)+ )

L 0.k k K n—
o = sy oy 7+ AOMy ik Yptp4)C.
p,

Now, passing to the limit as p — 0+, by (3.8), (8.36), and (8.37), and (8.42),

80 (Lagy, QFF (E£))

lim sup

r—+00 kn=lpn

<04 B oy g+ )+ Lk - 4
—(x —c3la —Jw"* — vk o -

R TToT ) TR P A LS5 R

Passing to the limit as n — 0+, by (8.53) we deduce that

m 80 (¢ vk (rx oo
limsupm (Cagvs 07 (%)) _dEw,)

r—+00 kn=lpn ~ d|C(u)] ()

Finally, taking the limit as k — +o0, by (8.6) we deduce that

~foo’g0(/€ U,k rx o~

m a®vs Qr ( )) dE(u )
. — lim i ) _ ’
Srom(@®v) = Hm_lim sup ———ro—"— = Jic)|

(x).

By (8.32), this concludes the proof of (8.30), since @ = a(x) and v = v(x). O

We are now in a position to prove the deterministic homogenisation theorem.

Proof of Theorem 4.1 By Lemma 4.2 the function fhom defined by (4.2) belongs to F
and by Lemma 4.5 the function gpom defined by (4.3) belongs to G. By Theorem 5.1
for every sequence of Qosﬁwe numbers converging to zero, there exist a subsequence
(&) and a functional E': LIOC (R", R™) x ,52{ — [0, +oo] such that for every A € <7
the functionals E, (-, A) I'-converge to E( A) in L JRYR™), as j — +oo.
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8 Page580f89 F. CAGNETTI et al.

Letus fix A € o/ andu € Lj, (R",R™). If uls € BV (A, R™), then by Theo-
rem 5.1(c) and (d) the function E(u, -) is a nonnegative bounded Radon measure on
HB(A), which satisfies the inequality E (u, ) < c3|Du| + c4L". By the decomposi-
tion of the gradient of a BV function (see (f) in Section 2), the measure E (u,-) is
absolutely continuous with respect to the measure £" 4+ H"~1_ S, + |C(u)|. Since
L', H"~'S,, and |C(u)]| are carried by disjoint Borel sets, by the properties of the
Radon-Nikodym derivatives mentioned in (j) of Section 2 we have

- dE(u,-) / dEu, ) » / dE(u, )
E(u, A) = ——2d —~ dH" ——2d|C .
(. A) /A ar T s e s, T e e

Using Propositions 6.2, 7.2, and 8.3 we obtain

E(M,A)=/ fhom(Vu)dX+/ hom ([u], v )dH" ™!
A

SuNA
7 dC)
+ [ (e dicwl

Ifulg ¢ BV(A,R™), we have E(u, A) = +o00 by Theorem 5.1(c). Therefore,
E(u, A) = Epom(u, A) forevery u € LIIOC(R", R™) and every A € &,

where Enon is the functional defined in (4.4). Since the limit does not depend on the
subsequence, by the Urysohn property of I"-convergence in LIIOC(R”, R™) (see [18,

Proposition 8.3]) the functionals E. (-, A) I'-converge to Epom (-, A) in Ll (R", R™),

loc
as e — O+. O

9 Stochastic homogenisation

In this section we prove Theorems 3.17 and 3.18 concerning stationary random inte-
grands, according to Definition 3.12. We adopt the shorthand notation introduced
in (3.16).

We start by proving the existence of the limits which define the the homogenised
random volume integrand fhom-

Proposition 9.1 (Homogenised random volume integrand) Let f be a stationary ran-
dom volume integrand and let g be a stationary random surface integrand with respect
to a group (t;),e7n of P-preserving transformations on (2, T, P). Then there exists
Q' e T, with P(Q') = 1, such that for every w € @, x € R", £ e R"™*" p e "1,
k € N, and p > 0 the limit

s k
; ml & (e, QUK (rx))
1m
F— 00 kn—lpnrn

©.1)
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exists and is independent of x, v, k, and p. More precisely, there exists a random
volume integrand fhom: 2 x R™*" — [0, +00) such that for every w € /, x € R”,
EeR"™ yeS"™ ! keN andp >0

f:80 v,k f.80
from(@. &) = tim 2o Qo 0Oy mo (s 0 (O)
r

r——+00 k"—lp"r” r—+400

9.2)
If, in addition, (t;);czr is ergodic, then fhom is independent of w and

1
Jhom(§) = lim F/Qmﬁ’g"(ﬁs, 0,(0))dP(w).

r—-+00

Proof We divide the proof into four main steps.
Step 1: Existence of the limit in (9.1) for £ € Q" and v € S"~! N Q" fixed.

Let (€2, ’? ﬁ) denote the completion of the probability space (2,7, P). Let & €
Q™" and v € S"~! N Q" be fixed. For every w € Q and A € Z,, (see (3.15)) we set

1 .
e v(@, A) = ng;*gwg, M,R,A), 9.3)
v

where R, is the orthogonal n x n matrix defined in (h) in Section 2, and M, is a
positive integer such that M, R, € Z"*".

We now claim that the map iz, : €2xZ, — Rdefines ann-dimensional subadditive
process on (2,7, F), according to Definition 3.13.

We start observing that the T -measurability of @ — g y(w, A) follows from

the ’/T\-measurability of w > m({;’go (Le, A) for every A € &7, which is ensured by
Proposition A.12, taking into account Remark 3.9. We are now going to prove that
e,y is covariant; that is, we show that there exists a group (t)'),ez» of ﬁ—preserving
transformations on (€2, T s ﬁ) such that

pev(w, A+2) = pe o (t) (@), A), foreveryw e Q,z€Z", and A € Z,.
We have
M,R,(A+2)=M,R,A+ M,R,z=M,R,A+7",

where z” := M, R,z € Z". Then by (9.3) we get
1 /.80 v
mev(w, A+z) = 2o (le, MyR,A +2").
%

Given u € SBV(int(M,R,A + z"), R"™) with u = ¢ near (M, R,A + z"), let
v e SBV(int(M,R,A), R™) be defined as v(x) := u(x +z") —&z" forevery x € R".
By a change of variables, using the stationarity of f and gg we obtain

/ flw, x, Vu)dx +/ go(w, x, [u], v,) dH"™!
MyRy Atz SuN(MyRyA+2")
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8 Page 60 of 89 F.CAGNETTI et al.

=/ f(w,x+zu,Vv)dx+/ g0(@, x + 2y, [v], vy) dH" !
M,R,A SuN(My Ry A)

=/ f(fzv(w),x,Vv)derf g0(tzv (@), x, [v], v,) dH" ™"
M,R,A SuN(My Ry A)

Since we have v = {¢ near d(M, R, A), we deduce that

m80 (Ce, MyR, A +2) = m! 0 (€e, M, R, A),

v (w)

and hence the covariance of ¢, with respect to the group of ﬁ-preserving transfor-
mations (t,');ezn = (Tzv)zezn.
‘We now show that p¢ ), is subadditive. To thisend let A € Z,, and let (A;);—1, ...,

7, be a finite family of pairwise disjoint sets such that A = Uf\’: 1 A;. For fixedn > 0
andi =1,..., N,letu; € SBV (int(M,R,A;), R™), with u; = ¢ near d(M, R, A;),
be such that

/ f(w, x, Vu;) dx +/ go(@, x, [ui], vy,) dH" !
MvRvAi

Sul- m(MVRUAi)
<ml 80, MyR,A;) + 1y

and on M,R,A define u(x) = u;(x) if x € M,R,A; fori = 1,...,N. By
construction we have that u is a competitor for m({,’go(eg, M,R,A), since u €
SBV(M,R,A,R™) and u = {¢ near (M, R,A). Moreover S, N d(M,R,A;) =0
foreveryi =1, ..., N. Therefore it holds

mf % (Ls, MyR,A) < f
M,R,A

N
(/ f(w,x,Vu;)dx
MyR,A;

i=1
+/ gO(wv x, [uil, Uu,')dHnil)
Su; N(My Ry Aj)

f(w,x,Vu)dx + f go(w, x, [ul, v,) dH" !
SuN(My R, A)

=<

m!-80(be, MyR,A;) + N1,

M=

1

thus the subadditivity of g , follows from (9.3), by the arbitrariness of n > 0. Note
that the same proof shows that

N N
il (b, a) = Domlocee, A 9.4)
i=1 i=1

for every finite disjoint family (A;)i=1... .~ C Zy,

.....
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even when Y| A; ¢ T,
Eventually, in view of ( f4) we have

1 .
Hew(@, A) = om0 (g, MyR, A)

v

1

M3 Jm, R, A

IA

flw,x,&)dx < (c3|&| + ca) L"(A), 9.5)

for every w € Q.

We note now that forevery x € R"”, k € N, and p > 0, we have that (Qf,"r’k (rx))r=o0
is a regular family in Z, (cf. Definition 3.14). Therefore for every fixed & € Q"
and v € §" "N Q" we can apply Theorem 3.15 to the subadditive process jig,., on
(22, T P) to deduce the ex1stence ofa7- measurable function ¢¢ ,, 1 2 — [0, +-00)
and a set Qg v C 2, with Qg s T and P(Qg v) = 1 such that

li ME, v(w, Qpr (rx))
1m
F——+00 kn— lpnrn

Pe,v(w), 9.6)

for every w € ﬁg,v, x € R", k € N, and p > 0. Then, by the properties of the
completion there exist a set Q¢ , € 7, with P(Q¢,) = 1, and a 7-measurable
function, which we still denote by ¢ ., such that (9.6) holds for every w € Q¢ ,,. Thus
choosing in (9.6) x = 0, k = 1, and p = 1, thanks to (9.3) we get

¢e (@) = lim M: lim m

r—-+00 r’ r—+4o00 rh

Furthermore, if (7;) ¢z is ergodic, then Theorem 3.15 ensures that ¢ ,, is independent
of w.
Step 2: Existence of the limit in (9.1) for every § € R™*" and v € "~ L

Let Q denote the intersection of the sets €2, for § € Q" and v € 8"~ 'nQm
clearly QeTandP (SZ) = 1. For every k € N and ,0 > 0 we now introduce the
auxiliary functions f Sk f okt Q x R x Rm<n x §n=1 [0, 400) defined as

ml & e, QUK (rx))

fpk(a) x, &, v) := liminf

F— 400 kn—lpnrn
f 80
- o (. OpF (rx))
fouxlw, x, & v) = lrlfil;g Jn—1 g
We notice that
fok(@,x,6,0) = fpr(@,x,& ) = e () 9.7)

forevery w € 2,6 € Q" v € " 'NQ", k € N, and p > 0. The proof of property
(4.8) in Lemma 4.2 can be adapted to the rectangles Qz;k (rx), obtaining that for every
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w € fz,x eR"veS 1l keN, and p > 0, the functions § — [, x(w, x, &, v) and
&> ?p,k (w, x, &, v) are continuous on R™*" and their modulus of continuity does
not depend on w, x, v, k, and p. By (9.7) this implies that for every & € R™*" and
v e §"~1 N Q" there exists a 7 -measurable function, which we still denote by ¢¢ .,
such that

ip,k(wvxvgvv) :?p,k(a)vxvé:ﬂ V) :‘PE,U(W) (98)

for every w € S~2, x e R", k eN,and P> 0.
We now show that, for every w € Q, x E_R”, E e R™" k e N, an(/i\p > 0,
the functions v — Lo,k(a), x,&,v)andv — f, (0, x,§,v), restricted to Sﬁ’r_l and

§"!, are continuous. We will only prove this property for fp k and gi_l, the other

proofs being analogous. To this end, let 0 € Q x e R E e R k e N, and
p > 0be fixed. Letv € S" ! and let (vj) C S” i be such that v; — v as j — +o0.

Since v > R, is continuous in 4 T 1, for every § € (0, 1/2) there exists an integer J,
depending on p, k, and §, such that

ik ik
Q‘()La)pr(rx) ccC Q;’,k(rx) ccC Qr{%)pr(rx)

for every j > jandr > 0. Givenr > 0, j > j,and n > 0, letu €
SBV(QU¥(rx), R™) be such that u = £ near d Q) (rx) and

[ fervwdys [ g dne!
Qpr (rx) SuNQpr (rx)

< mg’gO(ZE, Q'\;,rk(rx)) + nknflpnrn
We define now v € SBV(Q‘(){fB)pr(rx), R™) as

u(y) ifye Qpfera),
U()’) - . V,',k v.k
e(y) ify € Oy, (rx) \ QpF (r).

Note that v = £¢ near 3Ql()ff8)pr (rx) and that 8Q;’)’rk (rx) N S, = @. Therefore,

(Zé Q(H—S)pr (rx))

S /v k f((l), y’ VU) dy +/ vj k go(wv y9 [U], vU)dHn_l
Ol 4800 %) SuNQ {480 (%)

< / f(w,y,Vu)dx
04 (rx)

+f o g0(@, y, [l v) dH" T (eslg] + e (14 8)" = 1)K "
SuNQpk (rx)
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<m0 (e, QuFrx)) +nk" "+ (c3l€] + ca) (1 +8)" — 1)k p"r".
Dividing by k" ! p"r" and passing to the liminf as r — 400 we obtain

(1+8)" for(@, x,6,v)) < fpr(@, x,§v) +n+ (c3]€] +ca)((1+8)" = 1).
Passing to the limsup first as j — 400, then as § — 0+ and n — 04 we get

lim supip,k(w,x,f, vj) < Lo,k(w,x, £, v).
Jj—+o0

.. . ik .
A similar argument, using the cubes QZ{ “8)pr (rx), gives
fpx(w,x, &, v) <liminf f(w,x,§,v)),
- Jj—+oo —

and so the continuity of v —~ f, r(w, x, &, v) follows.

It is known that Q" N S"~! is dense in S"~!(see, e.g., [16, Remark A.2]). Arg\uing
as in the proof of [16, Theorem 5.1] it is easy to show that Q" NS~ is dense in S".
Therefore, from the continuity property proved above and from (9.8) we deduce that
for every & € R™*" and v € S"~! there exists a 7-measurable function, which we
still denote by ¢ ., such that

fok(@,x,6,0) = fpr(@,x, &) = e () (9.9)

for every w € 'SVZ, xeR,E€R™" ve S"! k e N, and p > 0. This implies that

AU D)
pev(@) = rJIJIrlOO kn=1pnpn

(9.10)

for every w € £~2, xeR,EeR™" v e s"1 k e N, and p > 0, concluding the
proof of Step 2.
Step 3: The limit in (9.1) is independent of v.

We now show that ¢¢ ,, (@) does not depend on v; i.e., we show that

0 (@) = g0, (w) foreveryw € Q, &€ e R™" v e, (9.11)
For every r > 0 let Q) := Q/(0) and let n > 0 be fixed. Let (Q, (x;)) be a family

of pairwise disjoint cubes, with p; € (0,1),i =1,..., N,, with faces parallel to the
coordinate axes, such that

N Ny Ny
Qs xi) c Q) and ﬁ”(Qf U Qp,-(xz')) —1-Y o <n.
i=1

i=1 i=1
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By using arguments similar to those used to prove the subadditivity in Step 1, we can
prove that

N,

ml (L, Q) < ml%0 <5§, U Qp,-r(rxi)> + n(c3lE] + ca)r”.

i=1

Then, by (9.4), for every r > 0 we have

mi80 Ny mi-%
(s, O)) (Le, Qpir(rx;))
Z =

rh

IA

+ n(c3l&| + ca)

Ny fgo
Z (Ce- Opr(rx)) ol + ca).

P; e
Hence, passing to the limit as » — 400 and using (9.10) we obtain

Ny

0e.0(®) <@g 0, (@) Y P +0(c3E] + €4) < @ee, (@) + 0(c3]E] + ca),
i=1

thus taking the limit as n — 04 we get ¢ ,(w) < ¢g ., (w). By repeating a similar
argument, now using coverings of Q1(0) by cubes of the form Q}’)i (x;), we obtain the
opposite inequality, and eventually the claim.
Step 4: Definition and properties of fhom-

For every w € Q and § € R™*" we define

e, (@) ifo e,
From(@-8):=0 el fwen)\ .

Then (9.2) follows from (9.10) and (9.11). From the measurability of ¢¢ ,,, proved in
Step 2, we obtain that fhom (-, &) is 7 -measurable in 2 for every & € R™*". Moreover,
since the function &€ — f, r(w, x, &, v) is continuous on R”*", from (9.9) we deduce
that fhom (w, -) is continuous in R”*" forevery w € €2, and this implies the 7 ® #™ <" -
measurability of fhom on  x R”™*", Finally, Lemma 4.2 allows us to conclude that
Jhom(@, ) € F for every w € . Therefore, fhom is a random volume integrand
according to Definition 3.7. O

The following result is a direct consequence of Propositions 8.1 and 9.1 . In the
ergodic case, (9.13) can be obtained by integrating (9.12) and observing that, thanks
to (9.5), we can apply the Dominated Convergence Theorem.

Proposition 9.2 (Homogenised random Cantor integrand) Under the assumptions of
Proposition 9.1, for every w € Q' and & € R™*" [et

. om (@, I
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(since from(w, -) € F, the existence of the limit is guaranteed by (f5)). Then f5 is
a random volume integrand and for every w € Q', x e R", £ e R"*" v € "', and
k € N we have

. (9.12)

£%°.80 v,k .20
Le, ) 0,
fn ) = tim Mo GO )y, Mo (e O)

+o0 Jn—1pn r—+400 r

where Q, := Q,(0). If, in addition, (t;),cz» is ergodic, then f,  is independent of
w and

fro (€) = lim in/;zmgw,go(ﬂg, 0,)dP(w). (9.13)

r—+4o0 r

The following proposition establishes the existence of the random surface integrand
&hom-

Proposition 9.3 (Homogenised random surface integrand) Let f be a stationary ran-
domvolume integrand and let g be a stationary random surface integrand with respect
to a group (t;);czn of P-preserving transformations on (2, T, P). Then there exists
Q' e T, with P() = 1, such that for everyw € ', x e R", ¢ e R"™, v € S" !, the
limit

. ml) 8 (e, QV(rx))

r—+00 =1

9.14)

exists and is independent of x. More precisely, there exists a random volume integrand
Zhom : 2 X R™ x S"=1 — [0, +00) such that for every w € Q/, x € R", ¢ € R", and
ves!

£, v f<.8 v
. mg, (urx,{,v, Qr (rx)) . mey (uO,{‘v’ Qr)
ghom(®, ¢, v) = lim n—1 = lim n—1 ’
r—>—+00 r r——+00 r

where QY = Q) (0). If, in addition, (t;);cz» is ergodic, then gnom is independent of
w and

fﬂ ml % o g0, 0V) dP ().

ghom(é" V) = r—lgr—&]iloo r”—l

The proof of Proposition 9.3 follows immediately from Propositions 9.4 and 9.5
below. In the first one we prove the existence of the limit in (9.14) for x = 0, while
in the second one we consider the general case x # 0 and prove that the limit is
independent of x.

Proposition 9.4 Let f be a stationary random volume integrand and let g be a sta-
tionary random surface integrand with respect to a group (t;),czn of P-preserving
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transformations on (2, T, P). Then there exist Qe T, with P(§~2) = 1, and a random
surface integrand ghom: 2 x R™ x §"~1 — R such that

. (UO ¢,V Q )
&hom (@, £, v) = rin}kloo =1

(9.15)

forevery w € Q, ¢ eR" andv € S" !, where Q; = Q7(0). If, in addition, (t;) czn
is ergodic, then gnom is independent of w and

ghom(¢,v) = lim f ml ™8 (uo.c.v. Q) dP(w). (9.16)

r—-+oo ri— 1 Q

Proof We adapt the proof of [17, Theorem 5.1]. The main difference is that now the
functional to be minimised depends also on f°°, while in [17, Theorem 5.1] it depends
only on g. Since this requires some changes, for completeness we prefer to give the
whole proof in detail. We divide it into four steps.

Step 1: Existence of the limit in (9.15) for fixed ¢ € Q" and v € S*~' N Q".

Letv € "' NQ* ! and ¢ € Q" be fixed, let R, € O(n) N Q"*" be the
orthogonal n x n matrix as in (h) in Section 2, and let M, be a positive integer
such that M, R, € Z"*". Note that, in particular, for every 7' € 7"~! we have that
M,R,(Z,0) € 1'[5 NZ", namely M, R, maps integer vectors perpendicular to e, into
integer vectors perpendicular to v.

Given A" = [a1,b1) x -+ X [an—1,bp—1) € Z,_1 (see (3.15)), we define the
(rotated) n-dimensional interval T, (A’) as

—_—

T, (A = MVRV(A’ x [—c, c)), with ¢ := 7. ax (b —aj). (9.17)
Forevery w € Q and A’ € Z,,_| we set
1 o
tev(@, A)) = Mn_lmi 8 (uo¢.v. Ty (A")). (9.18)

v

Now let (€2, ?, ﬁ) denote the completion of the probability space (2, 7, P). We
claim that the function iz : £2%Z,—1 — Rasin(9.18) defines an (n—1)-dimensional
subadditive process on (€2, 7, P ). Indeed, thanks to Remark 3.9 and Proposition A.12,
for every A € & the function w — mcfum’g(u%,v, A)is T -measurable. From this, it
follows that the function @ — ¢ v (®, A’) is T -measurable too.

We are now going to prove that /i,y is covariant; that is, we show that there exists

a group (1)) czn-1 of P-preserving transformations on (€2, 7T, P) such that
pew(w, A"+ 2) = e (th(w), A'), foreverywe Q.7 € 7' and A € T, ;.
To this end fix 7 € Z"~! and A’ € Z,,_;. Note that, by (9.17),
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Ty(A'+72) = MyRy (A" +2) x [=¢,¢)) = MyRy(A" x [—¢,¢)) + MyRy(Z, 0)
= TU(A/) + Z:;a

where 7|, := M, R, (', 0) € I1; N Z". Then, by (9.18)

1 e
pev(@, A +7) = Py m! 78 (uo c.v, Ty (A" + 7))
v
1 e
= M,,,lmﬁ 8 (w0, To(A)) + 2,). (9.19)
vV

Given u € SBV (int(T,,(A") + z,), R™) with u = wuq ¢, near 3(7,(A") + z), let
v € SBV (int(T,(A")), R™) be defined as v(x) := u(x + z|,) for every x € R". By a
change of variables, using the stationarity of f°° and g we obtain

/ [P(@,x, Vu)dx +/ g(w, x, [ul, v,) dH"™!
T, (AN+2) SuN(Ty (A)+3})

:/ foo(a),x+z;,Vv)dx+/ g(a),x—i-z:},[v],vv)d7'("_1
T, (A" SyNT, (A"

= / [ty (@), x, Vv)dx + / g(tz (w), x, [v], vy) dH" L.
T, (A)

SyNT, (A7)

Since z;, is perpendicular to v, we have ug ¢, (x) = uo,¢,,(x + z},) for every x € R".
Therefore, from (9.18) and (9.19) we obtain that

l’LC,U(wa A, + Z/) = M{,V(Tzv/(w)’ A/)a

where we set

(22) yegnr = (T rezn1.
We now show that p , is subadditive in Z,_;. To this end let A" € Z,_; and let
(AD1<i<n C Z,—1 be a finite family of pairwise disjoint sets such that A" = [ J; A.

For fixedn > Oandi = 1,...,N, letu; € SBV(int(TU(A:.)),]Rm) be such that
u; = ug,¢,y in a neighbourhood of 97, (A;) and

/ f°°(a),x,Vu,~)dx+/ g(a),x,[u,-],vb,,.)dH"_1
T, (A}) SuNTy(A})
<ml ™% o e, To(AD) + 1. (9.20)

Note that T',(A’) can differ from (J; T,,(A?) (see for instance [17, Figure 2]), but, by
construction, we always have | J; 7, (A}) C T, (A").
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Now we define

u(x) = ui(x) ifx e T,(AD), i=1,...,N,
T o) ifx € T(A)\ U; To(A);

thenu € SBV (T, (A"), R™) and u = uq ¢, near 97, (A’). Note that we also have x
N
Su N Ty(A) = (S, N Tu(A}).
i=1
Indeed, S, N T,(A") N 3T, (A}) = @ forevery i = 1,..., N. Moreover, u = ug,,

in T,(A") \ U; Tv(A}), hence Vu = 0 ae. in this set. Therefore, recalling that
f®(w, -, 0) =0, we obtain

/ F®(w, x, Vu)dx —I—/ g(@, x, [ul, v) dH" !
T, (A")

SuNT,(A)
N
:Z</ foo(w’x’vui)dx+/ g(w,x,[ui],vui)dH"”).
i=1 \/Tu(AD Su; T (A))

As a consequence, by (9.20),

N
m 8 (o, TW(A)) <Y ml ™8 (uo.c.0. Tu(A) + N,
i=1

thus the subadditivity of 11, , follows from (9.18), by the arbitrariness of n > 0.
Finally, in view of (g4) for every A’ € Z,,_; and for P-a.e. w € 2 we have

1 0
Hew(@, A) = m{" 8 (uo ¢, To(A"))
%
1 / 1
< g(w,x,¢,v)dH"
My sy 0T
< c*'“H" NG N Ty (A)) = e3lg ] £ (A, ©.21)

U

where we used again the fact that f°°(w, -, 0) = 0. This concludes the proof of the
fact that ¢, is an (n — 1)-dimensional subadditive process.

We can now apply Theorem 3.15 to the subadditive process i¢,,, defined on
(2, T P ) by (9. 18) to deduce the ex1stence ofaT- measurable function v, : 2 —
[0, +00) and a set Q; y C 2, with Q; v € T and P(Q; v) = 1 such that

lim  Hev(@ rQ")

r—+00 pn—1

= VY v(w) (9.22)
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for every w € Qw, where Q' := [—%, %)”’1. Then, by the properties of the com-
pletion, there exist a set Q; , € 7, with P(€2;,) = 1, and a 7-measurable function,
which we still denote by ¥ ., such that (9.22) holds for every w € ¢ ,. Using the
definition of p , we then have

.8 v

T mey (UO,g‘,m Qr)

Yro(@) = lim_ o 9.23)
for every w € Q¢ .

Step 2: Existence of the limit in (9.15) for every ¢ € R™ and v € sl

Let Q denote the intersection of the sets €2, for ; e Q"andv € "' NQY

clearly QeTand P(Q) = 1. Letg, g: QxR™ x $"! — [0, +00] be the functions
defined as
2@, 0,v) = 1riin+ir£ (:fioi“’ o) (9.24)
7@, ¢, v) := lim sup — e, 07 ) (9.25)
r—>+00 rn=l

By (9.23) we have

g(w, ¢, v)=8(,¢,v) =Y, (w) foreveryw e Q, reQ" andv eSS NnQ"
(9.26)

By Lemma 4.5 (property (4.13)), for every v € Qand v € S"! the functions
¢ > glw,¢,v) and ¢ — g(w, ¢, v) are continuous on R™ and their modulus of
continuity does not depend on w and v. More precisely, recalling (g4), for every
we Qandv € S"! we have

lg(w, &1, v) — g(w, &2, V)| < c302(181 — LD (81 + 162D,

_ — orevery ¢1, & € R™.
B(@. &1, v) — B(@. &, )| < c30a(t1 — LD (G| + 122)). e

(9.27)

From these inequalities and from (9.26) we deduce that for every { € R” and v €
S"~1' N Q" there exists a 7 -measurable function, which we still denote by Ye,v, such
that

8(@.2,v) =8, £,v) = Y (w) foreveryw e Q. (9.28)
We now claim that for every w € & and every ¢ € R™ the restrictions of the func-
tions v = g(w, ¢, v) and v > g(w, ¢, v) to the sets S" "and §"~! are continuous.

We only prove this property for g and Si , the other proofs being analogous. To this
end, letus fix ¢ € R™, v € /S\’_f], and a sequence (v;) C /S\'_’fl such that v; — v as
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Jj — —o0. Since the restriction of the function v — R, to gi_l is continuous, for
every § € (0, %) there exists an integer js such that

1(){78)r cc Q: ccC Q‘(}{+5)ra (929)

for every j > js and every r > 0. Fix j > js,r > 0,and n > 0. Let u €
SBV(Q;,R™) be such that u = ug ,, near dQ; and

foo(w’ x,Vu) dx —|—/ g(a)7 x, [u], Vu)dHn_l < mgm’g(u().{.w Qﬁ) + nrn—l.

Q; uNQy

We define v € SBV(QE{JFW, R™) as

o(x) = u(x) if x € Q‘,’7
uocv;(x) ifx € Qd+6)r \ 0.

Then, v = ug ¢, near 3Q‘()'1/+5)r and S, C S, U X, where

Y= {xeaQ‘,’:(x-v)(x-vj)<0}
Vi Vi
U (117 0(Q 4, \ O)-
Moreover |[v]| < || H" '-a.e. on . By (9.29) there exists ¢;j(8) > 0, independent

of r, with ¢;(8) = (148)"~! — 1 as j — +oo, such that H"~1(X) < ¢;(8)r"~ L.
Thanks to (g4) we then have

m,{;w’g(uo,;,u, Q‘()]j+5)r) S/vj ¥ (w, x, Vv)dx

(A+8)r

+/ L glw,x, ], v) dH"!
S

J
v i)

<[ 5@ x Vuydx +/ ¢(0, x. [ul, vy) dH"™!
oy SN0y

+esllgj (&)
<m! 78 o rv, V) + "N+ e3le g (B)r" Y,

where we used the fact that f*°(w, -, 0) = 0. Recalling definition (9.24), dividing by
"1, and passing to the liminf as r — 400, we obtain

8@, L)1+ 8" < g, £, v) + 0+ e3¢5 (8). (9.30)
Letting j — +o0, then § — 0+, and then n — 0+, we deduce that

limsup g(w, ¢, vj) < g(@, ¢, v).

j—>+o00
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An analogous argument, now using the cubes er’ 5y shows that

g(w, ¢, v) <liminf g(w, ¢, v)),
-3 4o S

hence the claim follows. Note that, together with (9.27), this 1mRhes that for every
o € § the restriction of the function ¢, v) = g(w, ¢, v) toR™ x S” is continuous,
and the same holds true for (¢, v) — g(®, ¢, v).

As we already observed in the proof of Step 2 of Proposition 9.1, the set S” 'no»
is dense in Si . Therefore, from the continuity property proved above and from (9.28)
we deduce that for every £ € R” and v € S"~! there exists a 7 -measurable function,
which we still denote by v, such that

g(a), L, v) =g, ¢, v) =Y (w) foreveryw € Q. (9.31)

By (9.24) and (9.25) this implies that

1.8 v
'(/f;’v(a)) — hm mu) (MO,{,V’ Qr)

r— 400 r"—1

(9.32)

for every w € Q¢ eR" andv e S" !, concluding the proof of Step 2.
Step 3: Definition and properties of ghom-
Forevery w € Qand ¢ e R, and v € S"~! we define

v ifweg,

Shom(@ EV=0 0 ifwe @)\
Then (9.15) follows from (9.32). From the measurability of v ,, proved in Step 2,
we obtain that gnom (-, ¢, v) is 7 -measurable in Q for every { € R™ and v € sr1
Moreover, since for every w € € the restriction of the function & v) =g, ¢ v)to
R™ x gi_l is continuous, from (9.31) we deduce that for every w € 2 the restriction
of ghom(®, -, -) to R™ x ’S\’i_] is continuous and this implies the 7 ® #™*" @ K-
measurability of ghom on € x R” x §"~! Finally, Lemma 4.5 allows us to conclude
that ghom(w, -, -) € G for every w € Q.
Step 4: In the ergodic case gnom is deterministic.

Set Q := mzeZ” ‘L’Z(Q) we clearly have that Qe7,QcCQ and rZ(Q) Q for
every z € Z"; moreover, since T, is a P-preserving transformation and P(Q) =1,we
have P(ﬁ) = 1. We claim that

ghom(fz(w)v Cs U) = ghom(a)s é" V), (933)

foreveryz € 7", w € Q, ¢ € R", and v € S" 1.
We start noting that to prove (9.33) it is enough to show that

8hom (7z(@), £, V) < ghom (@, £, v) (9.34)
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foreveryz €e Z"', w € Q, ¢ € R", and v € S"~!. Indeed, the opposite inequality is
obtained by applying (9.34) with w replaced by 7 (w) and z replaced by —z.

Letz € 7", w € Q, ¢ € R" and v € S"! be fixed. For every r > 3|z|, let
ur, € SBV(Q;, R™) be such that u, = ug ¢, near dQ}, and

Fo(w, x, Vi) dx +/ g (@, x. [y ], vy, ) dH"™!
oy SurNOY
<mf 8 wocn. O)) + 1. (9.35)

By the stationarity of f°° and g, a change of variables gives

ml oS wo e, Q) = ml " E (. g v, OF(2)). (9.36)

We now modify u, to obtain a competitor for a minimisation problem related to the
right-hand side of (9.36). Noting that Q) CC Q) 3] (z) we define

uy(x) if x e 0},

O () i x € a0 QL

Clearly v, € SBV(QV+3|Z‘(1) R™) and v, = u;, ¢, near aQr+3\z|(Z) Moreover we
notice that §,, = §,,, U X1 U X, where

Ti={x€dQ):(x-v)((x—2)v) <0} and E:=TI!N (Q) 1311\ Q).
Moreover |[v,]| = |¢] H" '-a.e. on ¥| U %,. Since 3|z| < r, we have H"~1(Z)) =
20=Dz-v| " 2and H" 1 (£2) = (r+3|z)" ' =" < 3=zl (r +3z))" 2

2"(n — D|z| r"=2, Therefore, using the fact that f*°(w, -, 0) = 0, thanks to (g4) we
have

/ f®(w, x, Vv,) dx +/ g(w, x, [v,], vy,) dH"!
Q:+3| ‘(Z) Sor OQ:+3‘ ‘(Z)

< f°°<w,x,wr>dx+/ g(@.x. ], v) dH"™ + M, "2,
oy Su,NQOY

where M, ; := c3(n — 1)(2 +2")|z]|¢|. This inequality, combined with (9.35) yields

M g, O3 (@) < mbT 8 o0, Q) + 14 Moo "2 (9.37)

Recalling that 7,(w) € Q C £, by (9.15) and (9.36) we get

1.8 %
ghom (T2 (@), ¢, v) = lim Mooy @060 O s Q1))
om Z k) ) - -

r—400 pn—1 r—-+oo pn—1
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. m£ ’g(“z,{,v»Q:+3|z|(Z))
= lim )

r—-+o00 pr—l

where in the last equality we have used the fact that r"~'/(r 4+ 3|z)"! — 1 as
r — +00. Therefore, dividing all terms of (9.37) by #"~! and passing to the limit as
r — +00, from (9.15) we obtain the inequality

ghom (T2 (@), £, V) < ghom (@, ¢, V),

which proves (9.34) and hence the claim.

If (1;),e7» is ergodic we can invoke [17, Corollary 6.3] to deduce that gnom does
not depend on w and hence is deterministic. In this case, (9.16) can be obtained
by integrating (9.15) over 2 and observing that, thanks to (9.21), we can apply the
Dominated Convergence Theorem. O

We now prove that the limit (9.14) that defines ghom is independent of x. More
precisely we prove the following result.

Proposition 9.5 Let f be a stationary random volume integrand and let g be a sta-
tionary random surface integrand with respect to a group (t;),czn of P-preserving
transformations on (2, T, P). Then there exist Q' € T, with P(2') = 1, and a
random surface integrand gnom: Q x R™ x S"~! — R, independent of x, such that

omd g, QU (X))
ghom(w’ C’ U) = hm n—1
r——+00 r

, (9.38)

foreverywe @, x e R", ¢ e R", v e "1,

Proof The proof closely follows that of [17, Theorem 6.1], therefore here we only
discuss the main differences with respect to [17].

Let ghom be the random surface integrand introduced in Proposition 9.4. Arguing
as in the proof of [17, Theorem 6.1], we can prove the existence of Q' € 7, with
P(€) = 1, such that (9.38) holds for every w € @, x € R", ¢ € R", and v €
S"=1'nQ"~!. Hence, to conclude it remains to show than (9.38) holds true for every
vesL

To this end, for fixedw € @, x e R", ¢ e R",and v € S"—1 we introduce the
auxiliary functions

D U gs 0V (rx))

.. m
8w, x,¢,v) = 1;*1Ln+11t;£ pr (9.39)
md ¥ (g, QL (rx)
g(w,x,¢,v) ;= limsup .k L ) (9.40)

r— 400 rn=l

Let v € gi_l be fixed. As we already observed in the proof of Step 2 of
Proposition 9.1, the set S’rl N Q" is dense in S'_fl, hence there exists a sequence
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(vj) Cgi_lﬁQ"’l suchthatv; — vasj — oo. We claim thatforevery 6 € (0, 1/2)
there exists js € N such that

(148" g, 2. £.v)) < g(@, %, &, v) + 3115 (), (9.41)
T, x,0,v) < (1= 8" g, 5. £.v)) + 3l¢15;(6), (9.42)

for every j > js, where ¢;(8) is such that ¢;(8) — (1 + "1 —lasj — +oo.

The proof of (9.41) and (9.42) is similar to that of (9.30) in Proposition 9.4. Thanks
to the continuity of the restriction of v = R, to Si‘l, forevery § € (0, %) there exists
an integer js such that

Ol _s),(rx) CC Q)(rx) CC Q( 5, (rx), (9.43)

for every j > js and every r > 0. Fix j > js,r > 0,and n > 0. Let u €
SBV(Q; (rx), R™) be such that u = u,, ¢, near dQ; (rx) and

/ .y, Vu)dy+/ g(w, y, [ul, v,) dH" !
0! (rx) SuNQL(rx)

<ml "8 Wy v, OF(rx)) + "L

We define v € SBV(Q(] ), (rx), R™) as

L) ity € Q) (rx),
T e, ) iy € O ), )\ QY ().

Then, v = Urx,¢,v; DEAT BQ:{M)r(rx), and S, C S, U X, where

T i={y€aQ)rx): ((y —rx) - v)((y —rx) - v))
< 0} U (M4 N Q] 45, (rx) \ QY (rx))).
Moreover |[v]| < || H" '-a.e. on . By (9.43) there exists 6;j(8) > 0, independent

of r, with ¢;(8) — (14 8)"~! — 1 as j — +oo, such that H"~1(Z) < ¢;(8)r" L.
Thanks to (g4) we then have

%) Vv
m£ ’g(urx,c,vj- s Q(f_,_(g)r (rx))

< /U_ F®(w, x, Vv)dx +/ . g(®, x, [v], vy) dH"™!
Q(lj+a>r(”‘) Sva(le)r(”‘)

< / [ (w, x, Vu)dx +/ g, x, [ul, v) dH"™" + e3]¢|g; 8)r" !
0y(rx) SuNQ}(rx)

<mS g, QL)) + 0" e31C ¢ (8)F
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where we used the fact that f°°(w, -, 0) = 0. Recalling definition (9.39), dividing by

"1 and passing to the liminf as r — +00, we obtain

(148" "g(w, 1%5.¢.v)) < g(w.x. L. v) + 1+ 3¢5 (8).

which gives (9.41) by the arbitrariness of 1. The proof of (9.42) is analogous.
From (9.41) and (9.42) we get

(148", 5.0, v) — e31¢lg; (8) < g(w,x,¢,v) < 8, X, ¢, v)
<1 =8)""%, %5. ¢, v) + c3lt1s; (8)

for every j > js. Since vj € s*1n Q", and (9.38) holds true for rational directions,
we have

g(wv ﬁﬁ? ;" Vj) = §(w9 leas ;v v]) = ghOm(wv {1 v])
This, together with the previous inequality, yields

(14 8)" " ghom(@. ¢, v)) — 3¢1j(8) < g(w. x.¢,v) < Z(w, X, L, v)
< (1= 8" ghom(@. £, v)) + c3/¢15;(8)

for every j > js. Hence, taking the liminf as j — 400 and then the limitas § — 0+,
we obtain

1iminfgh0m(a)’ §7 UJ) S g(a)axv C» V) Sg(wa-xa §7 v) S hmlnfghom(a)’ é” V])
Jj—+oo - J—+oo
and hence
g, x,&,v) =g(w,x,¢,v) =liminf ghom (@, £, v)).
- J—>+00

Note that, in particular, all the terms in the above chain of equalities do not depend
on x. Then, in view of the definition of g and g (see (9.39) and (9.40)) we get that the
limit

i md (U z.vr 0V (rx))

r—+00 pn—l

exists and is independent of x. Therefore we obtain

o M S QYx) _ mi o OF(0)

r—-+o0 =1 r—>+400 =1

= ghom(®, £, V),

foreveryw e @, x e R", ¢ e R",and v € g’rl. Since the same property holds for
v € S"!, this concludes the proof. O
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We are now in a position to prove the theorem concerning the existence, for P-
almost every w € €2, of the limits which define the homogenised integrands.

Proof of Theorem 3.17 Property (a), (3.17), and (3.20) are proved in Proposition 9.1,
while property (b), (3.18), and (3.21) are proved in Proposition 9.3. Equalities (3.19)
and (3.22) coincide with (9.12) and (9.13), which are proved in Proposition 9.2. O

We now prove the main result of the paper.

Proof of Theorem 3.18 1t is enough to apply Theorem 3.17 together with the determin-
istic homogenisation result in Theorem 4.1, applied for fixed w € . O

Acknowledgements F. Cagnetti was supported by the EPSRC under the Grant EP/P007287/1 “Symmetry
of Minimisers in Calculus of Variations”. The research of G. Dal Maso was partially funded by the European
Research Council under Grant No. 290888 “Quasistatic and Dynamic Evolution Problems in Plasticity and
Fracture”. G. Dal Maso is a member of the Gruppo Nazionale per 1’ Analisi Matematica, la Probabilita e
le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The work of C.
1. Zeppieri was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
project 3160408400 and under the Germany Excellence Strategy EXC 2044-390685587, Mathematics
Miinster: Dynamics—Geometry—Structure.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix. Measurability issues

The purpose of this section is to prove the measurability of the functions defined in
(3.16). This will be done in Proposition A.12, which requires some preliminary results.

We start by introducing some notation that will be used throughout the proofs. For
every A € o let Mp(A, R™*") be the Banach space of all R™*"-valued bounded
Radon measures on A. This space is identified with the dual of the space Co(A, R"*")
of all R”*"-valued continuous functions on A vanishing on dA. For every R > 0 we
set

Tt = € Mp(A,R™™): |u|(A) < R},

where || denotes the variation of u with respect to the Euclidean norm in R”*"*. On
mxn

®.A We consider the topology induced by the weak™ topology of My, (A, R™*"),
which will be called the weak* topology on M’ ", Since M,,(A, R™*") is the dual

R,A
of a separable Banach space, there exists a distance d " on M’z*{" which induces

the weak™ topology on %,XAH (see [23, Theorem V.5.1]). Moreover, the metric space

(MR d’y") is compact by the Banach-Alaoglu Theorem.
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Forevery u € Mj(A, R™*") the absolutely continuous part of . with respect to the
Lebesgue measure £" is denoted with 1. Note that, if 1 € M7, then u € MR’[".

The following lemma concerns the mesurability properties of the density of u“
with respect to £".

LemmaA.l Let A € o and R > 0. Then there exists a B(A) @ B(My"")-
measurable function'y : A x MR"{" — R™*" such that

1
y(,w) € L' (A, R™ ") forevery p € My,
u’(B) = /B y(x, w)dx forevery u € ’;;)XA" and B € B(A). (A1)
Proof Forevery (x, ;) € A x M’;X’ let y (x, ) € R™*" be defined as
w(Bpy(x) N A)

y(x, u) i= §p—~>0+ wp p"
0 otherwise,

if the limit exists in R *",

where w, denotes the volume of the unit ball of R”. From the theory of differentiation

of measures (see, e.g., [26, Theorem 1.155]), for every u € M'};XI we have that

y(,m) € L'(A,R™") and

uw*(B) :/ y(x,u)dx forevery B e HAB(A),
B

which proves (A.1).
To prove the measurability of the function y it suffices to show that for every p > 0
the function

(x, 1) = pu(By(x) N A) (A2)

from A x M'I’;’ﬁ” to R"™*" is B(A) ® %(M'g;”)—measurable. To this end, for a fixed
p > 0 we introduce an increasing sequence of nonnegative functions (¢;) C C.(R")
pointwise converging to the characteristic function of the open ball B, (0), and we
observe that

u(Bp(x)NA) = lim /wj(y—x)du(y),
J—>+00 J A

by the Monotone Convergence Theorem.
Let A, :={x € A: dist(x, dA) > p}. Since for every j € N the function

(x,u)r—>/Asoj(y—x)du(y)
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is continuous on A, x Mp”" (considering on M’z (" the weak™ topology), the func-
tion (A.2) from A, x mX" to R"™*" is B(A,) @ HA( mx") measurable. By the
arbitrariness of p > 0 we obtam that the same function considered on A x ./\/l’” is
HB(A) ® B(MY’\")-measurable. m]

To prove the measurability of the map > ¢, from MR to M, we need

the following lemma.

LemmaA.2 Let A € 7, let R > 0, let (Y, ) be a measurable space, and let h: A X
Y - R™" be a B(A) ® E-measurable function such that

/ |h(x,y)|dx < R foreveryyeY.
A

For every y € Y, we define the R™*"-valued measure A, € M'I’;X’ as

Ay(B) := /Bh(x,y) dx forevery B e AB(A).

Then the map y v L is measurable from (Y, £) to (M'I’{,’i‘", %(MMX"))

Proof We start by observing that for every ¢ € C.(A, R™*") the scalar function
y = / @(x)-dry(x) is E-measurable, (A.3)
A

where - denotes the Euclidean scalar product between matrices. Indeed, by definition
we have

/(ﬂ(X)d/\y(X) =/§0(X)~h(x,y)dx,
A A

and the measurability with respect to y follows from the Fubini Theorem.
Note now that a basis for the open sets of the space /\/lm (endowed with the
weak™ topology) is given by the collection of sets

!Ae mxn ‘/go,(x) dr(x) — fgo,»(x)-di(x)( <nfori=1,...l},
A

withn > 0, A € M'};T,l e N,and ¢y, ..., ¢ € C.(A, R™™), By (A.3), the pre-
image of these sets under the function y +— A, belongs to £. This implies that this
function is measurable from (Y, &) to (M7 (", %’(Mm 1)), since the weak™ topology

in M% /" has a countable basis. O

The following lemma shows the measurable dependence of «“ on p.

LemmaA3 The map pn +> p is measurable from (MR BMEHN) 10
(MR BMET).
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Proof Thanks to (A.1), the conclusion follows from Lemma A.2 with (Y,&) =
(M M) and h = . 0

Given A € &7, we set
BVg' 4 :={u € BV(A,R") : |ullp1a gmy < R and [Du|(A) < R}.  (A4)
On B Vl’{f 4 we consider the topology induced by the distance dg, 4 defined by
di A, v) = lu = vl p1apm —+—d’" "(Du, Dv),

where dj;”)" is the distance on M7”" that metrizes the weak™ topology.

Note that BV (A, R™)isthe dual of a separable space, and that, when A has Lipschitz
boundary, the topology just defined coincides with the topology induced on BVR’ A
by the weak* topology of BV (A, R™) (see [5, Remark 3.12]).

The following lemma will be crucial in the proof of Proposition A.12.

LemmaA.4 Assume that A € < has Lipschitz boundary. Then the metric space
(BVE 4 de") is compact.

Proof Let (u;) be a sequence in BVI’; 4- By (A.4) this sequence is bounded in

BV (A, R™). Recalling the compact embedding of BV (A, R™) into L'(A,R™) and

the compactness of ’};XA", there exist a subsequence, not relabelled, and a function

u € BV(A,R™) such that uy — u strongly in L'(A,R™) and Duy— Du weakly* in
Mp (A, R™") Tt is easy to see thatu € BVy', and that de”(uk, u) — 0. O

We now prove the measurability with respect to (w, u) of the integral functional
corresponding to a random volume integrand.

LemmaA.5 Let A € o with Lipschitz boundary, let R > 0, and let f be a random
volume integrand as in Definition 3.7. Then, the function

(a),u)r—>/f(a),x,Vu)dx
A

from Q@ x BVp! , toRisT @ B(BVy' ,)-measurable.

Proof Let y be the function introduced in Lemma A.1. We observe that for every
u€BVy,

y(x, Du) = Vu(x) forL"-ae.x € A.

Therefore,
/f(w,x,Vu)dX=/ flw,x,y(x, Du))dx.
A A
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We claim that the function (x,u) +— y(x, Du) from A x BVI’{”A to R™*" is
B(A) ® B(BVy ,)-measurable. Indeed, it is the composition of the functions
(x,u) — (x, Du), which is continuous from A x BVI’QA to A X ./\/lr,'e'z", and the
function (x, ) — y(x, u) from A x M’};:‘” to R™*" whichis Z(A) ® A(B VI’QA)-
measurable, by Lemma A.1. Therefore, the function (w, x, u) — (w, x, y(x, Du)) is
measurable from (2 x A x BV,’Q”,A, T®%(A)®%(BVKA)) to (2xR" xR™" T®
B RQAB™ ™). By the T ® " ® A" *"-measurability of f we deduce that the function
(w, x,u) — f(w,x,y(x, Du)) fromQxAxBVl'fA toRmT@%(A)@%’(BVﬁA)

measurable. The conclusion then follows from Fubini’s Theorem. O

The following two lemmas are used to prove the measurable dependence on u of
the surface integral functional corresponding to a continuous surface integrand.

Forevery A € o/, u € Mp(A,R™"), x € A, and p > 0 we set

u(By(x) N A)

0a,p(, x) :=
r wn—lpn_l

(A.5)

where w,,_ denotes the volume of the unit ball of R"~!.

LemmaA.6 Let A € o7 andu € BV (A, R™). Then

hr& 04, p(Du, x) = ([u](x) ® vu(x)))(su (x) for H" '-a.e.x € A, (A.6)
p—

where xs,(x) =1ifx € S, and xs,(x) =0ifx € A\ S,.

Proof Step 1. We claim that

lim 04.,(Du®, x) =0 for H" '-ae. x € A. (A7)
p—0+

We now recall that, for a positive Radon measure w in A and for d € N, the d-
dimensional upper density of u at x € A is defined as

w(B,(x) N A)

0% (i, x) = lim sup v

p—>0+ wdq p

where w; denotes the volume of the unit ball of R4 (see, e.g., [5, Definition 2.55]). To
prove (A.7) it is then sufficient to show that

O " 1(|D%|,x) =0 for H" '-ae.x € A. (A.8)
To do so, for any + > 0 we define the set
={x € A: 0" (|D%|, x) > t};
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note that
E, C{x e A:0""(|D|, x) = +oo}.

By the Lebesgue Differentiation Theorem we have £ (E;) = 0 and, since |D%u| <<
L", we have |D%ul|(E;) = 0.

Since |D%u| is a finite Radon measure, for every k € N there exists an open set
Ar C A with E; C Ay such that

|D ul(Ay) < 1.
Thanks to [24, Section 2.10.19(3) and Section 2.10.6] this implies that
tH'YE,) < |D%|(Ay) < ,lc for every k € N.
Taking the limit as k — oo, we obtain that
H'Y(E;) =0 foreverys > 0.

From this, it follows that

H' " ({x € A: @1 (IDl,x) > 0}) =0

and this proves (A.8), which gives (A.7).
Step 2. We claim that

lim 64 ,(Cu),x) =0 for H" '-ae. x € A. (A.9)
p—0+

As before, it is sufficient to show that
O*" 1(|Cw)|,x) =0 for H" '-ae.x € A. (A.10)
To do so, for any ¢ > 0 we define the set
E :={xeA:0""(Cw)| x) > 1}.

Now, let K C E; be a compact set with H'L(K) < 400 so that, in particular,
|C(u)|(K) = 0. Then, by [24, Section 2.10.19(3) and Section 2.10.6] we have that

tH”_l(K) < |C)|(V) for every open set V containing K.

Since C (u) is a finite Radon measure, taking the infimum of the above inequality over
all open sets V containing K we obtain that

tH" N (K) < |C)|(K).
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Since |C(u)|(K) = 0, from the above inequality it follows that "~ (K) = 0. Using
the fact that E; is a Borel (and hence Suslin) set, by [24, Corollary 2.10.48] we have
that

H"V(E;) = sup{H" ' (K) : K compact, K C E;, H" '(K) < 400},

and so H"~'(E,) = 0 for every ¢ > 0, which implies (A.10) and, in turn, (A.9).
Step 3. We claim that

mg 04.p(D/u, x) =0 for H" '-ae. x € A\ S,. (A.11)
p—0+

Observe that |[D/u|(A \ S,) = 0. By [24, Section 2.10.19(4) and Section 2.10.6] we
have immediately that

" 1 (ID/ul,x) =0 for H" '-ae. x € A\ Su,
which implies (A.11).
Step 4. By Besicovich Derivation Theorem (see [5, Theorems 2.22, 2.83, and 3.78])

we have that

lim 04.p(D7u, x) = [u](x) ® v, (x) for H" l-ae. x € S,.
p—0+

Together with the previous steps, this gives (A.6). O

LemmaA.7 Let A € of andlet g: A x R™*" — R be a continuous function. Assume
that there exists a > 0 such that

lg(x, )| < al§| (A.12)

forevery (x,&) € A x R™*". Then for everyu € BV (A, R™)

. . g(x,04,,(Du, x)) _ n—1
nl_1)%1+p1_1>%1+A 10m, (D, D)V 1 d|Du|(x) = /Amsu g(x, [ul(x) ® v, (x)) dH" ™" (x),

where 04, is defined in (A.5).

Proof Letu € BV (A, R™) be fixed.
Step 1. Thanks to (A.12) and to the bound

/ [u](x)| dH" " (x) < +o0, (A.13)
ANS,

the function x > g(x, [u](x) ® v, (x)) is H”_l—integrable onANS,.
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Step 2. We claim that for every n > 0

,04,0(Du,
lim fg(x 40D D) a4 Cix) =0,
p=0+ J4 104, ,(Du, x)| V

By Lemma A.6 we have that

lirg 04,p(Du,x) =0 for |[D+ C(u)|-a.e.x € A,
p—0+

and by (A.12) we have the inequality

|g(x,9A,p(Du7x))| <a
10a.p(Du, x)| V1

(A.14)

The claim then follows from the Dominated Convergence Theorem, since g is contin-
uous, g(x,0) =0, and |D*u + C(u)| is a bounded measure.
Step 3. Recalling (f) in Section 2, to conclude the proof it is sufficient to show that

. ) g(x,04,p(Du, x))
lim lim
1=0+ p—=0+ J ans, 104,p(Du, x)| vV n

= / g(x, [u](x) ® v, (x)) dH" ().
ANS,

[l (x) @ vy (x)| dH" ™ (x)

By Lemma A.6 and by the continuity of g we have that for every n > 0

. ¢ (x, 04, (Dut, x)) -
tim /A B 100 @ w0l )

[[u](x) ® v, (x)]
[[ul(x) @ vy (x)| V1

= f g(x, [u](x) ® vy (x)) dH" (x),
ANS,

where we used the Dominated Convergence Theorem, thanks to (A.13) and (A.14).
Note that for H"~!-almost every x € S,

] (x) & v (x)| [u](x) & vy (x)]
im = sup =
=0+ [[u](X) @ v () Vi oo [[u](x) @ v (X)] V1

3

since [u](x) # 0. Thanks to (A.12) and (A.13) we can apply again the Dominated
Convergence Theorem and deduce the claim in the limit n — 04-. O

We are now in a position to prove the measurable dependence on u of the integral
functional corresponding to a continuous surface integrand.

Lemma 9.6 Let A € o with Lipschitz boundary, let R > 0, and let g be as in
Lemma A.7. Then the function

U g(x, [u](x) ® vy (x)) dH" ' (x)
SuNA
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from BV;{’A toR is (B Vl’e'fA)-measurable.

Proof By Lemma A.7 the thesis follows by proving that for every p,n > 0 the function

f 8(x,04,0(Du, x))
u —
A 104,p(Du, x)| Vn

d|Du|(x) (A.15)

from BVI’Q’f 4 toRis B(B V;gf 4)-measurable. Let p, n > 0 be fixed. First note that, by
the B(A) @ HA( ’1’;3")—measurability of (A.2) and the continuity of g, the function

g(xa 9A,p(“/a -x))

(x, u) —
104,01, X)| V1

is B(A) @ HA( ';e"f&‘”)-measurable. Moreover it is bounded by (A.14). So by [17,
Corollary A.3]

M'_)/;g(-xveA,p(Mix)) dllL|(.X)

|9A,,O(l‘l/v -x)l \% 7’]

is %(M%ﬁ")-measurable. Since u + Du is continuous from (BVg',,dy ,) to
(MR dR "), the Z(BV' ,)-measurability of (A.15) follows. O
We now prove the measurability with respect to (w, u) of the integral functional

corresponding to a random surface integrand, with no continuity assumption with
respect to x.

LemmaA.8 Let A € of with Lipschitz boundary, let R > 0, and let g: Q2 x A x R™ x
S" ! 5> RbeaT @ B(A) @ B" @ H's-measurable function. Assume that there
exists a > 0 such that

glw,x,¢,v)=g(w,x,—¢, —v), (A.16)
lg(w, x, &, v)| <alg], (A17)

for every (w,x,C,v) € Q x A x R™ x S"~1. Then the function
(o, u) '—>/S Ag(w,x, [](x), v (x)) dH" " (x)
M

Sfrom Q x BV, toRis T ® B(BVy' ,)-measurable.

Proof We recall that a matrix & € R™*" has rank < 1 if and only if £ = ¢ ® v for
some ¢ € R™ and v € $"7!, and that the pair (¢, v) is uniquely determinded by &,
up to a change of sign of both terms. Therefore, thanks to (A.16), we can define a
T QR AB(A) @A™ -measurable function g: 2 x A x R”*" — R by setting for every
(w,x,8) € QA x A x R

glw,x,¢,v) ifé=¢®v, with e R"andv € st

g(w,x,8) = 0 if rank(§) > 1.
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By (A.17) we have |g(w, x, §)| < al&| for every (w, x,&) € Q x A x R™*",
To prove the thesis it is enough to show that

(w, u) — (@, x, [ul(x) Quy(x)dH" ' isT® B (BVy' 4)-measurable.
SuNA

(A.18)

Note that the function g can be written as

§(w, x,8) = g(w, x,&)alé], (A.19)

where g is 7 ® B(A) @ B(R™*")-measurable and satisfies |g]| < 1.

Let R be the set of all bounded 7 ® #(A) ® ™" -measurable functions g: € x
A xR™" — R such that the function g defined as in (A.19) satisfies the claim (A.18).

In order to conclude the proof, we need to show that R contains all bounded
TRAB(A)QRA™*"-measurable functions. To prove this property, note that R is a vector
space of bounded real-valued functions that contains the constants and is closed both
under uniform convergence and under monotone convergence of uniformly bounded
sequences. Let C be the set of all functions g: 2 x A x R"*" — R that can be written
as

8w, x,8) =a(@pB(x,§),
where @ : Q@ — R is bounded and 7 -measurable, and : A x R™*" — R is bounded
and continuous. Note that C is stable under multiplication and that the o-algebra
generated by Cis 7 @ #(A) @ B *".
By Lemma 9.6 we have C C R. Hence the functional form of the Monotone Class
Theorem (see [22, Chapter I, Theorem 21]), implies that 'R contains all bounded
T ® B(A) ® B"*"-measurable functions, and this concludes the proof. O

We now prove the measurability of the map u — D/u.

LemmaA.9 Let A € &7 with Lipschitz boundary and let R > 0. Then the map
u—> D'y

is measurable from (BVy' ,, B(BVy' 1)) to (MR, BMR7).

Proof As in the proof of Lemma A.2 it is sufficient to show that

ur— / ¢(x).d(Dju)(x) = / (p(X)([u](x) ® vu(x)) dHn—l(x)
A ANS,,

from BVKA to R is A (B VKA)—measurable for every ¢ € C.(A, R™*™). To this end
we set g(x, ¢, v) 1= ¢(x)-(¢ ® v), and note that |g(x, ¢, v)| < al¢|, where a is the
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maximum of |¢|. Therefore, by Lemma A.8 it follows that

u—> g(x, [u](x), vy (x)) dH" (x)
SuNA

from BVI’Q'T 4 toRis (B V;?, 4)-measurable, and hence the claim. O

The following corollary deals with the Cantor part.

Corollary A.11 Let A € o with Lipschitz boundary and let R > 0. Then the map
ur— C(u)
is measurable from (BVy' o, B(BVE' ,)) to (MR, BIMEY).

Proof Since C (1) = Du — D*u — D u, the result follows from the continuity of the
map u > Du from (BVg' ,, dy ,) to (M, dg’\"), using Lemmas A.3 and A.9 .
O

We are now ready to prove the main result of the section.

Proposition A.12 Let f and g be random volume and surface integrands, respectively,
according to Definition 3.7, and let (2, ’?, F) be the completion of the probability
space (2,7,P). Let A € o, let w € SBV(A,R™), and for every w € Q let
nlcfu’g(w, A) be defined as in (3.4) and (3.16). Then the function w +—> mg’g(w, A)is
T -measurable.

Proof Forevery w € Q, B € #(A),andu € BV (A, R™), we define
E(w)(u, B) := / f(w,x,Vu)dx +/ g(w, x, [u], v) dH" L.
B Sy

Let us fix a sequence (A ;) of open sets with Lipschitz boundary, with A; CC A1
forevery j € Nand U;A; = A. It follows easily from the definition that

ml 8w, A)
= lim inf{E(w)(u,A):ue€ SBV(A,R"), u=winA\ A; il
j—+oo
= lim (inf{E(w)(u, Ajy1):u€ SBV(AJ'_H,Rm), u=winAj;y\Aj}
J—+0

FE@)w, A\ Ajn)
= lim inf{E(w)(u,Aj11):ue SBV(A/'_H,RM), u=winAjy1 \ Aj},
Jj—>+oo ’

where in the last equality we used the fact that E(w)(w, A\ Aj41) — Oas j — +o0
since, by (f4) and (g4), we have E(w)(w, A\Aj11) < c3|Dw|(A\Aj1)+ca L (A\
Ajy1).
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Let us fix j € N. It is obvious that

inf{E (@), Ajp1):u € SBV(Aj41, R™), u=winAj4 \ Aj}
— inf{E@)(u, Aj+1) i u € SBV (Aj41, R™), E(@)(u, Aj11)
< E(w)(w, Aj.;,_l), u=win Aj+1 \Aj}.

By (f4) and (g4) we have E(w)(w, Aj11) < c3|Dw[(Aj41) + c4L"(Aj+1). There-
fore, from Remark 3.2 we obtain that there exists Ry > 0, depending on A4 and w,
such that

inf(E(w)(u, Aj11) iue SBV(Aj 1. R™), u=winAj\Aj)
=inf{E(w)(u, Aj+1) :u € SBV(Aj11, R™),
[Du|(Ajr1) <R, u=winAj 1\ Aj}.

Thanks to Poincaré’s inequality, there exists R > Rj, depending on A;,, w, and
Ry, such that every function u € BV (A, R™), satisfying |Du|(A;y1) < Ry and
u=winAj1\ Aj, satisfies also ||M||L](A,,+])Rm) < R. This implies that

inf {E(@)(u, Aj41) :u € SBV(Aj41.R"), u=winAj1\ A}
=inf{E(@)(u, Aj41) 1u € SBV(Aj11, R"), llullpia,,, rmy < R,
|Dul(Aj+1) <R u=winAj41 \ A}

Therefore, to prove the proposition it is enough to show that the function

[ONd inf{E(w)(u, Aj+1) tu e SBV(Aj+1,Rm) N BV]?AHI’ u = win Aj+1 \Aj}
(A.20)

is 7 -measurable.
We define H : BV};’AM — [0, 400] as

0 ifCu)=0andu =winAj;1\Aj,
+o00 otherwise,

H(u) = {

where the equality C (1) = 0 means that C(u)(B) = 0 for every B € #(Aj1). By
(A.20) to conclude the proof it suffices to show that the function

o > inf{E(@)(u, Ajr1) + H@w) :ue BVR ) (A21)

is 7 -measurable.

To this aim, we apply the Projection Theorem. Note that the function (w, u) +—
E(w)(u, Aj11) from Q x BVI’{fAj+l toRis7T ® Z(B Vl’e’fAjH)—measurable, by Lem-
mas A.5 and A.8 . Moreover, the function u +— H(u) from BVK A to R is
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%(BVﬁAj+l)-measurable, since the set {u € BVI’{fAjJrl : C(u) = 0} belongs to
'%(BVIT,A,-H) by Corollary A.11, while the set {u € BV;fAjH u=winAj 1\Aj}
isclosedin (BVy', ., dy 4. ). Hence, for every t > 0 we have

»Aj+1 sAj+1

{(w,u) € Q x BV,’,?”AM CE@)(u, Ajp ) +Hu) <t}eT® %(BV,’,?”AM).
(A.22)

. . m m .
Since the metric space (B V' A’ dy. Aj+l) is compact thanks to Lemma A .4, by the

Projection Theorem (see, e. g [22, Theorem III.13 and 33(a)]) the projection onto €2
of the set above belongs to 7. On the other hand, the projection onto €2 of the set in
(A.22) coincides with the set of points w € 2 such that

inf{E(w)(u, Aj1) +Hu) :u € BV,T,AH]} <t

Since this set belongs to T for every t > 0, the function in (A.21) is 7 -measurable. O
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